PLENARY SESSIONS

(A) E. Baldacci
Financial Crises and their Impacts: Data Gaps and Innovation in Statistical Production.

(B) D. Dunson
Probabilistic inference from big and complex data.

(C) S. Strozza
Foreign immigration in Italy: a forty-year-old history.

SPECIALIZED SESSION (SPE)

(SPE-01) Inference, sampling and survey design

P. Conti
Resampling from finite populations under complex designs: the pseudo-population approach. (Co-author(s): F. Andreis, D. Marella, F. Mecatti)

P. Righi
A joint use of model based and design based frameworks for defining optimal sampling designs. (Co-author(s): P. D. Falorsi)

A. Ruiz-Gazen
A unified approach for robustness in survey sampling. (Co-author(s): J. Beaumont, D. Haziza)

(SPE-02) Multivariate models for risk assessment

M. Billio
A Bayesian nonparametric approach to macroeconomic risk. (Co-author(s): R. Casarin, M. Costola, M. Guindani)

P. Cerchiello
Bank risk contagion: an analysis through big data. (Co-author(s): P. Giudici, G. Nicola)

L. De Angelis
A Markov-switching regression model with non-Gaussian innovations for systemic risk measurement. (Co-author(s): C. Viroli)

(SPE-03) Bayesian nonparametrics

D. Durante
Bayesian Nonparametric Modeling of Dynamic International Relations. (Co-author(s): D. Dunson)

A. Guglielmi
Bayesian autoregressive semiparametric models for gap times of recurrent events. (Co-author(s): G. Paulon, M. De Iorio)

A. Rodriguez
Restricted Nonparametric Mixtures models for Disease Clustering. (Co-author(s): T. Xifara)
(SPE-04) Statistical methods for the analysis of gene-environment interaction in the study of complex pathologies

C. Angelini
An introduction to next generation sequencing for studying omic-environment interactions.

L. Calciano
Statistical approaches for the evaluation of genetic associations in complex diseases: the heterogeneity of asthma phenotypes. (Co-author(s): L. Portas, S. Accordini)

Y. Pankaj
Improved case-only approach to study genome-wide gene-environment interaction. (Co-author(s): S. Freitag-Wolf, A. Dempfle, W. Lieb, M. Krawczak)

(SPE-05) Nonlinear time series

M. Niglio
Probabilistic properties of Self Exciting Threshold Autoregressive processes. (Co-author(s): F. Giordano, C. D. Vitale)

T. Proietti
Optimal prediction of stochastic trends. (Co-author(s): A. Giovannelli)

H. Tong
On model selection from a finite family of possibly misspecified models. (Co-author(s): H. Hsu, C. Ing)

(SPE-06) Spatial analyses in demography

F. Heins
Measuring residential segregation with spatial indices: an appraisal and applications for the metropolitan area of Rome. (Co-author(s): F. Benassi, F. Lipizzi, E. Paluzzi)

A. Mazza
Immigrants’ settlement patterns in the city of Naples. (Co-author(s): G. Gabrielli, S. Strozza)

L. Natale
Native Immigration and Pull Factor Evolution in Italy: a Spatial Approach. (Co-author(s): A. Santacroce, F. G. Truglia)

(SPE-07) Recent developments in Volatility modeling

R. Casarin
Dynamic Model Averaging for Quantile Regression. (Co-author(s): M. Bernardi, B. Maillet, L. Petrella)

A. Rahbek
Testing volatility: consistency of bootstrap testing for a parameter on the boundary of the parameter space.

E. Ruiz
Asymmetric Stochastic Volatility Models: Properties and Estimation. (Co-author(s): V. Czellar, X. Mao, H. Veiga)

(SPE-08) Advances in ordinal contingency table analysis

L. D’Ambra
Dimensionality reduction methods for contingency tables with ordinal variables. (Co-author(s): P. Amenta, A. D’Ambra)

R. Lombardo
Modelling Trends in Ordered Three-Way Non-Symmetrical Correspondence Analysis. (Co-author(s): P Kroonenberg, E. Beh)

M. Riani
Using Collapsing and Multiple Comparisons to Detect Association in Two Way Contingency Tables. (Co-author(s): S. Arsenis)
(SPE-09) Statistical models for directional and circular data

C. Ley
The WeiSSVM: a tractable, parsimonious and flexible model for cylindrical data.

G. Mastrantonio
The multivariate projected-skew normal distribution: Bayesian estimation and a hidden Markov model application.

A. Panzera
Circular density estimation via matching local trigonometric moments. (Co-author(s): M. Di Marzio, S. Fensore, C. C. Taylor)

(SPE-10) The interplay between frequentist and bayesian inference

C. Grazian
Classical inference for intractable likelihoods.

J. Hannig
Fusion learning for Interlaboratory Comparison. (Co-author(s): Q. Feng, H. Iyer, C. Wang, X. Liu)

F. Pauli
p-value in science: a review of issues and proposed solutions.

(SPE-11) Société Française de Statistique

B.H. Avner
Stochastic Block Model for Multiplex network: an application to a multilevel network of researchers.

Y. Bennani
Nonnegative Matrix Factorization for Transfer Learning. (Co-author(s): I. Redko)

T. Laloe
Detection of dependence patterns with delay.

J. Poggi
Disaggregated Electricity Forecasting using Wavelet-Based Clustering of Individual Consumers. (Co-author(s): J. Cugliari, Y. Goude)

(SPE-12) National accounts

A. Coli
The European Welfare State in times of crisis according to macroeconomic official statistics. (Co-author(s): E. Micheletti, B. Pacini)

C. Martelli
National Account and Open Data: a new semantic approach.

G. Oneto
New information contents of the National Accounts for the monitoring of the economic situation.

(SPE-13) Statistical tools for monitoring the educational system and assessing students’ performances

L. Grilli
Evaluation of university students’ performance through a multidimensional finite mixture IRT model. (Co-author(s): S. Bacci, F. Bartolucci, C. Rampichini)

G. Leckie
Monitoring school performance using value-added and value-table models: Lessons from the UK.

P. Sarnacchiaro
A statistical model to assess teacher performance. (Co-author(s): I. Camminatiello, R. Palma)
(SPE-14) Robust inference by bounded estimating functions

A.C. Monti
M Estimation based Inference for Ordinal Response Model.

E. Ruli
Approximate Robust Bayesian Inference with an Application to Linear Mixed Models. (Co-author(s): N. Sartori, L. Ventura)

J. Valeinis
Some robust methods using empirical likelihood for two samples. (Co-author(s): M. Velina, E. Cers, G. Luta)

SOLICITED SESSION (SOL)

(SOL-01) Subjective wellbeing and demographic events over the life course

G. Fuochi
Cultural and institutional drivers of basic psychological needs satisfaction. (Co-author(s): P. Conzo, A. Aassve, L. Mencarini)

L. Mencarini
Five reasons to be happy about childbearing. (Co-author(s): A. Aassve, F. Luppi)

B. Nowok
Migration motivations and migrants' satisfaction in the life course: A sequence analysis of geographical mobility trajectories in the United Kingdom.

A. Pirralha
Does becoming a parent change the meaning of happiness and life satisfaction? Evidence from the European Social Survey. (Co-author(s): H. Dobewall)

(SOL-02) Statistics for equitable and sustainable development

E. di Bella
Wellbeing and sustainable development: a multi-indicator approach to evaluate urban waste management systems. (Co-author(s): B. Cavalletti, M. Corsi)

C. Giusti
Small Area Estimation for Local Welfare Indicators in Italy. (Co-author(s): S. Marchetti, L. Faustini, L. Porciani)

T. Laureti
Does socio-economic variables influence the Italians’ adherence towards a sustainable diet?. (Co-author(s): L. Secondi)

F. Riccardini
Sustainability of wellbeing: an analysis of resilience and vulnerability through subjective indicators. (Co-author(s): M. Bachelet, F. Maggino)

(SOL-03) New approaches to treat undercoverage and nonresponse

F. Andreis
Methodological perspectives for surveying rare and clustered population: towards a sequentially adaptive approach.

E. Furfaro
Dealing with under-coverage bias via Dual/Multiple Frame designs: a simulation study for telephone surveys.
D. Haziza Weight adjustment procedures for the treatment of unit nonresponse in surveys. (Co-author(s): É. Lesage)

E. Kabzinska Empirical likelihood multiplicity adjusted estimator for multiple frame surveys. (Co-author(s): Y. G. Berger)

(SOL-04) Statistical models and methods for network data

M. Cugmas Measuring stability of co-authorship structures in time. (Co-author(s): A. Ferligoj)

J. Koskinen A dynamic discrete-choice model for movement flows. (Co-author(s): T. Mueller, T. Grund)

G. Ragozini Prototyping and Comparing Networks through Archetypal Analysis. (Co-author(s): D. De Stefano, M.R. D’Esposito)

S. Zaccarin Modeling network dynamics: evidence from policy-driven innovation networks. (Co-author(s): A. Caloffi, D. De Stefano, F. Rossi, M. Russo)

(SOL-05) Recent developments in computational statistics

R. Argiento A conditional algorithm for Bayesian finite mixture models via normalized point process.

S. Favaro Thompson sampling for species discovery. (Co-author(s): M. Battiston, Y. Teh)

A. Mira An application of Reinforced Urn Process to advice network data. (Co-author(s): S. Peluso, P. Muliere, F. Pallotti, A. Loni)

N. Sartori Bootstrap prepivoting in the presence of many nuisance parameters. (Co-author(s): R. Bellio, I. Kosmidis, A. Salvan)

(SOL-06) Statisticians meet naturalists: issues on ecological and environmental statistics

F. Ferretti Estimating the abundance of wildlife ungulate populations in Mediterranean areas: methods, problems and findings. (Co-author(s): A. Sforzi)

M. Ferretti The monitoring of forests in Europe: methods, problems and proposals.

D. Rocchini The power of generalized entropy for biodiversity assessment by remote sensing: an open source approach. (Co-author(s): L. Delucchi, G. Bacaro)

(SOL-07) From survey data to new data sources and big data in official statistics

S. Falorsi Forecasting Italian Youth Unemployment Rate Using Online Search Data. (Co-author(s): S. Loriga, A. Naccarato, A. Pierini)

B. Liseo Bayesian nonparametric methods for record linkage. (Co-author(s): A. Tancredi)
T. Tuoto
Exploring solutions for linking Big Data in Official Statistics.
(Co-author(s): L. Di Consiglio, D. Fusco)

(SOL-08) Symbolic data analysis methods and applications

E. Diday
Explanatory and discriminatory power of variables in Symbolic Data Analysis.

M.B. Ferraro
Fuzzy and possibilistic approach to clustering of imprecise data.
(Co-author(s): P. Giordani)

L. Grassini
Symbolic data analysis approach for monitoring the stability of monuments.
(Co-author(s): B. Bertaccini, G. Biagi, A. Giusti)

M. Ichino
Similarity and Dissimilarity Measures for Mixed Feature-type Symbolic Data.
(Co-author(s): K. Umbleja)

(SOL-09) Compositional analysis

L. Crosato
Forecasting CPI weights through compositional VARIMA: an application to Italian data.
(Co-author(s): F. Lovisolo, B. Zavanella)

J. A. Martín-Fernández
Understanding association rules from a compositional data approach.
(Co-author(s): M. Vives-Mestres, R. Kenett)

A. Menafoglio
Object Oriented Geostatistical Simulation of Functional Compositions via Dimensionality Reduction in Bayes spaces.
(Co-author(s): A. Guadagnini, P. Secchi)

V. Simonacci
Fitting CANDECOMP-PARAFAC model for compositional data: a combined SWATLD-ALS algorithm.
(Co-author(s): M. Di Palma, V. Todorov)

(SOL-10) Sustainable development: theory, measures and applications

F. Riccardini
Measuring sustainable development goals from now to 2030.

F. Riccardini
How the nexus of food/water/energy can be seen with the perspective on well-being of people and the Italian BES framework.
(Co-author(s): D. De Rosa)

T. Rondinella
An innovative methodology for the analysis of sustainability, inclusion and smartness of growth through Europe2020 indicators.
(Co-author(s): E. Grimaccia)

P. Ungaro
The Italian population behaviours toward environmental sustainability: a study from Istat surveys.
(Co-author(s): I. Mingo, V. Talucci)

(SOL-11) Detecting heterogeneity in ordinal data surveys

E. Di Nardo
CUB models: a preliminary Fuzzy approach to heterogeneity.
(Co-author(s): R. Simone)

S. Giordano
Modelling uncertainty in bivariate models for ordinal responses.
(Co-author(s): R. Colombi, A. Gottard, M. Iannario)
M. Manisera Treatment of “don’t know” responses in rating data: effects on the heterogeneity of the CUB distribution. (Co-author(s): P. Zuccolotto)

F. Pennoni Modelling a multivariate hidden Markov process on survey data.

(SOL-12) Active ageing: age management and lifelong learning strategies

P. E. Cardone Age management in Italian companies. Findings of two Isfol surveys. (Co-author(s): M. Aversa, L. D’Agostino)

A. Lorenti Working after Retirement in Europe.

C. Polli Older low-skilled workers and economic crisis in Italy. (Co-author(s): R. Angotti)

G. Rivellini Population ageing and human resources management. A chance for Applied Demography. (Co-author(s): F. Marcaletti, F. Racioppi)

(SOL-13) Statistical models for evaluating policy impact

M. Bia Evaluation of Training Programs by exploiting secondary outcomes in Principal Stratification frameworks: the case of Luxembourg. (Co-author(s): F. Li, A. Mercatanti)

G. Cerulli Testing Stability of Regression Discontinuity Models. (Co-author(s): Y. Dongz, A. Lewbel, A. Poulsen)

R. P. Mamede Counterfactual Impact Evaluation of Vocational Education in Portugal. (Co-author(s): D. Cruz, T. Fernandes)

G. Pellegrini Italian public guarantees to SME: the impact on regional growth. (Co-author(s): M. De Castris)

(SOL-14) Usage of geocoded micro data in the economic analysis

M. Dickson Spatial sampling methods with locational errors. (Co-author(s): D. Filipponi)

D. Giuliani Spatial Micro-Econometrics Models with Locational Errors. (Co-author(s): S. Cozzi, G. Espa)

(SOL-15) Statistical models in functional data analysis

G. Adelfio Space-time FPCA Algorithm for clustering of multidimensional curves. (Co-author(s): F. Di Salvo, M. Chiodi)

C. Miller Functional data analysis approaches for satellite remote sensing applications. (Co-author(s): R. O’Donnell, M. Gong, M. Scott)

E. Romano Order statistics for spatially dependent functional data. (Co-author(s): A. Balzanella, R. Verde)
A penalized regression model for functional data with spatial dependence. (Co-author(s): M. S. Bernardi, G. Mazza, J. O. Ramsay)

SOL-16 Forecasting economic and financial time series

G. Goracci
Asymptotics and power of entropy based tests of dependence for categorical data. (Co-author(s): S. Giannerini)

M. M. Pelagatti
Forecasting electricity load and price: a comparison of different approaches. (Co-author(s): F. Lisi)

G. Storti
Flexible Realized GARCH Models. (Co-author(s): R. Gerlach)

SOL-17 Immigrations and integration in Italy

O. Casacchia
Minorities internal migration in Italy: an analysis based on gravity models. (Co-author(s): C. Reynaud, S. Strozza, E. Tucci)

C. Conti
Growing generations and new models of integration.

N. Tedesco
Measurement of segregation in the labour market. An alternative approach. (Co-author(s): L. Salaris)

L. Terzera
Family behaviours among first generation migrants. (Co-author(s): E. Barbiano di Belgiojoso)

SOL-18 Open data, linked data and big data in public administration and official statistics

G. Di Bella
Linked Administrative Data in Official Statistics: a Positive Feedback for the Quality?. (Co-author(s): G. Garofalo)

C. Martelli
Generating high quality administrative data: new technologies in a national statistical reuse perspective. (Co-author(s): M. Calzaroni, A. Samaritani)

V. Santarcangelo
An innovative approach about the analysis of quality and efficiency in Italian law. (Co-author(s): A. Buondonno, A. Romano, M. Giacalone, C. Cusatelli)

B. Squittieri
Prato municipality experience towards a high integration between administrative and statistical data.

SOL-19 Evaluation of prognostic biomarkers

F. Ambrogi
Combining Clinical and Omics data: hope or illusion?. (Co-author(s): P. Boracchi)

L. Antolini
Graphical representations and summary indicators to assess the performance of risk predictors. (Co-author(s): D. Bernasconi)

P. Chiodini
Multivariable prognostic model: external validation and model recalibration with application to non-metastatic renal cell carcinoma. (Co-author(s): L. Cindolo)
(SOL-20) Models for studying the mobility of students

S. Balia Modelling inter-regional patient mobility: evidence from the Italian NHS. (Co-author(s): R. Brau, E. Marrocu)

A. D’Agostino University mobility at enrollment: geographical disparities in Italy. (Co-author(s): G. Ghellini, S. Longobardi)

M. Enea From South to North? Mobility of Southern Italian students at the transition from the first to the second level university degree.

F. Giambona Measuring territory student-attractiveness in Italy. Longitudinal evidence.

CONTRIBUTED SESSION (CON)

(CON-01) Bayesian statistics (1)

F. Giummolè Reference priors based on composite likelihoods. (Co-author(s): V. Mameli, L. Ventura)

B. Nipoti On Bayesian nonparametric inference for discovery probabilites. (Co-author(s): J. Arbel, S. Favaro, Y. W. Teh)

R. Pappadà Relabelling in Bayesian mixture models by pivotal units. (Co-author(s): L. Egidi, F. Pauli, N. Torelli)

(CON-02) Statistical modeling

P. Faroughi A New Bivariate Regression Model for Count Data with Excess Zeros. (Co-author(s): N. Ismail)

B. Francis Dynamic latent class profiles in cross-sectional surveys: some preliminary results. (Co-author(s): V. Hoti)

P. M. Kroonenberg The use of deviance plots for non-nested model selection in loglinear models, structural equations, three-mode analysis.

A. Lucadamo Variable selection through Multinomial LASSO for PCMR. (Co-author(s): L. Greco)

O. Paccagnella Integrating CUB Models and Vignette Approaches. (Co-author(s): S. Pavan, M. Iannario)

(CON-03) Demographics and social statistics (1)

D. Bellani Gender egalitarianism, education and life-long singlehood: A multilevel analysis. (Co-author(s): G. Esping-Andersen, L. Nedoluzhko)

L. Colangelo Fear of Crime and Victimization among Sexual Harassed Women: Evidence from Italy. (Co-author(s): P. Mancini)
S. De Cantis
A survival approach for the analysis of cruise passengers’ behavior at the destination.
(Co-author(s): M. Ferrante, A. Parroco, N. Shoval)

A. Di Pino
Retirement of the Male Partner and the Housework Division in the Italian Couples: Estimation of the Causal Effects.
(Co-author(s): M. Campolo)

F. Lariccia
Many women start, but few continue: determinants of breastfeeding in Italy.
(Co-author(s): A. Pinnelli)

(CON-04) Environmental statistics

F. Bono
Measuring sustainable economic development through a multidimensional Gini index.
(Co-author(s): M. Giacomarra, R. Giaimo)

C. Calculli
Modeling multi-site individual corals growth.
(Co-author(s): B. Cafarelli, D. Cocchi, E. Pignotti)

F. Di Salvo
GAMs and functional kriging for air quality data.
(Co-author(s): A. Plaia, M. Ruggieri)

F. Durante
The Kendall distribution and multivariate risks.

(CON-05) Health statistics

E. di Bella
Dental care systems across Europe: the case of Switzerland.
(Co-author(s): L. Leporatti, I. Krejci, S. Ardu)

F. Gasperoni
Multi-state models for hospitalizations of heart failure patients in Trieste.
(Co-author(s): F. Ieva, G. Barbati)

F. Grossetti
Multi-state Approach to Administrative Data on Patients affected by Chronic Heart Failure.
(Co-author(s): F. Ieva, S. Scalvini, A. M. Paganoni)

G. Montanari
Evaluation of health care services through a latent Markov model with covariates.
(Co-author(s): S. Pandolfi)

(CON-06) Labor market statistics

A. Bianchi
Multifactor Partitioning: an analysis of employment and firm size.
(Co-author(s): S. Biffignandi)

G. Busetta
Ugly Betty looks for a job. Will she ever find it in Italy?.
(Co-author(s): F. Fiorillo)

G. Busetta
No country for foreigners: an analysis of hiring process in Italian labor market.
(Co-author(s): M. Campolo, D. Panarello)

F. Crippa
Know your audience. Towards a partnership between employers and university.
(Co-author(s): M. Zenga)

I. Vannini
Online Job Vacancies: a big data analysis.
(Co-author(s): D. Rotolone, C. Di Stefano, A. P. Paliotta, D. F. Iezzi)
(CON-07) Robust statistics

M. Musio Renyi’s Scoring Rules. (Co-author(s): A. F. Dawid)

A. Paganoni Robust classification of multivariate functional data. (Co-author(s): F. Ieva)

G. C. Porzio A robust estimator for the mean direction of the von Mises-Fisher distribution. (Co-author(s): T. Kirschstein, S. Liebscher, G. Pandolfo, G. Ragozini)

F. Palumbo Robust Partial Possibilistic Regression Path Modeling. (Co-author(s): R. Romano)

(CON-08) Sampling methods

A. Ghiglietti Adaptive Randomly Reinforced Urn design and its asymptotic properties.

D. Marella PC algorithm from complex sample data. (Co-author(s): P. Vicard)

E. Pelle The Rao regression-type estimator in ranked set sampling. (Co-author(s): P. Perri)

M. Ruggiero Modelling stationary varying-size populations via Polya sampling. (Co-author(s): P. De Blasi, S. Walker)

(CON-09) Economic data analysis

M. Brunetti Getting older and riskier: the effect of Medicare on household portfolio choices. (Co-author(s): M. Angrisani, V. Atella)

E. Ciavolino Modelling the Public Opinion on the European Economy with the HOMIMIC Model. (Co-author(s): M. Carpita)

G. D’Epifanio Indexing the Worthiness of Social Agents. To norm index on conventional specifications.

G. Guagnano An econometric model for undeclared work. (Co-author(s): M. Arezzo)

M. Mussini A spatial shift-share decomposition of energy consumption variation. (Co-author(s): L. Grossi)

(CON-10) Quantile methods

M. Bernardi Bayesian inference for L_p-quantile regression models. (Co-author(s): V. Bignozzi, L. Petrella)

V. Bignozzi On the L_p-quantiles and the Student t distribution. (Co-author(s): M. Bernardi, L. Petrella)

M. Marino M-quantile regression for multivariate longitudinal data. (Co-author(s): M. Alfò, M. Ranalli, N. Salvati)
D. Vistocco Comparing Prediction Intervals in Quantile and OLS Regression. (Co-author(s): C. Davino)

(CON-11) Statistical algorithms

N. Loperfido An Algorithm for Finding Projections with Extreme Kurtosis. (Co-author(s): C. Franceschini)

L. Scrucchi Poisson change-point models estimated by Genetic Algorithms.

A. Stamm Maximum Likelihood Estimators of Brain White Matter Microstructure. (Co-author(s): O. Commowick, S. Vantini, S. K. Warfield)

(CON-12) Statistics for medicine

G. Barbati Competing risks between mortality and heart failure hospital re-admissions: a community-based investigation from the Trieste area. (Co-author(s): F. Ieva, A. Scagnetto, G. Sinagra, A. Di Lenarda)

C. Brombin Evaluating association between emotion recognition and Heart Rate Variability indices. (Co-author(s): F. Cugnata, R. M. Martoni, M. Ferrario, C. Di Serio)

M. Ferrante Socio-economic deprivation, territorial inequalities and mortality for cardiovascular diseases in Sicily. (Co-author(s): A. Milito, A. Parroco)

M. Giacalone The use of Permutation Tests on Large-Sized Datasets. (Co-author(s): A. Alibrandi, A. Zirilli)

(CON-13) Statistics for the education system

G. Boscardino Further considerations on a new indicator for higher education student performance. (Co-author(s): G. Adelfio, V. Capursi)

C. Masci Analysis of pupils’ INVALSI achievements by means of bivariate multilevel models. (Co-author(s): A. Paganoni, F. Ieva, T. Agasisti)

A. Valentini Promoting statistical literacy to university students: a new approach adopted by Istat. (Co-author(s): G. De Candia, M. Carbonara)

(CON-14) Testing procedures

E. Cascini A Reliability Problem: Censored Tests.

G. De Santis Testing the Gamma-Gompertz-Makeham model. (Co-author(s): G. Salinari)

M. M. Pelagatti A nonparametric test of independence.

A. Pini Functional Data Analysis of Tongue Profiles. (Co-author(s): L. Spreafico, S. Vantini, A. Vietti)

A. Vagheggini On the asymptotic power of the statistical test under Response-Adaptive randomization. (Co-author(s): A. Baldi Antognini, M. Zagoraiou)
(CON-15) Time series analysis

C. Cappelli Robust Atheoretical Regression Tree to detect structural breaks in financial time series. (Co-author(s): P. D’Urso, F. Di Iorio)

P. Chirico Prediction intervals for heteroscedastic series by Holt-Winters methods.

M. Costa Inequality decomposition for financial variables evaluation.

G. De Luca Three-stage estimation for a copula-based VAR model. (Co-author(s): G. Rivieccio)

(CON-16) Forecasting methods

M. Andreano Forecasting with Mixed Data Sampling Models (MIDAS) and Google trends data: the case of car sales in Italy. (Co-author(s): R. Benedetti, P. Postiglione)

V. Candila Probability forecasts in the market of tennis betting: the CaSco normalization. (Co-author(s): A. Scognamillo)

S. Vantini Daily Prediction of Demand and Supply Curves. (Co-author(s): A. Canale)

(CON-17) Bayesian statistics (2)

G. Marchese Bayesian hierarchical models for analyzing and forecasting football results. (Co-author(s): P Brutti, S. Gubbiotti)

L. Paci Bayesian modeling of spatio-temporal point patterns in residential property sales. (Co-author(s): A. E. Gelfand, M. Beamonte, P. Gargallo, M. Salvador)

V. Vitale Non-parametric Bayesian Networks for Managing an Energy Market. (Co-author(s): V. Guizzi, F. Musella, P. Vicard)

(CON-18) Business statistics

E. Bartoloni How do firms perceive their competitiveness? Measurement and determinants.

C. Bocci An evaluation of export promotion programmes with repeated multiple treatments. (Co-author(s): M. Mariani)

A. Righi The inter-enterprise relations in Italy. (Co-author(s): A. Nuccitelli, G. Barbieri)

(CON-19) Clustering and classification

C. Drago Dendrograms Stability Analysis of Sub-periods Time Series Clustering. (Co-author(s): R. Ricciuti)

G. Menardi Stability-based model selection in nonparametric clustering.

T. Padellini Topological signatures for classification. (Co-author(s): P. Brutti)
(CON-20) Demographics and social statistics (2)

M. Antonicelli
Ecolabels: inform or confusing customers? Evidences from the agrifood sector.
(Co-author(s): D. Calace, D. Morrone, A. Russo, V. Vastola)

B. Arpino
What makes you feeling old? An analysis of the factors influencing perceptions of ageing.
(Co-author(s): V. Bordone, A. Rosina)

G. De Santis
A (partial) solution to the intractability of APC models.
(Co-author(s): M. Mucciardi)

G. Gabrielli
Partner reunification of first generation immigrants in Lombardy.
(Co-author(s): A. Paterno, L. Terzera)

(CON-21) Statistical inference

E. Kenne Pagui
Median bias reduction of maximum likelihood estimates in binary regression models.
(Co-author(s): A. Salvan, N. Sartori)

N. Lunardon
On penalized likelihood and bias reduction.
(Co-author(s): G. Adimari)

A. Maruotti
Population size estimation and heterogeneity in capture-recapture count data.
(Co-author(s): O. Anan, D. Böhning)

(CON-22) Survey methods

A. Pinto
Italian consumers’ food risks perception: an approach based on the correspondence analysis.
(Co-author(s): E. Ruli, S. Crovato, L. Ventura, L. Ravarotto)

R. Salvatore
Spatial-temporal multivariate small area estimation.
(Co-author(s): F. Cappuccio)

D. Toninelli
Is the Smartphone Participation Affecting the Web Survey Experience?.
(Co-author(s): M. Revilla)

POSTER SESSION (POS)

M. Bernardi
Non-conjugate Variational Bayes Approximation.
(Co-author(s): E. Ruli)

M. Bernardi
The Multivariate Fuzzy Skew Student–t distribution.

M. Bini
Quality of Educational Services, Institutional Image, Students’ Satisfaction and Loyalty in Higher Education.
(Co-author(s): L. Masserini, M. Pratesi)

L. Bisaglia
Estimation of INAR(p) models using bootstrap.
(Co-author(s): M. Gerolimetto)

D. Bossoli
Effect of internet-based cognitive therapy on children anxiety disorders: results from a marginal logistic quantile regression.
C. Calì Some mathematical properties of the ROC curve. (Co-author(s): M. Longobardi)

M. Cannas Machine learning for the estimation of the propensity score: a simulation study. (Co-author(s): B. Arpino)

M. Cannas An R package for propensity score matching with clustered data. (Co-author(s): B. Arpino, C. Conversano)

A. Coli Mapping local social protection data in Italy. (Co-author(s): B. Pacini, A. Valentini, S. Venturi)

A. Cosma Indirect inference for nonlinear panel data.

I. L. Danesi Cluster Analysis of Transactional Data in the Frequency Domain. (Co-author(s): F. M. Pons, C. Rea)

L. Gabrielli Using purchase market behavior to estimate collective well-being. (Co-author(s): G. Riccardi, L. Pappalardo)

F. Giambona The Bifactor Item Response Theory Model for the analysis of repeated measurements. An application to the measurement of Italian households' well-being. (Co-author(s): M. Porcu, I. Sulis)

A. Lepore A Bayesian short-term strategy for site specific wind potential assessment. (Co-author(s): P. Erto, B. Palumbo, M. Lepore)

A. Magrini Distributed-Lag Structural Equation Modelling: An Application to Impact Assessment of Research Activity on European Agriculture. (Co-author(s): F. Bartolini, A. Coli, B. Pacini)

G. Mastrantonio A multivariate circular-linear hidden Markov model for site-specific assessment of wind predictions by an atmospheric simulation system. (Co-author(s): A. Pollice, F. Fedele)

F. Musella Bayesian networks for supporting the digitization process in Italian schools. (Co-author(s): S. Capogna, M.C. De Angelis)

B. Palumbo Statistical approach in aerospace industry innovation. (Co-author(s): P. Erto, F. Tagliaferri, G. De Chiara, R. Marrone, C. Leone, S. Genna)

B. Palumbo Ship fuel consumption control and engineering approach to fault-detection. (Co-author(s): P. Erto, A. Lepore, L. Vitiello, C. Capezza, D. Bocchetti, A. D’Ambra, B. Antonelli)

A. Pramov Confidence intervals for a partially identified parameter with bounds estimated by the minimum and the maximum of two correlated and normally distributed statistics.
I. Primerano
Semantic Knowledge Detection in Open-ended Questionnaire. (Co-author(s): G. Giordano)

G. Ragozini
A joint approach to the analysis of time-varying affiliation networks. (Co-author(s): D. D’Ambrosio, M. Serino)

M. Restaino
Non-parametric estimators for estimating bivariate survival function under randomly censored and truncated data. (Co-author(s): H. Dai, H. Wang)

G. Riccardi
Bayesian M-quantile regression in Small Area Estimation.

E. Ruli
Optimal B-robust posterior distributions for operational risk. (Co-author(s): I. Danesi, F. Piacenza, L. Ventura)

F. Schirripa Spagnolo
Estimating income of immigrant communities in Italy using small area estimation methods. (Co-author(s): N. Salvati, A. D’Agostino)

M. Soscia
The Switching Skew-GARCH Model. (Co-author(s): M. Bernardi, L. Petrella)

S. Spina
Inference on a non-homogeneous Gompertz process with jumps as model of tumor dynamics. (Co-author(s): V. Giorno, P. Román-Román, F. Torres-Ruiz)

G. Storti
Combining multiple frequencies in multivariate volatility forecasting. (Co-author(s): A. Amendola, V. Candila)

D. Toninelli
An Enhanced Measure of Well-being through Structural Equation Modeling: a Cross-Country Approach. (Co-author(s): M. Cameletti)

A. Vanacore
Statistics for knowledge improvement of an innovative manufacturing process and quality cost management. (Co-author(s): B. Palumbo, F. Del Re, P. Corrado, M. Lanza, G. La Sala, M. Mastrovita)

A. Vanacore
Statistics for Safety and Ergonomics in Design. (Co-author(s): A. Lanzotti, C. Percuoco, A. Capasso, F. Liccardo, B. Vitolo)

L. Zanin
Modelling transition probabilities in a flexible hierarchical logit framework: evidence from the Italian labour market. (Co-author(s): R. Calabrese)
Abstract The aim of this paper is to investigate the factors affecting university student mobility in Italy in a longitudinal perspective, by considering the flows across competing territorial areas supplying tertiary education programs. The Bradley-Terry modelling approach based on pair comparisons has been adopted to define the attractiveness of competing territories and a range of determinants related to the socio-economic characteristics of the areas as well as universities’ resources. Data released by the Italian Ministry of Education (MiUR) are analysed for the academic years 2010/2011-2014/2015. The modelling approach considers score values for each territory and year, allowing to evaluate whether attractiveness improves or deteriorates over time, and to rank areas according to their attractiveness. To this end, an index based on ranking changes, appropriately weighed with the differences in score values, is proposed. Empirical findings highlight that attractiveness depends not only on the educational programs, but also on territories’ socio-economic factors, reflecting the well-known North-South divide that persists in time.

Key words: university attractiveness, longitudinal, Bradley-Terry Model.
1 Introduction

The Italian university system is mostly public and is organised on a national basis. Universities are largely funded by central government authorities and student fees are relatively low. Since the early 1990s, universities have become autonomous institutions that decide how to spend their budgets to pursue institutional tasks, such as research, teaching, and services in the area where they are located (primarily in the health sectors with university hospitals). Central authorities assign each institution a yearly monetary provision that is mainly allocated based on the university’s size (i.e., the number of the students enrolled). After more than twenty years of self-government, a number of Italian universities now suffer from the financial crisis, a high rate of dropouts, high unemployment or underemployed graduate rates and a low power to attract students from other territories. For these reasons, private and public stakeholders demand greater accountability from the system, and the central government assigns a portion of the yearly financial provision to each university based on certain indicators of performance. Among these indicators, particular attention is paid to features related to the student mobility and university attractiveness, both of which are monitored by tracking the number of incoming students from other areas. A debate has arisen on the factors that actually indicate the quality of universities and on the influence that public policies to finance universities have on the local economies. Focusing on the ability of universities to attract students in a territory, these debates have rarely investigated the determinants behind the flows of incoming students with respect to the characteristics of the territory.

The issue of student mobility primarily refers to studies of the immigration phenomenon, which is currently considered to comprise a number of push-and-pull factors. A number of authors have paid attention to its determinants emphasising the influence of the educational, political, social, cultural and economic conditions of the origins and destinations places on their mobility (Caruso and de Wit, 2013; Beine et al., 2012; Kahanec and Kralikova, 2011; Kratz, 2011; Agarwal et al., 2008; Baryla and Dotterweich, 2001). Empirical studies on student mobility can be divided into two main strands: studies on international student mobility, which focus on mobility across countries (e.g., Van Bouwel and Veugelers, 2009; de Wit, 2010; Kahanec and Kralikova, 2011; Caruso and de Wit, 2013), and studies on domestic student mobility, which focus on flows among territories within the same country (Dal Bianco et al., 2009; Ordine and Rose, 2007; Agasisti et al., 2007). From another point of view, student mobility can be analysed on a micro or macro perspective based on the variety of subjective or objective reasons.

With respect to the macro level of analysis, the emphasis falls on the attractiveness of places of destination considering some key “origin” and “destination” factors (Dal Bianco, 2009; Agasisti and Dal Bianco, 2007) or on the phenomenon of brain drain (Fratesi and Percoco, 2014; Ciriaci, 2012; Ordine and Rose, 2007; Makovec, 2006; Lupi and Ordine, 2006; Brunello and Cappellari, 2005). Indeed, student mobility has several implications in terms of socio-economic development (i.e., the net loss of human capital) and on the rate of innovation and economic growth of the origin regions (Fratesi and Riggi, 2007; Viesti, 2005) and in
Measuring territory student-attractiveness in Italy. Longitudinal evidence

terms of monetary resources transferred by the central government authorities to the universities based on their attractiveness (measured in terms of student mobility).

From a macro perspective, the existing empirical studies have mainly analysed student mobility in terms of the flows of incoming students (Dal Bianco, 2009; Agasisti and Dal Bianco, 2007), distinguishing the forced moving students (who migrate from a territorial area that does not have a university) and the free moving students (who migrate from a territory with tertiary education supply) (Giambona et al., forthcoming). In these approaches the use of macro-covariates, which vary across territories, helps to account for differences among alternative destinations (Dotti et al, 2013; Agasisti and Dal Bianco, 2007). The first group of covariates includes the socio-economic conditions of territories, whereas a second group of covariates refers to resources that the universities in the territory are able to receive for their academic supply (in terms of educational and research activities).

Recent empirical evidence has analysed the Italian South-North student mobility divide, indicating that returns to education depend on the specific institution attended and on the characteristics of territory where the university is located (Makovec, 2006; Brunello and Cappellari, 2005). These factors underlie that the labour mobility from Southern to Northern areas is reflected by student mobility and contributes to increase in the magnitude of the regional disparities (Fratesi and Percoco, 2014; Ordine and Rose, 2007). Indeed, Southern students who attend Northern universities show very little inclination to return to the South (Svimez, 2009), furthering the brain drain phenomenon.

In this framework, starting from the main recent empirical evidences for the academic year 2011/2012 (Giambona et al., forthcoming), this paper analyses student mobility across competing territories supplying tertiary educational programs in Italy, namely TETA (Tertiary Education Territorial Areas), over the academic years 2010/11, 2012/13 and 2014/15. The aim is to analyse the changes in attractiveness of TETAs occurred within this time span, in particular with respect to the North-South divide. The improvement/deterioration in attractiveness is evaluated by means of a specific index developed in Giambona and Vassallo (2013).

2 The Bradley-Terry Model

The analysis of TETAs’ attractiveness is focused on modelling student flows and uses an approach based on pairwise comparisons across competing territorial areas in Italy. Specifically, we distinguish between two typologies of migrant students: those who migrate from a territorial area that does not host a university, called “forced” migrant students (if they want to attend a university, they must migrate), and students who migrate from an area that has a tertiary education institution, named “free” migrant students (they have the opportunity to attend a university where they live, but they choose to move). In this contribution we model free students flows, whilst forced mover students have been considered to define a measure of the initial advantage of TETAs.
The standard Bradley-Terry model (Agresti, 2002; Bradley and Terry, 1952) considers the territories to be players (e.g., \(i\) and \(j\)) with different abilities. If the ability of \(i\) (for \(i = 1,\ldots,M\)) is higher than the ability of \(j\) (for all \(j \neq i\)), the number of times that \(i\) beats \(j\) is expected to be higher than the number of times \(j\) “beats” \(i\).

In a competition across territories for attracting students, this concept can be translated as the number of students who prefer the area \(i\) coming from the area \(j\).

The model specifies the probability that in a pairwise comparison between \(i\) and \(j\) (for \(j\) that range from \(1\) to \(M-1\)), at time \(t\) students prefer the area \(i\) to \(j\), as follows:

\[
\text{pr}(i \text{ beats } j)_{it} = \frac{\alpha_i}{\alpha_i + \alpha_j} \quad (1)
\]

where \(\alpha_i\) and \(\alpha_j\) are the ability parameters that measure the intensity of an unobservable (latent) trait in the two players. In the analysis of students’ mobility, the ability parameters are the attractiveness parameter of the competing TETAs.

By expressing the model in the logit form, equation (1) becomes

\[
\text{logit}[\text{pr}(i \text{ beats } j)]_{it} = \lambda_{it} - \lambda_{jt} \quad (2)
\]

where \(\lambda_{it} = \log \alpha_i\) and \(\lambda_{jt}\) may be fixed or random parameter. Based on the results of comparisons that share a common TETA, the attractiveness parameters of TETAs at each time \(t\) are estimated.

The basic model allows to make generalisations in several directions (Turner and Firth, 2013), for example, to specify ability as a function of covariates. If player covariates \((r = 1 \ldots p)\) are used to explain differences in players’ abilities, the parameters \(\lambda_{it}\) and \(\lambda_{jt}\) are related to the covariates by a linear predictor:

\[
\lambda_{it} = \sum_{r=1}^{p} \beta_r x_{irt} + U_{it} \quad (3)
\]

and equation (2) becomes

\[
\text{logit}[\text{pr}(i \text{ beats } j)]_{it} = \sum_{r=1}^{p} (x_{irt} - x_{jrt}) \beta_r + U_{it} - U_{jt} \quad (4)
\]

where \(U_{it}\) and \(U_{jt}\) are normally distributed random terms. Missing observations among covariates are handled by considering the individual parameters of the players containing missing predictor values as fixed effects (Turner and Firth, 2013).

In the framework of the Bradley-Terry models, differences in attractiveness parameters (as measured by a fixed or random parameter shared by all pairs in which the same territory is involved) are the factors that lead students to prefer one TETA over another.

Finally, for each TETA, the change over time in attractiveness has been evaluated through the index \(I_i\) based on the annual changes in rank (\(\Delta R\)) appropriately weighed with the annual differences of the score (\(\Delta S\)) (Giambona and Vassallo, 2013):
Measuring territory student-attractiveness in Italy. Longitudinal evidence

\[
I_i = \sum_{t=2013}^{2015} (-\Delta R_{t,i}) \cdot \frac{|\Delta S_{t,i}|}{\sum_{t=1}^{m} |\Delta S_{t,i}|}
\]

(5)

3 Empirical findings

Student mobility is defined in terms of the number of free students who move from their place of residence to attend a university degree program in another territory. The data were provided for the academic years 2010/2011, 2012/2013 and 2014/2015 by the Italian central government department for the university (ANS, MiUR). On the basis of the location of traditional universities in the country, the Italian territory has been divided into 50 TETAs supplying educational programs and thus in competition to attract students.

To describe the socio-economic characteristics we considered the findings of the survey carried out by the daily newspaper Il Sole 24 Ore on 36 factors related to the main domains of living conditions in the Italian provinces. These factors refer to standard of living, business and work, health and environmental services, population, public order, and leisure, and the overall quality of life index summarizing these domains (QUALITYOFLIFE).

To describe the effect of the characteristics strictly related to the tertiary education supply in TETAs we considered: (a) TETAs’ capability to attract yearly financial provisions from the central government (BENEFIT); (b) a measure of the overall quality of universities located in a TETA with respect to services provided to students (CENSISQUALITY). Specifically, the BENEFIT indicator was calculated by considering the share of “benefit” over the total amount of central government provisions for each university. For TETAs hosting different university institutions, we considered the average values of each indicator.

Further, we added two measures to account for the capability of each TETA to attract students from territories without universities in terms of amount of the flow (INCIDENCE) and heterogeneity (HETEROGENEITY) of the territories from which they come from (Giambona et al., forthcoming). The combination of these two measures measures the initial advantage of each TETA with respect to the others in attracting students. Specifically, the incidence index (INCIDENCE) measures the percentage of forced movers in each TETA on the total forced movers, whilst the heterogeneity index (HETEROGENEITY) stands for the capability of each TETA to attract students from few or many Italian provinces without universities. To this aim, the Gini index of heterogeneity (Leti, 2001) is used to describe for each TETA the variability of the distribution of forced mover students by province of residence. The two indexes aim to control for any initial advantage of a TETA in measuring its relative ability to attract students. As a further measure of initial advantage, we include an indicator which counts the number of adjacent provinces without universities (PROVADWITHOUT).
The physical distance between TETAs was not considered because in Italy there is no clear correspondence between physical distances and time and moving costs. For example, the widespread presence of low-cost airlines make it sometimes cheaper and faster to move from South or Centre to North than to reach adjacent TETAs. In this perspective, to account for transportation facilities, we included the number of railway stations (STATIONS) and the presence of airports (AIRPORTAVAILABILITY).

The results of the analysis using the Bradley-Terry model (Table 1) indicate that the QUALITYOFLIFE has a positive and significant effect on attractiveness as well as the indicators related to the university domains (BENEFIT and CENSISQUALITY). TETAs with higher values of initial advantage (HETERGENEITY, INCIDENCE) are more attractive than the others, and if the TETA is located near provinces without universities (PROVADWITHOUT) it has more chance to attract students. Instead, the number of railway stations (STATIONS) and the availability of airport (AIRPORTAVAILABILITY) have no significant effect on attractiveness.

Table 1: results of the Bradley Terry Model

<table>
<thead>
<tr>
<th>Fixed Effects</th>
<th>Coeff.</th>
<th>Std. Error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of life</td>
<td>0.040</td>
<td>0.003</td>
<td>***</td>
</tr>
<tr>
<td>Benefit</td>
<td>3.812</td>
<td>1.038</td>
<td>***</td>
</tr>
<tr>
<td>CensisQuality</td>
<td>0.037</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>1.731</td>
<td>0.703</td>
<td>*</td>
</tr>
<tr>
<td>Incidence</td>
<td>0.360</td>
<td>0.080</td>
<td>***</td>
</tr>
<tr>
<td>ProvAdWithout</td>
<td>0.243</td>
<td>0.121</td>
<td>*</td>
</tr>
<tr>
<td>Airport availability</td>
<td>-0.411</td>
<td>0.320</td>
<td></td>
</tr>
<tr>
<td>Stations</td>
<td>0.003</td>
<td>0.010</td>
<td></td>
</tr>
</tbody>
</table>

Random Effects

<table>
<thead>
<tr>
<th></th>
<th>Sd</th>
<th>SE</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.598</td>
<td>0.103</td>
<td>***</td>
</tr>
</tbody>
</table>

Signif. codes: p<0.000 ‘***’ p<0.001 ‘**’ p<0.010 ‘*’ p<0.050 ‘.’ not sig. ‘ ’

Table 2 shows the ability scores and rankings for each TETA and academic year, and the improvement index . To ease comparability, each score is normalized by its range; therefore, the score varies now between 0 (the lowest level of attractiveness) and 1 (the maximum level of attractiveness).

In the time span considered, eight TETAs do not change ranking (for example Bologna, Cosenza and Catania); some strongly improve their position (for example Bolzano, Aosta and Reggio Calabria) while others strongly worsen it (as l’Aquila, Como-Varese and Enna).

Table 3 shows the number of TETAs, the score and the ranking mean (for each academic year) for each macro-area, and the percentage of TETAs that

1 If considered in this model, as the effect is caught by the other covariate.
improve/worsen their attractiveness according to TETAs macro-areas. In the time span, in Centre-North macro-area the ranking mean is higher than South and the score mean in South is lower than Centre-North. Considering improvement in time, the share of TETAs improving their attractiveness in the Centre and North is 46% and 47%, respectively, whereas only 36-37% worsen their position. Instead, among the Southern TETAs those worsening their position prevail (50%).

Table 2: ability scores and rankings, improvement index

<table>
<thead>
<tr>
<th>TETA</th>
<th>Ability Scores 2010-2011</th>
<th>Ability Rankings 2010-2011</th>
<th>Improvement INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUA</td>
<td>0.5275</td>
<td>0.2548</td>
<td>-1.152</td>
</tr>
<tr>
<td>COMO-VAIREESE</td>
<td>0.5711</td>
<td>0.5607</td>
<td>0.979</td>
</tr>
<tr>
<td>ENNA</td>
<td>0.1577</td>
<td>0.0078</td>
<td>0.157</td>
</tr>
<tr>
<td>BERGAMO</td>
<td>0.6294</td>
<td>0.5873</td>
<td>0.570</td>
</tr>
<tr>
<td>CATANZARO</td>
<td>0.1685</td>
<td>0.1642</td>
<td>0.1944</td>
</tr>
<tr>
<td>SALERNO</td>
<td>0.0653</td>
<td>0.0626</td>
<td>0.1219</td>
</tr>
<tr>
<td>FOGGIA</td>
<td>0.0490</td>
<td>0.0090</td>
<td>0.0800</td>
</tr>
<tr>
<td>MODENA-REGGIO EMILIA</td>
<td>0.0113</td>
<td>0.0722</td>
<td>0.0983</td>
</tr>
<tr>
<td>MACERATA</td>
<td>0.6528</td>
<td>0.6514</td>
<td>0.6807</td>
</tr>
<tr>
<td>PALMA</td>
<td>0.0354</td>
<td>0.0097</td>
<td>0.0820</td>
</tr>
<tr>
<td>BARI</td>
<td>0.1923</td>
<td>0.1907</td>
<td>0.2980</td>
</tr>
<tr>
<td>MOLISE</td>
<td>0.1811</td>
<td>0.1841</td>
<td>0.2988</td>
</tr>
<tr>
<td>UDINE</td>
<td>0.7821</td>
<td>0.7777</td>
<td>0.7930</td>
</tr>
<tr>
<td>BRESCIA</td>
<td>0.6129</td>
<td>0.5840</td>
<td>0.6074</td>
</tr>
<tr>
<td>SAMBARI</td>
<td>0.6195</td>
<td>0.4171</td>
<td>0.4672</td>
</tr>
<tr>
<td>TRENTO</td>
<td>0.7936</td>
<td>0.7669</td>
<td>0.7928</td>
</tr>
<tr>
<td>FROZINONE</td>
<td>0.2200</td>
<td>0.2184</td>
<td>0.2938</td>
</tr>
<tr>
<td>ROMA</td>
<td>0.7666</td>
<td>0.7360</td>
<td>0.7064</td>
</tr>
<tr>
<td>VIZZORI</td>
<td>0.4473</td>
<td>0.4508</td>
<td>0.4851</td>
</tr>
<tr>
<td>CAGLIARI</td>
<td>0.4371</td>
<td>0.4292</td>
<td>0.4773</td>
</tr>
<tr>
<td>CHIETI-PESCARA</td>
<td>0.4433</td>
<td>0.4354</td>
<td>0.4907</td>
</tr>
<tr>
<td>BOLOGNA</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>COSENZA</td>
<td>0.1750</td>
<td>0.1736</td>
<td>0.2550</td>
</tr>
<tr>
<td>CATANIA</td>
<td>0.5184</td>
<td>0.1694</td>
<td>0.2430</td>
</tr>
<tr>
<td>FIRENZE</td>
<td>0.4345</td>
<td>0.3347</td>
<td>0.6818</td>
</tr>
<tr>
<td>PADOVA</td>
<td>0.8216</td>
<td>0.8287</td>
<td>0.8726</td>
</tr>
<tr>
<td>PESARO-URBINO</td>
<td>0.6507</td>
<td>0.6480</td>
<td>0.6720</td>
</tr>
<tr>
<td>FERRARA</td>
<td>0.5955</td>
<td>0.5927</td>
<td>0.6253</td>
</tr>
<tr>
<td>GENOVA</td>
<td>0.5541</td>
<td>0.5640</td>
<td>0.5851</td>
</tr>
<tr>
<td>MESSINA</td>
<td>0.0165</td>
<td>0.0179</td>
<td>0.1556</td>
</tr>
<tr>
<td>ANCONA</td>
<td>0.5070</td>
<td>0.4916</td>
<td>0.5449</td>
</tr>
<tr>
<td>NAPOLI</td>
<td>0.1798</td>
<td>0.1869</td>
<td>0.2578</td>
</tr>
<tr>
<td>VENETO</td>
<td>0.7965</td>
<td>0.7654</td>
<td>0.7798</td>
</tr>
<tr>
<td>PIEMONTE-ORIENTALE</td>
<td>0.5669</td>
<td>0.5577</td>
<td>0.5776</td>
</tr>
<tr>
<td>MATERA-POTENZA</td>
<td>0.8180</td>
<td>0.1986</td>
<td>0.2932</td>
</tr>
<tr>
<td>MILANO</td>
<td>0.6154</td>
<td>0.8034</td>
<td>0.6823</td>
</tr>
<tr>
<td>LEICHE</td>
<td>0.1296</td>
<td>0.1561</td>
<td>0.2590</td>
</tr>
<tr>
<td>PERUGIA</td>
<td>0.5504</td>
<td>0.5620</td>
<td>0.5804</td>
</tr>
<tr>
<td>TERNI</td>
<td>0.7670</td>
<td>0.7860</td>
<td>0.8064</td>
</tr>
<tr>
<td>RENENETO</td>
<td>0.1903</td>
<td>0.2450</td>
<td>0.3886</td>
</tr>
<tr>
<td>SIENA</td>
<td>0.7558</td>
<td>0.7519</td>
<td>0.7903</td>
</tr>
<tr>
<td>REGGIOCALABRIA</td>
<td>0.0900</td>
<td>0.0757</td>
<td>0.1405</td>
</tr>
<tr>
<td>AGISTA</td>
<td>0.5511</td>
<td>0.6085</td>
<td>0.6254</td>
</tr>
<tr>
<td>BOLZANO</td>
<td>0.4135</td>
<td>0.5187</td>
<td>0.5768</td>
</tr>
</tbody>
</table>

Measuring territory student-attractiveness in Italy. Longitudinal evidence
Table 3: descriptive statistics and improvement index by macro-area

<table>
<thead>
<tr>
<th></th>
<th>North</th>
<th>Centre</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of TETA</td>
<td>19</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Mean score 10/11</td>
<td>0.6943</td>
<td>0.6110</td>
<td>0.2157</td>
</tr>
<tr>
<td>Mean score 12/13</td>
<td>0.6916</td>
<td>0.6116</td>
<td>0.2136</td>
</tr>
<tr>
<td>Mean score 14/15</td>
<td>0.7091</td>
<td>0.6449</td>
<td>0.2738</td>
</tr>
<tr>
<td>Mean ranking 10/11</td>
<td>15</td>
<td>19</td>
<td>40</td>
</tr>
<tr>
<td>Mean ranking 12/13</td>
<td>15</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>Mean ranking 14/15</td>
<td>15</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>Improvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>37%</td>
<td>36%</td>
<td>50%</td>
</tr>
<tr>
<td>=</td>
<td>16%</td>
<td>18%</td>
<td>15%</td>
</tr>
<tr>
<td>+</td>
<td>47%</td>
<td>46%</td>
<td>35%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

4 Conclusions

The results of the Bradley-Terry model suggest that TETAs attractiveness does not depend only on the quality of the educational supply, but also on socio-economic factors reflecting the well-known divide between the less-advanced Southern and the more-advanced Northern regions. These economic factors affect the behaviour of individuals and the decisions of families, who tend to migrate toward the Northern regions for tertiary studies to look for better educational and job opportunities. Furthermore, TETAs that are able to attract students from adjacent provinces without universities and with higher initial advantage are more attractive than the others. Regarding the time span considered, some TETAs improve their attractiveness whereas other get worse (in a more or less considerable way), and eight TETAs do not change their capability to attract students. Among them, Bologna maintains its first position. According to the empirical findings, most of the Southern TETAs were the least attractive areas: the first Southern TETAs, at the beginning of the period, is in 18-th position whilst the last Northern TETA is in 33-th position in ranking. This is the notorious North-South divide that (with some exceptions) is confirmed in time: about half of Southern TETAs lost attractiveness, and, considering all TETAs, the 20% of TETAs that lose attractiveness is in the South, against the lowest 14% for the Northern TETAs and 8% for the Centre macro-area.
5 Citations and References

