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Abstarct. By using the Extended Kalman Filter (EKF) an accurate take-off or landing flight 

path following in turbulent air is performed. The tuned up procedure employs simultaneously 

two different EKF: the first one estimates gust disturbances, the second one affords to determine 

the necessary controls displacements for rejecting those ones. In particular, the first filter, by 

using instrumental measurements gathered in turbulent air, estimates wind components. The 

second one obtains command laws able to follow the desired flight path. To perform this task 

aerodynamic coefficients have been modified by adding entirely new derivatives or synthetic 

increments to basic ones whose might the kind of change required to reject disturbances. Such 

a procedure leads to a set of unknown stability and control parameters containing the required 

displacements of the controls. The modified aircraft parameters are determined by augmenting 

the aircraft’s state. The filter estimates the new set of aircraft stability derivatives by using 

measurements made by the desired take-off or landing flight path parameters. Once the 

unknown stability and control derivatives have been determined, the obtained control 

displacements are used to perform an accurate path following in turbulent air. Obviously, the 

obtained control laws are adaptive since they depend by either the characteristics of the 

disturbance or the desired flight path. The proposed procedure requires low computational 

power, therefore it is particularly suited for UAS, besides being simple to implement on board 

it may be successfully employed on low cost platforms. 
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1 INTRODUCTION 

As it is well known since 1960 the Extended Kalman Filter has been widely employed in many 

engineering areas such as, for example, aerospace and aeronautics [1], autonomous or assisted 

navigation and so on [2]. In particular, it has been used to solve problems related to the filtering 

of variables corrupted by noise, state variables estimation, disturbance estimation, parameters 

estimation and so on. 

In aerospace application a wide set of applications concerns identification techniques of 

aircraft’s stability and control parameters from flight data in post flight analysis [3-5], on-line 

estimation of stability derivatives [6-10] and on-line estimation of non-measurable performance 

parameters of aircraft [11]. For reconfigurable flight control systems, the observer/Kalman filter 

is also applied for on-line system identification of accurate, locally linear, dynamic models of 

nonlinear aircrafts [12]. 

Another set of applications is devoted to the estimation of wind components. Mulgund [13] 

designs an EKF to estimate state and wind velocity for a subsonic jet transport aircraft in 

symmetrical flight in wind shear. In Williams [14] estimation of both states and wind intensity 

is performed for a tethered kite used for wind energy extraction purposes. Alonge et al. [15] 

design an EKF in order to estimate both longitudinal variables and wind velocities for a non-

conventional UAV flying in turbulent air. 

In this paper an innovative application of the EKF is proposed. Instead of using the EKF to 

estimate wind components or aircraft parameters, the EKF is used to achieve an accurate take-

off or landing path following. To perform this task aerodynamic coefficients have been 

expressed by means of a new set of stability and control derivatives. Such a set is formed by 

entirely new derivatives and by adding synthetic increments to basic ones. These increments 

contain the required variations of the displacements of the controls to reject the disturbances. 

Since two EKFs are simultaneously employed. The first one, by using instrumental 

measurements gathered in turbulent air, estimates both aircraft states and disturbances. The 

obtained wind velocity components are inserted into the second EKF. The augmented state of 

such a filter is formed by both the aircraft state in turbulent air and the unknown set of the 

modified aircraft parameters. The measurements of the second filter are the desired flight path 

characteristics. In this way the filter is forced to estimate the unknown modified parameters 

(containing the displacements of the controls) by using the desired outputs. So it is possible to 

identify both the aircraft modified parameters and the control actions to execute for path 

tracking.  

Therefore, the proposed procedure allows to perform an accurate path following for aircraft 

flying in turbulent air. 

In the present paper only flight paths laying into the vertical plane are taken into account. 

However the proposed procedure is absolutely general, therefore it may be easily extended to 

three dimensional take-off or landing procedure. 

The present paper is organized as follows. Section 2 explains the proposed procedure to perform 

the automatic take-off/landing. Section 3 contains the simulation results, which have been 

obtained by applying the procedure to an UAS. Such section also describes the perturbations 

that have been injected into the system to test the suggested procedure. Finally a discussion is 
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presented into Section 3. Section 4 concludes the paper and describes the advantages of the 

tuned up procedure highlighting that such a procedure should be usefully employed to perform 

a precise path tracking of any Unmanned Vehicles.  

 

2 PROPOSED PROCEDURE 

As stated previously, the aim of present work is to perform a precise flight path on vertical 

plane, so only longitudinal equations of motion are considered. In the used 3 DoF model, the 

controls are elevator (δe) and throttle (δth) displacement. 

The proposed on-line procedure, to perform the path following in turbulent air, is formed by 

the following steps: 

1. Estimation of disturbances via a first EKF (wind components determination); 

2. Insertion of the estimated wind components into the predictor of a second EKF; 

3. Estimation, by using the second EKF, of modified aircraft parameters; 

4. Determination (by means of modified parameters) of both the elevator and 

throttle positions; 

5. Application of the determined control action to the aircraft. 

The schematic block of the outlined procedure is shown in Figure 1. 
 

Figure 1: Schematic block of the proposed procedure 

 

As formerly outlined, the first step of the flight path following procedure is the estimation 

of the disturbances. An EKF has been tuned up to determine the wind components. 

As it is well known the structure of the EKF is formed by a predictor and a corrector. These 

ones work as shown in Figure 2. 
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Figure 2: Operations of the Extended Kalman Filter from [16] 

 

The corrector of such a filter employs a set of measurements gathered in turbulent air. 

The selected measured variables are: 

𝑍 = [𝑉, 𝑞, 𝜗, 𝑥𝐸 , ℎ]𝑇  

where V is the airspeed, q is the pitch rate, 𝜗 is the angle of elevation, xE is the spatial coordinate 

of the center of mass and h is the altitude of the aircraft. 

Obviously: 

𝑉 = √(𝑢 + 𝑢𝑔)
2

+ (𝑤 + 𝑤𝑔)
2

 

𝛼 = 𝑎𝑡𝑎𝑛
𝑤 + 𝑤𝑔

𝑢 + 𝑢𝑔
 

𝑞 = 𝑞 + 𝑞𝑞 

(1) 

with - (ug, wg, qg) unknown wind components in body axes. 

The predictor is constituted of an accurate non-linear mathematical model of the aircraft 

flying in turbulent air. The classical rigid body equations of motion in body axes have been 

used [17] by inserting the wind components into the aerodynamic forces and moments. 

The state of the system is constituted by the six aircraft state variables in body axes and the 

wind components: 

𝑋 = [𝑢, 𝑤, 𝑞, 𝜗, 𝑥𝐸 , ℎ, 𝑢𝑔, 𝑤𝑔, 𝑞𝑔]
𝑇

 (2) 

To estimate the disturbance the following equations are inserted into the predictor: 

𝑢̇𝑔 = 0 

𝑤̇𝑔 = 0 

𝑞̇𝑔 = 0 

(3) 

In this way no hypothesis has been made about wind dynamics and the filter is forced to 

estimate disturbances by using measurements. 
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The first EKF estimates the wind components. These ones, by using Eq. (1), are inserted into 

the predictor of the second EKF. 

The corrector of such a filter uses, as measurements, the desired values of the state variables 

(characteristic variables of the desired flight path). 

𝑍𝑑 = [𝑉𝑑, 𝑞𝑑 , 𝜗𝑑, 𝑥𝐸𝑑
, ℎ𝑑]

𝑇
  

In order to estimate the control action, the aircraft parameters have been modified by 

imposing: 

∆𝛿𝑒 = 𝑘1𝛼 + 𝑘2𝑞 (4) 

∆𝛿𝑡ℎ = 𝑘3ℎ (5) 

In this way, the modified aircraft parameters are: 

𝐶𝐿𝛼𝑚
= 𝐶𝐿𝛼

+ 𝐶𝐿𝛿𝑒
𝑘1 (6) 

𝐶𝐿𝑞𝑚
= 𝐶𝐿𝑞

+ 𝐶𝐿𝛿𝑒
𝑘2 (7) 

𝐶𝑀𝛼𝑚
= 𝐶𝑀𝛼

+ 𝐶𝑀𝛿𝑒
𝑘1 (8) 

CMqm
= CMq

+ CMδe
k2 (9) 

Since a completely new control derivative has been postulated: 

𝐶𝑇ℎ
= 𝐶𝑇𝛿𝑡ℎ

𝑘3 (10) 

Eqs. (6-10) represent a set of aircraft unknown parameters. In such a way the aircraft 

unknown augmented state vector is: 

𝑋 = [𝑢, 𝑤, 𝑞, 𝜗, 𝑥, ℎ, 𝑐𝐿𝛼𝑚
, 𝑐𝑀𝛼𝑚

, 𝑐𝐿𝑞𝑚
, 𝑐𝑀𝑞𝑚

, cTh
 ]

𝑇

 

To estimate the modified aircraft parameters, the following equations has been inserted into 

the predictor: 

𝐶̇𝐿𝛼𝑚
= 0 

𝐶̇𝑀𝛼𝑚
= 0 

𝐶̇𝐿𝑞𝑚
= 0 

𝐶̇𝑀𝑞𝑚
= 0 

ĊTh
= 0 

(11) 

Because the modified aircraft parameters contain the elevator deflections and the throttle 

positions (Eqs. 4-10), the estimated values of these ones allow to determine the control laws. 
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It is noticeable that once the modified aircraft parameter have been determined, an adaptive 

control law has been obtained. In fact no hypothesis has been made about the modified 

parameters dynamics. 

The filter is forced to determine these ones by using the desired values of the flight path 

characteristics which constitute the measurements data set. 

Obviously the modified parameters are strictly related to both the desired flight path and the 

estimated wind components. In this way obtained control laws are adapted to either the desired 

flight path or the disturbances. 

3 RESULTS AND DISCUSSION 

The proposed procedure has been applied to an UAS that is a 1:5 scale model of the ultra-

light aircraft N3-PUP. 

Geometric characteristics and aerodynamic derivatives of the studied aircraft are showed 

into Table 1 and Table 2. 

 

Mean chord c 0.24 m Inertia moment Ix  0.2369 kg m2 

Wing span b 1.86 m Inertia moment Iy  0.1080 kg m2 

Wing area S 0.4464 m2 Inertia moment Iz  0.3330 kg m2 

Mass W/g 2.5 kg Inertia moment Ixy -0.0086 kg m2 

Table 1: Geometric characteristics 

 

𝐶𝐿𝑉
= 𝐶𝐷𝑉

= 𝐶𝑀𝑉
 0 

𝐶𝐷𝛼̇
= 𝐶𝐷𝛿𝑒

= 𝐶𝐷𝑞
 0 

𝐶𝐿𝛼
 3.9984 

𝐶𝑀𝛼
 -0.9196 

𝐶𝐿𝛼̇
 1.3689 

𝐶𝑀𝛼̇
 -3.4263 

𝐶𝐿𝑞
 5.9449 

𝐶𝑀𝑞
 -10.2831 

𝐶𝑇𝑉
 -0.0988 

𝐶𝐿𝛿𝑒
 0.1554 

𝐶𝑀𝛿𝑒
 0.4029 

𝐶𝑇𝛿𝑡ℎ
 1.5635*10-4 

Table 2: Aerodynamic derivatives 

 

The following equation has been used to model the aircraft drag polar: 

𝐶𝐷 = 𝐶𝐷0
+ 0.007446 𝐶𝐿 + 0.30061 𝐶𝐿

2 + 0.001625 𝐶𝐿
3 

with 𝐶𝐷0
= 0.049607. 
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Before implementing the proposed procedure on board of the studied UAS, it has been tested 

in simulation environment. Various simulations have been performed in MatLab environment.  

An accurate 3-DoF non-linear model of selected UAS has been built. 

The model has been used: 

1. as predictor into both the tuned up EKF; 

2. to determine the aircraft state in turbulent air which constitutes the measurement 

set of the first EKF in simulation environment; 

3. to test the goodness of the obtained control laws; 

Obviously, once the procedure will be implemented on-board, following the scheme in 

Figure 1, the designed model will be employed simply to perform the item 1. 

A take-off path has been chosen as desired path to obtain the measurement set for the second 

EKF. At the beginning of the simulation UAS is considered already at take-off speed. Then it 

flies until regular obstacle height with a climb composed by a flare (until the climb angle reach 

0.1 rad) and a rectilinear climb until the cruise height of 32m. 

Besides it has been imposed that: 

 VTO=Vcruise 

 V=24.63m/s during the whole flight path 

The desired flight path is shown in Figure 3. 

 
Figure 3: Desired take-off path 

Many simulations have been performed by modifying wind speed components. In particular 

finite and infinite step components, harmonic disturbances, random disturbances have been 

injected into the UAS model. 

In Figures 4-7 are reported, as example, obtained results with a finite step gust with the 

following characteristics: 

ugust=5m/s, duration 3.5 sec. 

wgust=1m/s, duration 3.5 sec. 
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The gust is inserted at the beginning of the flare. 

 
Figure 4: Height error 

 
Figure 5: Horizontal distance error 
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Figure 6: Speed error 

Figures 4-5 show that the implemented methodology afford to perform the desired take-off 

path with a good precision even if in presence of noticeable wind gust. In fact the mean 

horizontal error is 1m during a 1600 m trajectory. At the same time, the mean height error in 

1.10 m on a total height variation of 32 m. 

Besides the speed constrain is perfectly verified, in fact, as shown in Figure 6, the mean 

speed error is 0.11 m/s. 

Finally in Figure 7 is showed the comparison between the desired take-off path and the 

controlled one. In spite of the high values of the wind components (ug=20% uUAS and wg=̃wUAS), 

the path during flare is exactly flown, there is a small height error (1.5 m, less than 5%) at cruise 

height. 

 
Figure 7: Desired VS controlled flight path 

 

It is noticeable that the high precision of the take-off path has been obtained despite the 
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injection of the disturbance at the beginning of the flare maneuver. 

4 CONCLUSIONS 

The present work has shown that, by an innovative employment of the EKF, it is possible to 

achieve both a precise flight path following and an adequate disturbance rejection in turbulent 

air. 

The proposed approach requires low computational power, therefore it is particularly suited 

for UAS; besides being simple to implement on board. So it allows to design a fully automatic 

take-off/landing control system able to efficiently perform the guidance of UAS in turbulent 

air. 

Finally, it is noticeable that the obtained control laws are automatically modified by 

changing either the desired flight path or the disturbance characteristics. 

Because of the total generality of the discussed procedure, it may be applied to various kinds 

of Unmanned Systems in order to perform a precise path tracking. 

Further development of the present paper is the extension of the proposed method to the six 

DoF model of aircraft.  

At the present such a procedure is implementing on-board of a Remote Piloted Research 

Vehicle. 
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