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Positive or Negative Involvement of Heat Shock Proteins in
Multiple Sclerosis Pathogenesis: An Overview

Giuseppina Turturici, PhD, Rosaria Tinnirello, PhD, Gabriella Sconzo, PhD, Alexzander Asea, PhD,
Giovanni Savettieri, MD, Paolo Ragonese, MD, PhD, and Fabiana Geraci, PhD

Abstract

Multiple sclerosis (MS) is the most diffuse chronic inflammatory
disease of the central nervous system. Both immune-mediated and
neurodegenerative processes apparently play roles in the pathogen-
esis of this disease. Heat shock proteins (HSPs) are a family of highly
evolutionarily conserved proteins; their expression in the nervous
system is induced in a variety of pathologic states, including cerebral
ischemia, neurodegenerative diseases, epilepsy, and trauma. To date,
investigators have observed protective effects of HSPs in a variety of
brain disease models (e.g. of Alzheimer disease and Parkinson dis-
case). In contrast, unequivocal data have been obtained for their roles
in MS that depend on the HSP family and particularly on their lo-
calization (i.e. intracellular or extracellular). This article reviews our
current understanding of the involvement of the principal HSP fam-
ilies in MS.

Key Words: Heat shock proteins, Innate immunity, Multiple sclerosis,
Myelin antigens, Toll-like receptors.

MULTIPLE SCLEROSIS

Multiple sclerosis (MS) is a complex disease that is
influenced by genetic, epigenetic, and environmental factors,
including gender, sex hormones, ethnic origin, latitude of
early life residence, smoking, pathogen exposure, and vitamin
D levels (1-5). Recent epidemiologic data suggest a geneti-
cally determined susceptibility and indicate that the incidence
of MS correlates with environmental factors that occur during
childhood, which, after several years of latency, determine the
onset of MS (6-8). Therefore, the clinical, pathologic, and
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immunologic phenotypes of MS are highly heterogeneous,
indicating that it may better be defined as a syndrome rather
than a single disease. Multiple sclerosis is the most common
chronic inflammatory central nervous system (CNS) discase
of likely autoimmune etiology. It is thought to be caused
by an inappropriate immune T cell-mediated response, that is,
T-helper Type | and T-helper Type 17 (Thl, Th17), against
CNS myelin or other antigens (9). This representation is
called the outside-in model. However, a recent reinterpreta-
tion of the available experimental data suggested another
hypothesis called the inside-out model (10). According to
this model, MS is a primary neurodegenerative disease, and
the inflammatory response is an epiphenomenon caused by
the host’s aberrant immune response. Indeed, laboratory and
clinical observations have shown some inconsistencies in the
“outside-in”” model, particularly in the initial stages of the
disease during which the largest myelin abnormalities some-
times begin at the inner myelin sheath, which is not accessible
to antibody- or immune cell-mediated attack (10). In autopsy
material obtained from patients in early active stages of MS,
no infiltration of T and B cells was observed in areas of de-
myelination and oligodendrocyte loss; only macrophage in-
filtration and microglial activation, markers of the innate
immune response activation, were detected (11,12).

Recent results from clinical trials in MS have confirmed
that immunomodulatory drugs significantly attenuate the course
of the disease (13). Demyelinating lesions are predominantly
located in the white matter and contain clonally expanded
CD8-positive/CD4-positive T cells (14-17), v& T cells (18),
and monocytes (19,20). It has additionally been demonstrated
that the gray matter structures of the brain are also affected
(21). Clinical symptoms and signs vary based on the site of
the lesions. As a consequence of myelin sheath destruction,
nerve action potentials are disrupted, resulting in neurologic
disability. Pathologic hallmarks of MS include areas of focal
demyelination characterized by gliosis and neuron and oligo-
dendrocyte loss that are particularly common in the brain,
spinal cord, and optic nerves (22). The majority of patients
(nearly 85%—-90%) experience a sudden onset of symptoms,
with subsequent episodes of acute attacks followed by partial
or complete recovery and variable periods of remission. In the
remaining 10% to 15% of patients, the course of MS is pro-
gressive from the onset, that is, primary progressive (PP) MS.
Most patients with a relapsing-remitting (RR) disease course at
onset eventually experience a change in the disease course to
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become progressive, that is, secondary progressive (SP) MS
(23). Pathogenic studies have clearly indicated that axonal in-
jury is a key feature of MS pathogenesis; the extent of axonal
damage is also correlated to the degree of inflammation in the
relapsing phases of the disease. A close relationship between
inflammation and degeneration has also been described for all
disease stages of MS. Nevertheless, the specific mechanisms of
the interdependence between focal inflammation, diffuse in-
flammation, and neurodegeneration remain unclear.

Unlike other neurologic diseases in which it is possible
to define high-affinity antibodies that recognize self-antigens
(24-26), it is difficult to identify a single antigen specificity in
MS patients that is responsible for the autoreactive response.
The general idea is that, in MS pathogenesis, not one but
several antigens are involved in the disease. It is likely that the
initial autoreactivity is specific for a particular antigen but, in
a second step of the disease, a process of epitope or antigen
spreading may increase the pool of activated immune cells.

Previously, myelin antigens were believed to be targets
of pathogenic T cells, including the following: myelin basic
protein (MBP), one of the most immunogenic proteins of the
CNS (and which is synthesized in the CNS only by oligo-
dendrocytes); myelin proteolipid protein (PLP), the most
abundant component of CNS myelin and one of the major
targets of the autoimmune response (27); myelin oligoden-
drocyte glycoprotein (MOG); and myelin-associated glyco-
protein. Other potential immunogenic proteins have included
nonmyelin antigens such as aB-crystallin (HSPB5), transaldolase,
and CNPase (28-35).

When considering T-cell autoreactivity, however, it is
crucial to remember that not all MS patients show elevated
levels of autoimmune responses to myelin antigens because
T-cell responses are typically transient. In addition, T-cell
responses can change with time from the onset of disease as
well as during fluctuations. Despite the general perception of
MS and its changing pathogenesis, it is now understood that,
although specific myelin antigens are targets for T cells during
MS, T-cell activation is not specific to a single antigen. Re-
cent reports have identified a large series of CNS-specific
proteins that are hidden from the immune system during its
development and maturation (36). Currently, it is impossible
to prove whether T cells specific for PLP or other myelin
antigens are pathogenic in patients with MS or whether they
are produced secondarily to the release of myelin by demye-
linating processes.

T-cell activation induces the secretion of inflammatory
cytokines, including interferon (IFN)-y, tumor necrosis factor,
interleukin (IL)-1B, and IL-6 (37). The classic paradigm in
which activated T cells breach the blood-brain barrier and
then migrate into the CNS has begun to be questioned.

At present, the most widely accepted hypothesis re-
garding T-cell activation suggests that T cells are initially
activated in peripheral lymphoid organs and thereby acquire
the capability to cross the blood-brain barrier, thereby induc-
ing CNS damage. After the initiation of CNS inflammation,
the so-called epitope-spreading mechanism occurs, in which
antigen-presenting cells process cell debris resulting from
axonal and tissue damage and then migrate into the circulat-
ing peripheral blood, where they induce autoreactive T-cell

© 2014 American Association of Neuropathologists, Inc.

growth toward these new autoantigens (38,39). It has been
shown that naive T lymphocytes are also able to penetrate the
CNS during the course of an acute inflammatory process; they
are activated directly by antigen-presenting cells in the CNS
and bypass the peripheral activation mechanism. This addi-
tional type of activation makes T cells the main actors in the
epitope-spreading process. Cumulative data indicate that, after
the CNS is damaged, sensitization to other antigens may also
arise, contributing to the development of chronic disease.

It is not currently possible to prove whether T cells
specific for myelin antigens are truly pathogenic in patients
with MS or whether they are produced secondarily to the re-
lease of myelin as a consequence of the demyelinating pro-
cess. The development of an adequate animal model would be
highly useful to prove the disease relevance of T-cell re-
sponses directed against the candidate autoantigens.

To date, many results have been obtained using an ex-
perimental animal model of autoimmune encephalomyelitis
(EAE), a T cell-mediated autoimmune disease of the CNS
(40-45). Experimental autoimmune encephalomyelitis can be
induced in rodents and primates via the administration of
myelin antigens (e.g. MOG, PLP, and MBP), usually with
adjuvants (35,46,47). Experimental autoimmune encephalo-
myelitis can reproduce many of the clinical neuropathologic
and immunologic aspects of MS (48). Nevertheless, there is
increasing support for the idea that EAE is no longer an op-
timal model for MS.

There are important differences between MS and EAE.
The most evident is that MS is a spontaneous disease, whereas
EAE is induced. For this reason, one of the problems associ-
ated with animal models is that they tend to elucidate
mechanisms that are deliberately selected a priori for per-
turbation. Moreover, the inducing antigens in EAE are
known, whereas, in MS, there is no unique antigen respon-
sible for the disease. Therefore, important differences be-
tween the animal model and MS may result from the way
autoreactive T cells are primed and activated. Recently,
spontaneous models of EAE have been developed, but they
require transgenic approaches (49-51). Another important
difference between MS and EAE is that the latter is mainly
studied in inbred animals or in a genetically homogeneous
population, whereas, in MS, the specific response depends
on the specific genetic background of the individual. In
conclusion, because MS has different hallmarks depending
on the typology of the disease (e.g. RR vs PP), the com-
plexity of the pathology can be reflected in EAE only when a
broad spectrum of models induced in different species by
different sensitization methods are studied (52).

Almost all the therapies used in MS treatment were
initially tested in EAE models with different results. For some
drugs (e.g. IFN-B and natalizumab), there was a correlation
between EAE and MS therapeutic success. In contrast, for
other drugs, treatment successes have been obtained for EAE
that have not been translated into successful treatments of MS
patients (53). It remains an open question as to whether au-
toimmune reactivity against myelin antigens causes MS.

In addition to CNS antigens, non—-CNS-specific anti-
gens expressed in response to or as a consequence of the in-
flammatory insult to the CNS may also be involved in MS
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progression. One of these immunogenic factors may be rep-
resented by heat shock proteins (HSPs).

HEAT SHOCK PROTEINS

Heat shock proteins are molecular chaperones that assist
in the proper folding of newly synthesized proteins and of
proteins subjected to stress-induced denaturation. Heat shock
proteins also exhibit a variety of cytoprotective (54,55) and
cytostimulatory functions (56). A molecular chaperone is a
protein that, by the controlled binding and release of the
substrate protein or peptide, facilitates its correct fate in vivo;
this fate may include folding, oligomeric assembly, transport
to the appropriate subcellular compartment, or switching be-
tween active/inactive conformations (57). Molecular chaper-
ones also exhibit a variety of cytoprotective functions (54,55).
In addition to their role as chaperones, HSPs inhibit the apo-
ptotic cascade, increasing cell survival (58).

Heat shock proteins are classified into different families
based on their molecular mass, that is, Hspl10, Hsp90,
Hsp70, Hsp60, Hsp40, and the small HSP families. In 2009,
Kampinga et al. (59) proposed new guidelines for the no-
menclature of human HSP families as well as for the human
chaperonin families (Table 1). The HSPs in the high-
molecular-weight group (i.e. the HSPC, HSPA, and HSPDI
families) are adenosine triphosphate (ATP)—dependent chap-
erones, and they are stabilized in their ATP- or adenosine
diphosphate—bound forms by the so-called co-chaperones
(e.g. DNAJBI). In contrast, the small HSPs (HSBPs) are ATP
independent. It is possible that their activation is regulated by
their phosphorylation status (60,61). The most studied mem-
bers of this family are HSPB1 and HSPBS (62).

One of the most conserved subsets of HSPs is the HSPA
family (63). Almost all HSP families have a constitutively
expressed member that plays a housekeeping role and a stress-
induced member that plays a crucial role in recovery after
cellular stress. The feature common to both constitutive and
inducible HSPs is that they bind solvent-exposed hydrophobic

TABLE 1. Heat Shock Protein Family Nomenclature

Old Names Molecular Mass, kDa New Names
Small Hsps 34 or lower HSPB
Hsp27 HSPB1
aA-crystallin HSPB4
aB-crystallin HSPBS
Hsp40 35-54 DNAJ
Hsp40 DNAJBI
Hsp60 55-64 HSPDI
Hsp70 65-80 HSPA
Hsp72 HSPATA
Hsc70 HSPAS
Grp75 HSPA9
Grp78 HSPAS
Hsp90 81-99 HSPC
Hsp90 HSPCI
Hsp90p HSPC3
Hspl00 100 or higher HSPH

Grp, glucose-related protein; Hsp, heat shock protein.
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segments of non-native polypeptides, permitting folding,
transport, and assembly of the polypeptide through a cycle of
binding and release (64-66).

The transcription factor responsible for HSP transcrip-
tional activation is heat shock transcription factor 1 (HSF1)
(67—69). According to the chaperone-based model, HSF1 in
unstressed cells is maintained in an inactive complex with
HSPC, DNAIJIBI, and HSPA1A. When elevated HSP levels
are required in response to cellular stresses, HSF1 is released
from the complex and migrates to the nucleus. The active
homotrimeric hyperphosphorylated HSF1 binds heat shock
elements in the promoter of HSP genes, leading to their
upregulation (68,70). Heat shock proteins are present not only
as intracellular but also as extracellular proteins (71,72).

Extracellular HSP Roles and Their Receptors

It is now widely accepted that almost all HSPs are re-
leased into the extracellular environment. One emerging
question concerns how these proteins, which lack any exo-
cytosis signal, can exit from cells. It was initially believed that
HSP release was caused by cellular necrosis, but it is now
known that HSPs are released through exosomes (73,74),
extracellular vesicles that originate from the fusion of multi-
vesicular bodies with the plasma membrane. HSPATA,
HSPAS, HSPDI1, and HSPC1 have also been shown to be
released through membrane vesicles, extracellular vesicles
that originate directly from the plasma membrane (Tinnirello,
unpublished data).

Extracellular HSPs have different roles from their in-
tracellular counterparts because they are involved in the in-
duction of the innate immune response via interactions
with macrophages or dendritic cells (75). Moreover, they are
also involved in enhancing adaptive immunity. In both cases,
HSPs interact with target cells through receptors that can
be grouped into 2 categories: Toll-like receptors (TLRs) and
scavenger receptors (75).

The TLR family includes both extracellular and intra-
cellular members, and they are responsible for lymphocyte
activation and also mediate responses to autologous compo-
nents (e.g. HSPA1A, HSPC1, and HSPDI1). Two of these re-
ceptors, TLR2 and TLR4, are involved in neurodegeneration
(76-81) and may also be involved in MS pathogenesis
(82-86). HSPATA, HSPCI, and HSPDI can be recognized by
TLR2 and TLR4 (87-89). Indeed, activation of TLR2 and
TLR4 stimulates the synthesis of several cytokines thought to
be responsible for CNS autoimmunity and neurodegenerative
diseases. Hasheminia et al (90) demonstrated that, in peripheral
blood mononuclear cells obtained from MS patients, there was
an increase in the levels of TLR2/4 compared with healthy
donors. In particular, TLR2 overexpression was correlated with
the Expanded Disability Status Scale. Increasing levels of
TLR2/4 were also observed in mononuclear cells from the
cerebrospinal fluid (CSF) (91). Elevated expression of TLR2
was detected in oligodendrocytes in MS lesions, and a specific
agonist inhibited the maturation of oligodendrocyte precursor
cells (OPCs), a progression that inhibits the remyelination of
OPCs (92).

The potential role of TLRs in MS pathogenesis was
demonstrated in an induced EAE model. Toll-like receptor

© 2014 American Association of Neuropathologists, Inc.
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4 knockout increased the severity of clinical signs because
of increased activity of Th17 cells (82,84,93). Similarly,
TLR2 expression increased during MOGs;s_ss—induced EAE
in several CNS regions (94). Toll-like receptor agonists have
also been shown to promote the differentiation of mouse Th17
cells (84,95).

HSPs in the CNS

Defining the role of HSPs in normal and pathologic
CNS is complicated by the large number of cell types present,
and their differences preclude extrapolation of the results from
one cell type to another. Heat shock protein expression has
been detected in multiple CNS cell types, including neurons,
glia, and endothelial cells (96). Heat shock proteins are also
induced in a variety of pathologic states, including cerebral
ischemia, neurodegenerative disease, epilepsy, and trauma
(97). They are thought to exert 2 neuroprotective roles, that is,
they prevent protein aggregation and misfolding through their
chaperone activity and they induce antiapoptotic mechanisms
by inhibiting multiple steps in apoptosis in both the intrinsic
and the extrinsic pathways (58,98—100).

As previously described, HSPs are also present as ex-
tracellular proteins that are released both through physiologic
secretory mechanisms and during necrotic cell death (101).
Heat shock proteins in the extracellular milieu can increase
stress resistance as a consequence of binding to stress-
sensitive recipient cells such as neurons (56). For example,
glial cells produce and release HSPs, including HSPAS and
HSPALA (102), which are rapidly captured by neurons. In
contrast, neurons express high HSPAS levels, but they are not
able to induce HSPATA under stress conditions (103).
Therefore, the supply of exogenous HSPs in the CNS, or its
pharmacologic induction, can reduce neuronal death in neu-
rodegenerative diseases (104).

Extracellular HSPs can also signal danger to inflam-
matory cells and aid in immunosurveillance by transporting
intracellular peptides to immune cells (72). Two characteris-
tics of HSPs confer the ability to initiate or perpetuate autoim-
mune diseases: 1) their phylogenetic conservation (e.g. immune
responses to bacterial HSPs cross-react with mammalian HSPs
[105]) and 2) their ability to evoke strong immune responses.

Table 2 summarizes the currently known functions of
HSPs in the CNS.

THE HSPA FAMILY

Unlike other HSPs (e.g. HSPC), the expression pattern
of HSPA proteins extends to almost all intracellular com-
partments as well as secretion into the extracellular milieu and
surrounding cells. In humans, the HSPA multigene family
includes the cytosolic and nuclear-localized HSPAS and
HSPAT1A, the endoplasmic reticulum—localized HSPAS5 and
the mitochondrial HSPA9. However, many of these proteins
are capable of shuttling between various compartments.

HSPAS8, HSPAS, and HSPA9 are abundantly expressed
during normal growth conditions and form critical compartment-
specific protein-folding machinery. HSPA family members con-
tain several fairly well-conserved domains: the ATPase domain
in the N-terminus, a substrate-binding domain (also referred to
as the ‘‘chaperone function™) and a C-terminal region that

© 2014 American Association of Neuropathologists, Inc.

TABLE 2. Intracellular and Extracellular Heat Shock Protein
Functions in the CNS

Location

Functions

Intracellular Cytoprotection
Chaperone function
Apoptosis inhibition
Extracellular Immune response mediator
Antigenenic adjuvant
Antigen-presenting cell maturation and
innate immune response induction

regulates the release of the substrate on nucleotide exchange. In
normal cellular environments, these HSPAs function in concert
with specific binding partners, particularly the chaperones of
the DNAIJ family, and with specific nucleotide exchange fac-
tors. In contrast, HSPATA levels are regulated by growth
(106,107) and are induced in response to a variety of stressful
stimuli (e.g. hyperthermia, oxidative stress, heavy metals,
amino acid analogs, and mechanical stress) in all living or-
ganisms. However, in addition to protein folding, HSPA family
members recognize and bind exposed hydrophobic residues of
misfolded or denatured proteins. These proteins are often held
for ubiquitination and subsequent targeting to the proteasome
for degradation. HSPA family members are also responsible for
the recognition of proteins containing a KFERQ-like penta-
peptide. These proteins are then transferred into lysosomes by
HSPAITA proteins via chaperone-mediated autophagy (108).
HSPA family members do not bind normal active proteins,
with the exceptions of clathrin and 32 (109,110).

HSPATA and Autoimmune Diseases:
A Negative Role?

Immune activation within the CNS is a characteristic
feature of ischemia, neurodegenerative diseases, immune-
mediated disorders, infections, and trauma, and it often con-
tributes to neuronal damage. Because of their evolutionary
conservation and high immunogenicity, HSPs can act as po-
tential autoantigens to amplify and/or modify autoimmune
responses. It has been demonstrated that extracellular HSPs
can induce innate immunity through their interactions with
cell surface receptors, including TLRs, leading to the expression
of proinflammatory cytokines (111,112) and chemokines
(113,114) and to the activation of dendritic cells (115,116).
However, in acquired immunity, extracellular HSPs enhance
the antigen presentation of bound polypeptides. To confirm
their immunogenic roles, increased expression of HSPs has
been observed in autoimmune forms of arthritis and diabetes,
and HSP-reactive T-cell lines have been demonstrated in pa-
tients with these diseases. Such T cells are also able to induce
arthritis in animal models (117-122). The principal HSP
implicated in the formation of the immunogenic complex is
HSPATA (123-128).

In many neurodegenerative diseases (i.e. so-called
misfolding diseases such as Parkinson disease, Alzheimer
disease, and polyglutamine diseases), both intracellular and
extracellular HSPs have neuroprotective roles in the CNS
because they reduce misfolded proteins. A similar role does
not apply to MS, in which extracellular HSPA | A exacerbates
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the immune response by acting as an adjuvant for myelin
peptides and as a proinflammatory cytokine (129).

As previously described, MS is a multifactorial disease
that, in many patients, is characterized by an inappropriate
immune T cell-mediated response to CNS myelin antigens.
The activation of T cells requires accessory molecules repre-
sented by either class I or class Il components of the major
histocompatibility complex (MHC). Numerous studies have
reported that HSPA 1A enhances antigen presentation through
the MHC 1 antigen presentation pathway. [n addition, Mycko
and coworkers (130) demonstrated that HSPA1A is also able to
promote antigen presentation via an MHC class [1-dependent
pathway.

Under normal conditions, HSPA8 was observed to act
as a chaperone for MBP, one of the 2 major myelin proteins of
the myelin sheath (131). In contrast, PLP, the other main
component of the myelin sheath, is not likely to require
chaperoning by HSPAS. It is conceivable that HSPAS should
be similarly required for remyelination during the process of
lesion repair in the remitting phase of MS. During this phase,
association of the chaperone with myelin proteins on the cell
membrane may function as an additional target of the immune
response. Remyelination may also be impaired by a reduction
in cellular HSPAS content. In fact, the HSPAR content in MS
lesions from autopsy tissue has been found to be 30% to 50%
below that in normal brain tissue, with chronic lesions showing
the lowest expression (40,41). This reduction might be respon-
sible for the permanent loss of myelin from the lesions (131).

In MS, however, the immune response in the CNS leads
to an inflammatory and oxidative condition that is responsible
for the overexpression of most HSPs, including HSPA1A, both
within the lesion and at the lesion edge. This overexpression
was observed both in MS patients and in EAE (40-45) and
could be interpreted as an activation of endogenous neuro-
protective mechanisms (41,44,132). In contrast, Cwiklinska
et al detected HSPA1A complexes with either MBP or PLP in
human MS lesions. Both complexes were highly immunogenic
and, in an EAE model, they were able to induce a specific T-cell
response (130,132,133). In contrast, no coimmunoprecipita-
tion was observed in human control brain tissues, confirming
the specificity of the complex in MS. A similar result was ob-
served in mouse models of EAE (132). In addition, Cwiklinska
et al demonstrated that the addition of HSPATA to MBP
in vitro could enhance its uptake by antigen-presenting cells
and its presentation by MHC II and, via an adjuvant-like
mechanism, could enhance immune responses to myelin anti-
gens (130,132).

Chiba et al (134) examined antibody titers against var-
ious types of HSPs in the CSF of patients with either MS or
motor neuron diseases. These authors observed higher levels
of IgG antibodies against both HSPA8 and HSPA1A but no
autoantibodies against other HSPs, including HSPB1, HSPDI,
or HSPC1 (134,135). In addition, significantly higher anti-
HSPA1A levels are found in patients with progressive MS than
in patients in a stable state. Yokota et al (136) demonstrated
that CSF obtained from patients with high anti-HSPA1A titers
displayed elevated HSPA1A-induced 1L-8 production in mono-
cytic THP-1 cells, resulting in enhanced extracellular HSPATA-
induced inflammatory responses. In early active and chronic
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active lesions, HSPA1A immunoreactivity was strongly posi-
tive on reactive astrocytes and some macrophages at the leading
edge (84). HSPAIA upregulation was also observed in in-
flammatory lesions in the CNS of animals with EAE (131).

In contrast, other studies report that there are no dif-
ferences between the serum of MS patients and that of healthy
controls (130,133,137). Consistent with these data, Cwiklinska
et al (138) demonstrated that HSPATA was not overexpressed
in ex vivo peripheral blood mononuclear cells from MS pa-
tients, whereas on cell stress, HSPA1A was significantly over-
expressed compared with healthy controls. This overexpression
was caused by an increase in HSF1 nuclear translocation, which
was dependent on the A group of PKC isoenzymes. In contrast
to previous studies, Mansilla et al (139) recently reported
upregulation of HSPA1A in peripheral blood samples of MS
patients compared with healthy donors. They also demon-
strated that, in MS CD4-positive T lymphocytes after heat
shock, there was only a moderate increase in HSPA1A levels
compared with healthy controls. This result could be explained
by a chronic induction of the protein. A similar result was
obtained in CD8-positive lymphocytes and macrophages from
MS patients (139).

Demyelinated brain lesions of RR MS patients have
been demonstrated to contain a subpopulation of clonally
expanded yd T cells that respond to HSPATA (138,140-142).
These cells produce large amounts of IL-17 (143), a potent
proinflammatory cytokine that is involved in MS pathogenesis
and EAE, as well as in other autoimmune diseases (144,145).
Based on these data, we hypothesize that deregulated HSPATA
expression is involved in the pathogenesis of MS by conftrib-
uting to the chronic inflammation of the environment and/or by
facilitating myelin autoantigen presentation. Moreover, Lund
et al (133) demonstrated that HSPA1A was associated with
MBP peptides in normal-appearing white matter (NAWM) in
both MS and normal human brain. These authors also found an
adjuvant-like effect of HSPAIA-associated MBP-derived
peptides. Based on these results, the authors hypothesized that
a small dose of HSPA1A-MBP peptide secreted by stressed
oligodendrocytes stimulated an in vivo adaptive immune re-
sponse specific for the associated autoantigen. In addition,
in vivo experiments demonstrated that HSPA1A was involved
in EAE resistance. Indeed, hsp70.1 '~ mice were found to be
resistant to EAE after immunization with MOGs;5_ss peptide;
HSPAITA was essential for the induction of the autoimmune
response to this peptide (128).

These data demonstrate that HSPA1A is overexpressed
intracellularly in the CNS of MS patients, and that this
overexpression may have a neuroprotective function in neu-
rons and oligodendrocytes in an inflammatory environment.
Nonetheless, intracellular HSPAIA is released into the ex-
tracellular milieu, where it is responsible for the induction or
exacerbation of an immunologic response depending on its
cytokine-like properties as well as its capacity as a myelin-
peptide adjuvant.

Conflicting results were obtained by Galazka et al (146)
who demonstrated that the subsequent induction of EAE was
reduced in mice immunized with an HSPA1A fraction asso-
ciated with peptide complexes isolated from animals with EAE.
In contrast, the disease was not induced using HSPA 1 A-peptide
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complexes isolated from healthy controls. These divergent re-
sults suggest substantial differences in the peptide that binds
HSPATA in normal versus pathologic CNS. In contrast, phar-
macologic induction of HSPAIA (e.g. with geldanamycin
[GA]) suppressed the glial inflammatory response and amelio-
rated the pathology of EAE (147). Other possible drugs capable
of suppressing EAE by inducing HSPA1A are triptolide (148)
and its less toxic derivatives (5R)-5-hydroxy-triptolide (149) and
celastrol. HSPA1A is responsible for nuclear factor-«B inhibi-
tion, which attenuates the proinflammatory response (148—150).
In fact, nuclear factor-kB is responsible for the transcription of
various cytokines that are relevant to MS pathogenesis, and
increased activity of this factor has been observed in microglia
and in invading macrophages associated with active MS le-
sions of MS patients (151).

THE HSPC FAMILY

Like other chaperones, HSPC1 exhibits potent protec-
tive capacities such as the prevention of nonspecific aggre-
gation of non-native proteins (152). However, HSPC1 seems
to be more selective than many other chaperones, interacting
only with specific subsets of the proteome (153). An addi-
tional feature of HSPCI is its ability to induce conformational
changes in folded native-like proteins, resulting in their acti-
vation and/or stabilization (154). In its active configuration,
HSPCI is a dimer, and its monomer contains an ATP-binding
pocket (155). Unlike other chaperones, ATP hydrolysis by
HSPC is relatively slow (156), and this ATP hydrolysis is
responsible for conformational changes that are required for
reaching or maintaining an activated state of substrate protein.
In general, several cofactors interact sequentially with HSPC1
to assemble the chaperone machinery (157,158). Therefore,
HSPC1 is regulated at several levels, that is, ATPase activity,
cofactor interactions, and posttranslational modifications (e.g.
acetylation, S-nitrosylation, and phosphorylation) (159-163).
HSPCI substrates generally belong to 2 classes: transcription
factors such as p53 and signaling kinases. The proteins in this
family appear to play important roles in the etiology of auto-
immune diseases such as rheumatoid arthritis (164), systemic
lupus erythematosus (163), and Type [ diabetes (166).

HSPC1 AND NEURODEGENERATIVE DISEASES:
FOCUS ON MULTIPLE SCLEROSIS

In several neurodegenerative disorders associated with
protein aggregation, including Alzheimer disease and Parkinson
disease, HSPC1 maintains the functional stability of aberrant
neuronal proteins, thus sustaining the accumulation of toxic
aggregates (167,168). Oligodendrocyte precursor cells retain
the characteristics of multipotent CNS stem cells (169) and
have been found both in adult rodent brains (170) and in the
adult human CNS (171-173). These cells are involved in
remyelination (171). Remyelination fails in MS, however,
suggesting that OPCs are ineffective. Repair of demyelinated
plaques is possible only during the initial phases of the disease.
When MS becomes chronic, this capacity is lost and no CNS
remyelination occurs (174). Cid et al (175,176) identified
antibodies in MS patient CSF (particularly in patients who are
in remission) that recognize antigens on OPCs in culture
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conditions. They demonstrated that the antibodies recognize
the B isoform of HSPC (HSPC3), a protein that is expressed
or overexpressed specifically on the OPC surface (177). These
antibodies did not recognize cytosolic HSPC3 and were not
found in control subjects or in patients with other inflammatory
diseases (175,177). These authors further demonstrated that the
recognition between antibodies in the CSF and HSPC3 on
OPCs is responsible for complement fixation, which causes
complement-mediated OPC death (175). Taken together, these
findings provide a potential explanation for OPC death and
explain the significant decrease in OPCs with the duration of
the disease (175,177). Numerous reports have demonstrated
that HSPC1 inhibition by GA blocks the release of cytokines
from activated monocytic cells (178-180). Furthermore,
Murphy et al (181) observed that GA reduced the expression
and activity of nitric oxide synthase 2 in astrocytes and also
reduced both the incidence and severity of EAE, but the ther-
apeutic potential of GA is limited by its toxicity (182). Con-
sequently, Dello Russo et al (147) studied the effect of the less
toxic GA derivative 17-(allylamino)-17-demethoxygeldanamycin
(17AAG) on glial cell activation in vitro. In addition, they
tested the in vivo effects of a novel formulation of 17AAG
called £C72. In vitro experiments with 17AAG confirmed that
there was a reduction in astrocyte responses, but only minor
inhibitory effects on microglial activation were observed.
In vivo treatment with EC72 significantly reduced the incidence
of EAE when administered before the appearance of clinical
signs and induced clinical recovery when administered to mice
that were already ill. No significant reduction was observed in
T-cell activation. A similar result was obtained in vitro with the
application of 17AAG to T cells during restimulation with
MOG. No reduction in IFN-y production was observed. By
contrast, an inhibitory effect on 1L-2 production was observed,
suggesting that there was a selective effect on T cell-derived
cytokines (147). Taken together, these results suggest that
HSPC1 inhibition may reduce or delay the clinical develop-
ment of demyelinating disease.

HSPD1

The HSPDI1 stress protein belongs to a subgroup of
molecular chaperones called chaperonins. They are distin-
guished from other chaperones by their special architecture
and are subdivided into Type I and Type II chaperonins. Type
I chaperonins, including HSPD1, consist of rings formed from
7 subunits; they collaborate with the co-chaperonin Hspl0,
which functions as a type of lid to close the chaperonin cavity.
Whether chaperonins assist protein folding by isolating target
proteins from the crowded environment or simply by accel-
erating the folding process remains under debate. Biochemical
and electron microscopy analyses have indicated that HSPD1
exists in a dynamic equilibrium between monomers, single-
ring heptamers, and double-ring dodecamers (183). HSPDI is
present in both the cytosol and the nucleus, as well as in mi-
tochondria (184).

Molecular chaperones in the mitochondrial matrix are
involved in almost all of the major steps of mitochondrial
biogenesis, including translocation, refolding, and assembly
of both imported and mitochondrially encoded proteins. A

1097

Copyright © 2014 by the American Association of Neuropathologists, Inc. Unauthorized reproduction of this article is prohibited.



Turturici et al

J Neuropathol Exp Neurol * Volume 73, Number 12, December 2014

subset of imported proteins requires more folding assistance
and must be transferred from HSPA9 to chaperonin HSPDI,
which requires ATP hydrolysis and regulation by Hsp10 (185).

HSPD1 and the Immune System

HSPDI, like other HSPs, can be secreted into the extra-
cellular environment from a variety of cell types under normal
physiologic conditions. HSPDI, both foreign and self, is an
antigen for B and T cells (186). Autoantibodies to selFHSPD1
have been found in several autoimmune and inflammatory dis-
eases, including Type I diabetes (187,188), rheumatoid arthri-
tis (189,190), and MS (29,191,192). Tt has also been shown
that HSPD1 regulates immune responses in animal models of
MS (43,193). This HSP may have both inflammatory and anti-
inflammatory properties. The former activity is carried out
through a signal via monocytes, B cells, and effector T cells. In
contrast, the latter activity depends on B cells, regulatory T cells,
and anti-ergotypic T cells (186).

HSPD1 in MS and EAE

As previously described, EAE represents an animal
model of MS. Depending on the species used and the age at
the time of sensitization, EAE may manifest as an acute epi-
sode or may develop into a more chronic syndrome with pe-
riods of exacerbation and remission. Gao et al (43) tested the
hypothesis that inflammation in the CNS is associated with an
altered expression of HSPs, which may be targets for the de-
velopment of chronic disease. The CNS of animals with acute
EAE displayed lesions of white matter with increased immu-
noreactivity for HSPD1, predominantly in infiltrating macro-
phages, with most of the staining at nonmitochondrial sites.
In contrast, normal mice showed HSPD1 immunoreactivity
exclusively in the mitochondria (43). However, during the
chronic phase of EAE, both astrocytes and oligodendrocytes
were immunoreactive, There was also a small increase in
HSPD1 levels in the spinal cords of animals with chronic
disease (43).

It has been demonstrated that, in early MS lesions,
myelin degradation is not always associated with the deple-
tion of oligodendrocytes, the cells involved in myelin forma-
tion. In fact, oligodendrocyte proliferation has been observed at
borders of demyelinating plaques (194,195). This proliferation
is responsible for some remyelination of axons. Nevertheless,
this process remains incomplete and, with time, oligodendro-
cytes are depleted. Studies of MS patients have demonstrated
HSPDI reactivity in immature oligodendrocytes. No staining
was present in interfascicular oligodendrocytes or in other cell
types from MS patient tissues (29,191).

In vitro experiments confirmed the presence of HSPD1
in oligodendrocytes (191,196,197), but not in astrocytes,
which preferentially express members of the HSPA family
(198). Reactive oligodendrocytes are present at the margins of
chronic lesions in areas of demyelination containing TCR v8
lymphocytes (29,141,199), which are also present in the CSF
of MS patients (200). Because y8 T cells are present in the
brains of MS patients and in the brains and CSF of patients
with other neurologic diseases (200,201), their presence per se
is not disease specific. However, both the T cells and HSPD1
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expression were found in MS plaques and were not detected
in the CNS of patients with other non-MS inflammatory dis-
cases (18,29). Coexpression of HSPD1 and TCR v cells in
the same portion of the MS lesion might imply that reactive
oligodendrocytes involved in myelin repair become targeted
by TCR v8 cells, which enter the CNS with other inflammatory
cells. Activation of TCR yd cells by HSPD1-positive oligo-
dendrocytes might explain their selective depletion in MS,

SMALL HSPs

Small HSPs (HSPBs) have molecular weights between
12 and 43 kDa, which distinguish them in size from large
HSPs (202,203). There are 10 human HSPBs (204). All of the
proteins in this family contain the so-called a-crystallin do-
main, a region composed of 90 residues that is homologous to
the corresponding region in the primary structure of the main
lens proteins HSBP4 and HSPBS (205). This domain is con-
sidered to be an important hallmark of small HSPs, indepen-
dent of their origin and nature (206). In addition, HSPBs have
the capacity to form oligomers (207). As chaperone proteins,
HSPBs bind misfolded proteins and prevent them from aggre-
gating, similarly to high-molecular-weight chaperones. How-
ever, HSPBs are unable to actively refold the protein themselves
because of their lack of ATPase activity. Instead, they sequester
the misfolded proteins within the cell to prevent aggregation
until a large HSP can assist in refolding (208). Under physio-
logic conditions, most HSPBs form multisubunit oligomers via
their a-crystallin domains (209).

HSPBs in the Nervous System

Almost all HSPBs are constitutively expressed at low
levels in the brain (210). Only 3 members of this family, in-
cluding HSPB1 and HSPBS, are induced in response to cel-
lular stress (211). HSPBI is induced during development and
stressful conditions such as heat stress (68). In addition, it has
been reported that HSPBs have antiapoptotic functions (212,213).
Although the role of HSPBs has not been established, HSPBI
and HSPBS5 have been implicated in several neurologic disor-
ders. HSPBs are frequently released extracellularly in the CNS,
as well as in pathologic conditions such as Alzheimer disease
(214,215). Both HSPB1 and HSPB5 can be secreted through
exosomes (44,216,217), suggesting that they may have addi-
tional roles outside the cell.

A general function of extracellular HSPBs is the acti-
vation of macrophages or macrophage-like cells during in-
flammation (12). As with other HSPs, it is likely that this action
is mediated by TLRs or other scavenger receptors (72,75).

HSPBs in MS

Several studies have suggested that both HSPB5 and
HSPB1 are present in demyelinating plaques in the brains of
MS patients (218). Ce et al (219) evaluated HSPBI blood
levels during both relapse and remission phases in acute MS
patients. The authors observed a striking increase in HSBP1
levels during MS relapse. In contrast, serum HSPB1 levels in
MS patients were only slightly increased during the remis-
sion period. The authors hypothesized that the overexpres-
sion of HSPBI during MS might exert a protective role by
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inhibiting the misfolding of proteins and the aggregation
of toxic substances. They conceded that their study design
cannot explain the exact role of the HSPBI elevation during
MS, however.

Van Noort et al (220) first demonstrated the involve-
ment of HSPB5 in MS pathogenesis by showing that
this molecule was the most immunodominant myelin T-cell
antigen in this disease. Multiple sclerosis—affected brain tissue
is in a state of persistent oxidative stress and diffuse mild
inflammation (221-227). This state is associated with the
widespread enhanced expression (up to 20-fold) of the glial
stress protein HSPBS (44,228-232). HSPBS is selectively
induced in glial cells by oxidative stress but not in astrocytes
or axons in so-called preactive MS lesions in MS NAWM
(232). Moreover, HSPB5 acts as an intracellular signaling
factor. In fact, HSPBS5 is the major target of CD4-positive
T-cell immunity, particularly when it accumulates to relatively
high levels (34,228,232).

The hypothesis of van Noort and colleagues was based
on the reactivity of peripheral blood mononuclear cells from
both MS patients and healthy subjects to proliferate in re-
sponse to the myelin fraction containing HSPBS obtained
from MS brains. These findings suggested that HSPB5 may
be an autoantigen in MS and that immune cells attacked en-
dogenous HSPBS as part of the pathogenetic mechanisms in
MS patients. This hypothesis was also supported by data
showing high levels of HSPBS in astrocytes and oligoden-
drocytes in MS lesions (233,234); as demonstrated later, this
HSPB was the most abundant transcript in MS lesions when
compared with the brain tissue of healthy controls (42). Ad-
ditional studies have validated the initial reports that HSPBS
is elevated in the brains of MS patients (229,235,236) and in
the blood of MS patients (237). It was recently demonstrated
that HSPB5 accumulates in the cytosol of CNS oligodendro-
cytes but not in astrocytes or axons in “‘preactive lesions’” in
NAWM (232). These lesions are defined as clusters of acti-
vated microglia that appear in the absence of any obvious
blood-brain barrier impairment, leukocyte infiltration, or de-
myelination (11,238-241). In particular, HSPBS is also found
at the interface between oligodendrocytes and microglia, as
well as between the layers of the myelin sheath and axons,
often in granule-like patterns of expression. In this way, oli-
godendrocytes may facilitate the survival of the other cell
types by supplying them with HSPBS released by exosomes
(217,242). The existence of ‘‘preactive lesions™ has been
confirmed using several in vivo imaging techniques (243-246).
According to some researchers, MS patients displayed abnor-
mal immunity because of the migration of peripheral activated
T cells into the CNS and the tissue specificity of the inflam-
matory process. In contrast, van Noort et al (247) proposed
that these observations could also be caused by the interaction
of IFN-y and HSPBS. Interferon-y promotes the activation of
microglia and macrophages, thereby enhancing tissue destruc-
tion. In addition, IFN-y kills OPCs, preventing the process of
remyelination (248). As demonstrated by van Noort et al (247),
HSPBS accumulates in oligodendrocytes and myelin in the MS
brain because of neurodegeneration. These authors hypothe-
sized a mechanism of interaction between IFN-y and HSPBS to
explain the development of an MS lesion. According to this
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model, an abnormal immune system is not required for the
development of MS. The large amount of HSPB5 in the CNS
of MS patients is presented by perivascular antigen-presenting
cells. This event triggers a response by HSPBS5-reactive mem-
ory T cells, which release IFN-y. Thus, IFN-y modifies the
originally protective effects of HSPBS, which then become
proinflammatory through TLR2 signaling. This process initi-
ates a positive feedback loop that increases myelin destruction.
In conclusion, in this model, no abnormal autoimmune re-
actions are needed to trigger MS lesions (249).

Nevertheless, attempts to induce EAE using HSPBS as
an antigen rather than using a myelin antigen have been un-
successful (250, 251). Although HSPBS is upregulated during
the course of MS, its role might be protective rather than
pathologic. In 2007, a study by Ousman et al (252) demon-
strated that mice deficient in HSPBS5 developed more severe
EAE than wild-type mice (especially in clinical paralysis),
and that treatment with exogenous HSPBS5 ameliorated the
signs. More severe EAE was caused by an elevated inflam-
matory state of immune cells, a higher level of immune cell
infiltration (i.e. CD4-positive lymphocytes and macrophages)
into the brain and increased demyelination in the brain and
spinal cord in both the acute and progressive phases of the
disease. HSPBS is a negative regulator of inflammation in
EAE and in the brains of MS patients and is a potent modu-
lator of glial apoptosis (253). In particular, HSPBs, especially
HSPBS, have been shown to exert protective roles after their
release into the extracellular environment. In fact, exogenous
administration of HSPBS5 in deficient mice decreases immune
infiltration into the brain and shifts the phenotype of these
immune cells to an anti-inflammatory state. However, cessa-
tion of protein therapy resulted in the return of paralytic signs,
similar to the effects of the biologic inhibitor (237). Experi-
mental data demonstrated that the level of circulating HSPBS
was lower in normal plasma than in plasma from MS patients.
In particular, an increased level of HSPBS is observed in in-
flammatory sites in mice with EAE because of apoptotic cell
release or to direct release through exosomes. Similarly,
healthy donors displayed small numbers of inflamed loci that
stimulated the synthesis of HSPBs because of their increased
temperature. The inability of HSPB5 to modulate the prolif-
eration of T or B cells in in vitro experiments, along with its
inability to ameliorate clinical EAE when induced directly by
myelin-specific Th17 transfer, suggests that the inhibition of
inflammation is not caused by the modulation of the adaptive
response but rather to the functions of the HSPB chaperone
(237,254). In particular, the extracellular chaperone HSPBS
binds to partially unfolded proteins present in the plasma,
such as proinflammatory cytokines. This binding ability in-
creased as a function of the temperature (209), which increased
at sites of inflammation. Kurnellas et al (255) confirmed that
the chaperone activity of HSPBs was responsible for their
therapeutic efficacy in EAE. They also demonstrated that bac-
terial HSPBs (e.g. of Mycobacterium tuberculosis) can modu-
late disease severity in a mouse model and identified the active
peptides obtained from HSPB5, which showed activity equiv-
alent to that of the entire protein. In contrast, proteins and
peptides that did not exhibit chaperone activity did not have
therapeutic effects on EAE.
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The conflicting results between MS patients and EAE
models confirm that there are relevant differences between
species and that EAE is not completely equivalent to MS.

Differential HSP Expression in Chronic Active
Versus Inactive MS Plaques and in Different
Areas of the Active Lesion

One of the most common types of MS plaques is the
chronic-active type in which lesion activity is restricted to the
lesion edge (22,256,257). In such lesions, the center lacks
inflammatory activity and is composed of a demyelinated pa-
renchyma, reactive astrocytes, and glial scarring (22,257,258).
Lesion activity is not always restricted to the marginal zone and
may extend into adjacent NAWM.

Mycko and et al (258,259) reported the first use of a
differential gene expression analysis of material obtained
from different MS lesions (chronic-active and chronic-
inactive) and from regions of the lesions with different ac-
tivity (margin vs center) together with the adjacent white
matter. The chronic active lesions displayed significant dif-
ferential gene expression between the center and margin of the
lesion. Silent lesions showed less evidence of differences
between the 2 regions. As expected, significant differences
were observed between the marginal zones of active and silent
lesions (258,259). A detailed analysis of the changes in HSP
genes has revealed a distinct pattern of upregulation of HSP in
both the margin and the center of chronic active lesions
compared with NAWM. Heat shock proteins, particularly
HSPC1 and HSPATA, were also enriched at the lesion margin
of the chronic active plaques compared with the central re-
gion, which could be attributed to the heterogeneity of the
pathologic processes in different regions of MS lesions. The
upregulation of one of the heat shock transcription factors,
HSF4, was also observed at both the margin and the center of
chronic-active lesions compared with NAWM. This result
suggests that HSF4 may be a major factor driving HSP acti-
vation in active lesions (260).

In addition to differential gene expression analysis,
Quintana et al (192) conducted antigen microarrays to identify
self-antigens in different clinical subtypes of MS and dem-
onstrated that unique autoantibodies of the HSP signature
characterize the RR, SP, and PP subtypes of MS. Strikingly,
antibody responses to HSP were decreased in both SP MS and
PP MS, consistent with the less inflammatory nature of pro-
gressive MS.

SUMMARY

In this review, we have considered the association of
HSPs with pathogenetic mechanisms in MS. Considerable
experimental data have shown that non—CNS-specific anti-
gens may be involved in MS progression, and HSPs may be
among these immunogenic factors. Many reports have dem-
onstrated the involvement of HSPs in CNS diseases, particu-
larly those linked with the presence and accumulation of
misfolded proteins, and because HSPs are found in protein
aggregates, along with disease proteins, ubiquitin or other
cellular molecules, we hypothesize that both intracellular and
extracellular HSPs reverse the effect of the mutant gene or
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refold the misfolded proteins. In contrast, conditions in which
CNS immune activation is a prominent feature, such as is-
chemia, neurodegenerative diseases, immune-mediated dis-
orders, infections, and trauma, may involve extracellular
HSPs because of both their ability to induce the innate and
adaptive immune systems and their phylogenetic conserva-
tion. Through their interaction with cell surface receptors,
extracellular HSPs are responsible for the expression of
proinflammatory cytokines and chemokines and the activation
of dendritic cells. The principal HSP implicated in the im-
mune response is HSPA1A, and anti-HSPA 1A autoantibodies
were found to be significantly higher in the CSF of MS pa-
tients than in that of healthy controls. Moreover, the highest
levels of autoantibodies were detected in patients with pro-
gressive MS, in contrast to patients with a stable disease. A
higher level of autoantibodies against HSPAS was also ob-
served in patients with progressive MS. HSPAIA was also
found in and around MS lesions, and it may be involved in the
induction or exacerbation of the immunologic response be-
cause of its ability to act as a proinflammatory cytokine.
Moreover, higher levels of anti-HSPA1A antibodies are al-
ways detected in stable or progressive MS than in healthy
controls. This increase corresponds to the elevated production
of IL-8 in THP-1 monocytes with the consequent higher
levels of inflammation. In addition, there is physical contact
between HSPATA and MBP or PLP, as demonstrated by
immunoprecipitation. In contrast, in EAE, pharmacologically
induced overexpression of HSPA1A has a protective role
because it attenuates the inflammatory response and amelio-
rates clinical signs.

Completely different roles were observed for intracel-
lular HSPA members. In fact, the intracellular expression of
HSPA1 and HSPA8 may be neuroprotective. In particular,
HSPAS acts as a chaperone for MBP under physiologic con-
ditions. According to this model, HSPA8 may be required for
remyelination during lesion repair in the remitting phase of
MS. Indeed, there is some evidence that damage to the myelin
sheath in MS patients exposes MBP to an aqueous extracel-
lular environment that is responsible for its unfolding (261).
The reduced levels of MBP in MS lesions may be responsible
for the permanent myelin loss observed in these areas. In
contrast, HSPA1A is responsible for inhibiting nuclear factor-
kB, a transcription factor involved in the activation of various
cytokines that are relevant to MS pathogenesis. Mansilla et al
(262) recently studied the role of HSPA 1A both in vitro and in
EAE and demonstrated that, in the MOG-induced EAE model,
HSPATA promotes T-cell responses against autoantigens, and
this ability is much more relevant than its capability to protect
CNS cells from apoptosis induced by inflammatory injury.

Another HSP that has a positive effect on MS progres-
sion is HSPC3; in the CSF, antibodies with the ability to
recognize HSPC3 induce OPC complement—mediated cell
death. Experiments in mice with EAE confirmed that the in-
hibition of HSPC1 could reduce EAE symptoms. In addition,
the chaperonin HSPDI1 is responsible for oligodendrocyte
depletion in MS patients. However, conflicting results have
been obtained for HSPBs. For example, HSPBS5 is present
at levels up to 20-fold higher in glial cells in MS-affected
brain samples than in normal controls, and the timing of its
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expression is interesting. HSPB5 accumulates in oligoden-
drocytes not only during later stages of inflammation but also
before any peripheral blood cells have entered the tissue—in
so-called preactive MS lesions. Thus, HSPBS5 initially induces
innate immune responses that are neuroprotective, whereas its
accumulation in response to neurodegeneration induces an
adaptive immune response that results in tissue damage. No-
tably, the increase in HSPBS5 levels in MS plaques can mod-
ulate inflammation depending on its chaperone role. Unlike
monoclonal antibodies, which have a single target, HSPB
chaperone proteins are able to bind to a broad spectrum of
ligands. Therefore, they may represent a unique therapeutic
reagent. Thus, it will be interesting to investigate drug treat-
ments that cause HSP overexpression or inhibition.

20.
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