LE RAGIONI DEL DISEGNO
THE REASONS OF DRAWING
Pensiero, Forma e Modello nella Gestione della Complessità
Thought, Shape and Model in the Complexity Management

38° CONVEGNO INTERNAZIONALE DEI DOCENTI DELLE DISCIPLINE DELLA RAPPRESENTAZIONE
Comitato Scientifico internazionale / International Scientific Committee
Caroline Ansel Boulad, Duke University, North Carolina, USA – member of the American Academy of Arts and Sciences
Pedro Cabecos, Universidade de Coimbra, Portugal
Fabio Andrea Carboni, La Università Nazionale di La Sapienza, Roma, Italy
Aracildo Leão De Assunção, Universidade Federal do Piauí, Brasil
Livio De Luca, Direttore del Centro di CNR M.P. Genova, Marítima, Italia
Juan Jose Fernandez Martín, Universidad de Valladolid, Spagna
Roberto Ferrarese, Università Nazionale di Catania, Argentina
Josué Antonio Franco Carlos de San Antonio González, Universidad Politécnica de Madrid, Spagna
Josué Antonio Franco Taborda, Universidad de Córdoba, Spagna
Andrea Fabrizio Carboni, University of Le Plata, Argentina
Andrea Juan Llanos, Universidad de la Habana, Cuba
Roberto Ferrarese, Università Nazionale di Catania, Argentina
Josué Antonio Franco Carlos de San Antonio González, Universidad Politécnica de Madrid, Spagna
Josué Antonio Franco Taborda, Universidad de Córdoba, Spagna
Pedro Antonio Ibarra, Universidad de León, Peninsula
Juan Manuel Llado, Universidad de Extremadura, Spagna
Francisco Martínez Mendieta, Universidad Politécnica de Castellón, Spagna
Carlos Mestres, Universitat de Valladolid, Spagna
Javier Monaster, Universitat Politècnica de Catalunya, Spagna
Pablo José Narciso Navarro, Universitat Politècnica de València, Spagna
Fernando Ybargue, Academia Nacional de las ciencias Polonica, Repubblica Popolare Cinese

Comitato Scientifico Nazionale / National Scientific Committee
Pier Albinati, "Sapienza" Università di Roma
Fabio Andrea Carboni, Università di Roma
Paolo Belardi, Università di Pisa
Stefano Berzocchi, Università di Firenze
Carlo Bianchini, "Sapienza" Università di Roma
Marco Bitto, Università di Firenze
Vito Cardone, Università di Salerno
Mario Contessa, Università dell’Aquila
Ennio D’Aiuto, "Sapienza" Università di Roma
Carlos Foltz, "Sapienza" Università di Roma
Michele Giglio, Università di Catania e del Cilento, Università di Messina
Antonio Giordano, Università dell’Aquila
Antonio Giordano, Università degli Studi della Basilicata
Fulvio Giordano, Università degli Studi dell’Aquila
Adda Carlo Giusi, Università di Napoli
Massimiliano Campi, Università degli Studi di Napoli Federico II
Marco Carletti, Università degli Studi di Napoli Federico II
Laura Ceravolo, "Sapienza" Università di Roma
Massimo Caputo, Università degli Studi di Napoli Federico II
Luca Caputo, "Sapienza" Università di Roma
Massimo Carisi, "Sapienza" Università di Roma
Andrea Cassano, "Sapienza" Università di Roma
Daniele Cava, Università di Roma
Carlo Cusumano, Università di Catania
Luca Dall’Agnese, Università di Roma
Paolo Coletti, Università della Basilicata
Luca Coccia, Università di Roma
Luisa Ciccarone, Università di Genova
Daniele Coli, Università Mediterranea Reggio Calabria
Raffaele Conti, Università degli Studi dell’Aquila
Sebastiano Coppo, Politecnico di Torino
Carlo Currò, "Sapienza" Università di Roma
Lauro De Carlo, "Sapienza" Università di Roma
Massimo De Donato, "Sapienza" Università di Roma
Roberto De Risi, "Sapienza" Università di Roma
Alfonso De Santis, Università Mediterranea Reggio Calabria
Eduardo Domí, Università di Catania

I testi e le relative traduzioni oltre che tutte le immagini pubblicate sono state fornite dai singoli autori per la pubblicazione con copyright e responsabilità scientifica e versa. La revisione e redazione dei testi è stata curata dallo redazione del volume.

La revisione e redazione dei testi è stata curata dallo redazione del volume.

In copertina: Michelangelo Buonarroti – Studi di fortificazione per le Porte al Prato d’Ospedale – Firenze, Casa Buonarroti (per gentile concessione della Dott.ssa Pina Ragnoni direttrice di questo museo "Casa Buonarroti")
LE RAGIONI DEL DISEGNO
THE REASONS OF DRAWING

Pensiero, Forma e Modello nella Gestione della Complessità
Thought, Shape and Model in the Complexity Management

A CURA DI
STEFANO BERTOCCI
MARCO BINI

GANGEMI EDITORE
INTERNATIONAL PUBLISHING
Indice

13 Introduzione
 Luigi Dei, Rettore dell’Università degli Studi di Firenze

15 Presentazione
 Salvatore Mezza, Direttore DIDA Dipartimento di Architettura

17 Prefazione
 Preface
 Enzo Cardone, Presidente UD

29 Perché la regione del disegno
 The Reasons of Drawing
 Stefano Bertocci, Marco Rini

I. LE RAGIONI DEL DISEGNO COME STRUMENTO DI STUDIO E APPROCCIO ALLA CONOSCENZA
 THE REASONS OF DRAWING AS AN INSTRUMENT OF STUDY AND APPROACH TO KNOWLEDGE

35 The tree of life in the southern porch of the Cathedral of Palermo: survey and geometric analysis
 Fabrizio Agnello, Marco Cannella

41 Il disegno per comprendere i manufatti architettonici. Il caso di Le Castellina
 The drawing for understanding the architectural artifacts. The Castellina case
 Laura Aiello

48 Il relevamento digitale come strumento per conoscere e interpretare l’architettura: levantamento grafico del Colognole National de Monseret in Córbeche.
 The digital survey as a tool to understand and interpret the architecture
 Maria Clara Ansaldo

57 Digital reconstruction of Piazza delle Erbe in Verona at XIV century
 Fabrizio I. Apollonio, Marco Gasini, Federico Fattorozzi, Elisabetta C. Giovannini, Riccardo Forchi

63 Il disegno come strumento di indagine. Il caso della Certosa monastica di Calci
 The architectural survey drawing as an investigation instrument. The case of the Calci
 Channerhouse
 Alessandro Bantielli, Marco Giorgio Bevilacqua, Eva Karwacka

69 Infographic techniques for the representation of marginal buildings of Salerno coast
 Davide Barbato, Sara Morena

73 Levantamento metrico digitalizzato con tre metodologie distinte dei laboratori di Fontes
 Digitalized metric survey of the laboratories building at Fontes Samuttorium using three different technologies
 Eduardo Maria Barviera López, José Luis Denia Rius, Jorge Llieg Verdú, Jorge Francisco Martinez Piqueras

83 Integracion de tres metodologias para la obtenicion de un modelo completo de los laboratorios de Fontes
 Integration of three methodologies in order to obtain a complete model of the laboratories building of Fontes
 Eduardo Maria Barviera López, Jorge Llieg Verdú, José Luis Denia Rius, Rafael Emilio María Toledo

91 Progetto di documentazione per la valorizzazione dell’erezione di Massa: il disegno tridimensionale come strumento di conoscenza per il quartiere generale del Palazzo di Erede
 Documented Project for the enhancement plateau of Massa: the three-dimensional design as a knowledge tool for the headquarters of Hered’s Palace
 Monica Berzigli

99 Disegno e rappresentazione digitali: modelli e mappe di un mondo inquirente
 Drawing and digital representations: models and maps for a restless world
 Francesco Bergamini

107 Alle radici di Venezia: il disegno e la ricostruzione grafica del basilica di Equilino
 At the roots of Venice: drawing and graphic reconstruction of the basilica of Equilino
 Osko Bergamini

115 Al di là della comunicazione: modelli 3D eserziti nello studio dell’Architettura
 Beyond communication: 3D heuristic models in architectural research
 Carlo Bianchi

125 The parameterization of complex surfaces for engineering solutions
 Fabrizio Bianconi, Marco Filippucci

131 La Catedral de Santa Maria La Reial a Sàssom, dal rilevato laser scanner 3D alla restituzione architettonica e strutturale per la conservazione del complesso religioso
 The Cathedral of Santa Maria La Reial in Sassone, from 3D laser scanner survey to the architectural and structural design for the preservation of the religious complex
 Matteo Biavati

137 Modelli prospettici nella divulgazione della conoscenza. Un ingegnere, un religioso e la rappresentazione della magia naturale
 Perspective models in the dissemination of knowledge. An engineer, a religious and the representation of the natural magic
 Alessio Borri, Stefano Zoiero

145 Obras realizadas por los “construtorex” italianos en La Plata entre 1918 y 1945.
 Works by Italian “constructorex” in La Plata between 1918 and 1945. Architecture, analysis and drawing
 Fabiana Carbonari, Emanuela Chivromi, Mario Ducchi, Ferdinando Gandolfi, Edouard Gentile, Ana Ottaviani

151 Pavia, capitale longobarda: nuovi studi e approccio alla conoscenza per la conservazione e la valorizzazione dell’architettura medievale
 Pavia, longobard capital: new studies and knowledge approaches for the conservation and valorization of early medieval architecture
 Alessio Cardaci, Annamaria Versari, Luca Renato Fazila

159 Il rilievo quale sistema di indagine di una struttura complessa: l’esordio dell’Open Air Museum di Goteborg
 Survey as a system of investigation of a complex structure: the esordio of the Open Air Museum in Goteborg
 Marco Carpiocci, Carlo Inglessi, Fabio Colombe, Andrea Angelini

165 Esperienza prospettica. Relazioni particolari tra immaginazione e realtà.
 Experimenting with Perspective. Particular Relationships between the Image and the Mind
 Andrei Căsătăo

173 The (secret) reasons of survey: the drawings of Prosper Morey (1805-1886)
 Comitela Casuatu

179 “La casa della scuola”: architetture per l’istruzione nella prima metà del Novecento.
 “The House of the School”: architectures for education in the first half of the XX Century.
 Survey and Knowledge
 Maria Cantisogni, Stefano Brunspacchi, Pamela Mattez

187 Conoscimento e diffusione dei paesaggi e territori storici: la Sierra de Guadarrama y los bosques reales en torno a Madrid
 Knowledge and Diffusion of Historical Landscapes and Territories: The Guadarrama Mountains and the Royal Woods around Madrid
 Pilar Chaus Núñez, Elvina Abad

195 Analisi di un’opera di immagine attraverso il disegno dalla lettura del frammento alla conoscenza prospettica.
 Using drawings to analyse an image: from interpretation of a fragment to the design generation.
 Emanuela Chivromi, Francesco Porfriti, Gisela Luis Tacchi
The tree of life in the southern porch of the Cathedral of Palermo: survey and geometric analysis

Fabrizio Aguella*, Mirco Cannella*

This study focuses one of the most puzzling works of art made in Palermo at the end of the medieval age: The Tree of Life, a rich geometrical decoration with animal and human figures in the southern porch of the Cathedral of Palermo. Topographic and SfM photogrammetric methods produced a detailed orthophoto of the porch. Images collected during restoration have been rectified and superimposed to the orthophoto. The geometrical analysis of the decorative patterns reveals a complex design and meaningful links between the decoration and the general architectural layout of the portico.

Keywords: Medieval geometric patterns; Tree of life; Cathedral of Palermo; Digital surveying and representation.

The renovation of the Cathedral of Palermo in the XV century
The foundation of the Cathedral of Palermo dates back to the first Norman kingdom in Sicily (XII century). The Norman cathedral took the place of a mosque that was built during the Arab domination (IX-XII century), on the site of an older Byzantine church. The main front of the Cathedral faced a medium-sized street westward, according to the usual orientation of Christian churches; the northern and southern fronts faced two narrow streets. The church was not distant from the main axis of the historic center of Palermo, the so-called Cassaro.

In the XV century, when Sicily was subdued to the Spanish crown of Aragon, King Alfonso promoted a great urban transformation, to provide the Cathedral with a wide-open area for religious and popular celebrations. The buildings, which filled the area stretching from the southern front of the Cathedral to the Cassaro, were demolished and the new wide area, named il Piano, was paved. The new urban space literally changed the orientation of the Cathedral and the southern front became the new façade of the church. This occurrence demanded an architectural and decorative renovation; the most relevant episode in such renovation program was the construction of a porch leading to a richly decorated portal, which became the new entrance gate. Antonio Gambara, who led the corporation of craftsmen of the Cathedral in the third decade of the XV century, was appointed to the realization of both works.

The tree of life in the southern porch of the Cathedral
Three pointed arches, leading to the entrance portal, feature the front of the porch; the central arch is oversized. A frieze and a tympanum, richly decorated with carvings echoing gothic flamboyant decorations, make the upper end of the porch. Two small towers, whose elevation slightly overcomes the level of the frieze, flank the porch (fig. 1).

The flat area almost 18 meters long and delimited by the lower edge of the frieze and the cornices of arches, appeared blank until 1982, when restoration works removed the secular dust and revealed a rich geometric pattern populated by animals and human figures. The co-presence of rich geometric interfaces, and of human/zoomorphic figures, suggested identifying this decoration as a tree of life. Two pinnacles, aligned with the vertical axes of the inner columns of the porch, divide the tree of life into three sections: left and right sections are congruent, whereas the central section is wider but narrower at the top, due to the oversize of the arch.

The re-discovery of the decorated strip gave impulse to new studies, which mainly focused on the symbolic references of zoomorphic and human figures; up to now, no specific study has addressed the geometric interpretation of the decoration.

The geometric figures are made of interlacing tapes, delimited by thin and precise grooves, carved in the limestone blocks. The geometric tapes and the figures are not colored, whereas the background was painted blue, to make drawings more prominent. Red spots highlight specific parts of the figures.

A preliminary exam of the geometric interfaces reveals that a sequence of circles, named Girali, structures the decorated strip. The Girali are perfectly tangent to each other and to the delimiting lines of each section.

The size of Girali varies in order to fit the available area; what appears evident is the intention to cover with decoration the entire area of each section, according to the attitude, named horror vacui, which characterizes most decorative patterns in medieval art. The decorative patterns in the tree of life echo traceries from late medieval Spanish art.

The survey
The prerequisite in geometric analysis of works of art is the accurate documentation of their actual size and form. With reference to the subject of this study, a mosaic of rectified images could be a proper solution; nonetheless we reputed that geometric analysis of the decorated strip should be extended to the entire porch, in order to check eventual connections with the decorations in the tympanum and with the layout of the front.

The first step addressed therefore the creation of an orthophoto of the front of the porch (fig. 2). Photos were taken from the ground with a reflex full frame camera equipped with 28mm, 50mm and 135mm calibrated lenses. The photogrammetric model was oriented and scaled with control points that were measured with topographic methods.

The decoration is today badly preserved; many tapes and most figures appear dimmer than in 1982. Luckily, a rich photographic documentation of the tree of life was acquired during the restoration...
campaign. Control points measured on the orthophoto allowed to rectify these images (fig. 3); finally, registered rectified images were superimposed to the orthophoto with an accurate referencing (fig. 4).

Geometric analysis

The first step in geometric analysis addresses the geometry of the pointed arches. Simple geometric constructions show that the segments of circle composing the pointed arch center on points that are symmetrical with respect to the vertical axis of symmetry of the arch; the distance between the centers equals the fifth part of the arch’s span.

The distance m between the vertical axes of the arches equals the span of the central arch; a horizontal line, whose distance from the upper edge of the decorated strip is m, aligns the capitals of columns and the cornice at the base of the second level in the small towers flanking the porch. Three red circles, with radius m, center on the points where the vertical axes of symmetry of arches intersect such horizontal line.

The right and left circles are tangent to the external vertical edges of the small towers; the length of the porch therefore equals $4m$. A further magenta circle with radius $2m$, centered on the middle point of the baseline, meets the vertical axis of symmetry of the porch at the higher vertex of the tympanum. Such circle passes through the vertices of the base of the inner triangle of the tympanum as well (fig. 5).

A common feature in the three sections of the decorated strip is the presence of great circles placed in the upper corners of each section. Such circles are tangent to: a) the upper horizontal edge of the decorated strip; b) the vertical lines delimiting the sections; c) the profile of the arch. The craftsman had therefore to face one of the problems that Apollonius solved in his treatise on tangencies:

- the construction of a circle that is tangent to two straight lines and to a further circle.\(^4\)

Apollonius’ solution has been tested on the left circle in the left section; the construction is explained in five steps (fig. 6):

Step 1: the straight lines are red colored; C is the center of the magenta circle whose radius is r; Step 2: two blue lines are the offset of red lines at a distance r; Step 3: a cyan circle, centered on C, is wide enough to intersect blue lines in points P_1, P_2, Q_1 and Q_2; two further circles, orange colored, are drawn: the circle through points P_1, P_2 and C is named p_c; its center is C_p and its radius is r_p; the circle through points Q_1, Q_2 and C is named q_c; its center is C_q and its radius is r_q; Step 4: this step addresses the construction of the straight lines which are tangent to both orange circles; the minor circle q is temporarily reduced to zero, that is to the point C_q; the bigger circle p is reduced to a concentric green colored circle whose radius is calculated as the difference r_p-r_q; the tangents from C_q to the green colored circle are traced; the radii from C_p to the tangency points are thus determined; the point where such radii intersect the circle p are named T_p; the tangential lines are copied to the points T_p; such lines, named t, are tangent to both orange circles.

Step 5: A_1 and A_2 are the points where one of the lines t intersects the cyan circle; the black colored circle at through points A_1, A_2 and C is traced. The center of circle a is C_a. The circle centered in C_a, having a radius equal to r_a, is the circle tangent to the arch and to the red lines.

Each Girale circumscribes a different geometric pattern, whose orientation appears random: the Girale placed on the upper right end of the left section, which echoes models from northern Europe,\(^1\) shows

36 *Le ragioni del disegno – The reasons of drawing*
no horizontal or vertical reference line. Such occurrence suggested a closer look at the decoration in the tympanum, whose traceries show similar puzzling features.

With reference to the left section, graphic analysis shows that the centers of the Girali placed in the upper corners are not horizontally aligned, nor symmetric with respect to the axis of symmetry of the arch (fig. 7); a white circle, concentric to the circle with radius m, passes through these centers. Such white circle provides therefore an effective solution to the questions posed by the puzzling features in decoration. The white circles pass through the centers of the intermediate Girali as well. Furthermore, the radial lines through the centers of Girali are the axes of symmetry of their inner decorations (fig. 8).

With reference to the decorative tracery in the tympanum, graphic analysis has revealed that the axis of symmetry of some traceries are aligned with magenta straight lines passing through the lower endpoint of the vertical diameter of the magenta circle with radius $2m$.

The last step in geometric analysis focuses the Girali in the upper corners of the left section. A hexagonal geometry structures the inner decoration of the Girale placed in the upper left corner (fig. 9). The intersection points of the diagonals of the blue hexagon inscribed in the Girale, are the vertexes of the dual green hexagon. Eighteen arcs of circle, whose diameter equals the diagonal of the dual hexagon, depict six petals. Green circles, which center on the vertexes of the green hexagon, make the two of a petal that are symmetrically arranged about the diagonals of the blue hexagon. Blue circles, centering on the vertexes of the blue hexagon, make the third part of the petal. Each petal frames three equal circles centered on the bisectrix lines of the equilateral triangle inscribed in the petal.

The inner decoration of the Girale placed in the upper right corner features three squares 45° rotated and inscribed to each other, according to a widely diffuse scheme in decorative patterns in ancient and medieval art (fig. 10). With reference to the Girale,
a black square (circumscribing the circle) and two 45° rotated squares (blue and green), are drawn. The lines passing through the vertexes of the black square and through the points where blue and green squares intersect, meet the diagonals of the green squares thus detecting the centers of the magenta circles. Such circles are tangent to the Girale.

Conclusions
The study evidences the skills in geometry of craftsmen working on the renovation of the southern porch of the Cathedral of Palermo in late Medieval age. The geometric analysis of elements that seemed puzzling revealed a very sophisticated framework, involving both decoration and architectural layout. Further inquiries will focus the analysis of the entire group of Girali in the tree of life and interdisciplinary scholarships will be involved to highlight probable links between geometric and symbolic features. The method discussed in this study offers an affordable reference for the progress of the research work.

Notes
* Department of Architecture, University of Palermo, Viale delle Scienze Edd. 8/14
2. Arch. Guido Meli, who was responsible for the restoration, was the first one who proposed such identification (Meli 1991, p. 25).
3. Many similar and coeval traceries appear both in Spain and in France.
5. Garavari 1921, p. 81.
6. The authors wish to thank Prof. Doris Behrens-Abouseif for pointing out right similarities between the geometry of the Girale and the decoration of some Islamic works of art.
8/ Orthophoto of the left end of the porch. Magnified images, compared to a figure from Garneri's book on ornament (Garneri 1921, 81), put into evidence the slanting axis of symmetry of the upper right Girale in the left section and of a decorative element in the tympanum.
Bibliografia - Bibliography

40 LE RAGIONI DEL DISEGNO – *THE REASONS OF DRAWING*