International Workshop on Membrane Distillation and Related Technologies

October 9 - 12, 2011

Auditorium Oscar Niemeyer
Ravello (SA) - Italy

Proceedings

organized by the
Institute on Membrane Technology (ITM-CNR)

in collaboration with the

Dept. of Chemical Engineering and Materials
University of Calabria

www.itm.dnr.it/Ravello2011.html
International Workshop on Membrane Distillation and Related Technologies

Auditorium Oscar Niemeyer, Ravello (SA) – Italy

October 9 - 12, 2011

Organizing Committee

Conference Organizer

Institute on Membrane Technology (ITM-CNR) at University of Calabria

Chairman

Enrico DRIOLI (ITALY)

Scientific Committee

Vincenzo ARCELLA (Italy)
Tony FANE (Australia)
Kamalesh SIRKAR (USA)
Young Moo LEE (Korea)
Maria TOMASZEWSKA (Poland)
Matthias WESSLING (Germany)

Organizing Committee

Enrico DRIOLI
Alessandra CRISCUOLI
Efrem CURCIO
Romeo DE LUCA
Gianluca DI PROFIO
Maria A. LIBERTI
Francesca MACEDONIO

Secretariat

Maria A. LIBERTI
Institute on Membrane Technology
Tel: +39 0984 492007
Fax: +39 0984 402103
E-mail: m.liberti@itm.cnr.it

Sponsors

Solvay Solexis Spa

www.solvaysolexis.com

Elsevier

www.elsevier.com

Wiley-VCH

www.wiley-vch.de

AIDIC Sud

www.aidic.it

ITM-CNR

www.itm.cnr.it

University of Calabria

www.unical.it

Dept. of Chemical Engineering and Materials - University of Calabria

dicem.unical.it
INDEX

Introduction .. 9
Program ... 10

Oral presentations .. 15

Fluoromaterials for membrane distillation ... 16
 Vincenzo Arcella, Aldo Sanguineti ... 16
Membrane distillation: developments in membranes, modules and applications 18
 Tony Fane, Rong Wang, Xing Yang, Hui Yu, Filicia Wicaksana, Guangzhi Zuo, Lei Shi, Shuwen
 Goh, Jinsong Zhang ... 18
Current advances in membrane distillation ... 20
 M. Khayet .. 20
Design of novel hydrophobic/hydrophilic composite membranes for desalination by membrane
 distillation ... 24
 Mohammed Rasool Qtaishat, Mohamad Khayet, Takeshi Matsuura 24
Direct contact membrane distillation: effects of membrane pore size distribution and support
 layer on mass transfer ... 27
 G.Y. Rao and A.E. Childress ... 27
The influence of scaling on the MD process performance ... 31
 Marek Gryta .. 31
Nano-structure of membrane materials: outcomes of the decade ... 35
 Yuri Yampolskii .. 35
Predictive calculation of the solubility of liquid and vapor solutes in glassy polymers with
 application to PV membranes .. 38
 Maria Grazia De Angelis and Giulio C. Sarti .. 38
Membrane condenser for the recovery of evaporated “waste” water from industrial processes __ 42
 E. Drioli, F. Macedonio, A. Brunetti, G. Barbieri ... 42
On spacers .. 46
 Matthias Wessling ... 46
Direct contact membrane distillation-based desalination: membranes, modules, scaling, cascades, operating conditions

Kamalesh K. Sirkar, Dhananjay Singh

Design analysis for membrane-based heat pump devices

Jason Woods, John Pellegrino, Jay Burch, and Eric Kozubal

Siral wound modules for membrane distillation: modelling, validation and module optimization

D. Winter, J. Koschikowski, D. Duever

Mathematic model for analysis of evaporation ratio under different conditions in DCMD

Stephen R. Gray, Jianhua Zhang, Jun-De Li, Mikel Duke, Noel Dow, Eddy Ostarcevic

Vacuum membrane distillation tests for purifying waters containing arsenic

Alessandra Criscuoli, Patrizia Bafaro, Enrico Drioli

Air gap membrane distillation and applications in water purification and desalination

Andrew R. Martin

Membrane distillation - an emerging technology for pure water production and draw solution recycle in forward osmosis processes

Tai-Shung Chung, May May Teoh, Kai Yu Wang, Felinia Edwie, Peng Wang and Gary Amy

Assessment of solar powered membrane distillation desalination systems

Rasha Saffarini, Edward Summers, Hassan Arafat, John Lienhard

Application of MD/chemical reactor in fertilizer industry

Maria Tomaszewska, Agnieszka Łapin

Applications of osmotic distillation in food and wine processing: the critical points, their weaknesses and the potentialities

Carlo Gostoli and Roberto Ferrarini

Seawater desalination with Memstill technology – a sustainable solution for the industry

Pieter Nijskens*, Brecht Cools*, Bart Kregersman*

Membrane distillation: solar and waste heat driven demonstration plants for desalination

A. Cipollina, J. Koschikowski, F. Gross, D. Pfeifle, M. Rolletschek, R. Schwantes

Evaluation of different strategies for the integration of VMD in a seawater desalination line

Corinne Cabassud, Stéphanie Laborie

Membrane contactors in liquid extraction and gas absorption: weddings, funerals and lessons learned

João Crespo

Membrane distillation in the dairy industry: process integration and membrane performance

Angela Hausmann, Peter Sanciolo, Todor Vasiljevic, Mike Weeks and Mikel Duke
Membrane emulsification to implement innovative production systems
Emma Piacentini, Rosalinda Mazzei, Enrico Drioli, Lidietta Giorno

Design and analysis of membrane based process intensification and hybrid processing options
Oscar Andrés Prado-Rubio, Philip Lutze, John Woodley and Rafiqul Gani

Membrane distillation - Experience in field applications and potentials
Martin Rolletschek, Marcel Wieghaus

An integrated Forward Osmosis – Nanofiltration – Membrane Distillation system for seawater desalination
E. Curcio, S. Osmane, G. Di Profio, A. Cassano, E. Drioli

Industrialized modules for MED Desalination with polymer surfaces
Wolfgang Heinzl, Sebastian Büttner, Götz Lange

Membrane crystallization for the direct formulation of crystalline bio-active molecules
Gianluca Di Profio, Efrem Curcio, Enrico Drioli

Approach for a combined Membrane Distillation-Crystallization (MDC) concept
Raymond Creusen, Jolanda van Medevoort, Mark Roelands, Alex van Renesse van Duivenbode

Vacuum membrane distillation: A new method for permeability measurement of hydrophobic membranes
Dao Thanh Duong, Jean-Pierre Mericq, Stéphanie Laborie, Corinne Cabassud*

Membrane distillation in zero liquid discharge in desalination
E. Drioli

Posters

Thermodynamic parameters of sorption in amorphous perfluorinated copolymers AFs below and above their glass transition temperature
N.A. Belov, A.V. Shashkin, A.P. Safronov, Yu.P. Yampolskii

Carbamazepine-saccharin cocrystals formulation from solvent mixtures by means of membrane crystallization technique
Antonella Caridi , Gianluca Di Profio , Efrem Curcio , Enrico Drioli

Athermal concentration of fruit juices by osmotic distillation: performance and impact on quality
Alfredo Cassano, Carmela Conidi, Enrico Drioli

A novel TLC based technique for temperature field investigation in MD channel
Paolo Pitò, Andrea Cipollina, Giorgio Micale, Michele Ciofalo
Concentration of red orange juice by osmotic distillation: effect of operating conditions on water transport

Carmela Conidi, Alfredo Cassano, Enrico Drioli

Effect of spinning parameters on the morphology and VMD performance of PVDF hollow fibers

Alberto Figoli, Silvia Simone, Alessandra Criscuoli, Maria Concetta Carnevale, Soliman Alfadel, Hamad Alromeah, Fahad Alshabonah, Omar A. Al-Harbi, Enrico Drioli

Coupling membrane separation and advanced catalysts: A novel process for the oxidative coupling of methane

Amit Chaudhari, Tymen Tiemersma, Fausto Gallucci, Martin van Sint Annaland

Solubility controlled permeation of hydrocarbons in novel highly permeable polymers

Yuri Grinevich, Ludmila Starannikova, Yuri Yampolskii

Membrane distillation bioreactor applied for alcohol production

Marek Gryta, Justyna Bastrzyk, Wirginia Tomczak

Experimental study on process of microwave vacuum membrane distillation

Zhongguang Ji, Jun Wang, Deyin Hou, Zhaokun Luan

Effects of solvent type on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes

L. García-Fernández, P. Arribas, M.C. García-Payo, M. Khayet

Direct contact membrane distillation of moroccan olive mill wastewater

A. El-Abbassi, H. Kiai, A. Hafidi, C. Vélez-Agudelo, M.C. García-Payo, M. Khayet

Air gap membrane distillation modelling and optimization: Artificial neural network and response surface methodology

M. Khayet, C. Cojocaru

Modeling and optimization of sweeping gas membrane distillation of sucrose aqueous solutions

M. Khayet, A. Baroudi, C. Cojocaru, M. Essalhi

Polyamide-6 pervaporation membranes for organic-organic separation

Wojciech Kujawski, Marta Meller, Radosław Kopeć

Preparation and Evaluation of Polypropylene Nano-composite Membrane

Shawqui Lahalih, Abeer Rashid, Ebtisam Ghloum, Huda Al-Jabli, Ali Abdul-Jaleel and Mohammad Al-Tabtabaei

Poly (ethersulfone) [PES] microspheres encapsulated with imidazolium and pyridinium based ionic liquids using rotating module setup

D. Shanthana Lakshmi, A. Figoli*, L. Giorno, E. Drioli
Preparation and properties of poly(vinylidene fluoride) membranes with super-hydrophobic surface
Xiaolong Lu, Chunrui Wu, Yue Jia, Xuan Wang, Huayan Chen 189

Solar energy assisted direct contact membrane distillation (DCMD) process for sustainable real seawater desalination
Il Shik Moon, Ke He, Ho Jung Hwang 192

Preparation and characterization of microporous of PEEK-WC membranes for gases dehydration
A. Figoli, S. Santoro, A. Brunetti, F. Macedonio, G. Barbieri, E. Drioli 198

The separation and concentration of whey using UF/MD process
Maria Tomaszewska, Lidia Białończyk 202

The separation and concentration of whey using UF/MD process
Maria Tomaszewska, Lidia Białończyk 202

Novel membrane distillation processes and process strengthen methods
Chunrui Wu, Yue Jia, Qijun Gao, Xuan Wang, Xiaolong Lu 206

Effect of oil/surfactant on MD process and performance study of novel modular vacuum-multi-effect-membrane-distillation (V-MEMD) system
Kui Zhao, Yogesh Singh, Htut Win, Godart Van Gendt, Wolfgang Heinzl, Rong Wang 210

A tool for modelling spacer-filled MD channels based on open source CFD code
Sharaf Al-Sharif1, Mohammad Albeirutty, Andrea Cipollina, and Giorgio Micale 213
A novel TLC based technique for temperature field investigation in MD channel

Paolo Pitò*, Andrea Cipollina*, Giorgio Micale*, Michele Ciofalo**
*Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica,
**Dipartimento dell’Energia,
Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
(andrea.cipollina@unipa.it)

Introduction
The importance of temperature polarisation phenomenon in the performance analysis of the Membrane Distillation (MD) process has been recently raised by several researchers. A number of studies have focused on the study of this phenomenon at a macroscopic scale looking at average values of temperature and fluxes [1-2], but none of them has presently investigated the spatial distribution of temperatures on the membrane surface, which could be a fundamental information for the choice of the best geometrical features of a spacer. Some CFD works have been presented in the literature [3] aiming at the local thermo-fluid dynamics characterisation of spacer filled channels, but no validation of model predictions with experimental information has been presented yet.

In the present work a novel experimental technique, based on the use of Thermo-chromic Liquid Crystals (TLCs), has been developed and used for the investigation of temperature distribution inside a spacer-filled MD channel.

Experimental
The experimental apparatus (Fig. 2) consisted in a double channel, entirely realised in plexiglass®, which simulated the presence of the hot and cold channel of a Direct Contact MD module. The membrane was substituted by a thin (1mm) polycarbonate sheet, which allowed conductive heat flux (thus simulating the conductive and convective heat fluxes across the hydrophobic membrane). Hot and cold streams temperatures were regulated by thermostatic buffers and monitored by a DAQ equipped with thermocouples T-type. Flow rate of the hot stream was measured by a digital magnetic flow meter, while for the cold stream a rotameter was used. A TLCs sheet (Hallcrest® R30C5W) was glued on the hot side of the polycarbonate surface in order to measure temperatures at the hot interface.

Three different spacers were tested. Relevant pictures are presented in Fig.1, while geometrical features are shown in Table 1, reporting the wire inclination with respect to the main flow direction, wires diameter, wires spacing, voidage degree and hydraulic diameter.

Table 1. List of geometric features of spacers in exam

<table>
<thead>
<tr>
<th>Spacer</th>
<th>h_{ch} [mm]</th>
<th>θ</th>
<th>d_{w1} [mm]</th>
<th>d_{w2} [mm]</th>
<th>l_{m1} [mm]</th>
<th>l_{m2} [mm]</th>
<th>Voidage ε</th>
<th>d_h [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenax-A</td>
<td>3</td>
<td>45°</td>
<td>2</td>
<td>1</td>
<td>5.2</td>
<td>4.4</td>
<td>0.63</td>
<td>1.53</td>
</tr>
<tr>
<td>Tenax-B</td>
<td>3</td>
<td>0°</td>
<td>2</td>
<td>1</td>
<td>5.2</td>
<td>4.4</td>
<td>0.63</td>
<td>1.53</td>
</tr>
<tr>
<td>Super-Tenax</td>
<td>5</td>
<td>45°</td>
<td>3.2</td>
<td>2.5</td>
<td>12</td>
<td>10.5</td>
<td>0.68</td>
<td>3.18</td>
</tr>
<tr>
<td>Diamond</td>
<td>3.5</td>
<td>45°</td>
<td>2</td>
<td>1.8</td>
<td>11</td>
<td>11</td>
<td>0.85</td>
<td>3.86</td>
</tr>
</tbody>
</table>
Temperature maps were recorded by a high resolution digital camera and then post-processed using the Matlab® Image Processing Toolbox. An in situ calibration (Fig.3) was performed in order to relate the Hue component of the coloured image to the measured temperature at the TLC surface. For each spacer, the hot-side flow rate was varied from 60 l/h to 160 l/h and about 25 pictures were acquired at a frequency of 0.2 Hz always monitoring the liquid temperature in both channels. Collected data was used to evaluate local temperature distribution and polarisation. Once bulk temperatures of hot and cold fluids and the cold-side heat transfer coefficient are known (assuming, in this case, a laminar regime in the cold channel), the hot-side heat transfer coefficient h_h can be derived from the measured temperature T_1 of the TLC sheet under the assumption of one-dimensional heat transfer, as suggested by Eq.(1), obtained by conveniently writing and arranging the equations for the heat flux within each part of the test-module:
\[h_h = \frac{T_i - T_c}{(T_h - T_i) \left(\frac{L_{TLC}}{\lambda_{TLC}} + \frac{L_{Pol}}{\lambda_{Pol}} + \frac{1}{h_c} \right)} \]

where \(T_h \) and \(T_c \) are the bulk temperatures of the hot and cold channel, \(T_i \) is the TLC active face temperature, \(L_{TLC} \) and \(L_{Pol} \) are the thicknesses and \(\lambda_{TLC} \) and \(\lambda_{Pol} \) are the thermal conductivities of the TLC and polycarbonate sheet respectively, and \(h_c \) is the heat transfer coefficient in the cold channel.

Finally all the information collected can be used also to estimate the local heat flux distribution on the wall surface simulating the membrane.

On the whole, the test section included a large number of repetitive elementary spacer cells (from 60 to 750 according to the spacer type investigated). Statistics were performed on the measured distributions in order to obtain a representative average unit cell, for which the average values of the above parameters were computed and their spatial distribution derived.

Figures 4.a-b show a typical test region, which contains 9 repetitive unit cells of a Tenax-A spacer, and the relevant temperature map obtained. Figures 6.c-d show the local heat transfer coefficient and local heat flux distributions, both averaged on the number of test regions considered in each image.

By analysing the images recorded with reference to the actual position of wires it is possible to identify different regions characterized by:

- Minimum temperature/heat transfer coefficient \((h_h<1500 \text{ W/m}^2\text{K} \text{ in Fig. 6c})\) in correspondence with the contact area between spacer and TLC sheet, where heat transfer by convection is inhibited by the physical presence of the spacer, allowing conductive heat transfer only;
- Medium-low temperature/heat transfer coefficient \((1500< h_h< 3000 \text{ W/m}^2\text{K} \text{ in Fig. 6c})\) downstream of oblique wires and, particularly, behind contact areas due to the presence of calm zones and low fluid velocity;
- High temperature/heat transfer coefficient \((h_h>3000 \text{ W/m}^2\text{K} \text{ in Fig. 6c})\) in the centre of each unit cell where mixing promotion is enhanced thanks to a significant presence of velocity components perpendicular to the conductive wall.

Comparison between spacers

Comparison among spacers has been done considering only the average values of heat transfer coefficients. Fig. 5 shows how the mean heat transfer coefficient varies with the hot water flow rate for the tested spacers (Super-Tenax spacer was tested with only one value of flow rate). As expected, higher \(h_h \) are reached when the flow rate is higher,
i.e. with higher velocity. Tenax-A and Diamond, both with oblique wires close to the conductive wall, seem to present higher h_i within the range analyzed, with respect to Tenax-B. This may be related to the fact that oblique wires better promote mixing inside the channel, although that is not in complete agreement with previous literature findings [3].

An important comparison can also be done by plotting the Nusselt number versus Reynolds number calculated on the basis of mean fluid speed and channel height, as shown in Fig. 6. Data are compared with the Nusselt number in an equivalent empty channel, and a value of 5.38 was calculated by analytically solving the heat transfer equation for a rectangular channel confined by an adiabatic wall on one side and a conductive wall on the other. All the spacers give rise to higher Nusselt numbers compared to the equivalent empty channel, thus confirming how the presence of the spacer enhances heat transfer by promoting mixing conditions. Even though mean heat transfer coefficient for Diamond and Tenax-A spacers are quite close to each other, Nusselt numbers for Diamond spacer are higher than for Tenax-A at all Reynolds numbers considered here. This can be explained by a larger thickness of the Diamond spacer compared to Tenax-A (3.5mm vs. 3.0mm), leading to a higher hydraulic diameter, which directly influences the Nusselt number estimation. For the same reason, the Super-Tenax spacer presents a high Nusselt number even if the corresponding mean heat transfer coefficient is quite low, due again to the larger thickness (5mm) of this spacer.

Conclusions
A space-resolved thermographic technique based on thermochromic liquid crystals (TLCs) was developed in order to estimate temperature-polarisation and local heat transfer coefficient distribution inside spacer-filled channels for Membrane Distillation modules. A purposely designed experimental apparatus was set-up and preliminary used for testing different spacer configurations. Raw images were recorded and post-processed using the Matlab® Image Processing Toolbox. The technique proved to be able to characterize the local distribution of temperatures on the membrane surface, heat transfer coefficients and heat fluxes and correlate them to geometrical features of each spacer.

Further investigations will be performed in order to fully characterize mixing and heat transfer phenomena promotion in spacer-filled channels for Membrane Distillation modules.

ACKNOWLEDGMENTS
This work has been carried out with the financial support of the MEDIRAS project within the EU-FP7 research programme (contract number TREN/FP7EN/218938).

References