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Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction
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We describe an apparatus designed to make nondemolition measurements on a Bose-Einstein condensate
trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an
optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can
allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells
and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation
strategies for the inference of the key parameters defining the evolution of the atomic system and based on
measurements performed on the cavity field. This would enable de facto Hamiltonian diagnosis via a highly
controllable quantum probe.
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The knowledge of the parameters entering the Hamiltonian
of a given system is fundamental for a variety of tasks, from
the formulation of accurate predictions on the behavior of
the system to quantum-state preparation and manipulation
aimed at the achievement of an information processing goal.
It is thus crucial to have the best possible characterization of
the key parameters entering the Hamiltonian of the system
in which we would be interested, possibly in a weakly
disturbing way for the dynamics that we intend to implement.
This is even more relevant for systems of difficult direct
addressability or endowed with many mutually interacting
degrees of freedom. This situation is very well embodied
by intracavity atomic systems, whose potential for numerous
applications of quantum information processing and quantum
simulation has been affirmed by a series of ground-breaking
experiments performed in recent years [1,2]. In general, the
determination of the features of a given model in these contexts
requires measurements that are strongly disruptive for the
fragile state of the system. A way around this problem is
provided by the implementation of quantum nondemolition
measurements [3], which can be technically demanding.

In this respect, the approach based on the use of quantum
probes of quantum evolutions, where a fully controllable
probing device is coupled to the system of interest and
subsequently measured to extract the relevant information, is
very promising as it allows for the implementation of weakly
disruptive strategies by means of indirect interrogation [4].
Moreover, such an approach is prone to the application of
sophisticated techniques for parameter estimation that aim
at determining the best preparation and measurement of the
probe and are explicitly designed to achieve the best possible
accuracy of estimation allowed by classical and quantum
mechanics [5].

In this paper, we move along these interesting lines and
propose the use of quantum estimation techniques (QETs)
to determine the crucial parameters entering a system con-
sisting of a cold atomic ensemble loaded into a double-well
potential. Our probing system is embodied by the field of
an optical cavity that is locally coupled to only one well of

the potential, along the lines of earlier proposals [6,7]. We
show that strategies for both the sequential and simultaneous
estimation of both the tunneling rate and the on-site repulsion
energy can be successfully applied to gather key information
on the evolution that the atomic system would undergo.
Moreover, using matter-to-light mapping techniques, we find
the conditions that allow for the nondisruptive determination
of the population imbalance between the wells by means of
measurements performed only on the cavity field.

The remainder of this paper is organized as follows. In
Sec. I we introduce the system that we intend to study and
perform a basic analysis of its dynamical features. In Sec. II we
describe a simple matter-to-light map that allows us to infer the
population imbalance between the two wells under conditions
of weak cavity-atom coupling. Section III is devoted to the
description of the quantum estimation theory method that we
implement in order to infer the parameters of the Hamiltonian
model regulating the dynamics of the atom-loaded double well.
Finally, in Sec. IV we draw our conclusions and highlight a
few open directions of investigation.

I. THE MODEL

As shown in Fig. 1, our system consists of a Bose-Einstein
condensate of atoms trapped in a double-well potential. As
introduced above, one of the wells is accommodated within a
single-mode optical cavity pumped by an external laser field.
The frequency of the field ωC is assumed to be much different
than the atomic transition frequency, so that the excited state of
the atoms can be adiabatically eliminated from the dynamical
picture. In such a dispersive-interaction regime, the condensate
acts as a quantum dielectric medium for the cavity field,
modifying its refractive index.

The total system Hamiltonian is thus Ĥ = ĤA + ĤC + ĤI ,
where ĤC = ωCâ†â is the energy of the cavity field [we use
units such that � = 1 throughout this paper], ĤA is the energy
of the atomic system, and ĤI is the matter-light interaction
term. Using the so-called two-mode approximation (TMA)
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FIG. 1. (Color online) Schematic representation of the system. A
double-well potential loaded with ultracold atoms is coupled to an
optical cavity that accommodated only one of the wells. The cavity is
pumped by a classical field and the signal leaking out of the resonator
is measured to infer the key features of the double-well system.

introduced in Ref. [7], the atomic energy can be written as

ĤA = E0(ĉ†1ĉ1 + ĉ
†
2ĉ2) + κ(ĉ†2

1 ĉ2
1 + ĉ

†2
2 ĉ2

2) + R(ĉ†1ĉ2 + ĉ
†
2ĉ1).

(1)

Here ĉ1,2 are the bosonic operators that annihilate an atom
in its ground state in each of the two wells used to describe
the state of the atomic system in the double well within the
TMA, E0 is the energy of the single atom in one of the wells,
κ represents the strength of the interaction among the atoms
(about 4 × 10−34 J for a gas of 87Rb), and R is a tunneling
rate proportional to the probability that an atom goes from a
well to the other and dependent on the height of the barrier. All
these terms are responsible for the free evolution of the system,
which we are interested in monitoring. As discussed in Ref. [8],
based on the ratio between R and κ , several regimes can be
distinguished in the evolution of the atoms. For example, when
R � κ , the atoms undergo a regime known as self-trapping,
in which the tunneling is almost completely suppressed and
the difference in population between the wells stays almost
constant in time.

As for the cavity-atom interaction terms, in the regime
relevant to our work this takes the form [9]

ĤI = βĉ
†
1ĉ1â

†â, (2)

where β = 1
�a

∫
G(�r)|u1(�r)|2d3r , with �a representing the

detuning between the frequency of the atomic transition and
that of the cavity, u1(�r) the eigenfunction of the single-particle
Hamiltonian of the first well, and G(�r) is a factor proportional
to the intensity of the field inside the cavity. We note that
the interaction term is inversely proportional to the detuning
�a . This value can be tuned by modifying the frequency of
the cavity, varying its geometrical size or by working on the
atomic spectrum, making a convenient use of the Zeeman or
Stark effect. The interaction can thus be tuned over quite a large
range of values. Let us consider how the state of the cavity,
which evolves under the effect of the Hamiltonian ĤC + ĤI ,
is affected by the atomic dynamics.

By taking in consideration the leaky nature of any realistic
cavity, the overall dynamics of the system density matrix ρ

is well described by a master equation reading, in a frame
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FIG. 2. (Color online) Evolution of the Wigner function of a
high-Q cavity, interacting with a BEC in a double well, out of
the self-trapping regime. The parameter values are η = β = κ =
γ = R = 4 × 10−34 J and N = 30. The initial state is coherent with
amplitude α = 3.

rotating at the cavity-field frequency ωC , as

d

dt
ρ = − iβ[â†ân̂1,ρ] − i[ĤA,ρ] − γL(ρ), (3)

with L(ρ) = (1 + Nc)D[â,ρ] + NcD[â†,ρ] and D[Ô,ρ] =
([Ô†Ô,ρ̂]+/2 − Ôρ̂Ô†) for any operator Ô. Here γ is
the decay rate of the cavity, n̂1 = ĉ

†
1ĉ1, and [·,·]+ is the

anticommutator. At optical frequencies, the number of thermal
environmental photons Nc is very small. We can thus take
Nc � 0 and solve Eq. (3) numerically with the quantum jump
method [10].

An informative indicator of the resulting dynamics comes
from the study of the temporal behavior of the Wigner function
of the cavity field,

W (x,p) = 1

π2

∫
Tr[ρC(t)eyâ†−y∗â]e2i(yrp−yix)d2y, (4)

where ρC(t) = TrA[ρ(t)] is the reduced state of the cavity field
after tracing out the condensate’s degrees of freedom, (x,p) are
the phase-space variables, and y = yr + iyi . The results of our
simulations are shown in Fig. 2, where we have considered the
cavity field as initially prepared in a coherent state |α〉,α ∈ R
for simplicity, and the condensate in the Fock state |n1,n2〉.
We see that W (x,p) evolves into a ring with a radius of about
|α|. From different calculations, we found that this effect is
also visible if the gas is in the self-trapping regime. However,
in this case, the ring shape is reached in much longer times.
We can give a qualitative interpretation of this behavior. The
quantity βn̂1 is added to ωc, acting like an effective frequency
for the cavity. This frequency, however, is not a number but
an operator acting on the Hilbert space of the gas, which has a

033631-2



CAVITY-AIDED QUANTUM PARAMETER ESTIMATION IN . . . PHYSICAL REVIEW A 91, 033631 (2015)

discrete spectrum that is upper bounded by the total number of
atoms N . Each of these eigenvalues has a certain probability
|〈n1|ρ̂|n1〉|2 to occur, which depends on the state of the atoms
at that time. Each eigenvalue is effectively a frequency of the
cavity, and so it has the effect of making the initial Wigner
function rotate with angular speed βn1 + ωc. Hence, we can
say that the Wigner function for t > 0 is the superposition
of many Gaussians, which rotate at different speeds. At very
large times the cavity decays and the Wigner function is not
distinguishable from the one of the vacuum state. In a frame
rotating at speed ωc, the interaction with the atoms is the only
term responsible for the evolution, apart from the external
noise. In the high-Q limit, then, the cavity field is indeed very
sensitive to the interaction with the atoms, even at small β.

On the other hand, the interaction term obviously also
affects the dynamics of the atoms. However, it is natural to
think that all the effects of the interaction on the atoms are
less relevant if β is sufficiently small compared to κ and R. As
our purpose is to measure observables of the condensate in a
weakly invasive way, we want to operate in regimes in which
β � R,k. We use this assumption in the next section.

II. MATTER-TO-LIGHT MAPPING TO INFER THE
POPULATION IMBALANCE

In this regime, measurements of the transmitted or scattered
light can then be used to implement a quantum nondemolition
measurement of the state of the condensate [11]. In this spirit,
here we illustrate a scheme in which the dispersive coupling of
an atomic condensate trapped in a double-well potential is used
to perform a weak measurement of the number of atoms—and
of their fluctuations—trapped in the potential.

In order to establish the formal link between the cavity-
field operators to the atomic ones, we consider the cavity as
pumped by an external coherent field at frequency ωp, so that
an extra term of the form ĤP = η(â†e−iωpt + H.c.) (with η the
cavity-pump interaction strength) is added to the Hamiltonian
model Ĥ . Moving to a frame rotating at the frequency of the
pump, the dynamics of the cavity field is effectively captured
by considering the Langevin equation,

∂t â = −i(�C + βn̂1)â + √
γ âin(t) − γ

2
â(t) + η1̂, (5)

where �C = ωC − ωp is the detuning between the pump and
the cavity, γ is the single-photon damping rate of the cavity,
and âin(t) is the annihilation operator describing input noise
to the cavity. We assume γ to be so large that the cavity field
reaches a steady state in a time that is much shorter than the
evolution of the atomic system and the typical time scale β−1

of the cavity-atom interaction. If so, the system will be in its
steady state after a time of the order of γ −1. By setting ∂t â = 0
in Eq. (5) and solving with respect to â, we get

â = η1̂ + √
γ âin(t)

iβn̂1 + γ /2
. (6)

We also assume that the pump is resonant with the cavity,
�C = 0 (this assumption is not essential, but it greatly
simplifies the results). We already assumed β to be small and
γ to be large. We now also request βN � γ and we expand

the ratio up to the second order in 2βn̂1/γ to get

â = 2η + 2
√

γ âin(t)

γ

(
1̂ − 2iβn̂1

γ
− 4β2n̂2

1

γ 2

)
. (7)

The cavity quadrature operators are then

P̂ =−4
√

2ηβ

γ 2
n̂1+ 2√

γ

[
P̂in(t)

(
1− 4β2n̂2

1

γ 2

)
− X̂in

2βn̂1

γ

]
,

(8)

and

X̂ = 2
√

2η

γ

(
1 − 4β2

γ 2
n̂1

)

+ 2√
γ

[
X̂in(t)

(
1 − 4β2n̂2

1

γ 2

)
+ P̂in

2βn̂1

γ

]
. (9)

These quantities can be measured by homodyne measurements
of the output field. If we assume white noise entering the cavity
(i.e., a zero-mean, �-correlated field), from the last relations
we obtain

〈P̂ 〉=−2
√

2η

γ

(
2β〈n̂1〉

γ

)
, 〈X̂〉= 2

√
2η

γ

(
1 − 4β2

〈
n̂2

1

〉
γ 2

)
.

(10)

In order to get these results we have considered no correlations
between the input field and the atoms. By inverting Eq. (10),
we get a relation for the number of atoms in the first well,

〈n̂1〉 = − γ 2

4
√

2βη
〈P̂ 〉. (11)

Using the second of Eqs. (10) we obtain

〈
n̂2

1

〉 = γ 3

8
√

2β2η

(
2
√

2η

γ
− 〈X̂〉

)
. (12)

The last two equations give a way to determine the average
number of atoms and its variance, through measurements of
the mean value of the quadrature operators of the output field.
In order to make these two equations describe the dynamics of
the condensate, we require

γ 
 (βN,κN,R). (13)

Furthermore, we want that such measurement does not perturb
the atoms strongly. If we add the assumption

β〈â†â(0)〉 � κN,R, (14)

we expect the free dynamics of the atoms to be predominant. To
verify the validity of such results, we solve Eq. (3) numerically
to track the system’s dynamics and build a suitable benchmark.
Figures 3 show the results of such simulations. We see that,
after a transient, the field follows closely the evolution of
the atoms, whose dynamics is not significantly different from
the free one, which certifies the weakly disturbing nature of the
probing mechanism at hand. Quite evidently, the validity of
such adiabatic following holds true regardless of the conditions
of the atomic evolution. In fact, while panels (a) and (b)
address the case of a tunneling rate comparable with the
atomic self-interaction energy, panels (c) and (d) display the
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FIG. 3. (Color online) Time-dependence of 〈n̂1〉 [panels (a) and (c)] and 〈n̂2
1〉 [panels (b) and (d)]. The solid red line represents their

numerical evolution, while the blue dashed lines show the results of numerical estimations obtained using Eqs. (11) and (12), and the
parameters N = 30,η = κ � 4 × 10−34 J, γ /κ = 500, β/κ = 1/16, which are valid for a system of 87Rb atoms. In panels (a) and (b) we have
used a value of the tunneling rate comparable to the self-interaction energy (R/κ = 1), while panels (c) and (d) are for a tunneling dominated
situation (R/κ = 30).

results valid for a tunneling-dominated regime (R = 30κ).
A feature that is common to all of the simulations that we
have produced is the small time delay between the actual
dynamics of (〈n̂1〉,〈n̂2

1〉) and their estimations achieved through
the light-matter mapping. This is not a numerical artifact but
actually describes the fact that the cavity needs to reach a
dynamical steady state in order to adapt to the dynamics of the
atoms. In fact, the time delay of the red curves with respect to
the blue ones in Fig. 3 is of the order of γ −1.

Finally, we discuss the generality of the method just
described. We want this procedure to be valid for any initial
state. To estimate the discrepancy between the measured value
〈n̂1〉c and the real one, we can use the parameter

ξm = 1

t1 − t0

∫ t1

t0

|〈n̂1〉c − 〈n̂1〉|dt, (15)

while, for the variance,

ξq = 1

t1 − t0

∫ t1

t0

∣∣〈n̂2
1

〉 − 〈
n̂2

1

〉
c

∣∣dt, (16)

where t0 and t1 are both times after the transient. In Figs. 4
and 5 we show histograms displaying the distribution of the
values achieved by ξm,q when 100 random initial states of the

atomic system are prepared. Such atomic states are built as
|ri〉 = ∑N

n=0 ci
n|n,N − n〉, with {ci

n} a set of random complex
numbers (such that

∑N
n=0 |ci

n|2 = 1) sampled uniformly for
i = 1, . . . ,100. We have considered both R = κ (cf. Fig. 4) and
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FIG. 4. (Color online) Distribution of values taken by the param-
eters ξm [panel (a)] and ξv [panel (b)] obtained for 100 randomly
generated initial states of the BEC. Here we have taken the parameters
used in panels (a) and (b) of Fig. 3. We have taken t0 = 0.07/κ and
t1 = 0.8/κ .
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FIG. 5. (Color online) Distribution of values taken by the param-
eters ξm [panel (a)] and ξv [panel (b)] obtained for 100 randomly
generated initial states of the BEC. Here we have taken the parameters
used in panels (c) and (d) of Fig. 3. We have taken t0 = 0.07/κ and
t1 = 0.8/κ .

the tunneling-dominated regime (cf. Fig. 5). These values lie
in a very narrow range with respect to the nominal values taken
by (〈n̂1〉,〈n̂2

1〉) (cf. Fig. 3), thus showing the weak dependence
of our results on the initial state of the system. We can thus
claim the general validity of our approach, regardless of the
dynamical conditions and the preparation of the system to
probe.

III. QET APPROACH: DETERMINING THE PARAMETERS
OF THE HAMILTONIAN

The approach described in the previous section relies on
the one-to-one mapping of the information encoded in the
atomic degrees of freedom into those of the probing cavity
field. However, our strategy is not flexible enough to allow
us to estimate other important parameters of the atomic
Hamiltonian. In particular, the dynamics of the population
imbalance between the wells is strongly dependent on the
actual value of the parameters entering the Hamiltonian. It is
thus interesting to determine precisely such values for a given
situation. In what follows, we intend to provide an analysis of
the precision with which the parameters of the Hamiltonian
could be determined experimentally. Our study relies on the
application of tools from (local) QET [12] to the system of a
driven cavity interacting with one of the wells of the atomic
Josephson junction.

In any estimation procedure the information about the
quantity of interest is inferred from some suitable measurement
performed on the system. Once the measurement has been
chosen, an estimator is needed, i.e., a function from the data
sample to the quantity of interest. Without specifying explicitly
the parameter that we intend to estimate, we now go through
a brief overview of the quantum parameter estimation theory
to define the context and tools of our analysis.

The variance Var(μ) of any unbiased estimator is lower
bounded, as stated by the Cramér-Rao inequality

Var(μ) � 1

MF (μ)
, (17)

with M the number of measurements employed in the estima-
tion and F (μ) the Fisher information relative to the parameter
μ. For measurements having a discrete set of outcomes, the

Fisher information is defined as

F (μ) =
∑

j

pj (∂μ ln pj )2 =
∑

j

|∂μpj |2
pj

, (18)

where pj represents the probability to get outcome j from a
measurement performed over the probe state 
(μ). On the
other hand, for a continuous distribution of measurement
outcomes, the above definition is changed by replacing the
sum with an integral and pj → p(x|μ) with p(x|μ), the
conditional distribution of obtaining the outcome x at a set
value of μ. Quantum mechanically, such probabilities are
calculated via the Born rule assuming the system at hand
is in a state ρ(μ) determined by a set value of μ. For the
case of a discrete-measurement spectrum, which is the one
on which we concentrate for the rest of this paper, we thus
have pj = Tr[ρ(μ)�̂j ], and the observable to be measured is
generally described by a positive operator valued measurement
(POVM) built as {�̂j : �̂j � 0,

∑
j �̂j = 1̂}. Introducing the

symmetric logarithmic derivative as the self-adjoint operator
that satisfies the relation [5]

∂μρ(μ) = 1
2 [L̂(μ)ρ(μ) + ρ(μ)L̂(μ)], (19)

and optimizing F (μ) over all possible quantum measure-
ments leads us to the quantum Fisher information H(μ) =
max{�̂j } F (μ), which can be cast into the form

H(μ) = Tr[ρ(μ)L̂2(μ)]. (20)

The quantum Fisher information is thus independent of the
specific measurement strategy and leads to the extension of
the Cramér-Rao bound to the quantum domain

Var(μ) � 1

MH(μ)
, (21)

which embodies the ultimate limit to the precision of the
estimate of μ. Optimal quantum measurements correspond to
POVMs whose F (μ) equals the quantum Fisher information.
Equation (19) is a Lyapunov matrix equation whose general
solution reads

L̂(μ) = 2
∫ ∞

0
dt e−ρ(μ)t ∂μρ(μ)eρ(μ)t

= 2
∑
n,m

〈ψm|∂μρ(μ)|ψn〉
ρn(μ) + ρm(μ)

|ψm〉 〈ψn| , (22)

where we have used the spectral decomposition of the density
matrix of the system ρ(μ) = ∑

n ρn(μ)|ψn〉〈ψn|. The quantum
Fisher information is correspondingly rewritten as [5]

H(μ) =
∑

p

[∂μρp(μ)]2

ρp(μ)
+ 2

∑
m
=n

σmn|〈ψm|∂μψn〉|2, (23)

with σnm = 2[ ρn(μ)−ρm(μ)
ρn(μ)+ρm(μ) ]

2. The first term in H(μ) is the
classical Fisher information of the distribution {ρn(μ)}, while
the second embodies the genuinely quantum part, which is
the focus of our attention from this point on. In order
to calculate such quantum contribution, we expand each
eigenstate |ψn〉 over the orthonormal basis of Fock states {|k〉}
as

|ψn〉 =
∑

k

ψnk|k〉, (24)
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so that Eq. (23) becomes H(μ) = HC(μ) + HQ(μ) with

HC(μ) =
∑

p

[∂μρp(μ)]2

ρp(μ)
and

HQ(μ) =
∑
m
=n

4ρn

∥∥∑
kk′ ∂μ

[∑
l ρl(μ)ψlkψ

∗
lk′

]
ψ∗

mkψnk′
∥∥2

(ρn + ρm)2
.

(25)
On the other hand, for a multiparameter scenario, i.e.,

a situation where the state of the system under scrutiny
depends on a set of parameters {μ1,μ2, . . . ,μd}, the formalism
introduced above can be restated with the introduction of the
parameter-specific symmetric logarithmic derivative

2∂μn
ρ(μ1,μ2, . . . ,μd ) = L̂μn

ρ + ρL̂μn
, (26)

from which it is possible to define the quantum Fisher
information matrix H with elements

Hnp = Tr

[
ρ(μ1,μ2, . . . ,μd )

L̂μn
L̂μp

+ L̂μp
L̂μn

2

]
. (27)

The quantum Cramér-Rao bound stated above is now replaced
by the multiparameter one that, in this paper, is considered to
be under the form∑

n

Var(μn) � 1

M
Tr[H−1]. (28)

As before, M is the number of measurements performed
on the state of the system. While the single-parameter
quantum Cramér-Rao bound is, in principle, always achievable
through the design of an optimal measurement strategy, the
multiparameter counterpart is not, in general [13].

We now apply the frameworks discussed above to the
problem of estimating the parameters of the Hamiltonian of
the atomic system through indirect measurements performed
on the field, which is hereafter considered as a “quantum
probe.” We implement both a multiparameter strategy and a
“sequential” estimation approach, where M measurements are
used to estimate the tunneling rate while a separate set of M

additional measurements are instrumental to the estimation of
the self-interaction strength.

In order to proceed along such lines, we need to determine
the state of the field after its interaction with the atomic
system in the double well. Although the accessible part of the
electromagnetic signal is what leaks out of the probing cavity,
considering that the outgoing field simply adds shot noise to
the estimation procedure, as it is straightforward to see by
considering standard cavity input-output relations. We thus
concentrate on the dynamics of the intracavity field, without
any loss of generality, and study the maximum precision
with which we can estimate the tunneling rate R or the
self-interaction rate κ . The dynamical model that we intend
to solve is thus

∂t ρ̃ = − i[ĤA + ĤI ,ρ̃] − i�C[â†â,ρ̃]

− iη[â† + â,ρ̃] − γD[â,ρ̃], (29)

with ρ̃ the density matrix of the system in a frame rotating at the
frequency of the pump. This equation is tackled by projecting it
onto the elements of a number-state basis of elements |n1,N −

n1,na〉. Here |n1〉 [|N − n1〉] is a state with n1 [N − n1] atoms
in the well coupled [not coupled] to the cavity, and |na〉 is a
similar state for the field. This allows us to get nested Bloch-
like equations that have then been solved numerically. By
considering the decomposition

ρ̃ =
∑

Cm1,ma

n1,na
|n1,N − n1,na〉 〈m1,N − m1,ma| , (30)

with the sum being extended over all values of the indices
and Cm1,ma

n1,na
= 〈m1,N − m1,ma|ρ̃|n1,N − n1,na〉, we get the

reduced field state (in the Schrödinger picture)

ρC =
∑

n1,na,ma

e−i(na−ma )ωptCn1,ma

n1,na
|na〉 〈ma| , (31)

which is then used to apply the quantum parameter estimation
framework introduced above.

Before attacking the problem of estimating both the key
parameters of the system’s Hamiltonian, namely R and κ , we
construct a useful benchmark by addressing a single-parameter
estimation problem where we fix one of such parameters and
evaluate the accuracy of estimation of the other one. This
study is reported in Fig. 6. Panel (a) shows the behavior of the
quantity �(κ) = ln[H−1(κ)/β2] at R = 0.15β, which gives
information on the value of the minimum variance associated
with the estimation of the self-interaction energy. While it
should be clear that the value of �(κ) depends on the instant
of time at which the estimation procedure is implemented, we
highlight the fact that different estimation performances might
be achieved as the actual value of κ is changed. We thus show
such parameter against the dimensionless evolution time βt

and the value taken by κ (in units of β). A similar analysis for
the case of the estimation of the tunneling rate R is reported
in Fig. 6(b), where we study �(R) = ln[H−1(R)/β2] in the
(βt,R/β) space at κ/β = 0.15. Only a very weak dependence
on the actual value taken by the parameter to be estimated is
displayed by �(μ) (μ = R,κ), which is instead very much
dependent on the actual time of the evolution. Short times,
associated with the transient part of the evolution of the system,
correspond to very large values of the variance and thus a
poor estimation. On the other hand, by approaching the time-
asymptotic regime, where the system reaches a quasisteady
state, an accurate estimation of any of the two parameters
is possible, in line with the expectations gathered from the
analysis based on our light-matter mapping.

We now address a somehow different question related
to the possibility to estimate both the tunneling and the
self-interaction rates and thus characterize completely the
nontrivial part of the Hamiltonian of the system. As anticipated
above, when dealing with such a multiparameter problem,
one can adopt either a parallel or a sequential approach.
The performance of the two approaches, in terms of uncer-
tainty associated with the estimation process, might differ
substantially. In order to gather a quantitative comparison,
in Fig. 7 we plot the natural logarithm of the minimum
variance Var(μ) achieved in the process of estimating κ

and R for, respectively, the multiparameter strategy and the
sequential strategy. References [14] have discussed efficient
ways for the estimation of the parameters of a generic
quadratic Hamiltonian for two bosonic modes. For the mul-
tiparameter (sequential) strategy, such variance is determined
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FIG. 6. (Color online) (a) Single-parameter estimation of the self-interaction rate κ: We plot the single-parameter quantity �(κ) =
ln[H−1(κ)/β2] at a set value of the tunneling rate R/β = 0.5 against the evolution time and the actual self-interaction energy κ . In panel (b) we
plot �(R) = ln[H−1(R)/β2] against R and βt at κ/β = 0.5. In both panels we have taken ωa/β = 0.1, ωc/β = 0.1, ωp/β = 0.1, η/β = 0.1,
and γ /β = 1.

by the quantity �mp(R,κ) = ln{[H−1(R) + H−1(κ)]/(2β2)}
(�sq(R,κ) = ln{[H−1(R) + H−1(κ)]/β2}). The factor 2 in-
troduced in �mp(R,κ) is necessary to compare fairly with
�se(R,κ).

The dynamical nature of the problem that we are addressing,
then makes the study quite rich and complex. In light of what
we have found through the analysis of the single-parameter
estimation process, our study (not reported here) shows that
both �mp(R,κ) and �se(R,κ) change dynamically, providing
smaller uncertainties at larger evolution times. Therefore, in
order to minimize the effects of the transient dynamics, we
decide to focus on the long-time limit and take βt = 10 in
all of the quantitative studies presented here. Figure 7 is well
representative of the results that we have gathered, encom-
passing both the dynamical regimes that we have addressed
throughout our study, i.e., the case of R ∼ κ and the tunneling-
dominated configuration. Inspection of Fig. 7 reveals that both
the multiparameter and sequential approaches give rise to a
rather rich behavior of the minimum variance associated with

the parameters being estimated. The parameters entering our
simulations should be chosen properly, as the sensitivity of the
estimation indeed strongly depends on our working point.

In general, the best option between the sequential and
multiparameter approach depends strongly on the values of
κ and R that we intend to estimate. While Fig. 8(a) illustrates
a case where a multiparameter estimation strategy is almost
always inferior to the sequential approach, panel (b) explores
a working point where this is not always the case, thus
making any general prediction very difficult. However, we
can abandon such a “point-by-point” analysis in favor of
an “integrated” evaluation of the estimation performance.
Our line of thought would be the following: In a given
estimation problem, it is unlikely to be completely ignorant
of the order of magnitude taken by the parameter that we
intend to determine. Differently, it is reasonable to expect that
preavailable information (for instance, on the actual working
conditions under which an experiment would be run) could be
used to gauge the plausible range of values that it could take.
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FIG. 7. (Color online) (a) Multiparameter estimation approach. (b) Sequential estimation approach. In both panels we have used the
parameters γ /β = 1, η/β = 0.1, ωp/β = 0.1, ωc/β = 0.1, ωa/β = 0.1. The evolution time has been set at t = 10/β and we have considered
a two-atom initial state with mode 1 initially fully populated and an empty cavity.
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FIG. 8. (Color online) Multiparameter vs sequential estimation approach. We compare �mp(R,κ) and �se(R,κ) in various parameter
regimes. In panel (a) we plot the two figures of merit at R/β = 0.15 and investigate the estimation performance through the two strategies as
the value of κ is changed. Panel (b) displays a similar comparison performed against the tunneling rate R at κ/β = 0.15. The straight lines
(�̄se, �̄mp) show the average of the two figures of merit over the range of values taken by κ [panel (a)] and R [panel (b)]. In both panels we have
taken γ /β = 1, η/β = 0.1, ωp/β = 0.1, ωc/β = 0.1, and ωa/β = 0.1. The evolution time has been set at t = 10/β and we have considered a
two-atom initial state with mode 1 initially fully populated and an empty cavity.

The question that we intend to address, in this case, would be
as follows: For unknown parameters {μj } lying in the regions
{�μj

}, which estimation strategy (either multiparameter or
sequential) is more advantageous, on average? In our case, a
quantitative assessment of such a problem could come from
the consideration of the average value taken by �mp(R,κ)
and �se(R,κ). This is what is shown by the dashed lines
in Fig. 8. Clearly, the consideration of such an average
figure of merit, although making us lose the details of the
point-to-point behavior of the minimum variances associated
with the estimates of R and κ , provides useful information: A
sequential approach turns out to be more advantageous than the
multiparameter strategy, which delivers a consistently larger
value of the associated minimum variance. Such a behavior is
not restricted to the working point used in Fig. 8 but turns out
to be consistent across the range of values considered in Fig. 7.

IV. CONCLUSIONS AND OUTLOOK

We have proposed a QET-based approach to the determi-
nation of key parameters in the dynamics of an atomic system
loaded into a two-well potential. Our technique makes use of a
local quantum probe embodied by the field of an optical cavity
that is coupled only to one of the wells of the potential. We
have shown that a variety of methods can be applied in order
to estimate crucial features of the dynamics of the double well,
from the population imbalance between the wells to the actual
on-site self interaction energy and tunneling rate characterizing
the Hamiltonian of the atoms loaded into the potential. By
evaluating the quantum Fisher information associated with the
specific problem at hand, we have been able to determine
the quantum-limited precision with which is possible to

estimate the parameters of the problem’s Hamiltonian in both
a sequential and a multiparameter estimation approach. While
the best strategy to follow in order to achieve such ideal
estimates appears to depend crucially on the actual dynamical
working point at hand, our work opens up a series of routes that
will be explored in our forthcoming work, from the estimate
of the temperature of the atoms loaded in the wells to the
explicit quantification of the rate at which the atomic system
equilibrates.
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