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Abstract

Dynamic gene-regulatory networks are complex since the interaction patterns

between its components mean that it is impossible to study parts of the network

in separation. This holistic character of gene-regulatory networks poses a real

challenge to any type of modelling. Graphical models are a class of models that

connect the network with a conditional independence relationships between the

random variables. By interpreting the random variables as gene activities and the

conditional independence relationships as functional non-relatedness, graphical

models have been used to describe gene-regulatory networks. Whereas the

literature has been focused on static networks, most time-course experiments are

designed in order to tease out temporal changes in the underlying networks. It is

typically reasonable to assume that changes in genomic networks are few,

because biological systems tend to be stable.

We introduce a new model for estimating slowly changes in dynamic

gene-regulatory networks, which is suitable for high-dimensional data, e.g.

time-course genomic data. Our aim is to estimate a dynamically changing

genomic network based on temporal activity measurements of the genes in the

network. Our method is based on the penalized likelihood with `1-norm, that

penalizes conditional dependencies between genes as well as differences between

conditional independence elements across time points. We also present a the

heuristic search strategy to find optimal tuning parameters. We re-write the

penalized maximum likelihood problem into a standard convex optimization

problem subject to linear equality constraints. We show that our method

performs well in simulation studies. Finally, we apply the proposed model to a

time-course T-cell dataset.

Keywords: gene-regulatory networks; graphical models; L1 penalized inference
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1 Introduction

A single microarray experiment provides a snapshot of the expression of many genes

simulltaneously under a particular condition. Gene expression is a temporal pro-

cess, in which different genes are required and synthesized for different functions

and under different conditions. Even under stable conditions, due to the continu-

ous degradation of proteins, mRNA is transcribed continuously and new proteins

are generated. This process is highly regulated. In many cases, the expression pro-

gramme is initiated by the activation of a few transcription factors, which in turn

activate many other genes that react in response to the newly arisen conditions.

Transcription factors are proteins that bind to specific DNA sequences, thereby

controlling the flow of genetic information from DNA to mRNA. For example, when

cells are faced with a new external environment, such as starvation [1], infection [2]

or stress [3], they react by activating a particular expression program. Taking a

snapshot of the expression profile following a new condition can reveal some of the

genes that are specifically expressed under the new condition. However, in order to

discover the interaction between these genes, it is necessary to measure the genes

across time in a time-course expression experiment. These temporal measurements

potentially allow us to determine not only the stable state following a new condi-

tion, but also the gene interactions that were activated in order to arrive at this new

state. The biological and computational issues involved in designing and analyzing

gene expression data in general, and time-course expression data in particular, is

discussed in [4].

In this paper, we propose a graphical model for describing the temporal inter-

action patterns between genes. Graphical models explore conditional independence

relationships between random variables. They can be divide into directed graphical

models, e.g. Bayesian networks [5, 6], undirected graphical models, e.g. Gaussian

graphical models [7, 8] and mixed versions, such as chain graphical models [7].

Bayesian networks have been successfully used to describe certain types of gene-

regulatory networks [9]. However, Bayesian networks suffer two major limitations.

Firstly, they cannot be used to describe cyclic graphs. This rules out using them

for describing simultaneous feedback loops in gene regulatory networks. Secondly,

they perform poorly on sparse microarray data as shown by [10]. It is possible to

“unroll” cycles into spirals through time, so the first limitation can partially be be
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overcome [11–13]. Instead, we propose to model such cycles more directly as undi-

rected edges in our conditional independence graph. Furthermore, our method will

allow for “directed” edges between consecutive time points.

The class of Gaussian graphical models (GGM) have been particularly popu-

lar. The main advantage for GGMs is that the precision matrix, i.e. the inverse

of the covariance matrix, can be used to “read off” the conditional independence

relationships between the random variables. The literature on estimating the in-

verse covariance matrix goes back to [14], who also introduced hypothesis testing

approaches to determining whether particular elements of the inverse covariance

matrix are zero. The more zeroes in the inverse covariance matrix, the sparser the

underlying conditional independence graph.

Regulatory elements in genetic networks are highly structured. In order to guar-

antee an appropriate response to a particular change in the environment, most gene

interactions are highly specific. The detailed molecular structure of genes and gene

products are responsible for this level of specificity. Another biological requirement

is that gene regulation is fast in reacting to changes in the environment. Heat shocks

should almost instantaneously result in an adaptive response from the yeast cell.

From this point of view signals should be able to travel fast through the gene reg-

ulatory network: the network should have a small world property. Consequently,

most gene regulatory networks are sparse small-world graphs. If the expression of

the genes can be assumed to be normally distributed, then this means that most of

the elements in the precision matrix are equal to zero. A standard approach in sta-

tistical modelling to identify zeroes in the precision matrix is the backward stepwise

selection method, which starts by removing the least significant edges from a fully

connected graph, and continues removing edges until all remaining edges are signif-

icant according to individual partial correlation tests. A conservative simultaneous

testing procedure was proposed by [15]. However, [16] showed that this two-step

procedure, in which parameter estimation and model selection are done separately,

can lead to instability: small perturbations in the data can result in completely

different graph structures estimates [16].

[17] showed that `1 penalized likelihood is a sensible way to introduce sparse

solutions in a regression setting. The same idea can be used to estimate sparse

Gaussian graphical models, i.e. to induce zeroes in the estimated inverse covariance
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matrix. By penalizing the likelihood by a multiple of the `1-norm of the elements

of the inverse of the covariance matrix results into exact zeroes in the penalized

maximum likelihood estimate for large enough values of the multiple, which is an

additional tuning parameter. The larger the tuning parameter the more zeroes will

be estimated in the precision matrix. [18] introduced the `1 penalized Gaussian

graphical model. [19] showed that it is possible to select the tuning parameter

in such a way as to control the familywise error rate. [20] introduced a fast and

efficient algorithm to calculate the so-called graphical lasso solution. The graphical

lasso estimates a single static network for a single condition. When there are multiple

conditions, it may be sensible to presuppose a roughly common structure and jointly

estimate common links across the graphs. [21] proposed a method that links the

estimation of several graphical models through a hierarchical penalty. This graphical

model leads to improvements compared to fitting separate models, since it borrows

strength from other related graphs. Recently, [22] proposed a factorially coloured

graph to estimate a common dynamic structure.

In this paper we propose a model to estimate slowly changing dynamic graphs

using the `1-regularization framework. The main idea is to impose `1-norm to pe-

nalize not only the inverse covariance matrix, but also changes in the inverse covari-

ance matrix over time. The new method is suitable for studying high-dimensional

time-course gene activity data. In order to solve the penalized maximum likelihood

problem, we take advantage of an efficient solver developed by [23] to solve the opti-

mization problem with linear constraints. We propose a heuristic search algorithm

to fix the tuning parameters, that regulate sparsity and dynamic changes in the

networks.

The rest of this paper is organized as follows. Next section gives a description of

our motivating example and a brief overview of Gaussian graphical models. In Sec-

tion 3, we describe the slowly changing dynamic network model and its estimation.

In Section 4, we show the results of a simulation study and apply our method to

the time-course T-cell dataset. Finally, we discuss the advantages of our method

and point out further directions for development.
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2 Motivation: T-cell activation

T-cells are a white blood cell that play a central role in cell-mediated immunity.

Activation of T-cells occurs through the simultaneous engagement of the T-cell re-

ceptor and a costimulatory molecule, like CD28 or ICOS. Both are required for

the production of an immune response. The signalling pathways downstream from

activation usually engages the PI3K pathway and recruiting PH domain containing

signaling molecules, like PDK1, that are essential for the activation of PKCtheta,

and eventual IL-2 production. Although certain things are known about the struc-

ture of the T-cell pathway, its timing and its precise structure are still unknown.

Two cDNA microarray experiments were performed to collect gene expression

levels for analyzing T-cell activation. Human T-cells coming from the cell line

Jakart were cultured in a laboratory. When the culture reached a consistency of

106 cells/ml, the cells were treated with two treatments, the calcium ionosphere

and the PKC activator phrorbolester PMA. This stimulation of the T-cells resulted

in their activation. Gene expression levels for 88 genes were collected across 10 time

points: the first one just before T-cell activation, at a nominal time-point 0, and 9

time points at 2, 4, 6, 8, 18, 24, 32, 48, 72 hours after T-cell activation. In the first

experiment the microarray was divided such that 34 sub-arrays were obtained. Each

of these 34 sub-arrays contained the strands of the 88 genes under investigation.

Strands are the complementary bases for the rRNA, which is the single-stranded

transcribed copy of the DNA. In the second microarray experiment the microarray

was dived into 10 sub-arrays. Each of these 10 sub-arrays contained the strands of

the 88 genes under investigation. Both microarray experiments used ten different

slides to collect the ten temporal measurements. The experiment is described in

detail in [24].

Two further steps were conducted by [24] to obtain a set of genes that were

highly expressed and normalized across the two microarray experiments. Firstly,

genes with high variability between the two microarryes and within the same time

point were removed. No further information is available about the minimum level

of reproducibility they adopted. According to [24], thirty-one genes were to be

removed since they did not show enough reproducibility. Secondly, normalization

methods were applied to remove systematic variation due to experimental artifacts.

The normalization method used is described in [25].
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At this point we assume that the 44 sub-array replicates are independent samples

and that the temporal replicates across these sub-arrays are functionally dependent

replicates. These two assumptions result in a dataset of 44 independent replicates

across 57 genes and 10 time points.

3 Methods

In this section, we describe the model that we adopt in order to study the under-

lying time-varying genomic network for the T-cell data. We argue that time-course

datasets should be analyzed in a way, that is sensitive to the underlying biology.

If one does not use a model that is able to describe a time-varying network, there

would not have been a point in performing a time-course experiment. The bioin-

formatic tools should be adjusted to the needs of the biologist, who wants to infer

particular aspects of the system. In this section, we first introduce a general graph-

ical model. Secondly, we extend this model to the slowly changing graphical lasso

model. Finally, we describe the computational details of performing penalized max-

imum likelihood.

3.1 Gaussian graphical model

A graphical model is a tuple (G,P), where G = (V,E) is a graph with edges E

that describe the conditional independence relationships of probability measure

P on the vertices V . This means that one can use the graph G to read off the

functional relationships between the random variables associated with the vertices.

In particular, for any triple (A,B,S) of disjoint subsets of V such that S separates

A from B in G, we have that for Y ∼ P,

YA ⊥P YB | YS .

This so-called global Markov property in turn implies the local and pairwise Markov

properties.

In this paper, we will assume that the gene activity data Yi has a multivariate

normal distribution, i.e., Y ∼ Pµ,Σ, with mean µ and covariance matrix Σ. Together

with conditional independence graph G = (V,E), (G,Pµ,Σ) constitutes a Gaussian

graphical model or a covariance selection model [14]. This Gaussian graphical model

puts some conditions on the covariance matrix Σ. Let Θ = Σ−1 be the precision
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or concentration matrix, then Θ contains all conditional independence information

for the Gaussian graphical model. In particular,

θij = 0 ⇐⇒ (i, j) 6∈ E ⇐⇒ Yi ⊥ Yj |Y−{i,j}.

In fact, it is easy to show that given the set of Ec = {(i, j) | θij = 0}, a multivariate

normal probability distribution f(y) can be factorized as a product of functions f

which do not jointly depend to yi and yj when (i, j) ∈ Ec.

Given a set of n observations on the Gaussian graphical model, y1, . . . , yn, the

log-likelihood can be written as

l(µ,Θ) =
n

2

{
log |Θ| − Tr(SΘ)− (µ− ȳ)tΘ(µ− ȳ)

}
,

where S =
∑
k(yk − ȳ)(yk − ȳ)t/n is the sample covariance matrix. From the form

of the likelihood, it is clear that µ̂ = ȳ is the maximum likelihood estimate of µ

irrespective of the number of observations and the underlying graph G. For the

MLE for Θ, the story is more complicated. For a the complete graph, the maximum

likelihood estimate is not uniquely defined when the number of observations is less

than the number of vertices, n < |V |. This situation is really common for experi-

ments to infer genomic networks. On the other hand, a gene-regulatory network is

typically sparse, which means that the number of links is small with respect to the

possible number of connections. This may mean that Θ is estimable with respect

to the underlying true sparse graph, G. The only problem is that we don’t know

which sparse graph that is. Therefore, we impose an additional constraint,

Θ̂ρ = arg max
Θ

l(ȳ,Θ),

subject to

||Θ||1 :=

p−1∑
i=1

p∑
j=i+1

|θij | < ρ,

where typically we do not penalize the diagonal of the precision matrix. Sparsity

of the genomic network is not only our current best knowledge of system, but

coincidently it is also computational useful. Informally, a graph with few edges is

sparse, whereas a graph with many edges is dense. [26] formally defines a graph

G = (V,E) to be sparse, if |E| = O(|V |), where |V | is the number of vertices
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and |E| is the number of edges. A graph G is said to be dense, if |E| = O(|V |2).

By constraining the estimate to satisfy an `1 constraint, it is possible to combine

estimation of the precision matrix Θ with the estimation of the underlying graph

G.

3.2 Dynamic Gaussian graphical models

In this section, we introduce the concept of a dynamic Gaussian graphical model,

which extends the static Gaussian graphical model that was introduced in the

previous section. We first define a dynamic graph G = (V,E). Consider a set of

genes Γ = {γ1, . . . , γp} and a set of time points where these genes were observed

τ = {t1, . . . , tT }. We define the vertices of the dynamic graph as the Cartesian prod-

uct of the genes and time points, V = Γ × τ . Therefore, a vertex in this graph is

an element (γg, ts). The edges are some subset of the Cartesian product of vertices,

E ⊂ V ×V . An element of E will be written as {(γg, ts), (γg′ , ts′), stressing the fact

that it links one gene at a particular time point with another gene at another time

point. We will associate with each node of the graph a random variable Ygs, which

represents the amount of gene activity of gene g at time s.

With the above ingredients, we can now define a dynamic Gaussian graphical

model as the tuple (G,Pµ,Θ), where G = (Γ× τ, E) is a dynamic graph and Pµ,Σ is

a collection of multivariate Gaussian distributions with mean µ and inverse covari-

ance matrix Θ, that are compatible with the conditional independence relationships

described in the edge set E.

In principle, the ordering of the vertices is arbitrary. For interpretation purposes,

it helps to sort the vertices by time points and within time points by genes. This

results in a natural partition {(Nl, Sl) | l = 0, . . . , t − 1} of the inverse covariance
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matrix Θ,

Θ =



S1
0 N1

0 S1
1 N1

1 S1
2 N1

2 . . . . . .

S1
0 N1

1 S1
1 N1

2 S1
2 . . . . . .

S2
0 N2

0 S2
1 N2

1 S2
2 N2

2

S2
0 N2

1 S2
1 N2

2 S2
2

S3
0 N3

0 S3
1 N3

1

S3
0 N3

1 S3
1

. . .
...

. . .



,

where Sl represent the self-self interactions of the genes and Nl the network in-

teraction between the genes, both at time lag l. The self-self interactions therefore

represent the diagonal and subsequent off-diagonals of the matrix Θ, whereas Nl are

the diagonal blocks and subsequent off-diagonal blocks minus the diagonal. Each of

this subsets can be further partitioned, as indicated by Stl and N t
l . In these sub-

partitions, Stl is the self-self interaction of the genes at lag l and time t. Similarly,

N t
l are the network interactions at lag l and time t.

As the full dynamic Gaussian graphical model is still heavily parameterized with a

typically big pT × pT inverse covariance matrix, it makes sense to consider relevant

subclasses. It is for example not particularly likely that two genes are related across

a lot of time points, conditional on the intermediate states. We therefore define the

autoregressive Gaussian graphical model of order k (G,Pµ,Θ, AR(k)) as a

dynamic Gaussian graphical model (G,Pµ,Θ), for which

∀l > k : Nl = Sl = 0.

This model assumes that genes are conditionally uncorrelated for time lags larger

than k. In practice, we typically consider k = 1 or k = 2, which from an inter-

pretational point of view are most interesting. It is important to note that the

autoregressive Gaussian graphical model is directly associated to a particular net-

work structure G, which represents the conditional dependence graph of the random

variables associated with the vertices of the graph.
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3.3 Slowly changing dynamic graphical models

The main question this paper wants to answer is how to infer a meaningful biolog-

ical dynamic network from noisy data on the nodes, such as, e.g., RNA seq values

or protein levels. The two features we will assume particularly relevant of a gene

network are its sparsity and its persistence. DNA, RNA and proteins are very spe-

cific molecules that are capable of interacting, typically, with only a very limited

number of other molecules. This means that a genetic network is highly structured

and selective, and, therefore, characterized by a high degree of sparsity. As genetic

interactions depend very much on the basic molecular structure of its constitutive

parts, the potential to interact between various genes will typically not change over

time, unless particular regime changes in the cell affect its thermo-dynamic prop-

erties. Interactions in the dynamic network G therefore tend to persist over time.

We will show in this subsection how we can incorporate these two ideas, sparsity

and persistence of the network, in the interferential objective function by means of

a penalized likelihood function.

In the T-cell experiment, we assume we have 44 observations from the 57 × 10

dimensional autoregressive Gaussian graphical model of order k = 1. Not only do

we want to infer a sparse network G, but also one for which the underlying network

partitions Nl = {N1
l , . . . , N

t
l , . . . , N

T
l } (l = 0, 1) change only slowly across time t.

This requires an additional set of constraints in our maximum likelihood inference.

In general, we assume we have n observations y1, . . . , yn, each coming from the

autoregressive k dynamic Gaussian graphical model (G,Pµ,Θ, AR(k)).

Given two tuning parameters ρ1 and ρ2, we define a slowly changing dynamic

network as the solution of the penalized maximum likelihood of the autoregressive

k dynamic Gaussian graphical model,

l(µ,Θ) =
n

2

{
log |Θ| − Tr(SΘ)− (µ− ȳ)tΘ(µ− ȳ)

}
, (1)

subject to

||Θ||1 < ρ1 (2)
k∑
l=0

T−1∑
s=1

||Ns
l −Ns+1

l ||1 < ρ2 (3)

∀l > k : Nl = Sl = 0 (4)
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Whereas the first constraint induces a generally sparse dynamic network, the second

constraint penalizes large changes in the network coefficients, thereby inducing a

slowly changing or persistent network through time. Therefore, the penalty param-

eters are directly related to the zero structure of the estimate Θ̂ρ1,ρ2 and, therefore,

to the estimate of the dynamic genetic graph Ĝρ1,ρ2 .

Solving the above penalized maximization problem is an active field of research

in the optimization field. We use the log determinant proximal point approximation

method developed by [23]. Each constraint gets coded into a linear map. We consider

A(Θ) = ||Θ||1 associated with constraint (2), B(Θ) =
∑k
l=0

∑T−1
s=1 ||Ns

l − N
s+1
l ||1

associated with constraint (3) and Cl(Θ) = (Sl;Nl) associated with constraint (4).

This method introduces two sets of slack variables to deal with the two inequality

constraints. The constraint optimization problem (1) is now written as:

Θ̂ := argmin
Θ
{− log |Θ|+ Tr(SΘ) + λ1v

+ + λ1v
− + λ2w

+ + λ2w
−}

subject to A(Θ)− v+ + v− = 0

B(Θ)−w+ + w− = 0

Cl(Θ) = 0, l = 0, . . . , k

Θ � 0,v+,v−,w+,w− ≥ 0,

where λ1 and λ2 are functions of ρ1 and ρ2 respectively. In this format, the opti-

mization can be solved directly by LogDetPPA.

The non-negative tuning parameters λ1 and λ2 effectively determine the sparsity

and the stability through time of the network, respectively. Selecting these tuning

parameters is a form of model selection. Depending on the interests of the user,

which can be maximizing posterior model probability or minimizing prediction er-

ror, either a BIC-type criterion or an AIC-type criterion is proposed. We consider a

grid of values (λ1, λ2) and minimize information criterion scores such as AIC, AICc,

and BIC. Then we use stability selection to select a more stable graph [27].

Example: T-cell We consider a subset of the T-cell data to illustrate the per-

formance of the autoregressive Gaussian graphical model approach with a slowly

changing network penalty. Only 4 genes and 2 time points were considered. Table 1
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shows the estimated precision matrix, fixing the tuning parameters λ1 = 0.01 and

λ2 = 0.1. It can be seen that N1
0 is a network with three edges (1, 3), (1, 4), (2, 4),

which in the next time point N2
0 slowly changes to another network with edges

(1, 2), (1, 4), (2, 4). In section 4.3 we consider the full dataset.

4 Results

4.1 Comparison with other methods

In this section we compare the dynamic network inference method with other meth-

ods proposed in the literature to estimate networks. [28] suggest a procedure based

on large-scale hypothesis testing of partial correlations in combination with false

discovery rate cut-offs, implemented in the R-package GeneNet. [29] propose an em-

pirical bayes method for estimating biological networks from temporal microarray

data. Their method aims to infer a directed graphical model, a so-called Bayesian

network, that remains constant through time. This method is implemented in the

R-package ebdbNet . There is a whole class of methods based on the graphical lasso

[20]. Besides the original method, [22] proposed a factorial graphical lasso, imple-

mented in the sglasso R-package and [30] consider a sparse autoregressive network

inference method using undirected graphical models, implemented in the R-package

SparseTSCGM.

We simulate data from a network along six time-points that is affected by a

regime change between time points 3 and 4. Figure 1 shows the original networks,

interpreted as lag zero conditional independence graphs N0. We simulate n = 100

observations and report the results of the methods described above. Due to the

large number of links, GeneNet by default corrects for multiple testing, resulting in

a very sparse graph. In fact, it merely detects a seven edges throughout the whole

time-course, when correcting at the 0.9 local fdr rate. In Figure 2, we lowered the

local fdr to 0.5, which allows us to pick up additional edges, but clearly it lack

consistency across the various time points. Roughly the same results crystalize,

when applying separate graphical lassos to each of the time-points. The tuning

parameter is selected by using the RIC. Figure 3 shows that some structure of the

underlying graph has been recovered, but with disappointing consistency across

the time-points. Factorial graphical lasso, sparse TSCGM and ebdbNet all infer a

constant graph across time, which indeed captures some aspects of the underlying
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structure, but fails to detect the change point (cf. Figure 4). Although not perfect,

the slowly changing graphical model approach correctly borrows strength across the

6 time-points to more accurately infer the underlying graph and at the same time

to correctly detect the underlying changes in the dynamics (cf. Figure 5).

4.2 Simulation study

We perform a simulation study to show the performance of the autoregressive Gaus-

sian graphical model of order one. We consider four different scenarios with a varying

number of genes p ∈ {20, 40, 60, 80}, each with n = 50 observations across T = 3

time points. For each scenario we simulate 100 datasets from a multivariate normal

distribution with µ equal to zero and Σ equal to the inverse of a precision matrix

Θ. The structure of the graph slowly changes across time and observations are con-

ditionally independent for time lags greater than one. Note that in all four scenarios

the number of replicates n is fewer than the number of random variables pT .

Table 2 shows the average of false positive, false negative, false discovery, false

non-discovery rates as well as the average F1 score overr 100 simulations. We use

the corrected and normal AIC, as well as the BIC to select the tuning parameters in

the models. The corrected AIC adds an additional penalty to account for the small

number of observations. These results show that the slowly changing autoregressive

Gaussian graphical model is very reliable even with small numbers of observations

and that it can be used for real applications when few changes in different time

points are present using any type of model selection method.

4.3 Application to T-cell

In this subsection we apply an autoregressive Gaussian graphical model of order one

to the human T-cell dataset. We assume that genes which are two time points apart,

i.e. Ys,t and Ys,t+2, are conditional independent given the intervening observations.

This means that the edge set for networks at lag 2, i.e. N2, is an empty set. Figure

6 is obtained from the estimation procedure. The two upper graphs show the two

networks at time points 1 and 2, respectively. The bottom left figure, “Intersection,”

shows the large overlap between the two networks, induced by the significant tuning

parameter ρ2. On the other hand, the bottom right figure shows the changes between

these two time points. It shows, for example, that initially MCL1, a pro-survival

BCL2 family member, is a highly connected node in the T-cell network. It is known
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that SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation

and destruction [31]. This is probably why initially MCL1 loses connections to other

genes.

5 Conclusion

Many time-course genomic experiments are performed in order to discover certain

regime changes that may be taking place during that period. Under these circum-

stances, representing genomic interactions by means of a static graphs may be

misleading. Certainly, it would fail to detect any changes in the topology of the

network. We use a sparse dynamic graphical model to infer the underlying slowly

changing network. One of the major contributions is that this methodology is capa-

ble of providing fast inference about the dynamic network structure in moderately

large networks. Until now, even sparse static inference could be painstakingly slow

and would typically lack obvious interpretation. We applied the method to a human

t-cell dataset to study the developmental aspects of the sparse genomic interactions.

One result, backed up by recent research, is that MCL1 is targeted early on and

thereby loses its connections to the rest of the genomic network.

Once a graph has been estimated and changes have been evaluated, other ques-

tions on how to analyze time-evolution networks might be posed. Does the network

retain certain graph properties as it grows and evolves? Does the graph undergo

a phase transition, in which its behaviour suddenly changes? In answering these

questions it is of interest to have a diagnostic tool for tracking graph properties

and noting anomalies and graph characteristics of interest. For example, a useful

tool is ADAGE [32], which is a software package that analyzes the number of edges

over time, the number of nodes over time, the densification law, the eigenvalues

over increasing nodes, the size of the largest connected component, the number

of connected components versus nodes and time and the comparative sizes of the

connected components over time.
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Figures

Figure 1 A regime change between time-points 3 and 4. Data are simulated from a network

that is subject to a regime change between time-points 3 and 4.

Figure 2 GeneNet’s performance. GeneNet infers links by means of multiple testing. By lowering

the local fdr to 0.5, we recover some of the network structure, but consistency across the

time-points is absent.

Figure 3 Graphical lasso’s performance. Graphical lasso estimates a sparse network for each of

the time points separately. Although it recovers some of the network structure, there is little

consistency across the time-points.

Figure 4 Performance of Facorial Graphical lasso, Sparse TSCGM and ebdbNet. Facorial

Graphical lasso, Sparse TSCGM and ebdbNet each recover a constant network across the 6 time

points. It shows the general underlying structure of the network, but fails to detect the change

point.

Figure 5 Performance of the Slowly Changing Graphical model. The slowly changing graphical

model misses some of the timings of the changes, but correctly identifies the regime change and it

recovers the underlying structure of the changing network.

Figure 6 T-cell network change between t = 1 and t = 2. The lag zero network N0 for the

T-cell data with changes between time points t = 1 and t = 2.
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Tables

Table 1 Conditional covariance Θ̂ based on 44 replicates for 4 genes measured across 2 time points.

The tuning parameters λ1 and λ2 were fixed to 0.01 and 0.1, respectively.

Time 1 2

Gene ZNF CCN SIV SCY ZNF CCN SIV SCY

1

ZNF 1.24 0.00 -0.26 0.18 -0.22 -0.11 -0.11 -0.07

CCN - 1.49 0.00 -0.17 -0.18 -0.84 0.06 0.12

SIV - - 1.44 0.00 -0.15 0.08 -0.69 -0.01

SCY - - - 1.19 0.02 0.13 0.41 -0.10

2

ZNF - - - - 1.07 -0.02 0.00 0.12

CCN - - - - - 1.55 0.00 0.24

SIV - - - - - - 1.52 0.00

SCY - - - - - - - 1.08

Table 2 The average of performance of various model selection algorithms for the four simulation

scenarios using four model selection methods in term of the fraction of correctly estimated

link/non-links, i.e. false positives (FP), false negatives (FN), false discoveries (FD) and false

non-discoveries (FnD), as well as the F1 = (2− 2FN)/(2− FN + FP ) score, which measures the

overall average accuracy of recall and precision. The best scores are indicated by bold font.

p FP FN FD FnD F1 score

AICc 0.0092 0.0811 0.2000 0.0031 0.9532

20 BIC 0.0363 0.0139 0.4873 0.0005 0.9751

AIC 0.0698 0.0069 0.6470 0.0003 0.9628

AICc 0.0057 0.0447 0.2899 0.0006 0.9743

40 BIC 0.0088 0.0321 0.3826 0.0005 0.9793

AIC 0.0437 0.0041 0.7514 0.0001 0.9766

AICc 0.0016 0.4585 0.2730 0.0036 0.7018

60 BIC 0.0016 0.4585 0.2730 0.0036 0.7018

AIC 0.0288 0.1452 0.8088 0.0012 0.9076

AICc 0.0091 0.1034 0.1680 0.0052 0.9410

80 BIC 0.0396 0.0517 0.4527 0.0027 0.9541

AIC 0.0670 0.0000 0.5704 0.0000 9675


