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Chapter 7: Sub-Optimal Control

7.1. Rigid Rotor

Figure 7.1 summarizes the rotor under consideration. The reference systems is involved in order to control sections of “A” and “B” by magnetic bearings. The body is deformable, it greatly simplifies the discussion in the realization of the mathematical model and study of the frequency response that would be further aggravated by the study of flexural and torsion critical speeds.
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Fig. 7.1: Schematic view of rigid rotor configuration for mathematical model.

The mathematical model that shows the radial displacement is shown in (7.1.1), [6] and [7]:
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      (7.1.1)

where the used matrices are: mass matrix 
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By using Taylor’s series expansion, the actuator’s force expression (7.1.5) is linearized as shown in (7.1.9):
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where the matrices 
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(7.1.10) and 
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 (7.1.11), are respectively current and stiffness gain matrix:
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    (7.1.11)

The mathematical model is shown in a state space form (7.1.12) in order to have the state vector for a feedback of outputs signals:
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    (7.1.12)

where the used matrices are shown in (7.1.13), (7.1.14), (7.1.15) and (7.1.16) 
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7.2. Sub-Optimal control law
The optimal control law is carried out by using Bryson’s Rules, [11];
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where the matrices 
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 are those shown in (18) e (19), [12,13];
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and where 
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 is the state vector (7.2.20):
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    (7.2.20)

In this paper the optimal control law in the time-varying angular velocity was obtained by extracting a second-order polynomial that expresses the variation of a generic element of the control matrix in order to vary the angular velocity as shown in figure 7.2. The variation of the element represented by the blue color is superimposed on the red using a computer code developed in MATLAB environment which provides a second-order polynomial expression. The control matrix is characterized by two matrix block;
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where 
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 are shown in (7.2.22);
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Fig. 7.2: Polyfit of 
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 varying with angular speed.

Each single square block matrix is represented by a polynomial of second degree as a function of angular velocity, where the matrices 
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abcdef
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 are the coefficients of each polynomial matrix. By reworking the expression of the control signal:
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so that the feedback signals is sketched in other two different form (7.2.24) and (7.2.25):
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which shows that the generic control signal is a linear combination of matrix components and control components of the state vector and speed that are traveling:
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In reality, the physical system does not reflect the mathematical model, since only one sensor positioned along an axis captures a single signal and speed. So in this work it was decided to eliminate from the matrix control, set at zero angular velocity of the elements placed outside the main diagonal of each block 
[image: image46.wmf]44

c

´

Î

C

¡

 and 
[image: image47.wmf]44

f

´

Î

F

¡

 in order to obtain the control matrix (7.2.28):
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7.3. Results and Discussion
The values of maximum eccentricity and angle of deviation of the main axis of inertia were derived on the basis of the relations present in [10] and shown in table VI.

Table VI
Properties of Rotor
	Symbol
	Description
	S.I.
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The characteristic of radial active magnetic bearings have been extrapolated using a computer code developed in MATLAB based on [1] and are shown in table II;

Table VII
Electro-mechanic properties of radial active magnetic bearing

	Symbol
	Description
	S.I.
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	current gain of AMB “A”
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The simulations were carried out in the event that the sensors are ideal, meaning that they pick up the order of movements till 
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. The law of variation of the angular velocity is assumed to be linear and reaches its maximum value at the end of the simulation with a value of 
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 at 
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. Figures 7.3 and 7.4 respectively show the displacement and control currents by law K, when at 
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 an excitation acts on the rotor in abruptly way equals to 12 times the gravity force in order to simulate an exogenous excitation along y direction. By looking to the displacement along y direction the upper electromagnet is crossing by a value of current (blue colored) that is higher than current running in the lower magnet (green colored). The figure 7.5 shows a picture of radial active magnetic bearing build-up with its electromagnets and coil winding:
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Fig. 7.3: Displacement of rotor’s section A and B along x and y direction.
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Fig. 7.4: Current injected into the coil of active magnetic bearing A and B 
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Fig. 7.5: Radial active magnetic bearing.

Figures 7.6 and 7.7 show the same simulations when the control law is represented by sub-optimal control matrix. In the same figures we see that the displacements in the x direction of the part “A” and “B” belonging to the rotor and controlled by the law are time-varying and larger by two orders of magnitude for the “A” and one order of magnitude for the section “B”. The currents running in coils, arranged in the same direction, exhibit a variation in their coordinated and differentiated in their Power Width Modulation (PWM) 
as shown by the figures 7.4 and 7.7. From the same figures is shown that using control law K, the final value of the currents of the coils placed in the direction of the x-axis are greater than 
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compared to those produced by the matrix 
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. The displacements in y direction are maintained in the same order of magnitude, and comply with the condition of Brayson. Brayson’s rule is also respected for the current injected into the control coils placed along the axis of maximum stress, y-axis, in fact, they do not reach the value of 12A and exhibit the same variation observed in the coils arranged in the direction x-axis. In both cases, the sections of the rotor oscillate by increasing the angular speed.
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Fig. 7.6: Displacement of rotor’s section A and B along x and y direction.
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Fig. 7.7: Current injected into the coil of active magnetic bearing A and B.
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Fig. 7.8: Frequency response of AMB A varying Ω.
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Fig. 7.9: Frequency response of AMB B varying Ω.
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Fig. 7.10: Frequency response of AMB A varying Ω with K0.
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Fig. 7.11: Frequency response of AMB A varying Ω with K0.

Figures 7.8 and 7.9 show the frequency response of the two bearings A and B, by using the optimal control matrix K. We note that, in this case,  one axis has a peak of resonance at 
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rads
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 that is verified at the frequency of 
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; by increasing the angular speed this peak of resonance disappears. 

Figures 7.10 and 7.11 show the frequency response of the bearing “A” and “B” for the sub-optimal control law 
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K

. This produces a steady behavior in the frequency response because it does not depend on the angular velocity 
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 and does not give rise to resonance peaks, while the angular velocity increases the stability characteristics remain unchanged.
In the figure 7.12 is shown an analysis based on comparison of response time and settling time as a function of angular velocity in the presence of the two control laws aforementioned. From figures 7.12a and 7.12b we see that the response times obtained by sub-optimal control are lower than those obtained by time-varying law which suggests that 
the sub-optimal control system exhibits a greater responsiveness but a high settling times and thus less dynamic precision of answer than the dynamic time-varying control, figures 7.12c and 7.12d:
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Fig. 7.12: Time response and settling time varying the angular speed and control matrix.

7.4. Experimental Optimal control law
By considering the data shown in tables VIII and IX a set of experiments are performed in order to compare the substantial differences between the implemented controllers.

The experimental test rig consists of a 
[image: image90.wmf]304.8 

mm

 long steel shaft, 
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mm

in diameter driven by a 48 V DC electric motor via a flexible coupling. There are two radial AMB rotors and one balance disk mounted on a shaft.;

Table VIII

Shaft parameters

	Symbol
	Description
	S.I.
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	deviation inertia axis
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Table IX
Electromechanical Parameters

	Symbol
	Description
	S.I.
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	stiffness gain of AMB “A”
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	stiffness gain of AMB “B”
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	current gain of AMB “A”
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	current gain of AMB “B”
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The bearing span is 
[image: image114.wmf]209.55 

mm

and the disk is located in the middle span from the outboard bearing. The total rotor assembly has a mass of 
[image: image115.wmf]1.35 

Kg

 and is supported on two radial AMB’s and each of these have a static load capacity of 53 N and saturation current of 
[image: image116.wmf]3

A

.  Axial support is provided by stiffness of the flexible motor coupling. The AMB’s are controlled with a dSPACE DS1103 via a SKF MB340g4-ERX for current amplification. The digital controller is programmed using MATLab Simulink and samples at 
[image: image117.wmf]10

kHz

. Figure 7.13 a photograph of the experimental test rig.
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Fig.7.13: Experimental test rig.

The speed sensor is based on a revolution key phasor. The experimental rig is levitated and after the system reaches steady state, rotation is started. The initial jump in angular speed due to a minimum speed restriction is followed by a 
[image: image119.wmf]1

Hz

per speed ramp. When the rotor reaches 
[image: image120.wmf]65

Hz

rotation, it is allowed to rotate at constant speed for approximately 
[image: image121.wmf]15

s

. The same duty cycle was applied to the rotor levitated with each of the three controllers. In the figure 7.14 is depicted the time history of a single inboard AMB position sensor for each of the controllers and the corresponding rotor speed. Note that the transient at the beginning of rotation are in arbitrary directions depending on the initial phase of unbalance:
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Fig.7.14: Experimental position response at inboard AMB sensor and speed signal for sub-optimal control law. 

In order to compare the results with the conventional methods a set of experiments are performed by different control system such PID and optimal Gaussian control in both configuration or rather variant and invariant with the speed such in the figure 9, 10 and 11:
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Fig.7.15:  Experimental position response at inboard AMB sensor and speed signal for PID control law. 
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Fig.7.16: Experimental position response at inboard AMB sensor and speed signal for speed invariant optimal Gaussian.
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Fig.7.17: Experimental position response at inboard AMB sensor and speed signal for speed varying optimal Gaussian control law. 

In the figure 7.15 the PID controller exhibits higher displacements than optimal Gaussian control shown in figures 7.16 and 7.17. In the figures 10 and 11 we can see that displacements produced in presence of optimal control law, as a speed varying solution of algebraic Riccati’s equation, are similar in magnitude and dynamic behavior during the ramp-up and ramp-down of speed signal injected by motors. The test shows that contactless motion between stator and rotor is guaranteed during the rump up of angular speed in presence of acting loads. All the involved variables stay within their maximum design values. The experimental comparison between the proposed method and the control systems developed on line with speed variation has shown that the polynomial approximation of each coefficient belonging to control matrix provide a useful tool to perform an experimental application. The advantage of this method is obviously the reduced computational burden of calculator that in case of speed variant solution it must solve a set of equations to carry out the stabilizing solution of Riccati’s equation.
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