Spontaneous Resorption of an Occipital Meningocele: Computed Tomography and Magnetic Resonance Imaging Evaluation

Federica Vernuccio1 Elena Murmura1 Ettore Piro2 Paolo Arculeo3 Maria Pia Pappalardo3 Giuseppe Lo Re1 Antonio Lo Casto1 Sergio Salerno1

1 Section of Radiology, DIBIMED, University Hospital “Paolo Giaccone,” Palermo, Italy
2 Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro,” University Hospital “Paolo Giaccone,” Palermo, Italy
3 Department of Neuroradiology, ARNAS Civico, Di Cristina e Benfratelli, Palermo, Italy

Address for correspondence Federica Vernuccio, MD, Section of Radiology, DIBIMED, University Hospital “Paolo Giaccone,” Via del Vespro 129-90124, Palermo, Italy (e-mail: federicavernuccio@gmail.com).

Abstract
Keywords
► meningocele
► computed tomography
► magnetic resonance
► occipital meningocele
► encephalocele
► surgery

Cranial meningocele is a very rare variant of encephalocele. Meningocele can be associated with other disorders and may cause complications. Therapy is usually based on surgical treatment. To our knowledge, we describe the first case of spontaneous resorption of an occipital meningocele in a full-term newborn boy. A full-term newborn was noted to have a large not skin covered, semitransparent cystic lump in the occipital bone. He underwent computed tomography and a diagnosis of meningocele was proposed. After a few hours, the cystic lump spontaneously resorbed. After 1 week the patient underwent magnetic resonance. Histology confirmed the diagnosis.

Introduction

Encephalocele refers to the herniation of intracranial tissue through a defect in the cranium1; such lesions are called meningoceles when they contain only meninges and encephaloceles if brain tissue is included in the herniated tissue. Cranial meningocele is a very rare variant of encephalocele, and it is thought to be the product of postneurulation disorders.2 The sac of the malformation is generally covered by skin lined interiorly by arachnoid and contains only cerebrospinal fluid.2

Meningocele is sometimes associated with Dandy–Walker syndrome, amniotic rupture, cerebellar dermoid tumor or other disorders.3–5 Moreover, this disease may complicate with leptomenigitis since the gap due to the herniation could lead to the infiltration by pathological organisms.6 The therapy is based on surgical treatment. Although it has been reported by Nejat and Kazmi7 a case of spontaneous resorption of a sacral meningocele occurred at 6 months of age and a case of spontaneous resolution of a traumatic sphenoid sinus encephalocele in an adult by Hunt and Vaicys,8 meningocele is most commonly found in the proximal region (occipital meningocele) or may occur in distal part (lumbosacral meningocele). Imaging modalities (computed tomography [CT] and magnetic resonance imaging [MRI]) play a key role for its identification since they aid in prognosis and surgical planning.

To our knowledge, we describe the first case of spontaneous resorption of an occipital meningocele in a full-term newborn boy; the resorption occurred in a few hours. CT had been performed before resorption while MRI was performed after.

Copyright © by Georg Thieme Verlag KG, Stuttgart · New York
ISSN 1304-2580.

Received
March 18, 2015
Accepted after revision
April 18, 2015
Case Report

A full-term newborn was noted at discharge to have in the occipital region a tubular (~1 cm in length), not skin covered, semitransparent cystic lump, located in the left side (Fig. 1A). Pregnancy was uneventful with no history of drug abuse, hypertension, diabetes mellitus, stroke, or central nervous system disorders. During pregnancy regular prenatal care was reported and the baby had a spontaneous cry at birth (Apgar score at 5 minutes = 10).

For the presence of this occipital lump the baby underwent CT examination without contrast medium administration. The examination was performed using a specific newborn protocol to reduce the radiation dose. CT showed an enlargement of the cerebellomedullary cistern and temporal and cerebellar liquoral spaces and a very thin defect into the left side of occipital bone that connected the dural space with the skin and the visible lump (Fig. 1B, C). Moreover, it was noticed a subcutaneous hyperdensity at the level of the visible cystic lump (Fig. 1D).

Hence, CT demonstrated that the cystic lump contained cerebrospinal fluid and that meninges were herniated outside occipital bone defect and a diagnosis of meningocele was proposed, though skin uncovered meningocele is uncommon. CT proved also the absence of cerebral tissue, thus excluding the diagnosis of encephalocele.

After a few hours, the cystic lump showed complete spontaneous resorption (Fig. 2).

Anyway, the baby underwent surgery for excision of the lump, to avoid the risk of infection due to the possible communication of the external lump the meningeal space. Postoperatively, he had an uneventful recovery and he was discharged home.

The histology examination was consistent in collagen tissue with meningothelial cells, confirming the diagnosis of meningocele.

After a few weeks, the patient underwent an MRI examination with spin echo T1-weighted, T2-weighted, diffusion-weighted imaging, and gradient recalled echo T2* sequences that confirmed the enlargement of cerebellomedullary cistern, temporal, and cerebellar liquoral spaces (Fig. 3). No other disorders were found.

Discussion

Meningocele is a very rare disorder and to our knowledge, no case of spontaneous resorption is being reported in the occipital region. It is the rarest form of neural tube defect and occurs at a rate of 1 per 5,000 live births worldwide; it is present both along the spinal cord and skull and in approximately 75% of cases they are occipital in location. Meningocele develops due to failure of closure of the neural tube and is usually covered by pia mater and the arachnoid mater. The dura mater extends up to the margin of the defect and the overlying skin is intact. However, in our case the cystic lump was unusually not skin covered; even though, our imaging diagnosis was histologically confirmed.

Meningocele may be associated with other disorders and, sometimes, it may cause complications, such as recurrent meningitis. An occult involvement of the leptomeninges...
MRI is the most accurate imaging examination of the brain; it gives detailed information about tissue and structure; it provides exhaustive indications about the content of the cystic lump in case of meningocele: it is hyperintense on T2-weighted sequences without cerebral tissue in the context. Furthermore, we performed this technique to evaluate eventual associated cranial malformations, since meningocele can be associated with Dandy–Walker syndrome, as previously described in approximately 40 cases in the literature, with Arnold–Chiari malformation, amniotic rupture, cerebellar dermoid tumor, or other disorders.3–5

In our case, MRI was performed after spontaneous resorption and surgical treatment and the cystic lump was not visible anymore. As previously reported by Nejat and Kazmi, we may presume that this process of reduction may be due to a gradual obliteration of the dural defect and/or a lower pressure after discharge in the meningeal space but we cannot be sure of the two theories.

Treatment for meningocele consists of surgical closure of the protruding sac and a definitive closure of the defect. Considering that meningoceles are frequently covered by a thick epithelial membrane, they often do not present the same surgical urgency as for myelomeningocele. In the preoperative preparation, if the lesion is a skin covered antibioccances are not necessary before surgery; if the lesion is open, prophylactic antibiotics should be started in the intensive care nursery.11 Usually, if a meningocele is covered with normal skin, surgery is not urgent and it is recommended to operate when convenient; on the other hand, when it is not skin covered, surgery is considered urgent, because the meningocele can be easily damaged, and may become infected. In our case, considering the gradual perinatal size reduction of the meningocele, the choice of submitting the patient to surgery was debated a lot. However, considering the absence of normal skin covering the lesion, surgical treatment was performed in this newborn to avoid complications, to decrease the risk of infection, and protect the integrity of the brain, due to the cranial skull gap. However, the exact timing of the surgery should be individualized, but the repair performed as early as possible.11

In conclusion, it is important knowing and recognizing this particular condition because it is associated with serious complications; thus, a timely diagnosis is necessary to treat it (also surgically), to avoid the risk of infection, and to recognize any associated disorders. Imaging examinations, in particular CT and MRI, are fundamental for a correct diagnosis.

References