RESEARCH

Inferring slowly-changing dynamic gene-regulatory networks

Ernst C Wit^{1*†} and Antonino Abbruzzo²

2

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

*Correspondence: e.c.wit@rug.nl
¹ Johann Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG Groningen, Netherlands
Full list of author information is available at the end of the article
[†] Equal contributor

Abstract

Dynamic gene-regulatory networks are complex since the interaction patterns 12 between its components mean that it is impossible to study parts of the network 13 in separation. This holistic character of gene-regulatory networks poses a real 14 challenge to any type of modelling. Graphical models are a class of models that 15 connect the network with a conditional independence relationships between the random variables. By interpreting the random variables as gene activities and the 16 conditional independence relationships as functional non-relatedness, graphical 17 models have been used to describe gene-regulatory networks. Whereas the 18 literature has been focused on static networks, most time-course experiments are 19 designed in order to tease out temporal changes in the underlying networks. It is 20 typically reasonable to assume that changes in genomic networks are few, 21 because biological systems tend to be stable. We introduce a new model for estimating slowly changes in dynamic 22 gene-regulatory networks, which is suitable for high-dimensional data, e.g. 23 time-course genomic data. Our aim is to estimate a dynamically changing 24 genomic network based on temporal activity measurements of the genes in the 25 network. Our method is based on the penalized likelihood with ℓ_1 -norm, that 26 penalizes conditional dependencies between genes as well as differences between conditional independence elements across time points. We also present a the 27 heuristic search strategy to find optimal tuning parameters. We re-write the 28 penalized maximum likelihood problem into a standard convex optimization 29 problem subject to linear equality constraints. We show that our method 30 performs well in simulation studies. Finally, we apply the proposed model to a 31 time-course T-cell dataset. 32 **Keywords:** gene-regulatory networks; graphical models; L_1 penalized inference 33

6

8

9

10

11

¹1 Introduction

²A single microarray experiment provides a snapshot of the expression of many genes² ³simultaneously under a particular condition. Gene expression is a temporal pro- 4 cess, in which different genes are required and synthesized for different functions 4 $^{5}\!\!$ and under different conditions. Even under stable conditions, due to the continu-⁶ous degradation of proteins, mRNA is transcribed continuously and new proteins ⁷are generated. This process is highly regulated. In many cases, the expression pro- 8 gramme is initiated by the activation of a few transcription factors, which in turn 8 ⁹activate many other genes that react in response to the newly arisen conditions.⁹ ¹⁰Transcription factors are proteins that bind to specific DNA sequences, thereby ¹¹controlling the flow of genetic information from DNA to mRNA. For example, when ¹¹ ¹²cells are faced with a new external environment, such as starvation [1], infection $[2]^{12}$ ¹³or stress [3], they react by activating a particular expression program. Taking a ¹⁴ snapshot of the expression profile following a new condition can reveal some of the ¹⁴ ¹⁵ genes that are specifically expressed under the new condition. However, in order to ¹⁵ ¹⁶discover the interaction between these genes, it is necessary to measure the genes ¹⁷ across time in a time-course expression experiment. These temporal measurements ¹⁷ ¹⁸ potentially allow us to determine not only the stable state following a new condi-¹⁸ ¹⁹tion, but also the gene interactions that were activated in order to arrive at this new¹⁹ ²⁰ state. The biological and computational issues involved in designing and analyzing²⁰ ²¹gene expression data in general, and time-course expression data in particular, is²¹ ²²discussed in [4]. 22

23 23 In this paper, we propose a graphical model for describing the temporal interaction patterns between genes. Graphical models explore conditional independence²⁴ 24 25 relationships between random variables. They can be divide into directed graphical models, e.g. Bavesian networks [5, 6], undirected graphical models, e.g. Gaussian graphical models [7, 8] and mixed versions, such as chain graphical models [7] ²⁸Bayesian networks have been successfully used to describe certain types of gene-29 regulatory networks [9]. However, Bayesian networks suffer two major limitations. ³⁰Firstly, they cannot be used to describe cyclic graphs. This rules out using them ³¹ for describing simultaneous feedback loops in gene regulatory networks. Secondly, ³² they perform poorly on sparse microarray data as shown by [10]. It is possible to ³³ "unroll" cycles into spirals through time, so the first limitation can partially be be

¹overcome [11–13]. Instead, we propose to model such cycles more directly as undi-¹ ²rected edges in our conditional independence graph. Furthermore, our method will² ³allow for "directed" edges between consecutive time points.

⁴ The class of Gaussian graphical models (GGM) have been particularly popu-⁴ ⁵lar. The main advantage for GGMs is that the precision matrix, i.e. the inverse⁵ ⁶of the covariance matrix, can be used to "read off" the conditional independence⁶ ⁷relationships between the random variables. The literature on estimating the in-⁷ ⁸verse covariance matrix goes back to [14], who also introduced hypothesis testing⁸ ⁹approaches to determining whether particular elements of the inverse covariance⁹ ¹⁰matrix are zero. The more zeroes in the inverse covariance matrix, the sparser the¹⁰ ¹¹underlying conditional independence graph.

Regulatory elements in genetic networks are highly structured. In order to guar-12 ¹³ antee an appropriate response to a particular change in the environment, most gene¹³ ¹⁴ interactions are highly specific. The detailed molecular structure of genes and gene¹⁴ ¹⁵ products are responsible for this level of specificity. Another biological requirement¹⁵ ¹⁶ is that gene regulation is fast in reacting to changes in the environment. Heat shocks¹⁶ ¹⁷ should almost instantaneously result in an adaptive response from the yeast cell.¹⁷ ¹⁸From this point of view signals should be able to travel fast through the gene reg-¹⁹ulatory network: the network should have a small world property. Consequently,¹⁹ ²⁰ most gene regulatory networks are sparse small-world graphs. If the expression of ²⁰ ²¹ the genes can be assumed to be normally distributed, then this means that most of ²¹ ²² the elements in the precision matrix are equal to zero. A standard approach in sta-²³tistical modelling to identify zeroes in the precision matrix is the backward stepwise ²⁴ selection method, which starts by removing the least significant edges from a fully²⁴ ²⁵ connected graph, and continues removing edges until all remaining edges are signif-²⁵ ²⁶icant according to individual partial correlation tests. A conservative simultaneous ²⁷testing procedure was proposed by [15]. However, [16] showed that this two-step ²⁸ procedure, in which parameter estimation and model selection are done separately, ²⁹ can lead to instability: small perturbations in the data can result in completely²⁹ 30 ³⁰different graph structures estimates [16].

³¹ [17] showed that ℓ_1 penalized likelihood is a sensible way to introduce sparse³¹ ³² solutions in a regression setting. The same idea can be used to estimate sparse³³ ³³Gaussian graphical models, i.e. to induce zeroes in the estimated inverse covariance³³

¹matrix. By penalizing the likelihood by a multiple of the ℓ_1 -norm of the elements¹ ²of the inverse of the covariance matrix results into exact zeroes in the penalized² ³maximum likelihood estimate for large enough values of the multiple, which is an³ ⁴additional tuning parameter. The larger the tuning parameter the more zeroes will⁴ ⁵be estimated in the precision matrix. [18] introduced the ℓ_1 penalized Gaussian^b ⁶graphical model. [19] showed that it is possible to select the tuning parameter⁶ ⁷ in such a way as to control the familywise error rate. [20] introduced a fast and ⁷ ⁸efficient algorithm to calculate the so-called graphical lasso solution. The graphical⁸ ⁹lasso estimates a single static network for a single condition. When there are multiple⁹ ¹⁰conditions, it may be sensible to presuppose a roughly common structure and jointly¹⁰ ¹¹estimate common links across the graphs. [21] proposed a method that links the¹¹ ¹²estimation of several graphical models through a hierarchical penalty. This graphical¹² ¹³model leads to improvements compared to fitting separate models, since it borrows¹³ ¹⁴strength from other related graphs. Recently, [22] proposed a factorially coloured¹⁴ 15 ¹⁵graph to estimate a common dynamic structure.

16 17 16 17

In this paper we propose a model to estimate slowly changing dynamic graphs₁₈ ₁₉using the ℓ_1 -regularization framework. The main idea is to impose ℓ_1 -norm to pe-₁₉ ₂₀nalize not only the inverse covariance matrix, but also changes in the inverse covari-₂₀ ₂₁ance matrix over time. The new method is suitable for studying high-dimensional₂₁ ₂₂time-course gene activity data. In order to solve the penalized maximum likelihood₂₂ ₂₃problem, we take advantage of an efficient solver developed by [23] to solve the opti-₂₃ ₂₄mization problem with linear constraints. We propose a heuristic search algorithm₂₄ ₂₅to fix the tuning parameters, that regulate sparsity and dynamic changes in the₂₅ ₂₆networks.

27

27

²⁸ The rest of this paper is organized as follows. Next section gives a description of
²⁹ our motivating example and a brief overview of Gaussian graphical models. In Sec³⁰ tion 3, we describe the slowly changing dynamic network model and its estimation.
³¹ In Section 4, we show the results of a simulation study and apply our method to
³² the time-course T-cell dataset. Finally, we discuss the advantages of our method
³³ and point out further directions for development.

¹2 Motivation: T-cell activation

²T-cells are a white blood cell that play a central role in cell-mediated immunity.² ³Activation of T-cells occurs through the simultaneous engagement of the T-cell re-³ ⁴ceptor and a costimulatory molecule, like CD28 or ICOS. Both are required for ⁴ ⁵the production of an immune response. The signalling pathways downstream from ⁵ ⁶activation usually engages the PI3K pathway and recruiting PH domain containing⁶ ⁷signaling molecules, like PDK1, that are essential for the activation of PKCtheta,⁷ ⁸and eventual IL-2 production. Although certain things are known about the struc-⁸ ⁹ture of the T-cell pathway, its timing and its precise structure are still unknown. Two cDNA microarray experiments were performed to collect gene expression¹⁰ ¹¹levels for analyzing T-cell activation. Human T-cells coming from the cell line¹¹ ¹²Jakart were cultured in a laboratory. When the culture reached a consistency of $^{13}10^6$ cells/ml, the cells were treated with two treatments, the calcium ionosphere 13 ¹⁴ and the PKC activator phrorbolester PMA. This stimulation of the T-cells resulted ¹⁴ ¹⁵ in their activation. Gene expression levels for 88 genes were collected across 10 time¹⁵ ¹⁶ points: the first one just before T-cell activation, at a nominal time-point 0, and 9¹⁶ ¹⁷ time points at 2, 4, 6, 8, 18, 24, 32, 48, 72 hours after T-cell activation. In the first ¹⁸ experiment the microarray was divided such that 34 sub-arrays were obtained. Each¹⁸ ¹⁹ of these 34 sub-arrays contained the strands of the 88 genes under investigation.¹⁹ ²⁰Strands are the complementary bases for the rRNA, which is the single-stranded²⁰ ²¹ transcribed copy of the DNA. In the second microarray experiment the microarray²¹ 22 was dived into 10 sub-arrays. Each of these 10 sub-arrays contained the strands of 22 ²³ the 88 genes under investigation. Both microarray experiments used ten different²³ ²⁴ slides to collect the ten temporal measurements. The experiment is described in ²⁴ 25 ²⁵detail in [24].

²⁶ Two further steps were conducted by [24] to obtain a set of genes that were²⁶ ²⁷ highly expressed and normalized across the two microarray experiments. Firstly,²⁷ ²⁸ genes with high variability between the two microarryes and within the same time²⁸ ²⁹ point were removed. No further information is available about the minimum level²⁹ ³⁰ of reproducibility they adopted. According to [24], thirty-one genes were to be³⁰ ³¹ removed since they did not show enough reproducibility. Secondly, normalization³¹ ³² methods were applied to remove systematic variation due to experimental artifacts.³² ³³ The normalization method used is described in [25].³³ Wit and Abbruzzo

Page 6 of 17

5

6

17

18

25

At this point we assume that the 44 sub-array replicates are independent samples¹
 ²and that the temporal replicates across these sub-arrays are functionally dependent²
 ³replicates. These two assumptions result in a dataset of 44 independent replicates³
 ⁴across 57 genes and 10 time points.

63 Methods

5

17

25

⁷In this section, we describe the model that we adopt in order to study the under-⁷ ⁸lying time-varying genomic network for the T-cell data. We argue that time-course⁸ ⁹datasets should be analyzed in a way, that is sensitive to the underlying biology.⁹ ¹⁰If one does not use a model that is able to describe a time-varying network, there¹⁰ ¹¹would not have been a point in performing a time-course experiment. The bioin-¹¹ ¹²formatic tools should be adjusted to the needs of the biologist, who wants to infer¹² ¹³particular aspects of the system. In this section, we first introduce a general graph-¹³ ¹⁴ical model. Secondly, we extend this model to the slowly changing graphical lasso¹⁴ ¹⁵model. Finally, we describe the computational details of performing penalized max-¹⁵ ¹⁶imum likelihood.

183.1 Gaussian graphical model

¹⁹A graphical model is a tuple (G, \mathbb{P}) , where G = (V, E) is a graph with edges E_{19} ²⁰that describe the conditional independence relationships of probability measure₂₀ ²¹ \mathbb{P} on the vertices V. This means that one can use the graph G to read off the₂₁ ²²functional relationships between the random variables associated with the vertices.²² ²³In particular, for any triple (A,B,S) of disjoint subsets of V such that S separates²³ ²⁴A from B in G, we have that for $Y \sim \mathbb{P}$,²⁴

$$\mathbf{Y}_A \perp_{\mathbb{P}} \mathbf{Y}_B \mid \mathbf{Y}_S.$$

²⁷This so-called global Markov property in turn implies the local and pairwise Markov
 ²⁸properties.

²⁹ In this paper, we will assume that the gene activity data Y_i has a multivariate ²⁹ ³⁰ normal distribution, i.e., $Y \sim \mathbb{P}_{\mu,\Sigma}$, with mean μ and covariance matrix Σ . Together ³¹ with conditional independence graph G = (V, E), $(G, \mathbb{P}_{\mu,\Sigma})$ constitutes a Gaussian ³² graphical model or a covariance selection model [14]. This Gaussian graphical model ³³ puts some conditions on the covariance matrix Σ . Let $\Theta = \Sigma^{-1}$ be the precision

5

11 12

24

25

26

27

28

subject to

4

 1 or concentration matrix, then Θ contains all conditional independence information 1 2 for the Gaussian graphical model. In particular, 2 $_{3}$

$$\theta_{ij} = 0 \iff (i,j) \notin E \iff Y_i \perp Y_j | Y_{-\{i,j\}}.$$

In fact, it is easy to show that given the set of $E^c = \{(i, j) \mid \theta_{ij} = 0\}$, a multivariate normal probability distribution $f(\mathbf{y})$ can be factorized as a product of functions f_7 which do not jointly depend to y_i and y_j when $(i, j) \in E^c$.

Given a set of *n* observations on the Gaussian graphical model, y_1, \ldots, y_n , the glog-likelihood can be written as

$$l(\mu, \Theta) = \frac{n}{2} \left\{ \log |\Theta| - \operatorname{Tr}(S\Theta) - (\mu - \bar{y})^t \Theta(\mu - \bar{y}) \right\},$$
¹¹

¹³where $S = \sum_{k} (y_k - \bar{y})(y_k - \bar{y})^t/n$ is the sample covariance matrix. From the form¹³ ¹⁴of the likelihood, it is clear that $\hat{\mu} = \bar{y}$ is the maximum likelihood estimate of μ^{14} ¹⁵irrespective of the number of observations and the underlying graph G. For the¹⁵ ¹⁶MLE for Θ , the story is more complicated. For a the complete graph, the maximum¹⁶ ¹⁷likelihood estimate is not uniquely defined when the number of observations is less¹⁷ ¹⁸than the number of vertices, n < |V|. This situation is really common for experi-¹⁸ ¹⁹ments to infer genomic networks. On the other hand, a gene-regulatory network is¹⁹ ²⁰typically sparse, which means that the number of links is small with respect to the²⁰ ²¹possible number of connections. This may mean that Θ is estimable with respect²¹ ²²to the underlying true sparse graph, G. The only problem is that we don't know²² ²³which sparse graph that is. Therefore, we impose an additional constraint, ²³

$$\hat{\Theta}_{
ho} = rg\max_{\Theta} l(\bar{y}, \Theta),$$

25 26

24

27

$$||\Theta||_1 := \sum_{i=1}^{p-1} \sum_{j=i+1}^p |\theta_{ij}| < \rho,$$
 28

²⁹ where typically we do not penalize the diagonal of the precision matrix. Sparsity ³⁰ of the genomic network is not only our current best knowledge of system, but ³¹ coincidently it is also computational useful. Informally, a graph with few edges is ³² sparse, whereas a graph with many edges is dense. [26] formally defines a graph ³³ G = (V, E) to be sparse, if |E| = O(|V|), where |V| is the number of vertices ³³

¹and |E| is the number of edges. A graph G is said to be dense, if $|E| = O(|V|^2)$. ²By constraining the estimate to satisfy an ℓ_1 constraint, it is possible to combine² ³estimation of the precision matrix Θ with the estimation of the underlying graph³ 4 ${}^{4}G.$ 5 5 6 8 8 9 10 10 3.2 Dynamic Gaussian graphical models 11 12 12

¹³In this section, we introduce the concept of a dynamic Gaussian graphical model,¹³ ¹⁴which extends the static Gaussian graphical model that was introduced in the¹⁴ ¹⁵previous section. We first define a dynamic graph G = (V, E). Consider a set of¹⁵ ¹⁶genes $\Gamma = \{\gamma_1, \ldots, \gamma_p\}$ and a set of time points where these genes were observed¹⁶ ¹⁷ $\tau = \{t_1, \ldots, t_T\}$. We define the vertices of the dynamic graph as the Cartesian prod-¹⁷ ¹⁸uct of the genes and time points, $V = \Gamma \times \tau$. Therefore, a vertex in this graph is¹⁸ ¹⁹an element (γ_g, t_s). The edges are some subset of the Cartesian product of vertices,¹⁹ ²⁰ $E \subset V \times V$. An element of E will be written as $\{(\gamma_g, t_s), (\gamma_{g'}, t_{s'}), \text{ stressing the fact_20}$ ²¹that it links one gene at a particular time point with another gene at another time²¹ ²²point. We will associate with each node of the graph a random variable Y_{gs} , which²² ²³represents the amount of gene activity of gene g at time s.

24

²⁵ With the above ingredients, we can now define a **dynamic Gaussian graphical**²⁵ ²⁶**model** as the tuple $(G, \mathbb{P}_{\mu,\Theta})$, where $G = (\Gamma \times \tau, E)$ is a dynamic graph and $\mathbb{P}_{\mu,\Sigma}$ is²⁶ ²⁷a collection of multivariate Gaussian distributions with mean μ and inverse covari-²⁷ ²⁸ance matrix Θ , that are compatible with the conditional independence relationships²⁸ ²⁹described in the edge set E.

30

30

24

³¹ In principle, the ordering of the vertices is arbitrary. For interpretation purposes, ³² it helps to sort the vertices by time points and within time points by genes. This ³³ results in a natural partition $\{(N_l, S_l) \mid l = 0, ..., t - 1\}$ of the inverse covariance

¹ matrix Θ ,											1
2		-				1			-	_	2
3		S_0^1	N_0^1	S_1^1	N_1^1	S_2^1	N_2^1				3
4			S_0^1	N_1^1	S_1^1	N_2^1	S_2^1				4
5				S_0^2	N_0^2	S_1^2	N_1^2	S_2^2	N_2^2		5
6	0				S_0^2	N_1^2	S_1^2	N_2^2	S_2^2		6
7	Θ =					S_0^3	N_0^3	S_{1}^{3}	N_{1}^{3}	,	7
8							S_0^3	N_1^3	S_1^3		8
9								·	:		9
10									·		10
11		L		I		I		I	-	1	11

where S_l represent the self-self interactions of the genes and N_l the network in-12 teraction between the genes, both at time lag l. The self-self interactions therefore 13 represent the diagonal and subsequent off-diagonals of the matrix Θ , whereas N_l are 14 the diagonal blocks and subsequent off-diagonal blocks minus the diagonal. Each of 15 this subsets can be further partitioned, as indicated by S_l^t and N_l^t . In these sub-16 partitions, S_l^t is the self-self interaction of the genes at lag l and time t. Similarly, 17 N_l^t are the network interactions at lag l and time t.

¹⁹ As the full dynamic Gaussian graphical model is still heavily parameterized with a₁₉ ₂₀typically big $pT \times pT$ inverse covariance matrix, it makes sense to consider relevant₂₀ ₂₁subclasses. It is for example not particularly likely that two genes are related across₂₁ ₂₂a lot of time points, conditional on the intermediate states. We therefore define the₂₂ ₂₃autoregressive Gaussian graphical model of order k $(G, \mathbb{P}_{\mu,\Theta}, AR(k))$ as a₂₃ ₂₄dynamic Gaussian graphical model $(G, \mathbb{P}_{\mu,\Theta})$, for which ²⁴

$$\forall l > k : N_l = S_l = 0.$$
²⁶

27

25

27

²⁸This model assumes that genes are conditionally uncorrelated for time lags larger ²⁸ ²⁹than k. In practice, we typically consider k = 1 or k = 2, which from an inter-²⁹ ³⁰pretational point of view are most interesting. It is important to note that the ³¹autoregressive Gaussian graphical model is directly associated to a particular net-³¹ ³²work structure G, which represents the conditional dependence graph of the random ³³variables associated with the vertices of the graph.

¹3.3 Slowly changing dynamic graphical models

²The main question this paper wants to answer is how to infer a meaningful biolog-² ³ical dynamic network from noisy data on the nodes, such as, e.g., RNA seq values³ ⁴or protein levels. The two features we will assume particularly relevant of a gene⁴ ⁵network are its *sparsity* and its *persistence*. DNA, RNA and proteins are very spe-⁵ ⁶cific molecules that are capable of interacting, typically, with only a very limited⁶ ⁷number of other molecules. This means that a genetic network is highly structured⁷ ⁸and selective, and, therefore, characterized by a high degree of sparsity. As genetic⁸ ⁹interactions depend very much on the basic molecular structure of its constitutive⁹ ¹⁰parts, the potential to interact between various genes will typically not change over¹⁰ ¹¹time, unless particular regime changes in the cell affect its thermo-dynamic prop-¹¹ ¹²erties. Interactions in the dynamic network *G* therefore tend to persist over time.¹² ¹³We will show in this subsection how we can incorporate these two ideas, sparsity¹³ ¹⁴and persistence of the network, in the interferential objective function by means of ¹⁴ ¹⁵a penalized likelihood function.¹⁵

¹⁶ In the T-cell experiment, we assume we have 44 observations from the 57 × 10¹⁶ ¹⁷ dimensional autoregressive Gaussian graphical model of order k = 1. Not only do¹⁷ ¹⁸ we want to infer a sparse network G, but also one for which the underlying network¹⁸ ¹⁹ partitions $N_l = \{N_l^1, \ldots, N_l^t, \ldots, N_l^T\}$ (l = 0, 1) change only slowly across time t.¹⁹ ²⁰ This requires an additional set of constraints in our maximum likelihood inference.²⁰ ²¹ In general, we assume we have n observations y_1, \ldots, y_n , each coming from the²¹ ²² autoregressive k dynamic Gaussian graphical model $(G, P_{\mu,\Theta}, AR(k))$.²²

²³ Given two tuning parameters ρ_1 and ρ_2 , we define a slowly changing dynamic ²⁴ network as the solution of the penalized maximum likelihood of the autoregressive ²⁵ k dynamic Gaussian graphical model, ²⁵

²⁷
$$l(\mu, \Theta) = \frac{n}{2} \left\{ \log |\Theta| - \operatorname{Tr}(S\Theta) - (\mu - \bar{y})^t \Theta(\mu - \bar{y}) \right\},$$
 (1)²⁷
²⁸

²⁹subject to

26

30

26

29

30

$$||\Theta||_{1} < \rho_{1}$$
(2)₃₁

$$\sum_{l=0}^{n} \sum_{s=1}^{l-1} ||N_l^s - N_l^{s+1}||_1 < \rho_2$$
(3)³²
(3)³³

$$\forall l > k : N_l = S_l = 0 \tag{4}$$

1

¹Whereas the first constraint induces a generally sparse dynamic network, the second ¹ ²constraint penalizes large changes in the network coefficients, thereby inducing a² ³slowly changing or persistent network through time. Therefore, the penalty param-³ ⁴eters are directly related to the zero structure of the estimate $\widehat{\Theta}_{\rho_1,\rho_2}$ and, therefore, ⁴ ⁵to the estimate of the dynamic genetic graph $\widehat{G}_{\rho_1,\rho_2}$.

⁶ Solving the above penalized maximization problem is an active field of research⁶ ⁷in the optimization field. We use the log determinant proximal point approximation⁷ ⁸method developed by [23]. Each constraint gets coded into a linear map. We consider⁸ ⁹ $A(\Theta) = ||\Theta||_1$ associated with constraint (2), $B(\Theta) = \sum_{l=0}^{k} \sum_{s=1}^{T-1} ||N_l^s - N_l^{s+1}||_1$ ¹⁰associated with constraint (3) and $C_l(\Theta) = (S_l; N_l)$ associated with constraint (4).¹⁰ ¹¹This method introduces two sets of slack variables to deal with the two inequality¹¹ ¹²constraints. The constraint optimization problem (1) is now written as: ¹³
¹³

$$\hat{\boldsymbol{\Theta}} := \underset{\boldsymbol{\Theta}}{\operatorname{argmin}} \{ -\log |\boldsymbol{\Theta}| + \operatorname{Tr}(\mathbf{S}\boldsymbol{\Theta}) + \lambda_1 \mathbf{v}^+ + \lambda_1 \mathbf{v}^- + \lambda_2 \mathbf{w}^+ + \lambda_2 \mathbf{w}^- \}_{14}$$
15

16	subject to	$\mathbf{A}(\mathbf{\Theta}) - \mathbf{v}^+ + \mathbf{v}^- = 0$	16
17		$\mathbf{B}(\mathbf{\Theta}) - \mathbf{w}^+ + \mathbf{w}^- = 0$	17
18		$\mathbf{C}_{l}(\mathbf{\Theta}) = 0 l = 0 k$	18
19		$\mathbf{Cl}(\mathbf{\Theta}) = 0, i = 0, \dots, \kappa$	19
20		$\boldsymbol{\Theta} \succ 0, \mathbf{v}^+, \mathbf{v}^-, \mathbf{w}^+, \mathbf{w}^- \ge 0,$	20
21			21

where λ_1 and λ_2 are functions of ρ_1 and ρ_2 respectively. In this format, the optimization can be solved directly by LogDetPPA.

23 23 The non-negative tuning parameters λ_1 and λ_2 effectively determine the sparsity 24 and the stability through time of the network, respectively. Selecting these tuning 25 parameters is a form of model selection. Depending on the interests of the user, 26 26 which can be maximizing posterior model probability or minimizing prediction er-27 27 ror, either a BIC-type criterion or an AIC-type criterion is proposed. We consider a 28 28 grid of values (λ_1, λ_2) and minimize information criterion scores such as AIC, AICc, 29 29 and BIC. Then we use stability selection to select a more stable graph [27]. 30 30

³¹Example: T-cell We consider a subset of the T-cell data to illustrate the per-³¹
 ³²formance of the autoregressive Gaussian graphical model approach with a slowly
 ³³changing network penalty. Only 4 genes and 2 time points were considered. Table 1

¹shows the estimated precision matrix, fixing the tuning parameters $\lambda_1 = 0.01$ and $^2\lambda_2 = 0.1$. It can be seen that N_0^1 is a network with three edges $(1,3), (1,4), (2,4), ^2$ ³which in the next time point N_0^2 slowly changes to another network with edges ⁴(1,2), (1,4), (2,4). In section 4.3 we consider the full dataset. ⁵

⁶4 Results

⁷4.1 Comparison with other methods

⁸In this section we compare the dynamic network inference method with other meth-⁸ ⁹ods proposed in the literature to estimate networks. [28] suggest a procedure based⁹ ¹⁰on large-scale hypothesis testing of partial correlations in combination with false¹⁰ ¹¹discovery rate cut-offs, implemented in the R-package GeneNet. [29] propose an em-¹¹ ¹²pirical bayes method for estimating biological networks from temporal microarray¹² ¹³data. Their method aims to infer a directed graphical model, a so-called Bayesian¹³ ¹⁴network, that remains constant through time. This method is implemented in the¹⁴ ¹⁵R-package ebdbNet . There is a whole class of methods based on the graphical lasso¹⁵ ¹⁶[20]. Besides the original method, [22] proposed a factorial graphical lasso, imple-¹⁶ ¹⁷mented in the sglasso R-package and [30] consider a sparse autoregressive network¹⁷ ¹⁸inference method using undirected graphical models, implemented in the R-package¹⁸ ¹⁹SparseTSCGM.

20 We simulate data from a network along six time-points that is affected by a 21 regime change between time points 3 and 4. Figure 1 shows the original networks, ²² interpreted as lag zero conditional independence graphs N_0 . We simulate $n = 100^{22}$ 23 observations and report the results of the methods described above. Due to the ²⁴large number of links, GeneNet by default corrects for multiple testing, resulting in a very sparse graph. In fact, it merely detects a seven edges throughout the whole 26 time-course, when correcting at the 0.9 local fdr rate. In Figure 2, we lowered the ²⁷local fdr to 0.5, which allows us to pick up additional edges, but clearly it lack consistency across the various time points. Roughly the same results crystalize, 29 when applying separate graphical lassos to each of the time-points. The tuning parameter is selected by using the RIC. Figure 3 shows that some structure of the 31 underlying graph has been recovered, but with disappointing consistency across the time-points. Factorial graphical lasso, sparse TSCGM and ebdbNet all infer a constant graph across time, which indeed captures some aspects of the underlying

¹structure, but fails to detect the change point (cf. Figure 4). Although not perfect,¹
²the slowly changing graphical model approach correctly borrows strength across the²
³6 time-points to more accurately infer the underlying graph and at the same time³
⁴to correctly detect the underlying changes in the dynamics (cf. Figure 5).
⁵

₆4.2 Simulation study

, We perform a simulation study to show the performance of the autoregressive Gaussian graphical model of order one. We consider four different scenarios with a varying number of genes $p \in \{20, 40, 60, 80\}$, each with n = 50 observations across T = 3 $_{10}$ time points. For each scenario we simulate 100 datasets from a multivariate normal $_{10}$ tidistribution with μ equal to zero and Σ equal to the inverse of a precision matrix $_{12}\Theta$. The structure of the graph slowly changes across time and observations are con-13 ditionally independent for time lags greater than one. Note that in all four scenarios the number of replicates n is fewer than the number of random variables pT. Table 2 shows the average of false positive, false negative, false discovery, $false_{15}$ 16 non-discovery rates as well as the average F_1 score over 100 simulations. We use ₁₇the corrected and normal AIC, as well as the BIC to select the tuning parameters in 18 the models. The corrected AIC adds an additional penalty to account for the small number of observations. These results show that the slowly changing autoregressive ₂₀Gaussian graphical model is very reliable even with small numbers of observations₂₀ $_{21}$ and that it can be used for real applications when few changes in different time $_{21}$ ₂₂points are present using any type of model selection method.

²³4.3 Application to T-cell

22 23

²⁴ In this subsection we apply an autoregressive Gaussian graphical model of order one ²⁴ ²⁵ to the human T-cell dataset. We assume that genes which are two time points apart, ²⁶ ²⁶ i.e. $Y_{s,t}$ and $Y_{s,t+2}$, are conditional independent given the intervening observations. ²⁶ ²⁷ This means that the edge set for networks at lag 2, i.e. N_2 , is an empty set. Figure ²⁷ ²⁸ 6 is obtained from the estimation procedure. The two upper graphs show the two ²⁸ ²⁹ networks at time points 1 and 2, respectively. The bottom left figure, "Intersection," ²⁹ ³⁰ shows the large overlap between the two networks, induced by the significant tuning ³⁰ ³¹ parameter ρ_2 . On the other hand, the bottom right figure shows the changes between ³¹ ³² these two time points. It shows, for example, that initially MCL1, a pro-survival ³² ³³ BCL2 family member, is a highly connected node in the T-cell network. It is known ³³

Page 14 of 17

4

¹that SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation¹ ²and destruction [31]. This is probably why initially MCL1 loses connections to other² ³genes. ³

⁵5 Conclusion

4

Many time-course genomic experiments are performed in order to discover certain 7 regime changes that may be taking place during that period. Under these circum-8 stances, representing genomic interactions by means of a static graphs may be misleading. Certainly, it would fail to detect any changes in the topology of the 10 network. We use a sparse dynamic graphical model to infer the underlying slowly 11 changing network. One of the major contributions is that this methodology is capa-12 ble of providing fast inference about the dynamic network structure in moderately 13 large networks. Until now, even sparse static inference could be painstakingly slow 14 14 and would typically lack obvious interpretation. We applied the method to a human 15 15 t-cell dataset to study the developmental aspects of the sparse genomic interactions. 16 16 One result, backed up by recent research, is that MCL1 is targeted early on and 17 17 thereby loses its connections to the rest of the genomic network.

18 18 Once a graph has been estimated and changes have been evaluated, other ques-19 19 tions on how to analyze time-evolution networks might be posed. Does the network 20 retain certain graph properties as it grows and evolves? Does the graph undergo 21 a phase transition, in which its behaviour suddenly changes? In answering these 22 questions it is of interest to have a diagnostic tool for tracking graph properties 23 23 and noting anomalies and graph characteristics of interest. For example, a useful 24 24 tool is ADAGE [32], which is a software package that analyzes the number of edges 25 25 over time, the number of nodes over time, the densification law, the eigenvalues 26 26 over increasing nodes, the size of the largest connected component, the number 27 27 of connected components versus nodes and time and the comparative sizes of the 28 28 connected components over time. 29 29

30	30
Competing interests 31	31
The authors declare that they have no competing interests. 32	32
Author's contributions 33 Both authors have contributed equally to this manuscript.	33

¹ Au	thor details	1
2 ¹ Jo	hann Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG Groningen, Netherlands. ² SEAS -	2
Dip	artimento di Scienze Economiche Finanziarie e Statistiche, Università degli Studi di Palermo, Viale delle Scienze	
³ Ed.	, 13, 90128 Palermo, Italy.	3
⁴ Ref	erences	4
Б 1.	Natarajan, K., Meyer, M.R., Jackson, B.M., Slade, D., Roberts, C., Hinnebusch, A.G., Marton, M.J.:	5
5	Transcriptional profiling shows that gcn4p is a master regulator of gene expression during amino acid starvation	1
6	in yeast. Molecular and Cellular Biology 21 (13), 4347 (2001)	6
₇ 2.	Nau, G.J., Richmond, J.F.L., Schlesinger, A., Jennings, E.G., Lander, E.S., Young, R.A.: Human macrophage	7
'	activation programs induced by bacterial pathogens. Proceedings of the National Academy of Sciences 99(3),	'
8	1503 (2002)	8
3. م	Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.:	9
5	Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the	5
10	cell 11(12), 4241–4257 (2000)	10
4. 11	Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20 (16), 2493–2503 (2004)	11
5.	Jensen, F.V.: An Introduction to Bayesian Networks vol. 74. UCL press London, ??? (1996)	
12 ^{6.}	Neapolitan, R.E.: Learning Bayesian Networks. Pearson Prentice Hall Upper Saddle River, NJ, ??? (2004)	12
7. 13 g	Whittaker, J.: Graphical Models in Applied Multivariate Statistics vol. 10. Wiley New York, ??? (1990)	13
9. Q	Friedman N Linial M Nachman I Pe'er D : Using bayesian networks to analyze expression data. Journal	
14	of computational biology 7(3-4), 601–620 (2000)	14
1510.	Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments	515
	with dynamic bayesian networks. Bioinformatics 19 (17), 2271–2282 (2003)	
16 11.	Murphy, K.P.: Dynamic bayesian networks: representation, inference and learning. PhD thesis, University of	16
17	California (2002)	17
12.	Ghahramani, Z.: Learning dynamic bayesian networks. Adaptive Processing of Sequences and Data Structures,	10
10	168–197 (1998)	10
19 ^{13.}	Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d'Alche–Buc, F.: Gene networks inference using	19
2014	Demoster A P: Covariance selection. Biometrics, 157–175 (1072)	20
15	Definition of M Perlman M D · Model selection for gaussian concentration graphs Biometrika 91 (3) 591–602	20
21	(2004)	21
2216.	Breiman, L.: Heuristics of instability and stabilization in model selection. The Annals of Statistics 24(6),	22
02	2350–2383 (1996)	22
²³ 17.	Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series	23
24	B (Methodological), 267–288 (1996)	24
18. 25	Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. The Annals of	25
10	Statistics $34(3)$, $1430-1402$ (2000)	20
2619.	for multivariate gaussian or binary data. The Journal of Machine Learning Research 9 485–516 (2008)	26
2720.	Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso.	27
	Biostatistics 9(3), 432 (2008)	
28 21.	Guo, J., Levina, E., Michailidis, G., Zhu, J.: Joint estimation of multiple graphical models. Biometrika 98(1), 1	28
29	(2011)	29
22.	Wit, E., Abbruzzo, A.: Factorial graphical lasso for dynamic networks. arXiv preprint arXiv:1205.2911 (2012)	
³⁰ 23.	Wang, C., Sun, D., Toh, K.C.: Solving log-determinant optimization problems by a newton-cg primal proximal	30
31	point algorithm. preprint (2009)	31
24. 32	Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Sotheran, E., Gaiba, A., Wild, D.L., Falciani, F.: Modeling	30
52	t-ceil activation using gene expression profiling and state-space models. Bioinformatics 20(9), 1361–1372	<u>.</u>
33 25	(2004) Bolstad B.M. Irizarry R.A. Åstrand M. Speed T.P.: A comparison of normalization methods for high	33
20.		

¹ density oligonucleotide array data based on variance and bias. Bioinformatics 19 (2), 185–193 (2003)	1
226. Preiss, B.R.: Data Structures and Algorithms with Object-oriented Design Patterns in C++. Albazaar, ???	2
³ 27. Meinshausen, N., Bühlmann, P.: Stability selection. Journal of the Royal Statistical Society: Series B	3
(Statistical Methodology) 72 (4), 417–473 (2010)	4
28. Opgen-Rhein, R., Strimmer, K.: Learning causal networks from systems biology time course data: an effective	4 e
5 model selection procedure for the vector autoregressive process. BMC bioinformatics 8 (Suppl 2), 3 (2007)	5
29. Rau, A., Jaffrezic, F., Foulley, J.L., Doerge, R.: An empirical bayesian method for estimating biological netwo 6	rks 6
from temporal microarray data. Statistical Applications in Genetics and Molecular Biology $9(1)$ (2010)	
 Abegaz, F., Wit, E.: Sparse time series chain graphical models for reconstructing genetic networks. Biostatist 14(3), 586–599 (2013) 	ics7
⁸ 31. Inuzuka, H., Shaik, S., Onoyama, I., Gao, D., Tseng, A., Maser, R.S., Zhai, B., Wan, L., Gutierrez, A., Lau,	8
9 A.W., et al.: Scffbw7 regulates cellular apoptosis by targeting mcl1 for ubiquitylation and destruction. Nature	; 9
471 (7336), 104–109 (2011)	
¹⁰ 32. McGlohon, M., Faloutsos, C.: ADAGE: A Software Package for Analyzing Graph Evolution. Carnegie Mellon	10
University, School of Computer Science, Machine Learning Dept., ??? (2007)	11
Figures 12	12
10	
Figure 1 A regime change between time-points 3 and 4. Data are simulated from a network	13
$_{14}$ that is subject to a regime change between time-points 3 and 4.	14
15	15
16	16
Figure 2 GeneNet's performance. GeneNet infers links by means of multiple testing. By lowering	;
17 the local fdr to 0.5, we recover some of the network structure, but consistency across the	17
time-points is absent.	18
19	19
20 Figure 2 Graphical losse's nerformance. Graphical losse estimates a second network for each of	00
the time points separately. Although it recovers some of the network structure, there is little	20
21 consistency across the time-points	21
22	
23	23
Figure 4 Performance of Facorial Graphical lasso, Sparse TSCGM and ebdbNet. Facorial	24
Graphical lasso, Sparse TSCGM and ebdbNet each recover a constant network across the 6 time	
25 points. It shows the general underlying structure of the network, but fails to detect the change	25
26	26
27	27
²⁸ Figure 5 Performance of the Slowly Changing Graphical model. The slowly changing graphical	28
model misses some of the timings of the changes, but correctly identifies the regime change and i	t
recovers the underlying structure of the changing network.	29
30	30
21	01
	-31
Figure 0 I-cell network change between $t = 1$ and $t = 2$. The lag zero network N_0 for the T cell data with changes between time points $t = 1$ and $t = 2$.	32
t -cen data with changes between time points $t = 1$ and $t = 2$.	33
	55

¹Tables

² Table 1 Conditional covariance $\hat{\Theta}$ based on 44 replicates for 4 genes measured across 2 time points.	2
$_3$ The tuning parameters λ_1 and λ_2 were fixed to 0.01 and 0.1, respectively.	3

	Time			1				2	2	
4		Gene	ZNF	CCN	SIV	SCY	ZNF	CCN	SIV	SCY
		ZNF	1.24	0.00	-0.26	0.18	-0.22	-0.11	-0.11	-0.07
6	1	CCN	-	1.49	0.00	-0.17	-0.18	-0.84	0.06	0.12
	1	SIV	-	-	1.44	0.00	-0.15	0.08	-0.69	-0.01
		SCY	-	-	-	1.19	0.02	0.13	0.41	-0.10
		ZNF	-	-	-	-	1.07	-0.02	0.00	0.12
	2	CCN	-	-	-	-	-	1.55	0.00	0.24
	2	SIV	-	-	-	-	-	-	1.52	0.00
		SCY	-	-	-	-	-	-	-	1.08

11 Table 2 The average of performance of various model selection algorithms for the four simulation	11
scenarios using four model selection methods in term of the fraction of correctly estimated	10
¹² link/non-links, i.e. false positives (FP), false negatives (FN), false discoveries (FD) and false	12
13non-discoveries (FnD), as well as the $F_1 = (2-2FN)/(2-FN+FP)$ score, which measures the	13
overall average accuracy of recall and precision. The best scores are indicated by bold font.	
14	14

14		cy of re					lice by bole	14
15	р		\overline{FP}	\overline{FN}	\overline{FD}	\overline{FnD}	F_1 score	15
10		AICc	0.0092	0.0811	0.2000	0.0031	0.9532	
16	20	BIC	0.0363	0.0139	0.4873	0.0005	0.9751	16
17		AIC	0.0698	0.0069	0.6470	0.0003	0.9628	17
		AICc	0.0057	0.0447	0.2899	0.0006	0.9743	
18	40	BIC	0.0088	0.0321	0.3826	0.0005	0.9793	18
19		AIC	0.0437	0.0041	0.7514	0.0001	0.9766	19
		AICc	0.0016	0.4585	0.2730	0.0036	0.7018	
20	60	BIC	0.0016	0.4585	0.2730	0.0036	0.7018	20
21		AIC	0.0288	0.1452	0.8088	0.0012	0.9076	21
		AICc	0.0091	0.1034	0.1680	0.0052	0.9410	
22	80	BIC	0.0396	0.0517	0.4527	0.0027	0.9541	22
23		AIC	0.0670	0.0000	0.5704	0.0000	9675	23
04								
24								24
25								25
26								26
27								27
28								28
29								29
30								30
31								31
32								32
33								33