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Abstract 

A statistical approach was employed to model the spatial distribution of rainfall-triggered landslides 

in two areas in Sicily (Italy) that occurred during the winter of 2004–2005. The investigated areas 

are located within the Belice River basin and extend for 38.5 and 10.3 km
2
, respectively. A 

landslide inventory was established for both areas using two Google Earth images taken on October 

25th 2004 and on March 18th 2005, to map slope failures activated or reactivated during this 

interval. Geographic Information Systems (GIS) were used to prepare 5 m grids of the dependent 

variables (absence/presence of landslide) and independent variables (lithology and 13 DEM-

derivatives). Multivariate Adaptive Regression Splines (MARS) were applied to model landslide 

susceptibility whereas receiver operating characteristic (ROC) curves and the area under the ROC 

curve (AUC) were used to evaluate model performance. To evaluate the robustness of the whole 

procedure, we prepared 10 different samples of positive (landslide presence) and negative (landslide 

absence) cases for each area. Absences were selected through two different methods: (i) extraction 

from randomly distributed circles with a diameter corresponding to the mean width of the landslide 

source areas; and (ii) selection as randomly distributed individual grid cells. A comparison was also 

made between the predictive performances of models including and not including the lithology 

parameter.  

The models trained and tested on the same area demonstrated excellent to outstanding fit (AUC > 

0.8). On the other hand, predictive skill decreases when measured outside the calibration area, 

although most of the landslides occur where susceptibility is high and the overall model 

performance is acceptable (AUC > 0.7). The results also showed that the accuracy of the landslide 

susceptibility models is higher when lithology is included in the statistical analysis. Models whose 

absences were selected using random circles showed a significantly better performance when 

learning and validation samples were extracted from the same area; whereas, conversely, no 

significant difference was observed when testing the models outside the training area.   
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1. Introduction 

Landslide susceptibility is defined as the proneness of a terrain unit to generate landslides (Brabb, 

1984; Carrara et al., 1995; Guzzetti et al., 1999). A map of landslide susceptibility expresses, 

typically in relative terms, the spatial likelihood of landslide occurrence within a given territory. As 

the occurrence of slope failures may have severe economic and social consequences, landslide 

susceptibility maps can assist land managers and policy makers in implementing land-use strategies 

to reduce landslide hazard.  

Landslide susceptibility may be assessed using both direct methods based on expert 

geomorphological analysis and indirect methods relying on deterministic or stochastic approaches. 

Over the last decades, the statistical approach to landslide susceptibility modeling has become very 

popular due to the increasing availability of low cost high-resolution data, and the development of 

open-source statistical software and Geographical Information Systems (GIS). This approach is 

based on the assumption that new landslides are more likely to occur under environmental 

conditions similar to those that led to past slope failures (Carrara et al., 1995; Guzzetti et al., 1999; 

van Westen et al., 2005, 2008). The approach requires a landslide inventory and a set of 

environmental attributes related to the occurrence of slope failures. Landslide inventories are 

usually made by integrating field surveys with analyses of high quality aerial/satellite images. 

Presence or absence of landslides within a mapping unit (e.g., grid cell, slope unit, and terrain unit) 

represents the dependent variable, which is predicted by an ensemble of independent environmental 

variables. The variables are proxies of the main landslide triggering factors and are selected 

according to their relevance to slope stability and the quality and resolution of available data. 

Statistical analysis of landslide susceptibility exploits either bivariate modeling techniques (e.g., 

Agnesi et al., 1982; Carrara et al., 1995; Clerici et al., 2002; Vergari et al., 2011; Rotigliano et al., 

2012) or multivariate ones (e.g., Van Den Eeckhaut et al., 2006; Atkinson and Massari, 2011; 

Conforti et al., 2014; Cama et al., 2015; Goetz et al., 2015). Comprehensive reviews of statistical 
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models employed in the field of landslide susceptibility modeling can be found in Aleotti and 

Chowdhury (1999), Guzzetti et al. (1999) and Brenning (2005). 

Most of the statistical models employed to predict landslide spatial distribution are fitted to data sets 

with both positive (landslide presence) and negative (landslide absence) cases. Positives are often 

sampled from subsets of grid cells containing one to all cells within each landslide, whereas 

negatives are typically randomly selected as individual pixels outside the landslide areas. Then, 

landslide susceptibility models are calibrated and validated exploiting different samples of data, but 

typically extracted from the same study area, performing a random partition of positives and 

negatives (Chung and Fabbri, 2003). Relatively few landslide susceptibility studies have attempted 

a validation with independent data from areas outside those used to calibrate the models (e.g., Von 

Ruette et al., 2011; Pradhan et al., 2010; Costanzo et al., 2012a; Lombardo et al., 2014). 

In this experiment we employed Multivariate Adaptive Regression Splines (MARS; Friedman, 

1991) to model the spatial distribution of landslides that were triggered in two study areas of Sicily 

(Italy) by rainfall during the 2004–2005 winter season. A landslide inventory was established for 

both areas through the analysis of two Google Earth images, dated October 25th, 2004 and March 

18th, 2005, by mapping slope failures triggered or reactivated during this time period. A limited 

number of studies have exploited Google Earth images to prepare landslide inventories (e.g., 

Costanzo et al., 2012a,b; Schicker and Moon, 2012; Van Den Eeckhaut et al., 2012; Borrelli et al., 

2014; Zhang et al., 2015) and, as far as we know, none produced their susceptibility models without 

incorporating information from field surveys and/or other sources of data. Indeed, conventional 

methods to prepare landslide inventory rely mainly on geomorphological field mapping and on the 

interpretation of stereoscopic aerial photographs (Guzzetti et al., 2012). Conversely, in this study, 

the 3D view provided by the Google Earth software was the only tool used for landslide detection 

and mapping. This allowed us to test whether effective landslide susceptibility models may be 

prepared without field mapping. In this experiment, we used one area to both calibrate and validate 

landslide susceptibility models whereas the other area was only used to assess the predictive skill of 
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the models trained for the first area. To test the robustness of the procedure, 10 training and 10 test 

samples were extracted from the first area, and 10 validation subsets were identified in the second 

area. They were prepared by adopting different strategies to select landslide absences: (i) extraction 

from randomly distributed circles having a diameter corresponding to the mean width of the 

identified landslide source areas; and (ii) selection as randomly distributed individual grid cells. 

Moreover, we prepared models that both included and did not include lithology as a predictor 

variable. The main objectives of this experiment were to: (i) evaluate whether landslide inventories 

based on Google Earth images as their only data source can be used to prepare reliable landslide 

susceptibility models; (ii) explore how the performance of landslide susceptibility models is 

affected by changing the method to sample landslide absences; (iii) assess the accuracy of landslide 

predictions outside the area where the models were calibrated; and (iv) evaluate the importance of 

lithology as a predictor of landslide distribution.  

 

2. Materials and methods 

2.1. Study areas 

Two study areas were selected for this experiment. Both areas are located within the catchment of 

the Belice River (Fig. 1), one of Sicily‘s main river basins. The two areas, hereafter referred to as 

AREA1 and AREA2 (Fig. 2), extend for 38.5 and 10.3 km
2
, respectively. Their altitudes are 218–

519 m a.s.l. (mean = 371.6 m and std. dev. = 68.9 m) and 317–714 m a.s.l. (481.2 and 78.8 m), 

respectively. The slope gradient of AREA1 (mean = 9.5° and std. dev. = 6.0°) tends to be slightly 

lower than that of AREA2 (10.8° and 5.6°). 

The study area‘s climate is Mediterranean, with hot and dry summers and mild and wet winters. 

According to the rainfall data from the meteorological station in Corleone (588 m a.s.l.), the 

average annual rainfall is 643.3 mm. Precipitation occurs mainly during the autumn–winter 

semester, with peaks in December (91.3 mm) and January (82.5 mm) (Fig. 3). 
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The two study areas are mainly characterized by hilly landscapes, where slope and channel 

processes prevail. However, despite the very small distance separating them (around 3 km), their 

geological and geomorphological settings are different. AREA1 is mainly underlain by clays of the 

Late Miocene Terravecchia Formation (31% of the total extent) and by marls and sandstones of the 

Late Pliocene–Early Pleistocene Marnoso-Arenacea Formation (26%) (Table 1 and Fig. 4). The 

former lithology is dominant in the northern and western parts, which are characterized by gentle 

slopes, drained by a relatively wide and shallow valley. The latter prevails in the SW sector, where, 

due to the outcropping of harder rocks, the land surface is more rugged, with deeper valleys and 

steeper slopes. AREA2 corresponds to the lowest part of a broad valley, running approximately E–

W. This area is mainly underlain by marls of the Middle–Late Miocene Marne di San Cipirello 

Formation and the Late Oligocene–Early Miocene Marne di Cardellia Formation (43% of the total 

extent). The flanks of the valley are gentle and partially covered by ancient landslides, which extend 

for 28% of AREA2. 

Intense water erosion and gravitational processes affect both study areas. Landslides generally 

consist of earth-flows triggered by rainfall during autumn and winter. These phenomena cause 

damage to infrastructure, such as roads and walls, and affect agricultural lands, which are the 

dominant land cover (Corine Land Cover 2006 by the European Environment Agency, 2010) and 

the main economic activity of the study areas.  

 

2.2. Landslide inventories 

Landslide inventories of both study areas were prepared by visual interpretation of two satellite 

images available from Google Earth, dated October 25th, 2004 (Max ground sample distance = 0.62 

m) and March 18th, 2005 (0.63 m) (Fig. 2). The 2005 image was used to map (i) new landslides, 

which are not visible (because they have not yet occurred) in the 2004 image, or (ii) reactivations of 

landslides already visible in 2004. Hence, only landslides that occurred or were reactivated between 

October 25th, 2004 and March 18th, 2005 were included in the inventories. Rainfall data from this 
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period is shown in Fig. 3. During this period, with the exception of October 2004 and February 

2005, the monthly precipitation was higher than the 1970–2005 average.  

The landslides were remotely recognized by identifying their typical diagnostic features such as 

scarps, concavo-convex profiles, irregular morphology, and cracks, in addition to land cover and 

drainage network modifications (Fig. 5). Moreover, damages to anthropogenic features such as 

roads (Fig. 5b), parcel borders and walls were also used to identify mass movements. However, 

most of the mapped landslides are rather shallow, and as observed from more recent Google Earth 

images, they are promptly leveled by farmers (Fig. 6) and/or smoothed by erosion. For most of the 

identified slope failures, the source areas could not be clearly distinguished from the transport and 

accumulation zones, and thus the entire landslide areas were mapped as unique polygons. Some of 

these polygons included two or more individual flows, but they were not distinguishable.  

In total, we mapped 667 landslide areas (Fig. 7), 426 in AREA1 and 241 in AREA2. Most of them 

were classified as earth-flows. Landslides in AREA1 extend for 0.623 km
2
 whereas those in 

AREA2 cover 0.436 km
2
. The landslide density of AREA2 (4.2%) is more than double that of 

AREA1 (1.6%). Table 1 shows landslide areas according to lithology categories and investigated 

areas. The two dominant lithological units in AREA1 have very different susceptibilities to 

landsliding: clays host most landslides whereas marls and sandstones host much fewer. Such a 

marked influence of lithology is not recognizable in AREA2, where the frequency of the landslide 

area mostly agrees with that of the lithological category. 

Landslide areas were mapped as vectors and then converted into a 5 m resolution grid layer, where 

the values 1 (one) and 0 (zero) were assigned to cells inside and outside landslides, respectively. 

The same resolution was also used for the predictor variables and the analysis of landslide 

susceptibility. 
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2.3. Predictor variables 

Predictors of landslide occurrence are usually selected according to two main criteria: (i) their 

expected relationships with slope stability, and (ii) the quality and resolution of available data. 

Environmental attributes related to geology, topography/hydrology, soil properties and land use, are 

frequently employed for landslide susceptibility zonation (Costanzo et al., 2014; Conoscenti et al., 

2015). For our study areas, detailed geological maps (scale 1:50,000) were available (Catalano et al., 

2010; Di Stefano et al., 2013), as well as a high-resolution (2 m) LiDAR-derived DEM with a 

vertical error of 0.2 m (Regione Siciliana, 2010). On the other hand, available information on land 

cover and soil types had low spatial resolutions. Therefore, for this experiment, only lithology from 

the geological maps and 13 attributes derived from the DEM were employed as explanatory 

variables (Tables 1 and 2). These variables are often selected for the statistical assessment of 

landslide susceptibility (e.g., Rotigliano et al., 2011; Vorpahl et al., 2012; Felicísimo et al., 2013; 

Heckmann et al., 2014; Lombardo et al., 2015). Each variable is represented using a 5 m resolution 

raster grid layer. Lithology (LTL) has 15 categories; AREA1 has all of them while AREA2 has only 

nine of them (Table 1 and Fig. 4). The 13 terrain attributes were extracted from a 5 m resolution 

DEM, using the open source software SAGA-GIS (Olaya, 2004; Cimmery, 2010). This DEM was 

prepared by resampling the 2 m resolution DEM using bilinear interpolation. The 5 m resolution 

was chosen in order to compromise between spatial accuracy and reasonable computational times. 

Elevation (ELE) simply corresponds to the values of the 5 m DEM. Altitude is often employed for 

landslide susceptibility zonation because of its correlation with climate (e.g. rainfall and 

temperature) and vegetation. Slope gradient (SLO) and aspect were calculated using the method of 

Zevenbergen and Thorne (1987). The catchment slope angle (SLO_CAT) was derived from SLO. 

Since slope aspect is a circular variable, it was divided into ―northness‖ (N) and ―eastness‖ (E), by 

using cosine and sine transformations, respectively; catchment northness (N_CAT) and eastness 

(E_CAT) were also calculated. To represent slope concavity/convexity, we included the 

convergence index (Köthe et al., 1996) and the topographic position index (TPI, Guisan et al., 
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1999). The former was calculated at two different scales, by using a search radius of 1 cell (CI) or 

10 cells (CI_10). TPI was computed using a radius of 100 m. The terrain ruggedness index, a 

measure of topographic heterogeneity (Riley et al., 1999), was also calculated at two distinct spatial 

scales: TRI using a radius of 1 cell, and TRI_10, using a radius of 10 cells. In order to account for 

potential soil saturation, the topographic wetness index (TWI; Beven and Kirkby, 1979) was also 

included. It is defined as  

 

TWI = ln(A/tanα)                  (1) 

 

where A is the contributing area and α is the slope angle.  

The variance inflation factor (VIF) was used to detect a potential strong correlation between two or 

more of the predictors. VIF was calculated for each of the terrain variables using the ―usdm‖ 

package (Naimi, 2015), implemented in R software (R Core Team, 2015). As a VIF value greater 

than 10 is a signal of a serious collinearity problem (Heckmann et al., 2014; Jebur et al., 2014; Bui 

et al., 2015), this value was selected as the threshold to exclude collinear variables from the models. 

  

2.4. Statistical modeling 

In the first stage of the statistical analysis, we prepared a data matrix showing the values of the 

response and the predictor variables for each row. MARS was employed to model the statistical 

relationships between predictors and the presence/absence of landslides. MARS is a relatively new 

modeling technique that has been applied to various fields of environmental science (e.g. Leathwick 

et al., 2005; Naimi et al., 2011) and geomorphology (e.g. Gómez-Gutiérrez et al., 2009a,b, 2015; 

Shruthi et al., 2011). However, so far, only a few studies have used MARS for landslide 

susceptibility modeling (i.e. Vorpahl et al., 2012; Felicísimo et al., 2013; Conoscenti et al., 2015). 

MARS is able to fit complex, non-linear relationships between response and explanatory variables 

while providing an interpretable model (Briand et al., 2004; Leathwick et al., 2005). This modeling 
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technique subdivides the range of the predictors into regions and fits a linear regression equation to 

each of them. The intervals are usually called ―basis functions‖ (BFs), whereas the break values are 

called ―knots‖. The general structure of MARS can be written as follows: 

 

          
 
               (2) 

 

where y is the dependent variable, α is a constant, N is the number of terms, each formed by a 

coefficient βn and hn(x) is an n-th single BF or a product of two or more basis functions of the 

independent variable x. An individual BF has the form max (0, x – k) or max (0, k – x), where x is a 

predictor and k is a knot. The MARS algorithm works in two stages: (i) generating a very complex 

and overfitted model by adding all possible terms; and (ii) decreasing the complexity of the model 

by identifying the subset of those terms that give the lowest value of the Generalized Cross-

Validation parameter (GCV; Craven and Wahba, 1979). Please refer to Friedman (1991) for further 

details about the MARS algorithm. 

The MARS modeling was performed using the ―earth‖ package (Milborrow et al., 2011) of R 

software. In order to reduce the complexity of the models, the maximum degree of interaction was 

set equal to 1, thus avoiding terms given by combinations of two or more BFs. The software semi-

automatically determined the maximum number of terms entering the MARS models. The ―evimp‖ 

function of  ―earth‖ was employed to estimate the importance of each of the selected continuous 

predictors. This was evaluated according to the number of model subsets that include the variable. 

The higher this number is, the more important the contribution of the variable is. A model subset is 

the best subset of terms for each model size generated during the pruning pass (the second stage of 

MARS). Only subsets equal to or smaller than the final model are considered to evaluate predictor 

importance (Milborrow, 2015). 
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2.5. Sampling and validation strategy 

The calibration of a MARS model needs a data set made of both positive and negative cases. No 

agreement exists on the proper amount of negative items to be used in multivariate statistical 

analyses of landslide susceptibility. In this study, samples with the same number of positive 

(landslide presence) and negative (landslide absence) cells were prepared for model calibration and 

validation. This was carried out using the random sampling tools in QGIS (QGIS Development 

Team, 2015) and R. 

This experiment used three different data sets, two extracted from AREA1 and one from AREA2. 

The data sets of AREA1 were named A1a and A1b, whereas that of AREA2 was named A2. To 

evaluate the robustness of the procedure to changes of the input data, 10 subsets of cells were taken 

from the three data sets and were used to calibrate and validate the MARS models. The 10 subsets 

of A1a and A1b were divided into independent training and test samples. For each of them, 

positives cases were obtained by randomly splitting the 426 landslide polygons of AREA1 into 213 

calibration and 213 validation landforms. A1a and A1b differ in the way negatives were selected. 

Following a method that has already been tested by Conoscenti et al. (2015), A1a used cells 

intersected by circles randomly distributed over the stable portion of the study area. These have a 

diameter of 20 m, which is approximately the average width of the landslide source areas. A circle 

simulates the initiation zone of a landslide moving towards all possible directions. On the other 

hand, absences of A1b samples were randomly selected as individual cells. Calibration and 

validation samples of A1a and A1b shared the same positives but included different negative cases. 

The A2 data set is made up of 10 subsets of cases, each joining all the presences occurring in 

AREA2 and the same number of randomly selected absences.  

The independent training and test samples of both A1a and A1b were used to calibrate and validate 

20 landslide susceptibility models. To evaluate LTL, half of these models were prepared without 

this predictor. Moreover, 20 MARS models were fitted to the complete (training + test samples) 

subsets of A1a and A1b and were then validated outside AREA1, using the A2 data set. Since not 
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all the LTL categories of AREA1 are present in AREA2, this external validation was carried out 

omitting LTL from the predictor variables. To summarize, six groups each made of 10 MARS 

replicates were calibrated and validated using the A1a, A1b and A2 data sets. 

 

The accuracy of the landslide susceptibility models was assessed by using receiver operating 

characteristics (ROC) analysis (Goodenough et al., 1974; Lasko et al., 2005) and by calculating the 

area under the ROC curve (AUC) (Hanley and McNeil, 1982). In recent years, ROC curves and 

AUC statistics have been frequently adopted for the same purpose (e.g., Von Ruette et al., 2011; 

Schicker and Moon, 2012; Van Den Eeckhaut et al., 2012; Felicísimo et al., 2013; Conoscenti et al., 

2015) and thus they may make it possible to compare the performance of different models and 

methods. An ROC curve plots the true positive rate (sensitivity) against the false negative rate (1 – 

specificity), at any given cut-off value. The upper-right portion of the curve corresponds to the 

lower cut-off scores. The closer the curve is to the upper-left corner, the larger the AUC value is, 

and the more accurate the model is. When a perfect classification between positives and negatives is 

achieved, the ROC curve passes through the point (0, 1) (AUC = 1). Conversely, an ROC curve 

close to the diagonal trend is produced when the model score shows no correlation with the 

dependent variable (AUC = 0.5). In this study, AUC values were used to measure both apparent (i.e. 

the fit to the training samples) and real accuracy (i.e. the skill in predicting the validation samples). 

Following the classification proposed by Hosmer and Lemeshow (2000), 0.7, 0.8 and 0.9 AUC 

thresholds were adopted to classify acceptable, excellent and outstanding performance, respectively. 

The differences in model accuracy were tested for statistical significance by submitting the AUC 

values obtained from all the model replicates to the Wilcoxon signed-rank test. 
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3. Results 

3.1. Collinearity analysis 

The variance inflation factor (VIF) was calculated to detect collinearity problems among the 

continuous predictor variables. The VIF values (Table 3) indicated SLO and TRI as highly 

correlated and thus they should not be included together in the models. At the same time, by 

excluding TRI, all VIF values lowered below 10, indicating the absence of a strong correlation 

between the remaining independent variables. Therefore, TRI was the only predictor omitted from 

the landslide susceptibility analysis.  

 

3.2. Calibration and validation for AREA1 

The AUC values of the models calibrated and validated for AREA1 (Fig. 8, Table 4) reveal that 

both A1a and A1b models that incorporate LTL showed an outstanding fit to the training data 

(mean AUC > 0.9). In predicting the test samples, the A1a and A1b models exhibited outstanding 

and excellent (mean AUC > 0.8) performance, respectively. Moreover, both A1a and A1b models 

prepared without LTL showed lower accuracy, although the goodness-of-fit on the calibration data 

and the predictive skill on the validation data remain excellent (mean AUC > 0.8). The differences 

of performance were tested for statistical significance. A significant difference in the calibration 

value of AUC was found between A1a models prepared with and without LTL (p = 0.002). The fit 

to the training data also became significantly better for the A1b models when LTL was included (p 

= 0.005). The AUC values for validation also confirm that incorporating LTL provides significantly 

better A1a and A1b models (p = 0.000). Regarding both goodness-of-fit and prediction skill, the 

A1a models perform significantly better than A1b models (p = 0.002 and 0.005, respectively). The 

same significant difference is also observed for the calibration AUC values (p = 0.002) and 

validation AUC values (p = 0.004) of models that do not include LTL. 
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3.3. Validation for AREA2  

Fig. 9 summarizes the calibration and validation AUC values of the landslide susceptibility models 

trained on the entire A1a and A1b subsets of AREA1 and validated using the 10 subsets extracted 

from AREA2. Descriptive statistics of these AUC values are reported in Table 5. Both A1a and A1b 

models showed an excellent fit to their training data (mean AUC > 0.8) and an acceptable 

performance in predicting the AREA2 data (mean AUC > 0.7). However, the Wilcoxon signed-rank 

test demonstrated a significantly better fit to the learning data of the A1a models (p = 0.002). 

Conversely, no significant difference was found between A1a and A1b models when comparing 

their ability to predict presences and absences occurring on AREA2 (p = 0.846).  

 

3.4. Landslide susceptibility maps of AREA1 and AREA2 

Landslide susceptibility maps were prepared for both AREA1 and AREA2. Since the A1a models 

showed the best accuracy in AREA1 and the same accuracy as those of the A1b models in AREA2, 

the former were employed to produce the landslide susceptibility maps of both of the study areas. 

This was achieved by averaging the scores of the MARS replicates trained on the 10 A1a subsets 

for each pixel. Two landslide susceptibility maps were produced for AREA1, one including and one 

not including LTL as the predictor variable (Fig. 10a,b). The landslide susceptibility map of 

AREA2 was derived from the A1a models prepared without LTL (Fig. 10c).  

 

3.5. Variable importance 

Table 6 reports the number of model subsets that included each continuous variable. This number 

was calculated for all of the MARS replicates that were calibrated for the 10 A1a and A1b subsets. 

The predictor variables are ranked according to the sum of model subsets including them. TRI_10 

and TPI were the most frequently selected. Comparing the model subsets of the 10 replicates, a 

higher robustness of the A1b models arises. Indeed, both the size (i.e. number of terms) of the final 
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models and the number of times each variable enters the model subsets of the A1b replicates varies 

very little compared to the 10 A1a models.  

 

4. Discussion 

In this section, the results of our experiment are discussed and compared with the findings of other 

landslide susceptibility studies that exploited AUC statistics to measure model performance, but 

made different choices regarding one or more of the following: (i) type of landslides, (ii) type of 

mapping unit, (iii) spatial scale, (iv) mapping technique, (v) set of predictor variables, (vi) type of 

instability diagnostic features (e.g., landslide areas, scarps, and deposits), (vii) sampling strategy, 

(viii) technique employed to assess the model performance and (ix) model validation scheme (i.e. 

temporal and/or spatial partition of the calibration and validation subsets). The excellent to 

outstanding goodness-of-fit and predictive skill of the models observed in AREA1 demonstrate the 

validity of our approach and confirm that accurate predictions of landslide occurrence may be 

obtained from a MARS model. These findings may be explained by the ability of MARS to detect 

complex non-linear relationships such as those between terrain attributes and proneness to 

landslides. Compared to other statistical methods frequently employed with this aim, such as 

discriminant analysis (e.g., Carrara, 1983; Carrara et al., 1991, 2008; Guzzetti et al., 2006) and 

logistic regression (e.g., Ohlmacher et al., 2003; Lee, 2005; Nefeslioglu et al., 2008; Costanzo et al., 

2014), MARS has the advantage of dividing the range of the predictor variables into regions and 

fitting each of them with a separate linear regression. However, in order to prevent overfitting to the 

calibration data, which would produce a very poor prediction of landslide distribution outside the 

training samples, the MARS model should be kept as simple as possible. Here, this was achieved by 

preparing models with terms involving only one variable.  

The high accuracy of the models also demonstrates the reliability of our landslide inventory, which 

was prepared exclusively with a visual analysis of Google Earth images, without any field checking. 

This result suggests that effective landslide susceptibility maps may also be prepared for areas, such 
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as developing countries, where high-accuracy remote data are not readily available and field 

surveys may be difficult to perform (e.g. for security problems). Moreover, due to the availability of 

multi-temporal images, which are often more frequent than other remote data provided by national 

or regional institutions, landslide inventories and susceptibility maps may be updated in a short time 

and at essentially no cost. Among the studies exploiting landslide inventory that were established, at 

least in part, from Google Earth images, Van Den Eeckhaut et al. (2012) found a similar fit to the 

validation data (AUC = 0.854–0.923) whereas Schicker and Moon (2012) obtained a quite lower 

performance (AUC = 0.621–0.712). However, these studies employed different modeling 

techniques and sets of predictors and they were carried out at the regional scale. Moreover, the 

predictive skill of the models prepared by Schicker and Moon (2012) was measured outside the 

calibration area. A validation with data from other study areas may lead to significantly lower 

accuracy, in particular if training and test areas have different environmental characteristics. In this 

study, models trained for AREA1 achieved AUC values of 0.718 to 0.763 when validated in 

AREA2. This performance is similar to that of other studies attempting a ―true‖ external validation, 

such as Von Ruette et al. (2011) and Pradhan et al. (2010) who obtained AUC values of 0.69–0.82 

and 0.732–0.792, respectively. A notable exception is represented by Lombardo et al. (2014), who 

also achieved excellent performance outside the training area (Mean AUC = 0.822). However, these 

authors analyzed two adjacent small basins with similar geological and geomorphological 

conditions, whereas our two experimental areas are quite diverse. Nevertheless, most of the 

landslides mapped in AREA2 occur where predicted susceptibility is high (Fig. 10c). Furthermore, 

the overall stability of the predictive performance demonstrates that our procedure is also robust 

when validation is performed outside the calibration area (Table 5).   

In our experiment, LTL demonstrated substantially improving the predictive ability of the landslide 

susceptibility models, confirming the observation of Felicísimo et al. (2013) in Spain. This result 

was expected but not obvious because identifying a robust relationship between LTL and landslide 

susceptibility may depend on various factors, including the accuracy of the available lithological 
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map, the criteria used for its classification and the quality of the landslide inventory. However, due 

to the different geological settings of the study areas, we could not incorporate LTL in the models 

tested in AREA2. Attempts to include this variable by identifying groups of LTL categories 

occurring in both areas led to worse performance than that achievable without using LTL. 

The models incorporating LTL and prepared using random circles to sample the landslide absences 

(i.e. the A1a models) showed a fit to the learning data (AUC = 0.929–0.948) and to the validation 

data (AUC = 0.891–0.929) that is very similar to the result of Conoscenti et al. (2015). These 

authors employed the same method of negative selection from a basin close to our study areas, 

achieving calibration and validation AUC values of 0.853–0.912 and 0.918–0.941, respectively. In 

AREA1, the performance of the A1a models was significantly better than that of the A1b models. 

This is probably due to a stronger link between the A1a models and their calibration data, which are 

less uniformly distributed than those of the A1b data set. Corroborating this hypothesis, the 

performance difference between A1a and A1b models observed for calibration data is larger than 

that calculated for validation data (Table 4 and Fig. 8). Moreover, no significant difference in 

accuracy was found outside the calibration area (Table 5 and Fig. 9). A stronger relationship with 

the training data may also explain: (i) the higher variability of accuracy shown in AREA2 by the 

A1a replicates (Table 5 and Fig. 9); and  (ii) their slightly lower robustness concerning the number 

of model subsets including each predictor and the final size of the models (Table 6). The validation 

results thus suggest that if the objective is to predict unknown landslides in the same area where 

calibration is performed then selecting the absences using random circles may yield a better 

accuracy of the models. On the other hand, if the aim is to evaluate landslide susceptibility outside 

the calibration area, both the methods of negative selection are suitable for predicting landslide 

occurrence even if a slightly higher robustness of the models may be expected if negatives are 

sampled using random points.    
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5. Concluding remarks 

In this experiment, we assessed landslide susceptibility in two study areas in Sicily (Italy), by using 

MARS as a modeling technique. The models were based on inventories of rainfall-triggered 

landslides that occurred during winter 2004–2005, which were identified exclusively by visual 

interpretation of Google Earth images. We evaluated the importance of LTL by measuring the 

accuracy of models including or not including this variable. Calibration and validation data sets 

were prepared using two different methods of landslide absences sampling.  

We found excellent to outstanding accuracy of the models when calibration and validation were 

performed with data from the same area (i.e. AREA1). Performance of the models was significantly 

higher when LTL was used as a predictor variable. Prediction skill decreased to an acceptable level 

when validation was performed outside the training area (i.e. in AREA2). Validation in AREA1 

also showed that extraction of the negatives from circles with the same diameter as landslide source 

areas provided significantly better model accuracy than absences selected as individual grid cells. 

Conversely, no significant difference of predictive ability was observed when landslide 

susceptibility models were exported to AREA2, although a slightly higher robustness of the models 

was found when negatives were sampled as random cells. 

The experiment demonstrated the consistence of our landslide inventories, suggesting that reliable 

landslide susceptibility models may be prepared for large or hardly accessible areas, at a low cost, if 

Google Earth images of proper resolution are available. The results showed that when seeking to 

predict unknown landslides in the same area where calibration is performed, then selecting the 

absences with random circles seems to yield a better predictive performance. 

The adopted procedure allowed us to achieve a reliable assessment of landslide susceptibility in a 

short time by using Google Earth images, a lithological map and a set of DEM derivatives. The 

method is relatively simple and may be reproduced by employing open source software and 

environmental data, which are often available for free. This approach may help land management 
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agencies to achieve an accurate prediction of landslide occurrence and establish preventive and 

mitigation measures. 

 

Acknowledgments 

This research was developed in the framework of the projects: FLUMEN (project number: 318969), 

funded by the EU (call identifier: FP7-PEOPLE-2012-IRSES); SUFRA_SICILIA funded by the 

Department of Earth and Marine Sciences of the University of Palermo and by the Assessorato 

Regionale Territorio e Ambiente della Regione Sicilia. Valerio Agnesi has participated in the final 

discussion of the data; the other authors have collaborated together during all of the research phases. 

The authors wish to thank Dr. Marilena Ciaccio, who participated in the landslide mapping of the 

first study area. The authors also thank the editor Prof. Takashi Oguchi and the two anonymous 

reviewers for their suggestions and comments. Finally, the authors wish to thank Cassandra Funsten 

for her revision of the paper‘s English. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

References 

Agnesi, V., Macaluso, T., Monteleone, S., Pipitone, G., 1982. Indagine geomorfologica ed analisi 

statistica dei dissesti dell‘alto bacino del Fiume San Leonardo (Sicilia occidentale). Geol. Appl. 

e Idrogeol. 17(1), 243–271 

Aleotti, P., Chowdhury, R., 1999. Landslide hazard assessment: summary review and new 

perspectives. Bull. Eng. Geol. Environ. 58, 21–44. doi:10.1007/s100640050066 

Atkinson, P.M., Massari, R., 2011. Autologistic modelling of susceptibility to landsliding in the 

Central Apennines, Italy. Geomorphology 130, 55–64. doi:10.1016/j.geomorph.2011.02.001 

Beven, K.J., Kirkby, M.J., 1979. A physically based variable contributing area model of basin 

hydrology. Hydrol. Sci. Bull. 24, 43–69. 

Borrelli, L., Cofone, G., Coscarelli, R., Gullà, G., 2014. Shallow landslides triggered by 

consecutive rainfall events at Catanzaro strait (Calabria–Southern Italy). J. Maps 37–41. 

doi:10.1080/17445647.2014.943814 

Brabb, E.E., 1984. Innovative approaches to landslide hazard and risk mapping, in: Proceedings 4th 

International Symposium on Landslides Vol. 1. Toronto, Canada, pp. 307–324. 

Brenning, A., 2005. Spatial prediction models for landslide hazards: review, comparison and 

evaluation. Nat. Hazards Earth Syst. Sci. 5, 853–862. doi:10.5194/nhess-5-853-2005 

Briand, L.C., Freimut, B., Vollei, F., 2004. Using multiple adaptive regression splines to support 

decision making in code inspections. J. Syst. Softw. 73, 205–217. 

doi:10.1016/j.jss.2004.01.015 

Bui, D.T., Tuan, T.A., Klempe, H., Pradhan, B., Revhaug, I., 2015. Spatial prediction models for 

shallow landslide hazards  : a comparative assessment of the efficacy of support vector 

machines, artificial neural networks, kernel logistic regression, and logistic model tree. 

Landslides. doi:10.1007/s10346-015-0557-6 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Cama, M., Lombardo, L., Conoscenti, C., Agnesi, V., Rotigliano, E., 2015. Predicting storm-

triggered debris flow events: application to the 2009 Ionian Peloritan disaster (Sicily, Italy). 

Nat. Hazards Earth Syst. Sci. 15, 1785–1806. doi:10.5194/nhess-15-1785-2015 

Carrara, A., 1983. Multivariate models for landslide hazard evaluation. J. Int. Assoc. Math. Geol. 

15, 403–426. 

Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., 1991. GIS 

techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. 

Landforms 16, 427–445. 

Carrara, A., Cardinali, M., Guzzetti, F., Reichenbach, P., 1995. GIS technology in mapping 

landslide hazard, in: Carrara, A., Guzzetti, F. (Eds.), Geographical Information Systems in 

Assessing Natural Hazards. Kluwer, Dordrecht, pp. 135–175. 

Carrara, A., Crosta, G., Frattini, P., 2008. Comparing models of debris-flow susceptibility in the 

alpine environment. Geomorphology 94, 353–378. 

Catalano, R., Avellone, G., Basilone, L., Sulli, A., 2010. Carta Geologica d‘Italia alla scala 

1:50.000, Foglio 607 - Corleone [WWW Document]. ISPRA – Serv. Geol. D‗Italia. URL 

http://www.isprambiente.gov.it/Media/carg/607_CORLEONE/Foglio.html (accessed 1.14.14). 

Chung, C.-J.F., Fabbri, A.G., 2003. Validation of Spatial Prediction Models for Landslide Hazard 

Mapping. Nat. Hazards 30, 451–472. doi:10.1023/B:NHAZ.0000007172.62651.2b 

Cimmery, V., 2010. SAGA User Guide, updated for SAGA version 2.0.5. 

Clerici, A., Perego, S., Tellini, C., Vescovi, P., 2002. A procedure for landslide susceptibility 

zonation by the conditional analysis method. Geomorphology 48, 349–364. 

doi:10.1016/S0169-555X(02)00079-X 

Conforti, M., Pascale, S., Robustelli, G., Sdao, F., 2014. Evaluation of prediction capability of the 

artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment 

(northern Calabria, Italy). Catena 113, 236–250. doi:10.1016/j.catena.2013.08.006 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Conoscenti, C., Ciaccio, M., Caraballo-Arias, N.A., Gómez-Gutiérrez, Á., Rotigliano, E., Agnesi, 

V., 2015. Assessment of susceptibility to earth-flow landslide using logistic regression and 

multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy). 

Geomorphology 242, 49–64. doi:10.1016/j.geomorph.2014.09.020 

Costanzo, D., Cappadonia, C., Conoscenti, C., Rotigliano, E., 2012a. Exporting a Google EarthTM 

aided earth-flow susceptibility model: a test in central Sicily. Nat. Hazards 61, 103–114. 

doi:10.1007/s11069-011-9870-0 

Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J.D., Chacón, J., 2012b. Factors 

selection in landslide susceptibility modelling on large scale following the GIS matrix method: 

application to the river Beiro basin (Spain). Nat. Hazards Earth Syst. Sci. 12, 327–340. 

doi:10.5194/nhess-12-327-2012 

Costanzo, D., Chacón, J., Conoscenti, C., Irigaray, C., Rotigliano, E., 2014. Forward logistic 

regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern 

Sicily, Italy). Landslides 11, 639–653. doi:10.1007/s10346-013-0415-3Craven, P., Wahba, G., 

1979. Smoothing noisy data with spline functions. Numer. Math. 31, 377–403. 

Di Stefano, P., Renda, P., Zarcone, G., Nigro, F., Cacciatore, M.S., 2013. Carta Geologica d‘Italia 

alla scala 1:50.000, Foglio 619 - S.Margherita di Belice [WWW Document]. ISPRA – Serv. 

Geol. D‗Italia. URL 

http://www.isprambiente.gov.it/Media/carg/619_SMARGHERITA_BELICE/Foglio.html 

(accessed 6.22.15). 

European Environment Agency, 2010. Corine Land Cover 2006 [WWW Document]. URL 

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster (accessed 1.1.15). 

Felicísimo, Á.M., Cuartero, A., Remondo, J., Quirós, E., 2013. Mapping landslide susceptibility 

with logistic regression, multiple adaptive regression splines, classification and regression trees, 

and maximum entropy methods: a comparative study. Landslides 10, 175–189. 

doi:10.1007/s10346-012-0320-1 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Friedman, J.H., 1991. Multivariate adaptive regression splines. Ann. Stat. 19, 1–141. 

Goetz, J.N., Brenning, A., Petschko, H., Leopold, P., 2015. Evaluating machine learning and 

statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 81, 1–

11. doi:10.1016/j.cageo.2015.04.007 

Gómez-Gutiérrez, Á., Schnabel, S., Felicísimo, Á.M., 2009a. Modelling the occurrence of gullies in 

rangelands of southwest Spain. Earth Surf. Process. Landforms 34, 1894–1902. 

doi:10.1002/esp1881 

Gómez-Gutiérrez, Á., Schnabel, S., Lavado Contador, F., 2009b. Using and comparing two 

nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecol. 

Modell. 220, 3630–3637. doi:10.1016/j.ecolmodel.2009.06.020 

Gómez-Gutiérrez, Á., Conoscenti, C., Angileri, S.E., Rotigliano, E., Schnabel, S., 2015. Using 

topographical attributes to evaluate gully erosion proneness (susceptibility) in two 

mediterranean basins: advantages and limitations. Nat. Hazards. doi:10.1007/s11069-015-1703-

0 

Goodenough, D.J., Rossmann, K., Lusted, L.B., 1974. Radiographic applications of receiver 

operating characteristic (ROC) curves. Radiology 110, 89–95. 

Guisan, A., Weiss, S.B., Weiss, A.D., 1999. GLM versus CCA spatial modeling of plant species 

distribution. Plant Ecol. 143, 107–122. 

Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evaluation: a 

review of current techniques and their application in a multi-scale study, Central Italy. 

Geomorphology 31, 181–216. doi:10.1016/S0169-555X(99)00078-1 

Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M., 2006. Estimating the quality 

of landslide susceptibility models. Geomorphology 81, 166–184. 

Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., Chang, K.-T., 2012. 

Landslide inventory maps: New tools for an old problem. Earth-Science Rev. 112, 42–66. 

doi:10.1016/j.earscirev.2012.02.001 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Hanley, J.A., McNeil, B.J., 1982. The meaning and use of the area under a receiver operating 

characteristic (ROC) curve. Radiology 143, 29–36. 

Heckmann, T., Gegg, K., Gegg, a., Becht, M., 2014. Sample size matters: investigating the effect of 

sample size on a logistic regression susceptibility model for debris flows. Nat. Hazards Earth 

Syst. Sci. 14, 259–278. doi:10.5194/nhess-14-259-2014 

Hosmer, D.W., Lemeshow, S., 2000. Applied logistic regression, Wiley Series in Probability and 

Statistics, Wiley series in probability and statistics: Texts and references section. Wiley. 

doi:10.1198/tech.2002.s650 

Jebur, M.N., Pradhan, B., Tehrany, M.S., 2014. Optimization of landslide conditioning factors 

using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote 

Sens. Environ. 152, 150–165. doi:10.1016/j.rse.2014.05.013 

Köthe, R., Gehrt, E., Böhner, J., 1996. Automatische Reliefanalyse für geowissenschaftliche 

Anwendungen— derzeitiger Stand undWeiterentwicklungen des Programms SARA. 

Arbeitshefte Geol. 1, 31–37. 

Lasko, T.A., Bhagwat, J.G., Zou, K.H., Ohno-Machado, L., 2005. The use of receiver operating 

characteristic curves in biomedical informatics. J. Biomed. Inform. 38, 404–415. 

doi:10.1016/j.jbi.2005.02.008 

Leathwick, J.R., Rowe, D., Richardson, J., Elith, J., Hastie, T., 2005. Using multivariate adaptive 

regression splines to predict the distributions of New Zealand‘s freshwater diadromous fish. 

Freshw. Biol. 50, 2034–2052. doi:10.1111/j.1365-2427.2005.01448.x 

Lee, S., 2005. Application and cross-validation of spatial logistic multiple regression for landslide 

susceptibility analysis. Geosci. J. 9, 63–71. doi:10.1007/BF02910555 

Lombardo, L., Cama, M., Maerker, M., Rotigliano, E., 2014. A test of transferability for landslides 

susceptibility models under extreme climatic events: application to the Messina 2009 disaster. 

Nat. Hazards 1951–1989. doi:10.1007/s11069-014-1285-2 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Lombardo, L., Cama, M., Conoscenti, C., Märker, M., Rotigliano, E., 2015. Binary logistic 

regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility 

for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, 

southern Italy). Nat. Hazards. doi:10.1007/s11069-015-1915-3 

Milborrow, S., 2015. Notes on the earth package [WWW Document]. URL 

http://www.milbo.org/doc/earth-notes.pdf (accessed 7.15.15). 

Milborrow, S., Hastie, T., Tibshirani, R., 2011. Earth: Multivariate Adaptive Regression Spline 

Models. R Software Package. 

Naimi, B., 2015. Uncertainty analysis for species distribution models. R Software Package. 

Naimi, B., Skidmore, A.K., Groen, T. a., Hamm, N. a. S., 2011. Spatial autocorrelation in predictors 

reduces the impact of positional uncertainty in occurrence data on species distribution 

modelling. J. Biogeogr. 38, 1497–1509. doi:10.1111/j.1365-2699.2011.02523.x 

Nefeslioglu, H.A., Gokceoglu, C., Sonmez, H., 2008. An assessment on the use of logistic 

regression and artificial neural networks with different sampling strategies for the preparation 

of landslide susceptibility maps. Eng. Geol. 97, 171–191. doi:10.1016/j.enggeo.2008.01.004 

Ohlmacher, G.C., Davis, J.C., 2003. Using multiple logistic regression and GIS technology to 

predict landslide hazard in northeast Kansas, USA. Eng. Geol. 69, 331–343. 

doi:10.1016/S0013-7952(03)00069-3 

Olaya, V., 2004. A gentle introduction to SAGA GIS. Göettingen, Germany. 

Pradhan, B., Lee, S., Buchroithner, M.F., 2010. A GIS-based back-propagation neural network 

model and its cross-application and validation for landslide susceptibility analyses. Comput. 

Environ. Urban Syst. 34, 216–235. doi:10.1016/j.compenvurbsys.2009.12.004 

QGIS Development Team, 2015. QGIS User Guide - Release 2.8. 

R Core Team, 2015. An Introduction to R. URL https://cran.r-project.org/doc/manuals/r-release/R-

intro.pdf (accessed 7.15.2015). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Regione Siciliana, 2010. Modello digitale del terreno (MDT) 2m x 2m Regione Siciliana - ATA 

2007-2008 [WWW Document]. URL http://www.sitr.regione.sicilia.it 

Riley, S.J., DeGloria, S.D., Elliot, R., 1999. A terrain ruggedness index that quantifies topographic 

heterogeneity. Intermt. J. Sci. 5, 23–27. 

Rotigliano, E., Agnesi, V., Cappadonia, C., Conoscenti, C., 2011. The role of the diagnostic areas in 

the assessment of landslide susceptibility models: a test in the sicilian chain. Nat. Hazards 58, 

981–999. doi:10.1007/s11069-010-9708-1 

Rotigliano, E., Cappadonia, C., Conoscenti, C., Costanzo, D., Agnesi, V., 2012. Slope units-based 

flow susceptibility model: using validation tests to select controlling factors. Nat. Hazards 61, 

143–153. doi:10.1007/s11069-011-9846-0 

Schicker, R., Moon, V., 2012. Comparison of bivariate and multivariate statistical approaches in 

landslide susceptibility mapping at a regional scale. Geomorphology 161-162, 40–57. 

doi:10.1016/j.geomorph.2012.03.036 

Shruthi, R.B.V., Kerle, N., Jetten, V., 2011. Object-based gully feature extraction using high spatial 

resolution imagery. Geomorphology 134, 260–268. doi:10.1016/j.geomorph.2011.07.003 

Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., 

Vandekerckhove, L., 2006. Prediction of landslide susceptibility using rare events logistic 

regression: A case-study in the Flemish Ardennes (Belgium). Geomorphology 76, 392–410. 

doi:10.1016/j.geomorph.2005.12.003 

Van Den Eeckhaut, M., Hervás, J., Jaedicke, C., Malet, J.P., Montanarella, L., Nadim, F., 2012. 

Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory 

data. Landslides 9, 357–369. doi:10.1007/s10346-011-0299-z 

Van Westen, C.J., Asch, T.W.J., Soeters, R., 2005. Landslide hazard and risk zonation—why is it 

still so difficult? Bull. Eng. Geol. Environ. 65, 167–184. doi:10.1007/s10064-005-0023-0 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Van Westen, C.J., Castellanos, E., Kuriakose, S.L., 2008. Spatial data for landslide susceptibility, 

hazard, and vulnerability assessment: An overview. Eng. Geol. 102, 112–131. 

doi:10.1016/j.enggeo.2008.03.010 

Vergari, F., Della Seta, M., Del Monte, M., Fredi, P., Lupia Palmieri, E., 2011. Landslide 

susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through 

conditional analysis: a contribution to the unbiased selection of causal factors. Nat. Hazards 

Earth Syst. Sci. 11, 1475–1497. doi:10.5194/nhess-11-1475-2011 

Von Ruette, J., Papritz, A., Lehmann, P., Rickli, C., Or, D., 2011. Spatial statistical modeling of 

shallow landslides-Validating predictions for different landslide inventories and rainfall events. 

Geomorphology 133, 11–22. doi:10.1016/j.geomorph.2011.06.010 

Vorpahl, P., Elsenbeer, H., Märker, M., Schröder, B., 2012. How can statistical models help to 

determine driving factors of landslides? Ecol. Modell. 239, 27–39. 

doi:10.1016/j.ecolmodel.2011.12.007 

Zevenbergen, L.W., Thorne, C.R., 1987. Quantitative analysis of land surface topography. Earth 

Surf. Process. Landforms 12, 47–56. 

Zhang, J., Gurung, D.R., Liu, R., Murthy, M.S.R., Su, F., 2015. Abe Barek landslide and landslide 

susceptibility assessment in Badakhshan Province, Afghanistan. Landslides 12, 597–609. 

doi:10.1007/s10346-015-0558-5 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Captions 

Fig. 1. Location of the study areas. 

Fig. 2. Elevation and shaded relief map of the study areas. 

Fig. 3. Box plot summarizing the average monthly rainfall recorded in Corleone (588 m a.s.l.). Grey 

dots highlight rainfall related to the triggering of the mapped landslides. 

Fig. 4. LTL categories of AREA1 (a) and AREA2 (b). 

Fig. 5. Google Earth views of some of the landslides mapped in AREA1 (a–c) and AREA2 (d). 

Locations of the images are shown in Fig. 2. 

Fig. 6. Google Earth views of a portion of AREA1 dated October 25
th

 2004 (a), March 18th 2005 

(b) and September 30th 2006 (c), showing some of the mapped landslides leveled by farmers after 

March 18th 2005. The location of the images is shown in Fig. 2. 

Fig. 7. Landslide maps of AREA1 (a) and AREA2 (b). 

Fig. 8. Box plot summarizing AUC values of MARS replicates calibrated and validated in AREA1. 

Fig. 9. Box plot summarizing AUC values of MARS replicates calibrated for AREA1 and validated 

in AREA2. 

Fig. 10. Landslide susceptibility maps. (a) AREA1 from A1a models including LTL as a predictor 

variable; (b) not including LTL, and (c) AREA2 from A1a models not including LTL. 
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Table 1. Relative frequency of LTL categories and landslides in AREA1 and AREA2. 

Table 2. Continuous predictor variables and their statistics for AREA1 and AREA2. 

Table 3. Values of the variance inflation factor (VIF) calculated including (VIF1) and not including 

(VIF2) the variable TRI. 

Table 4. Descriptive statistics of AUC values computed from MARS models calibrated and 

validated using the A1a and A1b training and test samples.   

Table 5. Descriptive statistics of AUC values computed from MARS models calibrated and 

validated using the A1a, A1b and A2 subsets. 

Table 6. Number of model subsets including each predictor, calculated for all MARS replicates 

calibrated for the A1a and A1b subsets. 
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Table 1.  

Lithology (LTL) classes 
AREA1 AREA2 

Relative frequency Relative frequency 

Code Description 
LTL 

classes 
Landslide area 

LTL 

classes 
Landslide area 

LTL01 Alluvial deposits 18.5% 9.3% 4.6% 2.4% 

LTL02 Eluvial-colluvial deposits 7.1% 6.4% 1.6% 4.9% 

LTL03 Gravels and sands 1.3% 0.0% 0.0% 0.0% 

LTL04 Limestones 0.5% 0.1% 1.2% 0.2% 

LTL05 Marls 0.1% 0.3% 43.3% 48.6% 

LTL06 Marls and marly limestones 2.8% 2.0% 0.0% 0.0% 

LTL07 Sandstones and sandy clays 5.1% 4.2% 0.0% 0.0% 

LTL08 Selenitic gypsum 0.6% 0.1% 0.0% 0.0% 

LTL09 Talus deposits 0.3% 0.0% 0.4% 0.0% 

LTL10 Ancient landslides 4.5% 14.6% 28.0% 30.5% 

LTL11 Calcarenites 0.1% 0.0% 15.4% 10.9% 

LTL12 Clays 31.4% 53.3% 1.4% 1.2% 

LTL13 Marls and sandstones 25.9% 3.4% 0.0% 0.0% 

LTL14 Clays and sandy clays 1.2% 5.9% 4.2% 1.4% 

LTL15 Conglomerates 0.5% 0.4% 0.0% 0.0% 
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Table 2.  

Continuous predictor variables Descriptive statistics over AREA1 Descriptive statistics over AREA2 

Code Description Mean St.dev. Min Max Mean St.dev. Min Max 

ELE Elevation [m asl] 371.636 68.876 217.662 559.480 481.228 78.848 317.128 713.598 

SLO Slope angle [°] 9.507 6.010 0.000 69.231 10.820 5.608 0.013 54.071 

SLO_CAT 
Catchment slope 

angle [°] 
9.621 4.784 0.011 51.333 11.867 4.981 0.029 48.170 

N Northness 0.141 0.706 -1.000 1.000 0.205 0.756 -1.000 1.000 

E Eastness 0.004 0.708 -1.000 1.000 -0.158 0.602 -1.000 1.000 

N_CAT Catchment northness 0.167 0.698 -1.000 1.000 0.245 0.785 -1.000 1.000 

E_CAT Catchment eastness 0.237 0.655 -1.000 1.000 0.173 0.542 -1.000 1.000 

CI 
Convergence index 

[°] 
0.006 10.540 -95.114 97.412 -0.040 8.828 -93.954 93.297 

CI_10 

Convergence index 

with search radius of 

50 m [°] 

0.045 17.825 -66.277 89.583 -0.400 16.064 -58.489 76.778 

TPI 
Topographic position 

index [m] 
-0.001 0.996 -8.175 9.610 -0.035 0.795 -6.354 7.097 

TRI 
Terrain ruggedness 

index [m] 
0.614 0.407 0.003 15.285 0.698 0.390 0.002 4.902 

TRI_10 

Terrain ruggedness 

index with search 

radius of 50 m [m] 

4.216 2.391 0.122 24.635 4.737 2.111 0.373 21.292 

TWI 
Topographic wetness 

index [m] 
8.477 1.921 3.168 24.493 8.371 1.665 3.585 19.047 
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Table 3.  

Variables VIF1 VIF2 

ELE 1.10 1.09 

SLO 113.07 6.64 

SLO_CAT 4.10 3.88 

N 9.01 8.26 

E 1.00 1.00 

N_CAT 9.19 8.41 

E_CAT 1.08 1.09 

CI 1.25 1.30 

CI_10 3.67 3.69 

TPI 3.55 3.65 

TRI 100.77 ---- 

TRI_10 7.04 6.64 

TWI 2.68 2.63 
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Table 4.  

Group of 

replicates 
Lithology Calibration Validation 

AUC values of 10 MARS replicates 

Mean St.dev. Min Max 

(i) 

YES 

A1a training samples A1a training samples 0.937 0.005 0.929 0.948 

A1a training samples A1a test samples 0.909 0.011 0.891 0.929 

(ii) 
A1b training samples A1b training samples 0.911 0.008 0.902 0.921 

A1b training samples A1b test samples 0.889 0.009 0.877 0.903 

(iii) 

NO 

A1a training samples A1a training samples 0.877 0.012 0.860 0.895 

A1a training samples A1a test samples 0.852 0.015 0.829 0.875 

(iv) 
A1b training samples A1b training samples 0.861 0.010 0.843 0.875 

A1b training samples A1b test samples 0.839 0.012 0.822 0.863 
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Table 5. 

Group of 

replicates 
Calibration Validation 

AUC values of 10 MARS replicates 

Mean St.dev. Min Max 

(v) 
A1a subsets A1a subsets 0.869 0.004 0.864 0.876 

A1a subsets A2 subsets 0.744 0.014 0.718 0.763 

(vi) 
A1b subsets A1b subsets 0.855 0.002 0.853 0.858 

A1b subsets A2 subsets 0.744 0.006 0.736 0.752 
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Table 6.  
 

  Number of model subsets that include the variable       

  MARS replicates calibrated for the A1a subsets  Descriptive statistics 

Variable 1 2 3 4 5 6 7 8 9 10 Sum Mean St.dev. 

TRI_10 21 18 18 19 20 18 20 19 19 19 191 19.1 1.0 

TPI 19 16 18 17 18 16 20 18 17 19 178 17.8 1.3 

ELE 17 15 14 15 17 15 17 16 16 15 157 15.7 1.1 

N_CAT 18 13 15 16 16 14 16 14 14 17 153 15.3 1.6 

SLO_CAT 16 12 16 7 15 13 18 17 13 16 143 14.3 3.2 

TWI 13 11 12 13 12 10 13 7 11 11 113 11.3 1.8 

E_CAT 15 9 9 8 11 7 15 11 8 8 101 10.1 2.9 

CI_10 5 0 0 11 10 0 10 0 15 13 64 6.4 6.1 

CI 6 6 7 0 7 6 8 13 4 7 64 6.4 3.2 

SLO 0 8 0 0 5 0 0 0 0 0 13 1.3 2.8 

N 0 0 0 0 0 0 0 0 0 0 0 0 0.0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0.0 

Size of the final model 21 18 19 19 20 18 21 19 19 20 194 19.4 1.1 

              

  MARS replicates calibrated for the A1b subsets  Descriptive statistics 

Variable 1 2 3 4 5 6 7 8 9 10 Sum Mean St.dev. 

TRI_10 18 18 19 18 19 19 18 18 18 18 183 18.3 0.5 

TPI 16 16 17 16 17 17 16 16 16 16 163 16.3 0.5 

N_CAT 14 14 16 15 13 15 15 15 15 14 146 14.6 0.8 

ELE 13 13 15 14 16 14 14 14 14 13 140 14 0.9 

TWI 11 12 14 13 15 13 13 13 13 12 129 12.9 1.1 

SLO_CAT 15 15 11 10 11 16 10 10 10 15 123 12.3 2.6 

CI 6 6 7 6 7 7 6 6 6 6 63 6.3 0.5 

E_CAT 5 5 6 5 6 6 5 5 5 5 53 5.3 0.5 

CI_10 0 0 0 0 0 0 0 0 0 0 0 0 0.0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0.0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0.0 

SLO 0 0 0 0 0 0 0 0 0 0 0 0 0.0 

Size of the final model 18 18 19 18 19 19 18 18 18 18 183 18.3 0.5 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 10 
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Highlights 

 A landslide inventory was produced exclusively by visual analysis of Google Earth images. 

 Landslide susceptibility models were calibrated and validated in two study areas. 

 Multivariate Adaptive Regression Splines (MARS) was used as modeling technique.  

 Two different methods of negative selection were tested. 

 The landslide susceptibility models show acceptable to outstanding accuracy. 


