5. Ion Transport
5.1. Modelling electrically-driven ion transfer through polyelectrolyte multilayers 56
5.2. Dynamics of micro-vortices induced by ion concentration polarization in electrodialysis 57
5.3. Cutting power consumption with ion concentration polarization desalination by unipolar ion conduction .. 58
5.4. Stimulation of electroconvection in membrane system by heterogeneous concentration field and pulsed current .. 60
5.5. Ion-exchange membrane surface properties controlling development of electroconvection: degree of hydrophobicity, curvature, ability to water splitting ... 61
5.6. Reverse Electrodialysis with brackish water and concentrated brines: up-scaled pilot plant operating in a real environment .. 62
5.7. Hybrid materials based on homogeneous and heterogeneous membranes with ion transport asymmetry .. 63
5.8. Impact of pulsed electric field on bipolar membrane electrodialysis acidification of black liquor .. 64

6. Inorganic Membranes
6.1. PdCuAg membranes for H₂ separation and practical relevance of sulphur inhibition 66
6.2. Selective, high-temperature permeation of nitrogen oxides using a supported molten salt membrane .. 67
6.3. Grignard-functionalized ceramic nanofiltration membranes: exciting opportunities for water treatment, organic solvent filtration and biorefinery separations .. 68
6.4. UV-enhanced sacrificial layer stabilized graphene oxide hollow fibre membranes for nanofiltration .. 69
6.5. New generation of inorganic membranes: carbon nanotubes membranes 70
6.6. Tuneable permeation: heatable ceramic membrane with thermo-responsive microgel coating 71
6.7. Selective blocking of defects in MFI membranes by coking .. 72
6.8. An organic-solvent-free route to inorganic porous hollow fibers .. 73
6.9. Manufacturing, upscaling and performance of planar BSCF-membranes for oxygen separation .. 74
6.10. Novel hybrid ceramic membranes made out of metal ... 75
6.11. Multi-channel, dual-layer hollow fibers for micro-tubular solid oxide fuel cells (MT-SOFCs) 76
6.12. Joining and sealing technologies for asymmetric Bao.5Sr0.5(Co0.2Fe0.8) 0.97Zro.03Oz-ε (BSCF-Zr) membranes for oxygen combustion processes .. 77

7. Organic Solvent Nanofiltration
7.1. Can we harness physical aging to benefit membrane separations? ... 78
7.2. Membrane transport and process modelling in OSN: a multiscale approach 79
7.3. Incorporation of hydrophobic permeating channels in polyamide composite membranes for SRNF application .. 80
7.4. Optimising organic solvent resistant nanofiltration membrane cascades for single solvent fractionation of pharmaceuticals from natural products ... 81

8. Gas & Vapour Separation
8.1. MIEC Membrane Plants - competitive to commercial O₂ Production? 82
8.2. Mass transfer analysis in the facilitated transport of propylene through composite polymer-ionic liquid membranes .. 83
8.3. Polymers of Intrinsic Microporosity (PIMs) versus traditional high free volume polymers: Comprehensive sorption study focused on CO₂ .. 84
8.4. Pushing the limits of ethylene/ethane separation with carbon membranes derived from intrinsically microporous precursors ... 85
8.5. Bogus separation via supported ionic liquid membranes with high content of 1-ethyl-3-methylimidazolinium-tris(3,5-dimethylpyrrolidin-1-yl)imide ... 86
8.6. Demonstration on CO₂ capture using a membrane pilot process at cement factory in Brevik Norway - Lessons learnt .. 87
8.7. Gas transport in polymers of intrinsic microporosity (PIMs): influence of the gas affinity on the transport parameters .. 88
8.8. Gas transport properties and molecular mobility of matrimid/phenylethylPOSS nanocomposites .. 89
5.6. Reverse Electrodialysis with brackish water and concentrated brines: up-scaled pilot plant operating in a real environment

Michele Tedesco¹, Andrea Cipollina² (andrea.cipollina@unipa.it), Alessandro Tamburini², Giorgio Micale²

Reverse electrodialysis (RED) using brackish water and brines is a remarkable step forward to produce electric energy from salinity gradients. Recently, a demonstration plant was built in the South of Italy as final accomplishment of the REAPower project, operating with brackish water and concentrated brines from saltworks. This work focuses on the scaling up of the REAPower plant through the installation of two larger RED modules (500 cell pairs each). In its final configuration, the plant is constituted by three 44x44 cm² RED units, with more than 400 m² of total membrane area installed. The plant was tested both with natural feed streams (brackish water and brine) and artificial NaCl solutions. An overall power production of almost 700 W was achieved using artificial NaCl solutions with the same conductivity of natural streams. Using real brine and brackish water, a power output of nearly 330 W was reached: such reduction can be mainly attributed to the presence of different ions (especially Mg²⁺) in the natural feed. After six-month operation with real brackish water and brine, the REAPower plant demonstrates the scaling-up feasibility of reverse electrodialysis as viable technology to produce sustainable energy in the near future.