58th National Meeting of the Italian Society of Biochemistry and Molecular Biology

Università degli Studi di Urbino Carlo Bo, Urbino
September 14 -16, 2015

Presidente del Congresso
Prof. Mauro Magnani
Università di Urbino

Comitato Scientifico
Prof. Bruno Giardina
Università Cattolica-Roma (Presidente)
Prof. Cesare Balduini
Università di Pavia
Prof. Francesco Bonomi
Università di Milano
Prof.ssa Luisa Bracci
Università di Siena
Prof.ssa Paola Bruni
Università di Firenze
Prof. Federico Bussolino
Università di Torino
Prof.ssa Rita Casadio
Università di Firenze
Prof. ssa Chiara Cini
Sapienza Università di Roma
Prof. Giancarlo Falciioni
Università di Camerino

Prof. Francesco Paolo Mancini
Università Sannio di Benevento
Prof.ssa Laura Mazzanti
Università Politecnica delle Marche
Prof. Luigi Palmieri
Università di Bari
Prof. Giuseppe Paradies
Università di Bari
Prof. Paolo Vincenzo Pedone
Seconda Università di Napoli
Prof. Loredano Pollegioni
Università dell’Insubria
Prof.ssa Eugenia Schininà
Sapienza Università di Roma
Prof. Giancarlo Solaini
Università di Bologna
Prof. Alberto Spisni
Università di Parma
Prof. Vilberto Stocchi
Università di Urbino
Prof.ssa Renza Vento
Università di Palermo

Comitato Organizzatore
Dott.ssa Deborah Agostini
Prof.ssa Marzia Bianchi
Prof. Luigi Cucchiarini
Dott.ssa Mara Fiorani
Dott. Michele Guescini
Prof. Ferdinando Mannello
Prof. Paolino Ninfali
Dott. Giovanni Piccoli
Prof.ssa Luigia Rossi
Dott.ssa Luciana Vallorani
WIN-induced vesiculation cooperates to the inhibition of osteosarcoma cell migration

Antonietta Notaro, Giuseppe Fiasconaro, Fabiana Geraci, Antonella D'Anneo, Giuseppe Calvaruso, Michela Giuliano
Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi Palermo, Italy

Introduction. Animal cells release vesicles that mediate the secretion of a variety of factors in the surrounding environment affecting neighboring cells. There is increasing evidence that secreted vesicles play an important role as vehicle of intercellular communication in different biological systems and are able to influence both physiological and pathological processes. Recently, we have reported that the synthetic cannabinoid WIN55,512 is able to induce osteosarcoma MG63 cell death and negatively affect cell migration. Here, we study the effects of WIN on the induction of vesicle secretion and their possible role in WIN-dependent reduction of osteosarcoma cell migratory ability.

Methods. Vesicles from MG63 cells were obtained by ultracentrifuging at 140,000g media derived from cell cultures untreated and treated for 24 h with 5 μM WIN. Purified vesicles were quantified by cytofluorimetry and by detecting acetilcholinesterase activity according to established criteria. Scratch wound healing assay was employed to monitor cell migration toward the center of a gap created in a cell monolayer. Zymographic analysis was used to evaluate metalloproteinase activities in the vesicles.

Results. WIN treatment induced a significant increase (about 4-fold) in the number of vesicles released by osteosarcoma cells. Wound healing assay showed that in the presence of vesicles from WIN-treated cultures, cells only partially filled the gap with respect to those conditioned with vesicles isolated from control cells which closed the gap within about 24 h. Furthermore, zymography assay showed a reduced activity of MMP-2 and MMP-9 in the vesicles obtained from WIN-treated cells.

Conclusion. Data indicate that the increase in the number of vesicles released after WIN treatment and/or their probable different composition can be responsible for the relevant inhibition of MG63 cell migration induced by the cannabinoid.