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Inferential tools in penalized logistic
regression for small and sparse
data: A comparative study
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Abstract

This paper focuses on inferential tools in the logistic regression model fitted by the Firth penalized likelihood. In this

context, the Likelihood Ratio statistic is often reported to be the preferred choice as compared to the ‘traditional’ Wald

statistic. In this work, we consider and discuss a wider range of test statistics, including the robust Wald, the Score, and

the recently proposed Gradient statistic. We compare all these asymptotically equivalent statistics in terms of interval

estimation and hypothesis testing via simulation experiments and analyses of two real datasets. We find out that the

Likelihood Ratio statistic does not appear the best inferential device in the Firth penalized logistic regression.
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1 Introduction

Logistic regression is undoubtedly one of the most popular statistical models routinely used in many areas of
applied statistics, such as Biology, Ecology and especially Medicine.1 Given a set of predictors, the model aims to
assess the specific effect of one or more explanatory variables in the regression equation while providing estimates
of the probability of the dichotomous outcome; excellent books describe it in detail.2,3

While standard logistic regression belongs to the main frame of statistical methods for applied research, its
application in the presence of sparse data needs some attention and caution.4 Sparseness is sometimes referred as
‘separation’ of data, as described by Albert and Anderson,5 and it can be caused by occurrence of small sample
size, and/or rare events, and/or unbalanced or highly predictive risk factors. Performance of the usual asymptotic
procedures, point estimates, confidence intervals and hypothesis testing deteriorate in finite samples with
sparseness of data.5,6 More specifically, point estimates are not guaranteed to exist, and when obtained, they
can suffer from important bias leading to inconsistent estimators; interval estimates and p-values are doubtful due
to the non-Normal sampling distribution of the usual test statistics.

Different strategies have been discussed in the literature, both ‘corrective’, and ‘preventive’. The former
approach means that the maximum likelihood estimates (MLE) are adjusted ex-post,7–11 whereas in the
preventive approach the estimates solve modified estimating equations accounting for the bias of the MLEs. In
the Firth’s penalized approach,12 proper estimating equations are defined and parameter estimates are obtained
accordingly, leading to estimators that are unbiased to the order n�1. Such approach turns out particularly useful
with nearly separated data: besides removing the first-order bias, the approach guarantees the point estimates to be
finite even in the presence of monotone likelihood13 when the usual ML estimates do not exist. In the context of
small samples and/or sparse data, some comparisons have been discussed14,15 ending up with the Firth penalized
framework as the final recommendation. The Firth approach in logistic regression has been extended to
multinomial responses16 and ordinal responses via cumulative link regression models;17 more generally, the
penalized approach has also emerged noteworthy in developing prediction models.18
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Within the Firth penalized logistic regression, several authors have discussed inferential tools to carry out
inference on the model parameters.13,19 Comparisons have concerned the Likelihood Ratio and the Wald
statistics only, the latter using a covariance matrix for estimators valid only in very large samples. In the end,
likelihood-based confidence intervals are generally recommended over the Wald ones according to simulation
evidences.

In this work, we focus on both interval estimation and hypothesis testing in the Firth penalized logistic
regression. We extend discussion and comparisons involving also the other asymptotically equivalent test
statistics: the Score statistic that, curiously, has been neglected in the aforementioned literature, and the recent
Gradient statistic.20,21 We also argue about inappropriateness of the usual Wald statistic that is usually considered
in the literature.

The remainder of this paper is organized as follows. Section 2 summarizes the different test statistics employed
to make inference, namely to get confidence intervals and p-values; Section 3 presents the design and the results of
the simulation studies and Section 4 deals with the analysis of two well-known datasets in literature. The last
Section is devoted to conclusions and final discussion.

2 The four likelihood-based statistics

Let Yi be the binary outcome variable for unit i, and xi the K-dimensional covariate vector, possibly including
exposures, confounders, predictors, and the 1 for model intercept. Interest lies on the conditional expected value
�i ¼ E½Yjxi� related to covariates via the logistic regression equation

logitð�iÞ ¼ xTi b ¼
XK
j¼1

xij�j: ð1Þ

Maximum likelihood estimates (MLEs) of the regression parameters are usually obtained by equating to zero the
score vector @‘ ðbÞ@�j

¼ Uj ðbÞ, j ¼ 0, 1, 2, . . . ,K. As discussed in the previous section, sparseness poses serious issues in
obtaining reliable point estimates and related quantities, and better estimating equations are obtained within the
Firth penalized approach. Firth12,22 suggests the following modification of the classical score function Uj ðbÞ that
allows to remove the Oðn�1) bias of the ML estimates

U�j ðbÞ ¼ Uj ðbÞ þ
1

2
trace IðbÞ�1

@IðbÞ

@�j

� �
, j ¼ 0, 1, 2, . . . ,K ð2Þ

where IðbÞ is the expected Fisher information. This is equivalent to use the penalized log-likelihood

‘�ðbÞ ¼ ‘ ðbÞ þ log jIðbÞj
1
2, ð3Þ

where the penalty jIðbÞj
1
2 is the so-called Jeffrey’s invariant prior in a Bayesian context.4,12,23,24

In the following sections, we summarize some statistics on which inference can be based: these are all
likelihood-based, and refer to the same standard normal null distribution for large samples. However, in small
to moderate samples, they can perform quite differently, as discussed later. We will indicate the full penalized ML
estimate via b̂

�
, and the restricted one via b̂

�

0; namely b̂
�

0 is the ML estimate of b given �j ¼ �0j fixed under the null
hypothesis.

2.1 The Likelihood Ratio statistic

The Penalized Likelihood Ratio statistic is defined as the usual Likelihood Ratio statistic but involving the
penalized log-likelihood (equation (3)). Thus, it is

L ¼ signð�̂�j � �0jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
�
‘�ðb̂

�
Þ � ‘�ðb̂

�

0Þ
�q
: ð4Þ

Several authors have claimed that the penalized Likelihood Ratio statistic is the preferred choice when using the
Firth penalty in logistic regression13,14,19
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2.2 The Wald statistic

The Wald statistic for the jth regression parameter is naturally defined as

W ¼
�̂�j � �0j

varð�̂�j Þ
1=2

ð5Þ

The key point here is how to compute varð�̂�j Þ, the jth element on the main diagonal of the full covariance matrix
Vðb̂

�
Þ. All the aforementioned papers in literature use the inverse of the Information, namely Vðb̂

�
Þ � I�1ðb̂

�
Þ.

However, it should be acknowledged the I�1 is not the right approach to compute the variance of the estimator, at
least in moderate samples. In fact, from basics of statistical inference, the asymptotic variance of the ML estimator
comes from the linear expansion of the score, leading to the so-called sandwich formula,25 which reduces to I�1

only if the second Bartlett identity holds. In the Firth penalized framework, the simple approximation
Vðb̂

�
Þ � I�1ðb̂

�
Þ holds only in very large samples when the penalty effect gets negligible. In particular, in small

to moderate samples, I�1ðb̂
�
Þ overestimates the true estimates uncertainty. This crucial issue appears to have been

neglected in literature,13,16,19 causing a (pointless) ‘bad reputation’ of the Wald statistic. Hence, a more reliable
asymptotic variance for b̂

�
is provided by the sandwich formula H�ðb̂

�
Þ
�1Iðb̂

�
ÞH�ðb̂

�
Þ
�1. It should be noted that

any adjective ‘unpenalized’ or ‘penalized’ (and corresponding asterisk) to be placed before ‘Information’ is
meaningless. There is a unique Information, hereafter denoted by I ¼ varðUÞ ¼ varðU�Þ; in fact the penalized
and unpenalized score have the same variance since penalty in equation (2) does not depend on data.
Evaluating the hessian H�ðbÞ requires the second derivatives of the penalized log-likelihood; even if these could
be obtained analytically or numerically, via finite differences for instance, we found out that computing the hessian
using the idea of induced smoothing26 works better in practice.

We use WS to indicate the ‘fair’ Wald statistic using the sandwich variance, and W to mean the ‘unfair’ one
using the simple I�1.

2.3 The Score statistic

The Score statistic is well known in the mainstream inference background, but its spread in applications is
somewhat limited with respect to the Wald and Likelihood Ratio statistics. Such limited diffusion reflects in the
Firth penalized logistic regression framework, where it appears to have been not yet discussed.

The penalized Score takes the form

S ¼ U�j ðb̂
�

0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1ðb̂

�

0Þjj

q
ð6Þ

where I�1ðb̂
�

0Þjj is the jth element on the main diagonal of the inverse of the variance of the conditional Score U�j . It
should be noted that U� is biased, namely its expected value is not zero due to the penalty in equation (2); however,
such bias appears to have a negligible effect on the limit distribution of S, making the standard Normal a valid
reference distribution to carry out inference on the regression parameters; simulation studies later bear this out.
Moreover, as discussed elsewhere,27 the Jeffrey prior (and the Firth penalty accordingly) is data dependent: this
means that it would not be possible to discuss a general behaviour of the bias of the score.

2.4 The Gradient statistic

The Gradient statistic20 is a relatively new statistic introduced as a possibly simpler alternative to the most popular
Likelihood Ratio, Wald and Score statistics.21 The Gradient statistic can be derived through the geometric mean
between W and S, namely

G ¼ signðb��j � �0jÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb��j � �0jÞU�j ðb̂�0Þq

ð7Þ
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However, due to lack of the second Bartlett identity, G may be affected by the same inaccuracies of W. Thus, a
robust formulation is

GS ¼ signð�̂�j � �0jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�̂�j � �0jÞU

�
j ðb̂
�

0Þ H
�ðb̂
�
ÞI�1ðb̂

�
Þ

h i
jj

r
ð8Þ

which comes from a multidimensional characterization of the geometric mean between WS and S.28

3 Simulation study

We carry out a simulation study to assess the properties of the aforementioned statistics in making inference on the
regression parameters in Firth’s penalized logistic regression: the penalized LR (equation (4)), the Wald statistic
(equation (5)) and its robust counterpartWS using the sandwich variance, the Score statistic (equation (7)), and the
Gradient statistics (equations (7) and (8)).

We consider different scenarios to induce, to some extend, sparseness in the data: small to moderate sample
sizes and highly predictive risk factors. Also both categorical and numerical covariates are considered. To provide
recommendations with practical interest, we consider scenarios with one covariate only (and very small sample
n¼ 20), and also three covariates as detailed below.

For each scenario, we generate B¼ 5000 samples of Bernoulli data Yi � Berð�iÞ, where logitð�iÞ ¼ �i. In the
single-covariate case, we consider three different sample sizes n 2 f20, 50, 100g, and �i ¼ 1þ �xi where the
covariate is continuous or binary. To define the covariate, we extract values zi � Nð0, 1Þ, and we simply set
xi¼ zi to get a continuous covariate, or xi ¼ Iðzi 4 0Þ to obtain a binary covariate.

In the multiple-covariate case, �i ¼ 1þ �x1i þ 0:5x2i � 0:5x3i, where to define the covariates, correlated
multinormal values are drawn

z1i

z2i

z3i

2
64

3
75 � N

0

0

0

2
64

3
75,

1 0:6 �0:6

0:6 1 0

�0:6 0 1

2
64

3
75

0
B@

1
CA ð9Þ

and x2i ¼ Iðz2i 4 0Þ (binary covariate), x3i ¼ z3i (continuous covariate). The covariate of interest x1 is obtained via
x1i ¼ Iðz1i 4 0Þ or x1i ¼ z1i. Due to the presence of additional covariates, we focus only on medium to large sample
sizes, namely n 2 f50, 100g.

We first address interval estimation and use the statistics to derive confidence intervals for the regression
coefficient of interest: we assess the performance via coverage levels and average widths. Then, we use the
statistics for hypothesis testing by assessing empirical type I error and power rates. In the simulation runs, we
do not distinguish between separated or nearly separated datasets, since the Firth penalized approach always
returns finite and reliable estimates in practice.

3.1 Interval estimation

Let Tð�0jÞ be one of the pivot statistics discussed in Section 2 evaluated at the candidate value �0j. A ð1� �Þ100%
confidence interval (CI) for the parameter of interest �j is defined as

CI ¼ f�0j 2 R : z�=2 � Tð�0jÞ � z1��=2g ð10Þ

where z�=2 and z1��=2 are the quantiles of the standard normal distribution for a given �.
Simulated data are obtained as described above, with values for the interest parameter � 2 f0:5, 1:5g, both in

single or multiple covariate context. For the 95% CI of the interest parameter, Tables 1 and 2 report the empirical
coverage levels (CL), the average widths (AW¼

P
b fUppb � Lowbg=B), and the average symmetry ratios given by

AS¼
P

b fðUppb � �̂bÞ=ð�̂b � LowbÞg=B, where in each replicate b, �̂b is the estimate, and Lowb and Uppb are the
lower and upper confidence limits. This ratio will be one for symmetric CI (such as those returned by W and WS)
and will get more different from one as the asymmetry of the CI increases.

Despite that the Likelihood Ratio statistic performs rather fairly, it does not appear to be ‘the best’ inferential
device in the Firth penalized logistic regression, as claimed in previous works. In general, the CI performances, in
terms of coverage level, are similar using the other statistics with some light differences. The ‘usual’ Wald test
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Table 1. Empirical coverage levels, average widths, and average symmetry ratios (based on 5000 runs) of 95% confidence intervals

for �1 according to the different statistics: Wald (W), Robust-Wald (WS), Likelihood Ratio (L), Score (S), Gradient (G) and Robust-

Gradient (GS).

Binary covariate Normal covariate

� ¼ 0:5 � ¼ 1:5 � ¼ 0:5 � ¼ 1:5

n stats CL AW AS CL AW AS CL AW AS CL AW AS

20 W 0.990 4.75 1.00 0.984 5.60 1.00 0.988 2.44 1.00 0.951 3.30 1.00

WS 0.954 4.13 1.00 0.962 4.49 1.00 0.962 2.21 1.00 0.901 2.64 1.00

L 0.957 4.91 1.14 0.976 6.10 1.43 0.964 2.52 1.23 0.961 3.62 1.64

S 0.953 3.85 0.99 0.955 4.33 0.97 0.954 2.19 1.10 0.929 3.21 1.29

G 0.948 5.63 1.33 0.975 7.57 1.96 0.954 2.74 1.40 0.958 4.04 2.14

GS 0.934 5.00 1.25 0.967 6.02 1.72 0.943 2.60 1.38 0.933 3.62 2.04

50 W 0.968 2.83 1.00 0.973 3.71 1.00 0.972 1.41 1.00 0.949 1.99 1.00

WS 0.953 2.68 1.00 0.952 3.18 1.00 0.961 1.36 1.00 0.927 1.81 1.00

L 0.951 2.86 1.07 0.963 3.94 1.36 0.954 1.41 1.13 0.948 2.05 1.34

S 0.950 2.60 1.00 0.957 3.23 0.98 0.953 1.31 1.03 0.940 1.95 1.07

G 0.946 2.96 1.13 0.960 4.42 1.68 0.951 1.44 1.21 0.947 2.13 1.55

GS 0.942 2.85 1.11 0.930 3.86 1.58 0.947 1.42 1.20 0.937 2.03 1.52

100 W 0.953 1.95 1.00 0.971 2.56 1.00 0.962 0.96 1.00 0.954 1.37 1.00

WS 0.948 1.91 1.00 0.946 2.35 1.00 0.958 0.95 1.00 0.946 1.31 1.00

L 0.946 1.95 1.04 0.957 2.63 1.22 0.955 0.96 1.09 0.954 1.39 1.22

S 0.946 1.87 1.00 0.954 2.38 0.99 0.952 0.93 1.01 0.951 1.35 1.03

G 0.943 1.98 1.07 0.952 2.76 1.39 0.952 0.97 1.13 0.954 1.41 1.35

GS 0.940 1.95 1.07 0.940 2.59 1.36 0.951 0.97 1.13 0.949 1.38 1.34

Note: Boldfaces refer to CL outside the ‘plausible’ range :95� 2:57fð:95 	 :05Þ=Bg1=2. The logistic regression equation is logitð�iÞ ¼ 1þ �xi (see text

for details).

Table 2. Empirical coverage levels, average widths, and average symmetry ratios (based on 5000 runs) of the 95% confidence

intervals for �1 according to the different statistics: Wald (W), Robust-Wald (WS), Likelihood Ratio (L), Score (S), Gradient (G) and

Robust-Gradient (GS).

Binary covariate Normal covariate

� ¼ 0:5 � ¼ 1:5 � ¼ 0:5 � ¼ 1:5

n stats CL AW AS CL AW AS CL AW AS CL AW AS

50 W 0.974 4.10 1.00 0.969 4.93 1.00 0.969 2.40 1.00 0.962 3.03 1.00

WS 0.952 3.82 1.00 0.955 4.29 1.00 0.955 2.30 1.00 0.940 2.76 1.00

L 0.952 4.23 1.10 0.966 5.50 1.37 0.950 2.42 1.10 0.951 3.16 1.30

S 0.954 3.78 1.00 0.959 4.51 1.00 0.949 2.24 1.03 0.950 2.96 1.10

G 0.946 4.50 1.19 0.964 6.34 1.76 0.943 2.50 1.16 0.947 3.31 1.49

GS 0.932 4.22 1.16 0.951 5.40 1.62 0.936 2.43 1.15 0.932 3.10 1.46

100 W 0.963 2.75 1.00 0.967 3.52 1.00 0.960 1.62 1.00 0.956 2.02 1.00

WS 0.956 2.66 1.00 0.945 3.17 1.00 0.951 1.59 1.00 0.948 1.93 1.00

L 0.955 2.77 1.05 0.957 3.77 1.27 0.949 1.62 1.06 0.952 2.04 1.18

S 0.953 2.64 1.00 0.957 3.31 1.00 0.949 1.55 1.01 0.952 1.98 1.03

G 0.952 2.83 1.09 0.953 4.09 1.51 0.946 1.64 1.10 0.951 2.08 1.29

GS 0.944 2.75 1.08 0.931 3.68 1.44 0.943 1.62 1.10 0.945 2.02 1.28

Note: Boldfaces refer to CL outside the ‘plausible’ range :95� 2:57fð:95 	 :05Þ=Bg1=2. The logistic regression equation is

logitð�iÞ ¼ 1þ �x1i þ 0:5x2i � 0:5x3i (see text for details).
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heavily overestimates the estimator variance and thus provides wider CIs with coverage levels higher than the
nominal one, even if n¼ 100. In the more difficult scenario with small samples and strong predictor (that is n¼ 20
and � ¼ 1:5), L exhibits a conservative behaviour with somewhat large average widths: even with binary covariate,
the average with of L is about 40% larger than the average width from S.

Overall, Score-based CIs appear to perform slightly better than the other competitors, even in the most difficult
scenarios with small samples (n¼ 20) and strong predictors causing sparsity and sampling zeros. The coverage
levels are quite close to the nominal 95% and the average width is always the lowest. The top performance of S is
likely due to its simple structure: it is a sum of random variables and thus it is expected to converge quite fastly to
the Normal distribution, and moreover, as discussed in the previous section, its exact variance is represented by the
classical Fisher information matrix; curiously, its bias appears to have a negligible effect. Interestingly, the robust
Wald statistic attains pretty good coverage levels with comparable average widths, sometimes even better than the
Likelihood Ratio statistic. The good performance of WS also gives evidence that the Normal distribution of the
regression coefficients estimator is not an issue actually, as long as the Firth penalization is employed and a finite
estimate is guaranteed. This result is coherent with discussion reported in Royall.25 The Gradient statistics provide
CIs with acceptable coverage levels but somewhat wider average widths; in particular the simple G, which does not
require computation of the second derivatives, produces CIs with the largest width. Also the asymmetry amount of
CIs based on G and GS is fairly larger than the others.

Results for multiple (correlated) covariates do not differ with respect to the one-covariate models, and therefore
they will not be further discussed.

3.2 Hypothesis testing

All the statistics presented in Section 2 can be clearly used for hypothesis testing. Moreover, in addition to the six
likelihood-based statistics, we also consider a permutation-based test based on the Likelihood Ratio statistic.29

Here the null distribution is obtained via 1000 permutations of residuals and the p-value is computed as the
portion of permuted values exceeding the observed value in the sample. Note that such approach corresponds to
the exact conditional logistic regression when there is a single covariate. Here we focus on testing for the effect of
the interest covariate, namely the hypothesis H0 : � ¼ 0 versus H1 : � 6¼ 0. The power functions of all statistics
under investigation are obtained at seven values of � 2 f�1:5, �1:0, �0:5, 0g. Tables 3 and 4 portray the empirical
rejection rates at nominal level 0.05 for the single and multiple covariate cases, respectively. Clearly, the entries in
the middle columns represent the size, i.e. the type I error probability.

As for interval estimation, results again suggest that the Likelihood Ratio statistic does not perform the best.
Under the null hypothesis, all the considered test statistics exhibit acceptable empirical rejection rates. W is
affected by the wrong variance formula and thus it exhibits the lowest rejection rates especially in small to
moderate samples. As expected, there is no uniformly most powerful test, and the behaviour of the test
statistics depends on the true value of the regression coefficient. Both the Gradient statistics, and in particular
the robust one GS, are featured by high power, especially on the ‘right side’ when the parameter takes positive
values; however, GS tends to return high rejection rates also under the null hypothesis, making it rather useless, at
least in theory. In large samples, the penalty effect vanishes and, to some extent, differences disappear.

When the model involves multiple covariates, findings are substantially unchanged for the six likelihood-based
statistics, but the permutational statistic exhibits comparatively better performance.

4 Examples

We illustrate the different statistics and relevant findings on two real datasets previously analysed in the literature.

4.1 Osteogenic sarcoma data

The first dataset is taken from Metha and Patel.30 The data refer to a study on n¼ 46 patients with osteogenic
sarcoma. The three-year disease-free interval (DFI3) is the response variable, while the categorical explanatory
variables are gender (SEX), the presence of any osteoid pathology (AOP) and lymphocytic infiltration (LI). The
main interest lies on the effect of LI. The classical MLEs do not exist finite, because of separation caused by the
variable LI: there are no disease-free individuals among subjects without infiltration. We fit a penalized logistic
regression model with additive linear effects and compute the 95% confidence intervals for the regression
coefficient of covariate LI; results are reported in Table 5.
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Table 3. Empirical rejection rates (based on 5000 runs) for hypothesis testing H0 : � ¼ 0 vs. H1 : � 6¼ 0 for different test

statistics: Wald (W), Robust-Wald (WS), Likelihood Ratio (L), Permutation Likelihood Ratio (Lp), Score (S), Gradient (G) and

Robust-Gradient (GS).

True � values

n Test �1.5 �1.0 �0.5 0 0.5 1.0 1.5

Binary covariate

20 W 0.208 0.084 0.021 0.009 0.013 0.014 0.028

WS 0.312 0.155 0.056 0.038 0.059 0.097 0.167

L 0.339 0.176 0.063 0.039 0.047 0.076 0.122

Lp 0.270 0.128 0.049 0.026 0.039 0.059 0.099

S 0.361 0.194 0.074 0.044 0.054 0.083 0.127

G 0.353 0.190 0.075 0.048 0.061 0.098 0.164

GS 0.354 0.193 0.078 0.059 0.102 0.165 0.273

50 W 0.669 0.351 0.103 0.034 0.074 0.163 0.272

WS 0.674 0.364 0.116 0.046 0.100 0.231 0.432

L 0.701 0.390 0.128 0.050 0.102 0.231 0.429

Lp 0.664 0.358 0.106 0.040 0.089 0.210 0.391

S 0.725 0.410 0.132 0.051 0.105 0.234 0.424

G 0.710 0.406 0.131 0.053 0.118 0.256 0.460

GS 0.714 0.408 0.133 0.055 0.130 0.283 0.511

100 W 0.948 0.632 0.200 0.042 0.158 0.421 0.690

WS 0.948 0.636 0.204 0.045 0.168 0.455 0.733

L 0.955 0.647 0.217 0.049 0.174 0.469 0.739

Lp 0.941 0.615 0.199 0.043 0.160 0.437 0.716

S 0.956 0.655 0.219 0.050 0.175 0.467 0.732

G 0.955 0.651 0.219 0.051 0.178 0.475 0.753

GS 0.955 0.651 0.220 0.053 0.187 0.491 0.771

Normal covariate

20 W 0.323 0.143 0.036 0.006 0.028 0.143 0.335

WS 0.587 0.341 0.113 0.029 0.097 0.328 0.607

L 0.653 0.392 0.133 0.040 0.125 0.370 0.665

Lp 0.673 0.417 0.148 0.046 0.140 0.405 0.692

S 0.666 0.417 0.144 0.046 0.131 0.392 0.673

G 0.697 0.437 0.162 0.054 0.149 0.423 0.708

GS 0.732 0.478 0.183 0.066 0.170 0.456 0.735

50 W 0.962 0.749 0.238 0.027 0.247 0.747 0.971

WS 0.970 0.780 0.277 0.034 0.280 0.779 0.977

L 0.973 0.812 0.313 0.043 0.313 0.807 0.981

Lp 0.976 0.821 0.322 0.047 0.324 0.814 0.982

S 0.975 0.820 0.324 0.043 0.318 0.812 0.983

G 0.976 0.823 0.328 0.047 0.329 0.816 0.983

GS 0.978 0.834 0.339 0.049 0.340 0.823 0.984

100 W 1.000 0.978 0.532 0.039 0.519 0.979 1.000

WS 1.000 0.980 0.546 0.043 0.530 0.981 1.000

L 1.000 0.983 0.574 0.050 0.556 0.984 1.000

Lp 1.000 0.983 0.575 0.051 0.561 0.984 1.000

S 1.000 0.984 0.576 0.052 0.560 0.985 1.000

G 1.000 0.985 0.581 0.052 0.565 0.985 1.000

GS 1.000 0.985 0.584 0.053 0.569 0.985 1.000

Note: The nominal level is 0.05 and boldfaces refer to rates outside the ‘plausible’ range :05� 2:57fð:95 	 :05Þ=Bg1=2. The logistic regression equation is

logitð�iÞ ¼ 1þ �xi (see text for details).
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The results are coherent with the previous simulation findings. The CIs based on the Gradient statistics are the
widest and the most asymmetric, although they end up with a significant effect of LI. The CI coming from W is
also pretty wide but it is symmetric and includes the zero, leading to a (likely misleading) non-significant effect of
the variable LI. On the other hand, the Score and the robust Wald CIs are the narrowest ones and also return a
significant result for LI.

Table 4. Empirical rejection rates (based on 5000 runs) for hypothesis testing H0 : �1 ¼ 0 vs. H1 : �1 6¼ 0 for different test

statistics: Wald (W), Robust-Wald (WS), Likelihood Ratio (L), Permutation Likelihood Ratio (Lp), Score (S), Gradient (G) and

Robust-Gradient (GS).

True � values

n Test �1.5 �1 �0.5 0 0.5 1 1.5

Binary covariate

50 W 0.376 0.170 0.061 0.018 0.036 0.069 0.107

WS 0.411 0.199 0.075 0.036 0.077 0.148 0.227

L 0.460 0.228 0.093 0.040 0.072 0.134 0.201

Lp 0.468 0.234 0.099 0.043 0.083 0.162 0.245

S 0.487 0.239 0.098 0.040 0.069 0.128 0.182

G 0.477 0.236 0.100 0.046 0.085 0.151 0.225

GS 0.480 0.236 0.100 0.050 0.103 0.201 0.295

100 W 0.730 0.368 0.123 0.041 0.089 0.207 0.347

WS 0.736 0.380 0.129 0.046 0.108 0.261 0.447

L 0.763 0.410 0.140 0.052 0.109 0.255 0.434

Lp 0.766 0.413 0.146 0.053 0.115 0.269 0.460

S 0.773 0.421 0.144 0.052 0.107 0.243 0.411

G 0.768 0.419 0.145 0.054 0.113 0.272 0.454

GS 0.768 0.418 0.145 0.056 0.129 0.307 0.503

Normal covariate

50 W 0.962 0.749 0.238 0.027 0.247 0.747 0.971

WS 0.970 0.780 0.277 0.034 0.280 0.779 0.977

L 0.973 0.812 0.313 0.043 0.313 0.807 0.981

Lp 0.976 0.821 0.322 0.047 0.324 0.814 0.982

S 0.975 0.820 0.324 0.043 0.318 0.812 0.983

G 0.976 0.823 0.328 0.047 0.329 0.816 0.983

GS 0.978 0.834 0.339 0.049 0.340 0.823 0.984

100 W 1.000 0.978 0.532 0.039 0.519 0.979 1.000

WS 1.000 0.980 0.546 0.043 0.530 0.981 1.000

L 1.000 0.983 0.574 0.050 0.556 0.984 1.000

Lp 1.000 0.983 0.575 0.051 0.561 0.984 1.000

S 1.000 0.984 0.576 0.052 0.560 0.985 1.000

G 1.000 0.985 0.581 0.052 0.565 0.985 1.000

GS 1.000 0.985 0.584 0.053 0.569 0.985 1.000

Note: The nominal level is 0.05 and boldfaces refer to rates outside the ‘plausible’ range :05� 2:57fð:95 	 :05Þ=Bg1=2. The logistic regression equation is

logitð�iÞ ¼ 1þ �x1i þ 0:5x2i � 0:5x3i (see text for details).

Table 5. Confidence intervals (95%) (and relevant width) for �LI based on the Wald (W), Robust-Wald

(WS), Likelihood Ratio (L), Score (S), Gradient (G) and Robust-Gradient (GS) statistics.

CI W WS L S G GS

Low �5.504 �4.637 �7.363 �4.804 �10.148 �10.161

Upp 0.582 �0.286 �0.188 �0.104 �0.356 �0.355

Width 6.09 4.35 7.17 4.70 9.79 9.81
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4.2 Urinary tract infection

The second example concerns a retrospective case-control study on possible determinants of urinary infections on
a sample of sexually active college women carried out at the University of Michigan.31,32

The 130 cases and 109 controls were classified according to six binary covariates, namely age (lower or greater
than 23 years) and some indicators of sexual behaviour: use of oral contraceptive (OC), condom (VIC), lubricated
condom (VICL), spermicide (VIS) or diaphragm (DIA). Since all the women using a diaphragm were cases,
separation occurs and we estimate a penalized logistic regression model to obtain finite estimates. We focus on
the effect of covariate ‘using the diaphragm’ (DIA) on the probability of infection, and compute the 95%
confidence interval for corresponding regression coefficient �DIA using the different statistics. The intervals are
represented in Figure 1, together with the six curves corresponding to the pivotal statistics Tð�DIAÞ profiled. Again,
the CIs based on S and WS are the narrowest, while the CI based on W leads to different, and possibly misleading,
conclusions. Again the gradient statistics lead to quite large and asymmetric CI but not including the zero.

5 Conclusions

Small datasets are rather frequent in medical research, and it is therefore quite imperative from a statistical
perspective to set up appropriate methods to obtain valid and reliable inferential procedures. At this aim, many
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Figure 1. The six likelihood-based statistics (L¼ Likelihood Ratio, W¼Wald, WS¼ robust Wald, S¼ Score, G¼Gradient,

GS¼ robust Gradient) profiled and corresponding 95% confidence intervals for the parameter �DIA in the Urinary tract infection

example.
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authors have carried out comparisons among the different ‘classical’ options, but interest was limited to the ‘usual’
Wald and the Likelihood Ratio statistics. The usual Wald uses a simple but inappropriate formula for the
estimates variance, i.e. the inverse of Information. However, as previously discussed, the inverse of Information
is appropriate only in large samples. In small to moderate samples, when the penalty is not negligible, a sandwich
formula turns out to be more appropriate, and the resulting robust Wald-based CIs have the correct coverage
levels. Moreover, the satisfactory performance of the robust Wald suggests that Normality of the estimator is not
actually an issue as claimed previously in the literature; instead, as discussed by Royall,25 using the appropriate
variance appears to be enough to guarantee a large sample standard Normal distribution. Besides Wald and
Likelihood Ratio, in this paper we have also discussed the Score, the Gradient statistics.

In the context of interval estimation, the Score-based approach appears to return CIs with correct coverage
levels across the scenarios and regardless of the number of covariates in the model. For hypothesis testing
problems, differences among the approaches are minor, with a noticeable good performance of the simple
Gradient statistic; its ease of computation represents a noteworthy advantage, since it just needs the point
estimate and the first derivative. From a practical viewpoint, the different statistics exhibit approximately the
same computational burden: profiling is a necessary step to obtain the endpoints of the CI in all but one statistic:
in fact the robust Wald statistic does not need profiling, but the (penalized) hessian has to be computed to obtain
reliable standard errors via the sandwich formula. The permutational approach is the heaviest as the model has to
be fitted at each permuted dataset.

For applications, currently the Firth procedure is implemented in most statistical softwares/languages: for
instance, the brglm or pmlr packages in R, the firthlogit program in Stata, and the firth option to the
model statement in proc logistic in SAS. Currently it seems that only the Likelihood Ratio or the ‘unfair’
Wald statistics have been implemented for confidence intervals or hypothesis testing; it is hoped that some of
the ‘alternative’ statistics, such as the Score, are implemented to obtain results with better statistical properties.
The supplementary material available online includes R code to compute Score-based CI and p-value
(smm.sagepub.com).

Finally, application and comparisons of the aforementioned statistics in more general logistic regressions, such
as the cumulative link models for ordinal responses,17 represent a noteworthy point to be investigated.
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