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Cavity-based architecture to 
preserve quantum coherence and 
entanglement
Zhong-Xiao Man1, Yun-Jie Xia1 & Rosario Lo Franco2,3,4

Quantum technology relies on the utilization of resources, like quantum coherence and 
entanglement, which allow quantum information and computation processing. This achievement 
is however jeopardized by the detrimental effects of the environment surrounding any quantum 
system, so that finding strategies to protect quantum resources is essential. Non-Markovian and 
structured environments are useful tools to this aim. Here we show how a simple environmental 
architecture made of two coupled lossy cavities enables a switch between Markovian and non-
Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit 
coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on 
entanglement control of two independent qubits locally subject to such an engineered environment 
and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date 
experimental parameters, we show that our architecture allows entanglement lifetimes orders of 
magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based 
architecture is straightforwardly extendable to many qubits for scalability.

Entangled states are not only an existing natural form of compound systems in the quantum world, 
but also a basic resource for quantum information technology1–3. Due to the unavoidable coupling of a 
quantum system to the surrounding environment, quantum entanglement is subject to decay and can 
even vanish abruptly, a phenomenon known as early-stage disentanglement or entanglement sudden 
death4–13. Harnessing entanglement dynamics and preventing entanglement from disappearing until the 
time a quantum task can be completed is thus a key challenge towards the feasibility of reliable quantum 
processing14,15.

So far, a lot of researches have been devoted to entanglement manipulation and protection. A pure 
maximally entangled state can be obtained from decohered (partially entangled mixed) states16–20 pro-
vided that there exist a large number of identically decohered states, which however will not work 
if the entanglement amount in these states is small. In situations where several particles are coupled 
to a common environment and the governing Hamiltonian is highly symmetric, there may appear a 
decoherence-free subspace that does not evolve in time21–23: however, in this decoherence-free subspace 
only a certain kind of entangled state can be decoupled from the influence of the environment24,25. The 
quantum Zeno effect26 can also be employed to manipulate decoherence process but, to prevent consid-
erable degradation of entanglement, special measurements should be performed very frequently at equal 
time intervals24,25. By encoding each physical qubit of a many-qubit system onto a logical one comprising 
several physical qubits27–31, an appropriate reversal procedure can be applied to correct the error induced 
by decoherence after a multiqubit measurement that learns what error possibly occurred. Yet, as has 
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been shown31, in some cases this method can indeed delay entanglement degradation but in other cases 
it leads to sudden disentanglement for states that otherwise disentangle only asymptotically. The pos-
sibility to preserve entanglement via dynamical decoupling pulse sequences has been also theoretically 
investigated recently for finite-dimensional or harmonic quantum environments32–35 and for solid state 
quantum systems suffering random telegraph or 1/f noise36,37, but these procedures can be demanding 
from a practical point of view.

In general, environments with memory (so-called non-Markovian) suitably structured constitute a use-
ful tool for protecting quantum superpositions and therefore the entanglement of composite systems8,38–40. 
It is nowadays well-known that independent qubits locally interacting with their non-Markovian envi-
ronments can exhibit revivals of entanglement, both spontaneously during the dynamics38,41–44 and 
on-demand by local operations45,46. These revivals, albeit prolonging the utilization time of entangle-
ment, however eventually decay. In several situations, the energy dissipations of individual subsystems 
of a composite system are responsible for disentanglement. Therefore, methods that can trap system 
excited-state population would be effective for entanglement preservation. A stationary entanglement of 
two independent atoms can be in principle achieved in photonic crystals or photonic-band-gap materi-
als47,48 if they are structured so as to inhibit spontaneous emission of individual atoms. This spontaneous 
emission suppression induced by a photonic crystal has been so far verified experimentally for a single 
quantum dot49 and its practical utilization for a multi-qubit assembly appears far from being reached. 
Quantum interference can also be exploited to quench spontaneous emission in atomic systems50,51 and 
hence used to protect two-atom entanglement provided that three levels of the atoms can be used52. 
Since the energy dissipations originate from excited state component of an entangled state, a reduc-
tion of the weight of excited-state by prior weak measurement on the system before interacting with 
the environment followed by a reversal measurement after the time-evolution proves to be an efficient 
strategy to enhance the entanglement53–55. However, the success of this measurement-based strategy is 
always conditional (probability less than one)53–55. It was shown that steady-state entanglement can be 
generated if two qubits share a common environment24,56, interact each other57 and are far from thermal 
equilibrium58–62. It has been also demonstrated that non-Markovianity may support the formation of 
stationary entanglement in a non-dissipative pure dephasing environment provided that the subsystems 
are mutually coupled63.

Separated, independent two-level quantum systems at thermal equilibrium, locally interacting with 
their own environments, are however the preferable elements of a quantum hardware in order to accom-
plish the individual control required for quantum information processing14,15. Therefore, proposals of 
strategies to strongly shield quantum resources from decay are essential within such a configuration. 
Here we address this issue by looking for an environmental architecture as simple as possible which is 
able to achieve this aim and at the same time realizable by current experimental technologies. In par-
ticular, we consider a qubit embedded in a cavity which is in turn coupled to a second cavity and show 
that this basic structure is able to enable transitions from Markovian to non-Markovian regimes for the 
dynamics of the qubit just by adjusting the coupling between the two cavities. Remarkably, under suitable 
initial conditions, this engineered environment is able to efficiently preserve qubit coherence and, when 
extended to the case of two noninteracting separated qubits, quantum entanglement. We finally discuss 
the effectiveness of our cavity-based architecture by considering experimental parameters typical of cir-
cuit quantum electrodynamics15,64, where this scheme can find its natural implementation.

Results
Our analysis is divided into two parts. The first one is dedicated to the single-qubit architecture which 
shall permit us to investigate the dynamics of quantum coherence and its sensitivity to decay. The second 
part treats the two-qubit architecture for exploring to which extent the time of existence of quantum 
entanglement can be prolonged with respect to its natural disappearance time without the proposed 
engineered environment.

Single-qubit coherence preservation.  The global system is made of a two-level atom (qubit) inside 
a lossy cavity C1 which in turn interacts with another cavity C2, as depicted in Fig. 1. The Hamiltonian 
of the qubit and two cavities is given by (ħ =  1)
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where σ = −ˆ 1 1 0 0z  is a Pauli operator for the qubit with transition frequency ω0, σ±ˆ  are the 
raising and lowering operators of the qubit, â1 ( )ˆ †a1  and â2 ( )ˆ †a2  the annihilation (creation) operators of 
cavities C1 and C2 which sustain modes with frequency ω1 and ω2, respectively. The parameter κ denotes 
the coupling of the qubit with cavity C1 and J the coupling between the two cavities. We take ω1 =  ω2 =  ω 
and, in order to consider both resonant and non-resonant qubit-C1 interactions, ω0 =  ω+ δ with δ being 
the qubit-cavity detuning. Taking the dissipations of the two cavities into account, the density operator 
ρ(t) of the atom plus the cavities obeys the following master equation65
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where ρ ρ( ) ≡ ( )/ t d t dt and Γ 1 (Γ 2) denotes the photon decay rate of cavity C1 (C2). The rate Γ n/2 phys-
ically represents the bandwidth of the Lorentzian frequency spectral density of the cavity Cn, which is 
not a perfect single-mode cavity65. A cavity with a high quality factor will have a narrow bandwidth and 
therefore a small photon decay rate. Weak and strong coupling regimes for the qubit-C1 interaction can 
be then individuated by the conditions κ ≤ Γ /41  and κ > Γ /41

41,65.
Let us suppose the qubit is initially in the excited state 1  and both cavities in the vacuum states 00 , 

so that the overall initial state is ρ ( ) =0 100 100 , where the first, second and third element correspond 
to the qubit, cavity C1 and cavity C2, respectively. Since there exist at most one excitation in the total 
system at any time of evolution, we can make the ansatz for ρ(t) in the form

ρ λ ψ ψ λ( ) = ( − ( )) ( ) ( ) + ( ) , ( )t t t t t1 000 000 3

where λ≤ ( ) ≤t0 1 with λ ( ) =0 0 and ψ ( ) = ( ) + ( ) + ( )t h t c t c t100 010 0011 2  with h(0) =  1 
and ( ) = ( ) =c c0 0 01 2 . It is convenient to introduce the unnormalized state vector66,67
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where λ( ) ≡ − ( ) ( )h t t h t1  represents the probability amplitude of the qubit and λ( ) ≡ − ( )c̃ t t1n  
( )c tn  (n =  1, 2) that of the cavities being in their excited states. In terms of this unnormalized state vector 

we then get

ρ ψ ψ λ( ) = ( ) ( ) + ( ) . ( ) t t t t 000 000 5

The time-dependent amplitudes ( )h t , ( )c̃ t1 , ( )c̃ t2  of Eq.  (4) are determined by a set of differential 
equations as
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The above differential equations can be solved by means of standard Laplace transformations com-
bined with numerical simulations to obtain the reduced density operators of the atom as well as of each 
of the cavities. In particular, in the basis ,{ 1 0 } the density matrix evolution of the qubit can be cast 
as

Figure 1.  Scheme of the single-qubit architecture. A two-level atom (qubit) is embedded in a cavity C1 
which is in turn coupled to a second cavity C2 by a coupling strength J. Both cavities are taken at zero 
temperature and can lose photons.
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where ut and zt are functions of the time t (see Methods).
An intuitive quantification of quantum coherence is based to the off-diagonal elements of the desired 

quantum state, being these related to the basic property of quantum interference. Indeed, it has been 
recently shown68 that the functional

∑ ρ( ) = ( ) ,
( ), ( ≠ )

C t t
8i j i j

ij

where ρij(t) (i ≠ j) are the off-diagonal elements of the system density matrix, satisfies the physical require-
ments which make it a proper coherence measure68. In the following, we adopt C  ( )t  as quantifier of the 
qubit coherence and explore how to preserve and even trap it under various conditions. To this aim, we 
first consider the resonant atom-cavity interaction and then discuss the effects of detuning on the dynam-
ics of coherence.

Suppose the qubit is initially prepared in the state φ α β( ) = +0 0 1  (with α β+ = 12 2 ), 
namely, C   αβ( ) =0 2 , then at time t >  0 the coherence becomes C   αβ( ) = ( )t h t2 . Focusing on the 
weak coupling between the qubit and the cavity C1 with κ =  0.24 Γ 1, we plot the dynamics of coherence 
in Fig.  2(a). In this case, the qubit exhibits a Markovian dynamics with an asymptotical decay of the 
coherence in the absence of the cavity C2 (with J =  0). However, by introducing the cavity C2 with a 
sufficiently large coupling strength, quantum coherence undergoes non-Markovian dynamics with oscil-
lations. Moreover, it is readily observed that the decay of coherence can be greatly inhibited by increasing 
the C1-C2 coupling strength J. On the other hand, if the coupling between the atom and the cavity C1 is 
initially in the strong regime with the occurrence of coherence collapses and revivals, the increasing of 
the C1-C2 coupling strength J can drive the non-Markovian dynamics of the qubit to the Markovian one 
and then back to the non-Markovian one, as shown in Fig.  2(b). This behavior is individuated by the 
suppression and the successive reactivation of oscillations during the dynamics. It is worth noting that, 
although the qubit can experience non-Markovian dynamics again for large enough J, the non-Markovian 

Figure 2.  Coherence C ( )t  of the qubit as a function of the scaled time Γ1t for different coupling 
strengths J between the two cavities for (a) κ = 0.24 Γ1, Γ2 = 0.5 Γ1 and (b) κ = 0.4 Γ1, Γ2 = 0.5 Γ1. The 
qubit is initially prepared in the state φ( )0  with α β= = /1 2 and resonant with the cavity (detuning 
δ =  0). The plots in panels (c,d) display the coherence trapping for a perfect cavity (Γ 2 =  0) with κ =  0.24 Γ1 
and κ =  0.4 Γ1, respectively.
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dynamics curve is different from the original one for J =  0 in the sense that the oscillations arise before 
the coherence decays to zero. In general, the coupling of C1-C2 can enhance the quantum coherence also 
in the strong coupling regime between the qubit and the cavity C1.

The oscillations of coherence, in clear contrast to the monotonic smooth decay in the Markovian 
regime, constitute a sufficient condition to signify the presence of memory effects in the system dynam-
ics, being due to information backflow from the environment to the quantum system69. The degree of a 
non-Markovian process, the so-called non-Markovianity, can be quantified by different suitable meas-
ures69–72. We adopt here the non-Markovianity measure which exploits the dynamics of the trace distance 
between two initially different states ρ1(0) and ρ2(0) of an open system to assess their distinguishability69. 
A Markovian evolution can never increase the trace distance, hence nonmonotonicity of the latter would 
imply a non-Markovian character of the system dynamics. Based on this concept, the non-Markovianity 
can be quantified by a measure   defined as69

 ∫ σ ρ ρ= , ( ), ( ) ,
( )ρ ρ σ( ), ( ) >

t dtmax [ 0 0 ]
90 0 0 1 2

1 2

where σ ρ ρ ρ ρ, ( ), ( ) = ( ), ( ) /t dD t t dt[ 0 0 ] [ ]1 2 1 2  is the rate of change of the trace distance, which is 
defined as ρ ρ ρ ρ( ), ( ) = ( / ) ( ) − ( )D t t t t[ ] 1 2 Tr1 2 1 2 , with = †X X X . By virtue of  , we plot in 
Fig. 3 the non-Markovianity of the qubit dynamics for the conditions considered in Fig. 2(a,b). We see 
that if the qubit is initially weakly coupled to the cavity C1 (κ =  0.24 Γ 1) its dynamics can undergo a 
transition from Markovian ( = )0  to non-Markovian ( > )0  regimes by increasing the coupling 
strengths J between the two cavities. On the other hand, for strong qubit-cavity coupling (κ =  0.4 Γ 1), the 
non-Markovian dynamics occurring for J =  0 turns into Markovian and then back to non-Markovian by 
increasing J. We mention that such a behavior has been also observed in a different structured system 
where a qubit simultaneously interacts with two coupled lossy cavities73.

Trapping qubit coherence in the long-time limit is a useful dynamical feature for itself that shall play 
a role for the preservation of quantum entanglement to be treated in the next section. We indeed find 
that the use of coupled cavities can achieve this result if the cavity C2 is perfect, that is Γ 2 =  0 (no photon 
leakage). The plots in Fig. 2(c,d) demonstrate the coherence trapping in the long-time limit for both weak 
and strong coupling regimes between the qubit and the cavity C1 for different coupling strengths J 
between the two cavities. This behavior can be explained by noticing that there exists a bound 
(decoherence-free) state of the qubit and the cavity C2 of the form ψ κ= −− J 10 01 , with J and κ 
being the C1-C2 and qubit-C1 coupling strengths. Being this state free from decay, once the reduced initial 
state of the qubit and the cavity C2 contains a nonzero component of this bound state ψ− , a long-living 
quantum coherence for the qubit can be obtained. For the initial state α βΦ( ) = +0 000 100  of the 
qubit and two cavities here considered and Γ 2 =  0, the coherence defined in Eq. (8) gets the asymptotic 
value C    αβ κ( → ∞) = /( + )t J J2 2 2 2 , which increases with J for a given κ. We further point out that 
the cavity C1 acts as a catalyst of the entanglement for the hybrid qubit-C2 system, in perfect analogy to 
the stationary entanglement exhibited by two qubits embedded in a common cavity24. In the latter case, 
in fact, the cavity mediates the interaction between the two qubits and performs as an entanglement 
catalyst for them.

We now discuss the effect of non-resonant qubit-C1 interaction (δ ≠ 0) on the dynamics of coherence. 
In Fig.  4(a–d), we display the density plots of the coherence as functions of detuning δ =  ω0 −  ω and 
rescaled time Γ t for both weak and strong couplings. One observes that when δ departures from zero, 
the decay of coherence speeds up achieving the fastest decay around δ =  J. It is interesting to highlight 
the role of the cavity-cavity coupling parameter J as a benchmark for having the fastest decay during the 

Figure 3.  Non-Markovianity quantifier   of Eq. (9) of the qubit dynamics as a function of J/Γ1 for weak 
(κ = 0.24 Γ1) and strong (κ = 0.4 Γ1) coupling regimes to cavity C1 and a fixed decay rate Γ2 = 0.5 Γ1 of the cavity 
C2.
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dynamics under the non-resonant condition. For larger detuning tending to the dispersive regime 
δ κ( )

, the decay of coherence is instead strongly slowed down48. However, as shown in Fig. 5, station-
ary coherence is forbidden out of resonance when the cavity C2 is perfect. Since our main aim is the 

Figure 4.  Density plots of coherence C   ( )t  of the qubit as functions of detuning δ and the scaled time Γ1t 
for (a) κ = 0.24 Γ1, Γ2 = 0.2 Γ1, J = 0.5 Γ1; (b) κ = 0.24 Γ1, Γ2 = 0.2 Γ1, J = Γ1; (c) κ = 0.4 Γ1, Γ2 = 0.5 Γ1, J = 0.5 Γ1; (d) 
κ = 0.4 Γ1, Γ2 = 0.5 Γ1, J = Γ1. The initial state of the qubit is maximally coherent α β( = = / )1 2 . The values 
of the coherence are within the range: [0, 1].

Figure 5.  Coherence C   ( )t  of the qubit as a function of the scaled time Γ1t for different values of the 
detuning δ in the case when the cavity C2 is perfect, that is Γ2 = 0. The qubit-C1 and the C1-C2 coupling 
strengths are, respectively, (a) κ =  0.24 Γ 1, J =  0.3 Γ 1; (b) κ =  0.4 Γ 1, J =  0.3 Γ 1. Out of resonance (δ >  0) no 
coherence trapping is achievable.
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long-time preservation of quantum coherence and thus of entanglement, in the following we only focus 
on the condition of resonance between qubit and cavity frequencies.

Two-qubit entanglement preservation.  So far, we have studied the manipulation of coherence 
dynamics of a qubit via an adjustment of coupling strength between two cavities. We now extend this 
architecture to explore the possibility to harness and preserve the entanglement of two independent 
qubits, labeled as A and B. We thus consider A (B) interacts locally with cavity C1A (C1B) which is in turn 
coupled to cavity C2A(C2B) with coupling strength JA (JB), as illustrated in Fig.  6. That is, we have two 
independent dynamics with each one consisting of a qubit j (j =  A, B) and two coupled cavities C1j −  C2j. 
The total Hamiltonian is then given by the sum of the two independent Hamiltonians, namely, = ∑H Hj j, 
where each Hj is the single-qubit Hamiltonian of Eq. (1). Denoting with Γ 1j (Γ 2j) the decay rate of cavity 
C1j (C2j), we shall assume Γ1A =  Γ1B =  Γ  as the unit of the other parameters.

As known for the case of independent subsystems, the complete dynamics of the two-qubit system 
can be obtained by knowing that of each qubit interacting with its own environment41,42. By means of 
the single-qubit evolution, we can construct the evolved density matrix of the two atoms, whose elements 
in the standard computational basis | 〉 ≡ | 〉, | 〉 ≡ | 〉, | 〉 ≡ | 〉, | 〉 ≡ | 〉{ 1 11 2 10 3 01 4 00 } are
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where ρlm(0) are the density matrix elements of the two-qubit initial state and ut
j, zt

j are the time-dependent 
functions of Eq. (7).

We consider the qubits initially in an entangled state of the form ψ α β( ) = +0 00 11  
α β( + = )12 2 . As is known, this type of entangled states with β α>  suffers from entanglement 

sudden death when each atom locally interacts with a dissipative environment7–9. As far as non-Markovian 
environments are concerned, partial revivals of entanglement can occur38,41–44,74–84 typically after asymp-
totically decaying to zero or after a finite dark period of complete disappearance. It would be useful in 
practical applications that the non-Markovian oscillations can occur when the entanglement still retain 
a relatively large value. With our cavity-based architecture, on the one hand we show that the Markovian 
dynamics of entanglement in the weak coupling regime between the atoms and the corresponding cavi-
ties (i.e., C1A and C1B) can be turned into non-Markovian one by increasing the coupling strengths 
between the cavities C1A-C2A and (or) C1B-C2B; on the other hand, we find that the appearance of entan-
glement revivals can be shifted to earlier times. We employ the concurrence85 to quantify the 

Figure 6.  Scheme of the two-qubit architecture. Two independent qubits A and B, initially entangled, are 
locally embedded in a cavity C1j which is in turn coupled to a second cavity C2j by a coupling strength Jj 
(j =  A, B).
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entanglement (see Methods), which for the two-qubit evolved state of Eq.  (10) reads 
CAB    ρ ρ ρ( ) = , ( ) − ( ) ( ){ }t t t t2max 0 14 22 33 . Notice that the concurrence of the Bell-like initial state 
ψ ( )0  is CAB  αβ( ) =0 2 . In Fig. 7(a) we plot the dynamics of concurrence CAB  ( )t  in the weak coupling 
regime between the two qubits with their corresponding cavities with κ κ= = . Γ0 2A B  (Γ = Γ = ΓA B1 1  
has been assumed). For two-qubit initial states with α = /1 10 , β = /9 10 , the entanglement expe-
riences sudden death without coupled cavities ( = = )J J 0A B . By incorporating the additional cavities 
with relatively small coupling strength, e.g., JA =  0.5 Γ  and JB =  Γ , the concurrence still undergoes a 
Markovian decay but the time of entanglement disappearance is prolonged. Increasing the coupling 
strengths JA, JB of the relevant cavities drives the entanglement dynamics from Markovian regime to 
non-Markovian one. Moreover, the entanglement revivals after decay happen shortly after the evolution 
when the entanglement still has a large value. In general, the concurrences are enhanced pronouncedly 
with JA and JB. A comprehensive picture of the dynamics of concurrence as a function of coupling 
strength J is shown in Fig. 7(c) where we have assumed JA =  JB =  J. In Fig. 7(b) we plot the dynamics of 
CAB ( )t  in the strong coupling regime between qubit j and its cavity C1j with κ κ= = Γ2A B  for which 
the two-qubit dynamics is already non-Markovian in absence of cavity coupling, namely the entangle-
ment can revive after dark periods. Remarkably, the figure shows that when the coupling Jj between C1j 
and C2j is activated and gradually increased in each location, multiple transitions from non-Markovian 
to Markovian dynamics surface. We point out that the entanglement dynamics within the non-Markovian 
regime exhibit different qualitative behaviors with respect to the first time when entanglement oscillates. 
For instance, for = = ΓJ J 3A B , the non-Markovian entanglement oscillations (revivals) happen after its 
disappearance, while when = ΓJ 4A  and = ΓJ 5B  the entanglement oscillates before its sudden death. 
These dynamical features are clearly displayed in Fig. 7(d).

As expected according to the results obtained before on the single-qubit coherence, a steady concur-
rence arises in the long-time limit if the secondary cavities C2A, C2B do not lose photons, i.e., Γ = Γ = 0A B2 2 . 
Figure  8(a) shows the dynamics of concurrence for qubits coupled to their cavities with strengths 
κ = . Γ0 2A , κ = . Γ0 3B . We can readily see that, in absence of coupling with the secondary cavities 

Figure 7.  The dynamics of concurrence for different coupling strengths JA and JB in (a) weak qubit-cavity 
coupling regimes with κ κ= = . Γ0 2A B  and (b) strong qubit-cavity coupling regimes with κ κ= = Γ2A B . 
The initial state weights are chosen as (a) α = /1 10, β = /9 10 and (b) α = /1 3, β = /2 3, while in 
both cases Γ = Γ = . Γ0 2A B2 2 . The inset in (b) shows the long-time dynamics of concurrence for = ΓJ 4A  
and = ΓJ 5B . Panels (c,d) show the density plots of the two-qubit concurrence as a function of J (JA =  JB =  J 
is here assumed) and scaled time Γ t, the others parameters being as in panels (a,b), respectively. The values 
of the concurrence in the density plots range within the interval: (c) [0, 0.6]; (d) [0, 1].
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(JA =  JB =  0), the entanglement disappear at a finite time without any revival. Contrarily, if the local cou-
plings C1j-C2j are switched on and increased, the entanglement does not vanish at a finite time any more 
and reaches a steady value after undergoing non-Markovian oscillations. Furthermore, the steady value 
of concurrence is proportional to the local cavity coupling strengths JA, JB. In Fig. 8(b), the concurrence 
dynamics for κ κ= = Γ2A B  is plotted under which the two-qubit entanglement experiences 
non-Markovian features, that is revivals after dark periods, already in absence of coupled cavities, as 
shown by the black solid curve for JA =  JB =  0. Of course, in this case the entanglement eventually decays 
to zero. On the contrary, by adjusting suitable nonzero values of the local cavity couplings a considerable 
amount of entanglement can be trapped. As a peculiar qualitative dynamical feature, we highlight that 
the entanglement can revive and then be frozen after a finite dark period time of complete disappearance 
(e.g., see the inset of Fig. 8(b), for the short-time dynamics with = ΓJ 2A , = ΓJ 3B  and also = = ΓJ J 3A B ). 
We finally point out that the the amount of preserved entanglement depends on the choice of the initial 
state (i.e., on the initial amount of entanglement) of the two qubits. As displayed in Fig. 9, the less initial 
entanglement, the less entanglement is in general maintained in the ideal case of Γ = Γ = 0A B2 2 . However, 
since there is not a direct proportionality between the evolved concurrence CAB( )t  and its initial value 
CAB ( )0 , the maximal values of concurrence do not exactly appear at α = /1 2  (corresponding to max-
imal initial entanglement) at any time in the evolution, as instead one could expect. It can be then 
observed that nonzero entanglement trapping is achieved for α >  0.2.

Experimental paramaters.  We conclude our study by discussing the experimental feasibility of the 
cavity-based architecture here proposed for the two-qubit assembly. Due to its cavity quantum electro-
dynamics characteristics, our engineered environment finds its natural realization in the well-established 
framework of circuit quantum electrodynamics (cQED) with transmon qubits and coplanar waveguide 
cavities64,86–89. The entangled qubits can be initialized by using the standard technique of a transmission-line 

Figure 8.  The dynamics of concurrence for different coupling strengths J- and JB  in the presence of ideal 
coupled cavities C2A and C2B with Γ = Γ = 0A B2 2  for (a) κ = . Γ0 2A , κ = . Γ0 3B  and (b) κ κ= = Γ2A B . The 
other parameters are chosen as α = /1 3, β = /2 3. The inset in (b) shows the short time dynamics of 
concurrence.

Figure 9.  The concurrence as a function of the two-qubit initial state parameter α and the scaled time Γt for 
κ = . Γ0 2A , κ = . Γ0 3B , = . ΓJ 0 5A , = ΓJB  and Γ = Γ = 0A B2 2 . The parameter α quantifies the initial 
entanglement according to the concurrence CAB  αβ α α( ) = = −0 2 2 1 2 .
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resonator as a quantum bus64,90. Initial Bell-like states as the one we have considered here can be cur-
rently prepared with very high fidelity90. Considering up-to-date experimental parameters86–89 applied to 
our global system of Fig. 6, the average photon decay rate for the cavity C1j (j =  A, B) containing the qubit 
is Γ ∈ ,[1 MHz 10 MHz]j1 , while the average photon lifetime for the high quality factor cavity C2j is 
τ μ≈ 55 s2

87, which implies Γ ≈ ∈  Γ , Γ 
− − −10 MHz 10 10j j j2

2 2
1

3
1 . The qubit-cavity interaction inten-

sity κj and the cavity-cavity coupling strength Jj are usually of the same order of magnitude, with typical 
values κ ∈ , =  . Γ , Γ ~ J [1 MHz 100 MHz] 0 1 10j j j j1 1 . The typical cavity frequency is ω π×~2 10 GHz64 
while the qubit transition frequency can be arbitrarily adjusted in order to be resonant with the cavity 
frequency. The above experimental parameters put our system under the condition κ ωj  which guar-
antees the validity of the rotating wave approximation (RWA) for the qubit-cavity interaction here con-
sidered in the Hamiltonian of Eq. (1).

In order to assess the extent of entanglement preservation expected under these experimental 
conditions, we can analyze the concurrence evolution under the same parameters of Fig. 8(a) for κj, Jj, 
which are already within the experimental values, but with Γ = Γ = Γ = Γ, Γ− −10 10A B2 2 2

2 3  instead  
of being zero (ideal case), where Γ = Γ = Γ ∈ ,[1 MHz 10 MHz]A B1 1 . The natural estimated disap
pearance time of entanglement in absence of coupling between the cavities ( = = )J J 0A B  is 

μ= . /Γ ∈ , .t 6 69 [669 ns 6 69 s], as seen from Fig. 8(a). When considering the experimental achievable 
decay rates for the cavities C2j, we find that the entanglement is expected to be preserved until times t* 
orders of magnitude longer than t, as shown in Table 1. In the case of higher quality factors for the cav-
ities C2j, such that the photon decay rate is of the order of Γ = Γ−102

4 , the entanglement can last even 
until the order of the seconds. These results provide a clear evidence of the practical powerful of our 
simple two-qubit architecture in significantly extending quantum entanglement lifetime for the imple-
mentation of given entanglement-based quantum tasks and algorithms14,90–92.

It is worth to mention that nowadays cQED technologies are also able to create a qubit-cavity coupling 
strength comparable to the cavity frequency, thus entering the so-called ultra-strong coupling regime93. 
In that case the RWA is to be relaxed and the counter-rotating terms in the qubit-cavity interaction 
have to be taken into account. According to known results for the single qubit evolution beyond the 
RWA94, it appears that the main effect of the counter-rotating terms in the Rabi Hamiltonian is the pho-
ton creation from vacuum under dephasing noise, which in turns induces a bit-flip error in the qubit 
evolution. This photon creation would be instead suppressed in the presence of dissipative (damping) 
mechanisms94. Since our cavity-based architecture is subject to amplitude damping noise, the qualitative 
long-time dynamics of quantum coherence and thus of entanglement are expected not to be significantly 
modified with respect to the case when RWA is retained. These argumentations stimulate a detailed study 
of the performance of our proposed architecture under the ultra-strong coupling regime out of RWA, to 
be addressed elsewhere.

Discussion
In this work, we have analyzed the possibility to manipulate and maintain quantum coherence and entan-
glement of quantum systems by means of a simple yet effective cavity-based engineered environment. In 
particular, we have seen how an environmental architecture made of two coupled lossy cavities enables 
a switch between Markovian and non-Markovian regimes for the dynamics of a qubit (artificial atom) 
embedded in one of the cavity. This feature possesses an intrinsic interest in the context of controlling 
memory effects of open quantum systems. Moreover, if the cavity without qubit has a small photon 
leakage with respect to the other one, qubit coherence can be efficiently maintained.

We mention that our cavity-based architecture for the single qubit can be viewed as the physical 
realization of a photonic band gap for the qubit95, inhibiting its spontaneous emission. This property, 
then extended to the case of two independent qubits locally subject to such an engineered environment, 
has allowed us to show that quantum entanglement can be robustly shielded from decay, reaching a 
steady-state entanglement in the limit of perfect cavities. The emergence of this steady-state entangle-
ment within our proposed architecture confirms the mechanism of entanglement preservation when 
the qubit-environment interaction is dissipative: namely, the simultaneous existence of a bound state 
between the qubit and its local environment and of a non-Markovian dynamics for the qubit40. We 

Γ2/Γ JA/Γ = JB/Γ = 0.5 JA/Γ = 0.5, JB/Γ = 1

10−2 t* =  454/Γ  ∈  [45.4 μs, 454 μs] t* =  974/Γ  ∈  [97.4 μs, 974 μs]

10−3 t* =  4481/Γ  ∈  [448 μs, 4.48 ms] t* =  9686/Γ  ∈  [0.967 ms, 9.67 ms]

Table 1.   Estimates of the experimental entanglement lifetimes t* for different values of the second 
cavities decay rates Γ2 and the local cavity couplings JA, JB. These values are to be compared with the 
natural entanglement lifetime without cavity coupling, μ∈ , .t [669ns 6 69 s]. The reference unit 
Γ ∈ ,[1MHz 10MHz].
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remark that this condition is here shown to be efficiently approximated within current experimental 
parameters such as to maintain a substantial fraction of the entanglement initially shared between the 
qubits during the evolution. Moreover, we highlight that this goal is achieved even if the local reservoir 
(cavity) embedding the qubit is memoryless, thanks to the exploitation of an additional good-quality 
cavity suitably coupled to the first one. Specifically, we have found that, by suitably adjusting the control 
parameter constituted by this local cavity coupling, the entanglement between the separated qubits can 
be exploited for times orders of magnitude longer than the natural time of its disappearance in absence 
of the cavity coupling. These times are expected to be long enough to perform various quantum tasks14,90.

Our long-living quantum entanglement scheme, besides its simplicity, is straightforwardly extendable 
to many qubits, thus fulfilling the scalability requirement for complex quantum information and compu-
tation protocols. The fact that the qubits are independent and noninteracting also allows for the desirable 
individual operations on each constituent of a quantum hardware. The results of this work provide new 
insights regarding the control of the fundamental non-Markovian character of open quantum system 
dynamics and pave the way to further experimental developments towards the realization of devices able 
to preserve quantum resources.

Methods
Functions of the single qubit density matrix.  Let us denote with L−1   ( ) ( )L s t{ }  the inverse Laplace 
transform of L(s). Then, the functions ut and zt appearing in Eq. (7) are expressed as

= | | , = ( )/ ( ) ( ),−u z z F s G s t{ }t t t
2 1

where

ω ω

κ ω δ ω

ω ω ω

( ) = − − ( + + Γ )( + + Γ ),

( ) = ( + + Γ ) + + ( + )

× + ( + ) + ( + )Γ + Γ ( + + Γ ) . ( )

F s J s i s i

G s s i s i

J s i s i s i

4 2 2 2 2

2 2 2 [ ]

{4[ ] 2 2 2 } 11

2
1 2

2
2

2 2
2 1 2

Entanglement quantification by concurrence.  Entanglement for an arbitrary state ρAB of two 
qubits is quantified by concurrence3,85

ρ χ χ χ χ= ( ) = , − − − , ( )C C { }max 0 12AB AB 1 2 3 4

where χi ( = , …, )i 1 4  are the eigenvalues in decreasing order of the matrix ρ σ σ ρ σ σ( ⊗ ) ( ⊗ )⁎
AB y y AB y y , 

with σy denoting the second Pauli matrix and ρ⁎
AB corresponding to the complex conjugate of the 

two-qubit density matrix ρAB in the canonical computational basis , , ,{ 11 10 01 00 }.
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