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ABSTRACT OF PAPERS PRODUCED DURING PhD 

COURSE AND RELEVANT TO THIS THESIS 
 

1. Accardi G, Caruso C, Colonna-Romano G, Camarda C, Monastero R, 

Candore G. Can Alzheimer disease be a form of type 3 diabetes? 

Rejuvenation Res. 2012;15:217-21. 

Abstract 

Alzheimer disease (AD) and metabolic syndrome are two highly 

prevalent pathological conditions of Western society due to incorrect 

diet, lifestyle, and vascular risk factors. Recent data have suggested 

metabolic syndrome as an independent risk factor for AD and pre-AD 

syndrome. Furthermore, biological plausibility for this relationship has 

been framed within the "metabolic cognitive syndrome" concept. Due 

to the increasing ageing of populations, prevalence of AD in Western 

industrialized countries will rise in the near future. Thus, new 

knowledge in the area of molecular biology and epigenetics will 

probably help to make an early molecular diagnosis of dementia. An 

association between metabolic syndrome and specific single-nucleotide 

polymorphisms (SNPs) in the gene INPPL1, encoding for SHIP2, a 

SH2 domain-containing inositol 5-phosphatase involved in insulin 

signaling, has been described. According to recent data suggesting that 

Type 2 diabetes represents an independent risk factor for AD and pre-

AD, preliminary results of a case-control study performed to test the 

putative association between three SNPs in the SHIP2 gene and AD 

show a trend toward association of these SNPs with AD.  
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2. Di Carlo M, Giacomazza D, Picone P, Nuzzo D, Vasto S, Accardi G, 

Caruso C, San Biagio P.L. A close connection: Alzheimer’s disease and 

type 2 diabetes. Curr. Topics Biochem. Res. 2012; 14:1-13. 

Abstract 

In the recent years a growing body of evidence links insulin resistance 

and insulin action to neurodegenerative diseases, especially 

Alzheimer’s disease (AD). The importance of insulin in ageing as well 

as its role in cognition and other aspects of normal brain functions are 

well established. The hippocampus and cerebral cortex-distributed 

insulin and insulin receptor (IR) have been shown to be involved in 

brain cognitive functions. Conversely, deterioration of IR signaling is 

involved in ageing related brain degeneration such as in AD and 

cognitive impairment in type 2 diabetes patients. Insulin administration, 

while maintaining euglycemia, improves memory in both healthy adults 

and Alzheimer’s disease patients. In the present review, some common 

links between AD and type 2 diabetes are presented. Furthermore, 

several biochemical aspects existing in both pathologies are 

highlighted.  

 

3. Balistreri CR, Candore G, Accardi G, Bova M, Buffa S, Bulati M, 

Forte GI, Listì F, Martorana A, Palmeri M, Pellicanò M, Vaccarino L, 

Scola L, Lio D, Colonna-Romano G. Genetics of longevity. data from 

the studies on Sicilian centenarians. Immun Ageing. 2012; 9:8.  

Abstract 

The demographic and social changes of the past decades have 

determined improvements in public health and longevity. So, the 

number of centenarians is increasing as a worldwide phenomenon. 
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Scientists have focused their attention on centenarians as optimal model 

to address the biological mechanisms of "successful and unsuccessful 

ageing". They are equipped to reach the extreme limits of human life 

span and, most importantly, to show relatively good health, being able 

to perform their routine daily life and to escape fatal age-related 

diseases, such as cardiovascular diseases and cancer. Thus, particular 

attention has been centered on their genetic background and immune 

system. In this review, we report our data gathered for over 10 years in 

Sicilian centenarians. Based on results obtained, we suggest longevity 

as the result of an optimal performance of immune system and an over-

expression of anti-inflammatory sequence variants of 

immune/inflammatory genes. However, as well known, genetic, 

epigenetic, stochastic and environmental factors seem to have a crucial 

role in ageing and longevity. Epigenetics is associated with ageing, as 

demonstrated in many studies. In particular, ageing is associated with a 

global loss of methylation state. Thus, the aim of future studies will be 

to analyze the weight of epigenetic changes in ageing and longevity.  

 

4. Caruso C, Accardi G, Virruso C, Candore G. Sex, gender and 

immunosenescence: a key to understand the different lifespan between 

men and women? Immun Ageing. 2013;10:20.  

Excerpta  

Gender and sex are known to be associated with longevity. While males 

are usually stronger, females live longer. In the Western world, the life 

expectancy of individual born between 2005 and 2010 is 80.4 for 

women and 73.4 for men [1]. Potential factors have been examined to 

explain this disagreement. It is possible distinguish advantage in 
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longevity related to biological traits and factors related to socio-cultural 

characteristics of the population. Males and females have different 

behavioural tendencies, social responsibilities and expectation. So, 

differences in mortality between men and women can be not only a 

matter of sex that refers to biological differences, but also a matter of 

“socially constructed sex”, i.e. gender [2,3]. One of the main interaction 

between gender and longevity is linked to the kind of job. Indeed, in the 

to-day elderly, professional exposure to stressors was stronger in males 

rather than in females [4].  

 

5. Incalcaterra E, Accardi G, Balistreri CR, Caimi G, Candore G, Caruso 

M, Caruso C. Pro-inflammatory genetic markers of atherosclerosis. 

Curr Atheroscler Rep. 2013;15:329.  

Abstract 

Atherosclerosis (AS) is a chronic, progressive, multifactorial disease 

mostly affecting large and medium-sized elastic and muscular arteries. 

It has formerly been considered a bland lipid storage disease. Currently, 

multiple independent pathways of evidence suggest this pathological 

condition is a peculiar form of inflammation, triggered by cholesterol-

rich lipoproteins and influenced both by environmental and genetic 

factors. The Human Genome Project opened up the opportunity to 

dissect complex human traits and to understand basic pathways of 

multifactorial diseases such as AS. Population-based association studies 

have emerged as powerful tools for examining genes with a role in 

common multifactorial diseases that have a strong environmental 

component. These association studies often estimate the risk of 

developing a certain disease in carriers and non-carriers of a particular 
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genetic polymorphism. Dissecting out the influence of pro-

inflammatory genes within the complex pathophysiology of AS and its 

complications will help to provide a more complete risk assessment and 

complement known classical cardiovascular risk factors. The detection 

of a risk profile will potentially allow both the early identification of 

individuals susceptible to disease and the possible discovery of 

potential targets for drug or lifestyle modification; i.e. it will open the 

door to personalized medicine.  

 

6. Balistreri CR, Candore G, Accardi G, Colonna-Romano G, Lio D. NF-

κB pathway activators as potential ageing biomarkers: targets for new 

therapeutic strategies. Immun Ageing. 2013;10:24.  

Abstract 

Chronic inflammation is a major biological mechanism underpinning 

biological ageing process and age-related diseases. Inflammation is also 

the key response of host defense against pathogens and tissue injury. 

Current opinion sustains that during evolution the host defense and 

ageing process have become linked together. Thus, the large array of 

defense factors and mechanisms linked to the NF-κB system seem to be 

involved in ageing process. This concept leads us in proposing 

inductors of NF-κB signaling pathway as potential ageing biomarkers. 

On the other hand, ageing biomarkers, represented by biological 

indicators and selected through apposite criteria, should help to 

characterize biological age and, since age is a major risk factor in many 

degenerative diseases, could be subsequently used to identify 

individuals at high risk of developing age-associated diseases or 

disabilities. In this report, some inflammatory biomarkers will be 
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discussed for a better understanding of the concept of biological ageing, 

providing ideas on eventual working hypothesis about potential targets 

for the development of new therapeutic strategies and improving, as 

consequence, the quality of life of elderly population.  

 

7. Caruso C, Candore G, Accardi G, Virruso C, Di Bona D. 

Association of Klotho polymorphisms with healthy ageing: a systematic 

review and meta-analysis. Rejuvenation Res. 2013. [Epub ahead of 

print].  

Abstract 

Nowadays is clearly evident that genetic background constitutes 

integral part of ageing and longevity. Many studies on long lived people 

have been conducted emphasizing the role of certain genes in long life. 

Classic case-control studies, genome wide association studies and high 

throughput sequencing have permitted to identify a variety of genetic 

variants seemingly associated with longevity. Over the years, ageing 

research has focused on insulin/IGF-1 signaling pathway because of its 

evolutionary conserved correlation with life-span extension in model 

animals. Indeed, many single nucleotide polymorphisms (SNPs), 

associated with longevity were identified in genes encoding proteins 

that take part in this metabolic pathway. Closely related to this pathway 

is the Klotho gene. It encodes a type-I membrane protein expressed in 

two forms, membrane and secreted. The last form acts suppressing 

oxidative stress and growth factor signaling and regulating ion channels 

and transporters. In particular, its over-expression seems to be able to 

suppress insulin/IGF-1 signaling extending life span. Thus, our aim was 

to put together the results showed in literature concerning the 
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association between the functional variant of KLOTHO "KL-VS" 

stretch that contains six polymorphisms in linkage disequilibrium and 

successful ageing to quantify the possible effect of the variants. The 

results of our systematic review indicate that Klotho KL-VS variant is 

associated with healthy ageing.  

 

8. Virruso C, Accardi G, Colonna Romano G, Candore G, Vasto S, 

Caruso C. Nutraceutical properties of extravirgin olive oil: a natural 

remedy for age-related disease? Rejuvenation Res. 2013. [Epub ahead 

of print].  

Abstract 

The health benefits of the Mediterranean Diet can be largely ascribed to 

the nutraceutical properties of extra-virgin olive oil (EVOO). 

Monounsaturated fatty acids and various phenolic compounds such as 

oleocanthal, oleuropein, hydroxytyrosol and tyrosol are the main 

nutraceutical substances of EVOO. These substances have been 

suggested to have the ability to modulate ageing- associated processes. 

In experimental models, it was shown that EVOO with high 

concentration of poliphenols has anti-inflammatory and antioxidant 

properties. Indeed, it was observed that hydroxytyrosol, as well as 

oleocanthal, inhibit the cyclooxygenases (COX-1 and 2), responsible 

for prostaglandin production; oleuropein is a radical scavenger that 

blocks the low-density lipoproteins oxidation. Due to the relevance of 

the olive oil in the economy of Sicily, our group has been funded to 

assess the nutraceutical properties of different kinds of olive oil. Indeed, 

the aim of the study is to evaluate effects of EVOOs, with low and high 

polyphenols content, on the immuno- inflammatory and oxidative stress 
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responses in young and old people. Further objective of our group is to 

evaluate effects of EVOO, with low and high polyphenols content, on 

the expression of genes encoding proteins that take part in 

Insulin/Insulin-like growth factor-1 signaling pathway involved in 

longevity. The results of the study will be useful to produce olive oil 

enriched in nutraceutical properties, likely helpful in the prevention of 

age-related diseases. 

 

9. Accardi G, Virruso C, Balistreri CR, Emanuele F, Licastro F, 

Monastero R, Porcellini E, Vasto S, Verga S, Caruso C, Candore G. 

SHIP2: a "NEW" insulin pathway target for ageing research. 

Rejuvenation Res. 2013. [Epub ahead of print].  

Abstract 

Strong evidence suggests that systemic inflammation and central 

adiposity contribute to and perpetuate metabolic syndrome. All of these 

alterations predispose individuals to type 2 diabetes mellitus (T2DM), 

cardiovascular disease, as well as Alzheimer's disease (AD), all 

characterized by chronic inflammatory status. On the other hand, 

extensive abnormalities in insulin and insulin growth factor(IGF)-I and 

IGF-II signaling mechanisms in brains with AD have been 

demonstrated, hence suggesting that AD could be a third form of 

diabetes. The Src homology domain-containing inositol 5-

phosphatase(SHIP)2, has an important role in insulin pathway because 

its over-expression causes impairment of insulin/IGF-1 signaling. Since 

some single nucleotide polymorphisms (SNP) of the gene encoding 

SHIP2, were significantly associated in T2DM patients with metabolic 

syndrome and some related conditions, we decided to conduct a case-
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control study on this gene, analyzing AD and T2DM subjects as cases 

and young, old and centenarians as controls. Our results suggest a 

putative correlation between the rs144989913 SNP and ageing, both 

successful and unsuccessful, rather than age-related diseases. Since this 

SNP is an insertion/deletion of 28 base pairs, it might cause an 

alteration in SHIP2 expression. It is noteworthy that SHIP2 has been 

demonstrated to be a potent negative regulator of insulin signaling and 

insulin sensitivity. Many studies demonstrated the association of 

insulin/IGF1 pathway with ageing and longevity, so it is tempting to 

speculate that the found association with SHIP2 and ageing might 

depend on its effect on insulin/IGF-1 pathway.  

 

10. Balistreri CR, Accardi G, Buffa S, Bulati M, Martorana A, Candore G, 

Colonna-Romano G, Lio D, Caruso C. Centenarian Offspring: a model 

for Understanding Longevity. Curr Vasc Pharmacol. 2013. [Epub ahead 

of print].  

Abstract 

A main objective of current medical research is the improving of life 

quality of elderly people as priority of the continuous increase of ageing 

population. This phenomenon implies several medical, economic and 

social problems because of dramatic increase in number of not 

autonomous individuals affected by various pathologies. Accordingly, 

the research interest is focused on understanding the biological 

mechanisms involved in determining the positive ageing phenotype, i.e. 

the centenarian phenotype. In achieving this goal the choice of an 

appropriate study models is fundamental. Centenarians have been used 

as an optimal model for successful ageing. However, it is characterized 
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by several limitations, i.e. the selection of appropriate controls for 

centenarians and the use itself of the centenarians as a suitable model 

for healthy ageing. Thus, the interest has been centered on centenarian 

offspring, healthy elderly people. They may represent a model for 

understanding exceptional longevity for the following reasons: to 

exhibit a protective genetic background, cardiovascular and 

immunological profile as well as a reduced rate of cognitive decline 

than age-matched people without centenarian relatives. Several of these 

aspects are summarized in this review based on the literature and the 

results of our studies. 

 

11. Di Bona D, Accardi G, Virruso C, Candore G, Caruso C. Association 

Between Genetic Variations In The Insulin/Insulin-Like Growth Factor 

(Igf-1) Signaling Pathway And Longevity: A Systematic Review And 

Meta-Analysis. Curr Vasc Pharmacol. 2013. [Epub ahead of print].  

Abstract 

Some studies have shown that polymorphisms in the insulin growth 

factor-1 (IGF-1) signaling pathway genes could influence human 

longevity. However, the results of different studies are often 

inconsistent. Our aim was to investigate by systematic review and meta-

analysis the association of the common polymorphisms defining the 

genetic variability of the IGF-1 signaling pathway associated with 

human longevity. Eleven studies investigating the association between 

the polymorphisms in the IGF-1 signaling pathway genes (IGF-1, IGF-

1 receptor (IGF-1R), Forkhead box O3A (FOXO3A) and Silent mating 

type information regulation 1 (SIRT1) and longevity were found and 

analyzed. The model-free approach was applied to meta-analyze these 
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studies. No association was reported between the single nucleotide 

polymorphisms (SNPs) of IGF-1 and longevity in the available study. 

The meta-analysis of available data from four studies, showed a 

significant association with the IGF-1R polymorphism rs2229765, 

suggesting that subjects with the A-bearing genotype have greater 

chance of longevity. Concerning the five studies on FOXO3A SNPs, 

for the rs2764264 significant association with longevity was observed 

for C allele when only males were included in the analysis. Statistically 

significant results were obtained for other SNPs as well, i.e. rs2802292 

( G allele), rs9400239 and rs479744 (T and A alleles, respectively). For 

rs9400239 the association was observed in male long lived with a lower 

odds ratio than in centenarians while in rs479744 it was highlighted a 

significant association in centenarians. Concerning SIRT1, no 

association between the SNPs under study and longevity was observed 

in the only available report. Current findings suggest that both IGF-1R 

and FOXO3A polymorphisms could be associated with longevity. The 

high degree of between-study heterogeneity and the low number of 

available studies underline the need for further methodologically 

adequate analyses to confirm these evidences. 

 

12. Balistreri CR, Accardi G, Candore G. Probiotics and Prebiotics: Health 

Promotion by Immune Modulation in the Elderly. In “Bioactive Food as 

Dietary Interventions for Arthritis and Related Inflammatory Diseases”. 

Edited by Ronald Ross Watson and Victor R. Preedy. 2013; pp 257-

269. 

Excerpta 
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Human subjects may be described as ‘metaorganisms’ because of their 

close symbiotic relationship with indigenous gut microbiota 

(Turnbaugh et al., 2007). This postulation proposes aging as the result 

of a cross-talk between environment, intestinal microbiota, and host 

immune system. Among these, the gut microbiota plays the principal 

role, in addition to maintaining human health (Chung and Kasper, 

2010). Its homeostasis is inexorably altered by age-related 

physiological changes in the gastrointestinal tract induced not only by 

the aging process itself, but also by modifications in lifestyle, 

nutritional behavior, and functional reduction of the host immune 

system (Biagi et al., 2011). In turn, the age-related gut microbiota 

alterations influence the aging process in the host, principally, 

immunosenescence, age-dependent inflammatory status and its 

complications from metabolic syndrome – diabetes, cardiovascular 

diseases (CDs), and cancer – and cognitive decline – dementia and 

Alzheimer’s disease (AD). 

 

13. Accardi G, Balistreri CR, Caruso C, Candore G. Diet and 

Immunosenescence. In “Immunology of Aging”. Edited by Springer. 

2014; pp 285-293. 

Ageing is a systemic condition leading to a gradual loss of molecular 

and cellular fidelity. A feature of ageing is immunosenescence, 

consisting in several modifications that increase morbidity and 

mortality in elderly. Environment, genetic background, immune system, 

and intestinal microbiota play a fundamental role in 

immunosenescence. The development of a chronic, low-grade, 
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inflammatory status, known as “inflamm-ageing,” is a typical aspect of 

immunosenescence mostly due to the pro-inflammatory cytokine 

production linked to the chronic antigenic load. Nutrition can act on 

ageing, immunity, and health in general. Unbalanced diet with an 

insufficient intake of micro- and macronutrient and vitamins is a major 

nutritional problem among elderly, resulting in a dramatic change in gut 

microbiota. Calorie restriction and long-term adherence to 

Mediterranean diet could prevent or manage age-related diseases and 

immunosenescence. 

 

14. Balistreri CR, Accardi G, Caruso C, Candore G. Biomarkers and 

Inflammatory Network in Aging: Targets for Therapies. In 

“Inflammation, advancing age and nutrition”. Edited by Elsevier. 2014; 

pp. 1-11. 

Excerpta 

Aging is recognized as a complex process, induced by intricate 

interactions between genetic, epigenetic, stochastic, and environmental 

factors. These factors contribute to a loss of molecular fidelity that 

results from the random accumulation of damage (particularly to 

nuclear and mitochondrial DNA) at the cellular, tissue, and organ levels 

and/or to the whole body, compatible with the “disposable soma” 

theory of aging [1]. This theory states that both the architecture and 

functioning of physiological processes and regulatory (immune and 

endocrine) systems are modified during aging, which leads to a 

deterioration of homeostatic capacity. 
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LIST OF ABBREVIATION 
AD Alzheimer’s diseases 

APO Apolipoprotein 

Bcl-3 B-cell CLL/lymphoma 3 

CAMKIV Calcium/calmodulin-dependent protein kinase IV 

CO Centenarian offspring 

CVD Cardiovascular disease 

EVOO Extra virgin olive oil 

FOXO Forkhead box O 

GSK3 Glycogen synthase kinase 3 

GWAS Genome wide association study 

HDL High density lipoprotein 

HSP Heat shock protein 

IGF Insulin-like growth factor 

IGF-1R Insulin growth factor-1 receptor 

IkB inhibitor of kB  

IkK inhibitor of kB kinase 

IR Insulin resistance 

IRS Insulin responsive substrate 

LDL Low density lipoprotein 

LLI Long lived individuals 

MI Myocardial infarction 

MUFA Monounsatured fatty acid 

MD Mediterranean diet 

MS Metabolic syndrome 

NF-kB Nuclear factor kappa beta 
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OR Odd ratio 

PD Parkinson’s disease 

PI3K Phosphoatidyl inositol 3-kinase 

PIP2 Phosphoatidyl inositol 2-phosphate 

PIP3 Phosphoatidyl inositol 3-phosphate 

RAS Rat sarcoma protein 

SASP Senescence-associated secretory phenotype  

SHIP2 Src homology domain-containing inositol 5-phosphatase 2 

SIRT1 Silent mating type information regulation 1 

SNP Single nucleotide polymorphism  

SOD Superoxide dismutase 

T2DM Type 2 diabetes mellitus  

TF Transcription factor 

TLR Toll like receptor 
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1. INTRODUCTION 
 

1.1 AGEING AND LONGEVITY 
Ageing is a complex phenomenon or “trait” than cannot be 

exhaustively defined. Thus an integrated approach (biologic, demographic, 

antropologic and historic) is needed to try to understand the different ageing 

processes. Ageing is unavoidable and leads to the reduction of the ability to 

adapt to the environment, involving the organism at all levels (DNA, cells, 

tissues and whole systems). The “onset” of ageing is due to the loss of 

molecular fidelity that varies from subject to subject, in terms of rate and 

time of onset. Some phenotypic features of the old are not dangerous or life 

threatening whereas others are life threatening and increase the vulnerability 

leading to death (Table 1) (Troen 2003).  

 
Table 1. FEATURES OF AGEING. The loss of molecular precision causes wide range of 
age-related modifications.  

– Changes in cells, tissues and organs after maturation  

– Progressive reduction in physiologic function of tissues and organs  

– Reduced ability to respond to environmental stimuli due to the loss of    

homeostasis  

– Increased susceptibility and vulnerability to pathologies  

– Increased risk of death   

Not dangerous: grey hair, liver spots, presbyopia, hearing loss, short memory loss and 
increase of time of reaction.  
Potentially dangerous: molecular changes of cells, tissues and organs that increases the 
susceptibility to cancer, ictus, cardiovascular diseases, Alzheimer’s disease and Parkinson’s 
disease. 
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In 2012, a group of scientists, drafted a panel statement to 

summarize, clarify and highlight features of ageing, longevity and 

exceptional longevity, three phenotypes that are spreading rapidly 

worldwide. They analyzed the ageing theories taking into account the 

evolutionary perspective and listed the biomarkers associated with the three 

phenotypes. On these basis, they discussed on the possible treatments to 

counteract or slow down ageing (Box 1) (Avery et al 2013). 

The difference among people has a multifactorial origin depending 

on genetic background, stochastic and environmental variables with a strong 

component dependent on the life-style (Mitnitski et al 2001; Kirkwood 

2005). Ageing results in compromised stress response, greater homeostatic 

imbalance and elevated risk of disease (Rakyan et al 2010). All these 

elements lead people to reach different ages in different conditions, 

therefore different life-span. Ageing itself is associated with progressive 

homeostatic/homeodynamic dysregulation that makes the organism less, and 

eventually, non-resilient (Yates 2002; Lipsitz 2004). This leads to the 

incapacity to adapt to stress and to a decline in functional capacity.  

The ageing condition itself changes the performance of physiological 

systems and increases the susceptibility to death but new evidences suggest 

that the process is modifiable thus becoming possible to delay age-related 

diseases en bloc (Fontana et al 2010) (See below).  

There are two main ways to become old: with success (successful 

ageing) and without success (unsuccessful or pathological ageing) (Figure 

1). This latter is manifested by people that from 60 years old, develop one or 

more age-related diseases: neurodegenerative diseases such as Alzheimer’s 

disease (AD) and Parkinson’s disease (PD), metabolic diseases such as 
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metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM), 

cardiovascular diseases (CVDs), cancer. 

On the other hand, the successful ageing is represented by 

centenarian people since most subjects reach the age of 100 or more without 

any age-related disease, in good physical and mental condition. They 

represent the best model to study successful ageing and longevity although 

they have different genetic features and life-style thus, borrowing a concept 

from physics, they cannot be considered a “close system”. 

 
Figure 1. FLOWCHART OF SUCCESSFUL AND UNSUCCESSFUL AGEING. 
Random molecular damage determines the accumulation of cellular defects, hence causing 
frailty, disability and onset of age-related pathologies. Nutrition, life-style and 
environmental stimuli act on the efficiency of DNA repair mechanisms leading to 
successful or unsuccessful ageing.  
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Therefore, demographic selection has permitted to identify the 

centenarians as healthy survivors thus offering a “natural” selected 

population in which studying the effect of specific polymorphisms and 

genetic loci associated or not associated with longevity.  

Undoubtedly, all these individuals are able to respond very well to 

the stressors and to repair damages thanks to “positive genes” involved in 

many cell functions (Table 2). 

 
Table 2. EVOLUTION, AGEING AND LONGEVITY. 

– The damage is intrinsic in life  

– The loss of maintenance and repair systems are the evolutive causes of ageing  

– Longevity can be regulated by genes involved in repair and maintenance processes 

such as genes involved in growth, oxidative stress, apoptosis, cell cycle, DNA repair, 

metabolism and immune-inflammatory response 

 

Many of these, highlighted by association studies of candidate genes, 

revealed a wide range of data but not always repeatable (Capri et al 2006). 

This is probably due to the different genetic combination, the “genetic 

mosaic”, and the interaction with the environment (Figure 2). 
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Figure 2. RATE OF SURVIVAL IN DIFFERENT ENVIRONMENTS. The histogram 
shows the survival rate (from 0 to 100%) in natural and in protected environment with age. 
The reaching of longevity is under both genetic and environmental control and depends on 
the correct action of antioxidant defenses, DNA repair mechanisms and protein turnover. 
 

 
 

The increased ability to reach the age of 100 in Westernized 

countries over the last 150 years and the reduction in the overall mortality 

clearly reflect the improvement of hygienic condition, thus the reduced 

exposure to infection and inflammation; the treatment of infectious diseases 

that has reduced both child and maternal deaths; the improvement in general 

of the quality of life; the attention to the diet and the advent of preventive 

medicine (Kirkwood 2005). During the last 2 centuries their number has 

grown and the average life span has increased at a rate of approximately 3 

months/year in both sexes (Oeppen et al 2002). Obviously, the increase of 

average life-span has raised the number of nonagenarians (people that reach 

90 or more years) and centenarians. In the USA, it has gone from 3,700 in 

1940 to approximately 61,000 centenarians in 2006 (Sonnega 2006) In Italy 

and in a small area of Sicily, in the Sicani Mountain, the centenarian figures 

are higher, 2.4/10,000 and 10.37/10,000 respectively (Vasto et al 2012a). 
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These differences are probably due to life-style, healthier in Italy and 

in Sicily that in USA. Looking at the Italian ratio of centenarians per 

inhabitants, in some zones of Sicily there is more than a four-fold increase. 

Since Sicilian population genetic structure is very homogeneous, in 

particular in the countryside, the explanation for these data probably resides 

in the environmental characteristics of the study sample. In particular, the 

area of Sicani Mountain was extensively studied in its dietary habits leading 

to the conclusion that this high rate of centenarians is strictly related to the 

adherence to the Mediterranean diet (MD) (Vasto et al 2012a; Vasto et al 

2012b). As we discussed in our papers (Virruso et al 2013; Accardi et al 

2014), the MD consists in plant foods (fruit, vegetables, legumes, 

wholemeal bread and other forms of cereals, nuts and seeds), fresh fruit, 

olive oil as the principal source of fat, dairy products (principally cheese and 

yogurt), and poultry consumed in low to moderate amounts (fish only by 

coast inhabitants), zero to four eggs weekly, red meat in very low amounts, 

and wine in low to moderate amounts, normally during meals. This diet is 

hypocaloric with no sweeteners and sweet beverages and a low intake of 

animal proteins (see the papers for references, abstract n°8 and n°13).  

However, a “favourable” genetic background is essential to live 

longer (Balistreri et al 2012; Balistreri et al 2013, abstract n°10; 

Incalcaterra et al 2013). Indeed, siblings and offspring of centenarian (CO), 

but not their spouses, show an increased odd ratio (OR) between 4- and 17-

fold for longevity compared with appropriate controls thus they have a good 

chance to live approximately 100 years or over compared with the average 

population. CO have an advantageous genetic background characterized by 

favourable alleles, i.e. in Apolipoprotein (APO) C3 promoter (homozygosity 

for the -641 C or rs2542052), by a reduction in telomere attrition associated 
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with the presence of synonymous and intronic variants in human-telomerase 

reverse transcriptase gene, and heteroplasmic T152C variant in mt-DNA. 

Protective genetic background, immunological profile and clinical 

history seem to be exhibited by CO when compared with age-matched 

people without centenarian relatives. They show a favorable lipid, 

immunological and cardiovascular profile and a decreased cognitive decline 

(lower serum levels of APOC3, Heat shock protein (Hsp) 70 and low 

density lipoprotein (LDL) C, and higher amount of high density lipoprotein 

(HDL) C, all features that consent them to escape morbidity and mortality 

for pathological events, including atherothrombosis, myocardial infarction, 

stroke and heart failure (see the papers for references, abstract n°3, n°5 and 

n°10).  

However, from the evolutionary point of view, longevity is not a 

random process but is a stage that depends of the residual physiological 

functions after reproduction. Ageing is dependent by stochastic events and 

the ageing phenotype occurs after the accumulation of cellular damages that 

cannot be repaired at all by exhausted cellular systems. Thus longevity 

depends on the survival after reproduction and genes that lead to longevity 

are, for this theory, “survival genes” rather than “longevity genes” (Hayflick 

2007). 
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Box 1. PANEL STATEMENT SUMMARY. Summary of the statement for ageing, 
longevity, exceptional longevity and related genetic and non genetic markers. 
 

  Ageing:  
causes- breakdown of self organizing system and reduced ability to adapt to the environment;  
where- primarily in economically developed countries;  
what- process that increases the vulnerability and leads to death;  
news- chronological and biological ageing: two sides of the same coin. They do not necessary 
have correspondence intra and inter individuals because of the different rate of ageing of tissues 
and organs of the same body;  
contributing factors- cultural, anthropological, socio-economic status, sex, gender, ethnic 
differences, healthcare, environmental status, genetics, life occupation, stochastic events; 
successful ageing: avoidance (or late onset) of age-related diseases and disability, preservation 
of desirable cognitive and physical function and social activities.  
 
Longevity: 
definitions- no consensus definition has been established;  
exceptional longevity- defined in relative and absolute terms:  
"relative": longevity is concept country/population specific and must take into consideration the 
life expectancy of the different populations/countries, which show great variability owing to 
historical, anthropological and socio-economic differences. "Absolute": longevity could be 
defined according to the maximum lifespan attained and scientifically validated by human 
beings in the planet;  
familial longevity: family with at least two living members aged ≥ 90 (long lived individuals 
(LLI), based on demographic data in Europe);  
 
LLI study limits: enrolment of large number of phenotypically well characterized long living 
people (centenarians) thus small cohort groups; validation in different cohorts; enrolment of 
matched controls (same time but different life span duration);  lack of information 
(environmental factors, lifestyle, quality of life, presence and duration of disabilities and  
diseases).; 
 
Genetics in ageing and longevity: 
Genes involved: genes that take part in: nutrient-sensing pathways, e.g. insulin/insulin-like 
growth factor (IGF-1), nutrient-sensing (mTOR); oxidative stress and anti-oxidant systems; 
control of immune-inflammatory responses; lipid metabolism and mitochondrial DNA 
(mtDNA).  
Epigenetic changes caused by environmental factors (diet, life style, emotional stress, physical 
activity).  
 
Study strategies in ageing/longevity 
Gene knock down; human genetic population-based studies, family-based studies, “omics” 
studies, calorie restriction, hormonal replacement, antioxidant treatments, engineered negligible 
senescence, nucleic acid therapy, gene cloning, prevention of vascular events, cancer screening, 
healthy life style. 
 
Goal: decrease morbidity and mortality associated with ageing, increase healthy life span.  
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1.2 INSULIN/IGF-1 AND NF-kB PATHWAYS: KEY ROLE IN 
AGEING AND LONGEVITY 

 
The correlation between nutritional, hormonal and immune-inflammatory 

pathways is particularly evident in ageing and longevity (Figure 3). 

 
Figure 3. CORRELATION BETWEEN NUTRITIONAL, HORMONAL AND 
IMMUNE-INFLAMMATORY PATHWAYS IN AGEING AND LONGEVITY. 
Insulin-like growth factor (IGF) 1constitutes the perfect link between  nutritional, hormonal 
and  immune-inflammatory pathways. IGF-1 levels are related to inflammatory markers, 
oxidative stress and specific nutrients. 
 

 
 

In particular, we focused our attention on insulin/insulin-like growth 

factor (IGF) 1 and the downstream nuclear factor kappa beta (

The insulin/IGF-1 signaling cascade starts from the binding to 

insulin or IGF-1 to the insulin or IGF-1 receptor. Consequently, inside the 

cell, the intracellular substrate proteins, known as insulin responsive 

substrates (IRSs), act as mediators for the intracellular effect of insulin, 

binding specific src-homology-2 domain proteins, which include important 

NF-kB) 

signaling cascades. 
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enzymes such as phosphatidylinositol 3-kinase (PI3K) and other 

intracellular signaling systems, e.g. the adaptor protein growth factor 

receptor-bound protein 2 

Moreover AKT promotes the translocation of glucose transporter 

proteins (GLUT). The pathway activates transcription factors (TFs) and 

stimulates the growth promoting actions of insulin. Thus broadly, PI 3-

kinase mediates insulin metabolic effects, e.g. cellular glucose uptake, while 

RAS significantly mediates insulin mitogenic effects (see the papers for 

references, abstract n°2). 

which connects with the rat sarcoma protein 

(RAS) pathway. PI3K activates the via of the second messenger 

phosphoatidyl inositol 3-phosphate (PIP3) leading to the activation of AKT, 

that acts on glycogen synthase kinase 3 (GSK3). In the brain, the 

deregulation of GSK3 activity determines neuronal cell death, 

hyperphosphorylation of tau protein and the production of amyloid protein. 

On the other hand, AKT can also stimulates the NF-kB signaling 

activating the inhibitor of kB kinase (IkK) complex (IkK alpha e beta). The 

NF-kB pathway is involved in immune inflammatory mechanisms that can 

result in both positive or negative effects (Gilmore et al 2012; Newton et al 

2012). NF-kB components (p50/p105 and p52/p100) and the members of 

the Rel family (RelA/p65, c-Rel and RelB) form dimers in the cytoplasm 

that are linked to the inhibitor of kappa B (IkB) proteins (IkBalpha, IkBbeta, 

IkBgamma, Ikbepsilon and B-cell CLL/lymphoma 3, known as Bcl3). The 

complex activation can be evocated both by immune insults and external 

and internal danger signals associated with cell senescence and ageing 

process, such as oxidative and genotoxic stress, tissue injuries and DNA 

damages. When specific immune receptors, such as Toll-like receptors 

(TLRs) and cytokine receptors, transduce the upstream signals, the kinases, 
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mainly IkKbeta, phosphorilate the IkB proteins which are released from the 

complex and then degraded by the proteasome. This leads to the 

translocation of NF-kB to the nucleus. Its binding to the DNA triggers the 

transcription of a number of genes including pro-inflammatory cytokines, 

chemokines, adhesion molecules, eicosanoids, growth factors, metallo-

proteinases, nitric oxide, etc (Gilmore et al 2012). 

Emerging experimental data principally performed on human skin 

fibroblasts have convincingly demonstrated the role of NF-κB signaling as 

the major pathway stimulating the senescence-associated secretory 

phenotype (SASP) (Chien et al 2011; Rovillain et al 2011; Salminen et al 

2012). 

The cellular senescence consists in a state of irreversible cell cycle 

arrest even if a mitotic stimulus occurs caused by stresses that are 

potentially oncogenic. Senescent cells are apoptosis resistant and acquire 

different functions and features respect to the cell line group. DNA 

damages, oncogenes expression, oxidative stress and mitogenic signals are 

some of the stresses that cause this condition (Ben-Porath et al 2005; 

Campisi et al 2005; Lombard et al 2005; Braig et al 2006; Collado et al 

2006; Campisi et al 2007). Interestingly, senescent cells remain metabolic 

active releasing pro-inflammatory factors that determines the occurrence of 

the SASP. Emerging data has revealed that NF-κB signaling is the major 

signaling pathway which stimulates the appearance of SASP. With 

advancing age, increased cellular and tissues injuries determine a sustained 

NF-κB activation. In turn, SASP, found in several cells, such as fibroblasts, 

epithelial cells, endothelial cells, astrocytes, preadipocytes, leukocytes and 

postmitotic cells contributes, together with inflammageing, to the low 

chronic inflammation condition and consequently to the establishment of the 
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negative feedback typical of ageing process and to the onset of 

inflammatory age-related diseases (Salminen et al 2010; Salminen et al 

2012). Indeed, the SASP of astrocytes, has been suggested to initiate or 

contribute to neuroinflammation, responsible of many neurodegenerative 

diseases, such as AD (Campisi et al 2011). 

Many genetic mutations, in particular single nucleotide 

polymorphisms (SNPs), that extend life-span act on nutrient-sensing 

pathways such as insulin/IGF. A common evolutionary origin of ageing 

(meaning “survival” from the evolution) regulation probably exists. Indeed, 

models organisms, from yeast to mammals, highlight the role of these 

pathways in the modulation of life-span (Longo et al 2003). This may be 

due to the effect of the attenuation of these cascades that mimic calorie 

restriction, process well known to be involved in life-span extension from 

almost 80 years (McCay et al 1935; Weindruch et al 1988). In these models, 

calorie restriction, causing life-span extension and IGF-1 signaling 

reduction, is associated with decreased IGF-1 circulating levels (Fontana et 

al 2008; Fontana et al 2010). 

IGF-1, IGF-1 receptor (IGF-1R), Forkhead box O (FOXO) 3A, 

Silent mating type information regulation 1 (SIRT1) and KLOTHO, all 

molecules directly or indirectly involved in insulin/IGF-1 pathway, are 

under reflectors of the ageing and longevity research for the association of 

their SNPs with ageing and longevity. In human beings, ageing is associated 

with lower IGF-1 circulating levels (Bartke 2005), and in longevous people 

IGF-1R has been correlated with modulation of human life-span through the 

attenuation of IGF-1 signaling (Suh et al 2008). Both IGF-1 and IGF-1R 

polymorphisms theoretically modulating the IGF-1 pathway have been 

studied for their correlation with longevity, but evidences to date are not 
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conclusive (Suh et al 2008; Xie et al 2008; Bonafè et al 2003; Albani et al 

2009; Barbieri et al 2012) .  

The IGF-1 pathway downstream TF, FOXO3A, has also been 

extensively studied for its role in longevity, as mentioned above. This gene 

belongs to the FOXO family and encodes a TF with the typical domain of 

this family, the forkhead box, a conserved DNA-binding domain. It is one of 

the orthologue of daf-16 in C.elegans, a TF involved in stress resistance and 

longevity (Gems et al 2003; Kenyon 2005). In addition, FOXO3A interacts 

with sirtuins, a family of histone deacetylase enzymes, identified as anti-

ageing molecules in model organisms. SIRT1, one of the seven human 

sirtuin isoforms, called SIRT1-SIRT7, deacetylates FOXO3A modulating its 

response to oxidative stress (Brunet 2004). On the basis of findings from 

experimental and animal models, some human studies sought to 

demonstrate an association between specific SNPs involved in modulation 

of Insulin/IGF and longevity. However, the sample size of most of the 

studies is inadequate and the results often inconsistent. 

The gene KLOTHO, aptly named after one of the Greek goddesses 

Fates, believed by the ancients to spin the thread of life, encodes a type-I 

membrane protein expressed in two forms, membrane and secreted. It was 

discovered about fifteen years ago, as a gene which, if knocked out in mice, 

precipitates their accelerated ageing, including short lifespan, while its over-

expression suppresses ageing and extends lifespan (Kuro-o 2009; Wang et 

al 2009). On this basis, some human studies sought to demonstrate an 

association between the functional variant of KLOTHO “KL-VS” and 

ageing and longevity. This variant is a stretch that contains six 

polymorphisms in linkage disequilibrium. However, conflicting results of 

the association between “KL-VS” and both ageing and longevity exist 
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(Arking et al 2002; Novelli et al 2008; Invidia et al 2010; Majumdar et al 

2010).  

The Src homology domain-containing inositol 5-phosphatase 2 

(SHIP2), has an important role in insulin pathway thus presumably in 

ageing and longevity but surely in age-related diseases. To regulate cellular 

levels of lipid secondary messengers such as PIP3, cells use two major 

classes of phosphoinositide phosphatases—the inositol polyphosphate 3-

phosphatase PTEN and the SH2 domain-containing inositol 5-phosphatases 

1 and 2 (SHIP1 and SHIP2) (Dyson et al 2005). 

SHIP2 is a protein encoded by the gene inositol polyphosphate 

phosphatase-like 1 (INPPL1)

 

 that catalyzes the degradation of lipid 

secondary messenger PIP3 to produce phosphoatidil inositol 2 phosphate 

(PIP2). Thus, SHIP2 is an antagonist of PI3K. Because the PI3K pathway 

plays a key role in the biological effects of insulin, the attenuation of the 

PI3K mediated insulin signaling pathway could be associated with insulin 

resistance (IR) in T2DM and with neuropathology of AD (Steen et al 2005; 

Frisardi et al 2010). Many studies underline the role of SHIP2 as probable 

negative regulator of insulin signaling (Ferreira et al 2010; Porte et al 

2005; Plum et al 2005; Wozniak et al 1993). A study conducted by Kaisaki 

et al in T2DM subjects demonstrated a significant association between 

SNPs of INPPL1 (rs2276047, rs9886, and rs144989913) and MS or 

correlated features (Kaisaki et al 2004), finding partly confirmed by another 

study (Kagawa et al 2005). Moreover, a study conducted in non-T2DM 

subjects with hypertension found no association, identifying the T2DM as 

condition probably necessary for the association (Marcano et al 2007). 
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1.3 AGE RELATED DISEASES 
As mentioned above, MS, T2DM and AD are classified as age-

related diseases.  

Human ageing and age-associated diseases are becoming one of the 

biggest challenges faced by developed and developing countries. In fact, the 

overall increase in average life expectancy is far greater than that for healthy 

life expectancy, as evidenced by the incremental burden of age-associated 

diseases, including cardiovascular disease, diabetes, hypertension and 

cancer. The financial burden caused by these chronic diseases is already 

overwhelming the healthcare and welfare systems of developed nations, and 

if present trends continue, the challenges could cause even larger problems.  

MS represents a cluster of metabolic factors, such as IR due to an 

impairment in insulin signaling pathway, abdominal obesity, glucose 

intolerance, hypertension, hyperinsulinemia, and raised fasting plasma 

glucose, all conditions related to an increased risk for T2DM, AD and 

CVDs (Wilcox 2005; Craft 2009; Sanz et al 2009; Ahtiluoto et al 2010; Elks 

et al 2010; Luchsinger 2010; Di Carlo et al 2012). T2DM, the non-insulin 

dependent diabetes, is a lifelong, chronic, disease and is the most common 

form of diabetes account for 90–95% of all cases of diabetes (Zimmet 1999; 

Zimmet et al 2001). 

It is characterized mainly by IR with hyperglycemia. To date, many 

evidences exist about the association between T2DM and AD that has as 

link factor the IR. IR can be manifested in peripheral tissues or directly in 

the brain as an “insulin resistance brain state” that contributes to cognitive 

impairment and neurodegeneration (Frisardi et al 2010). When glucose 

accumulates in the blood, determine hyperglycemia and hyperinsulinemia. 
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Hyperglycemia induces an increase of the peripheral use of insulin, 

which results in a reduction of insulin disposable for the brain and 

consequently in the alteration of tau and amyloid protein processing (Plum 

et al 2005; Wozniak et al 1993).  

AD is the most common form of dementia, accounting for more than 

50% of all cases of dementia. It is a neurodegenerative disorder that occurs 

primarily after the age of 65. The typical features are the impairment of 

memory, language, attention, executive functioning, apraxia, agnosia, and 

aphasia (Lobo et al 2000; Alzheimer’s Association et al 2011). According to 

the amyloid hypothesis, AD is characterized by accumulation of senile 

plaques constituted by deposits of the abnormal form of amyloid protein 

(Ab40–42 

However, today some different pathophysiological theories 

regarding AD exist, suggesting that the disease could be driven by 

inflammation, vascular changes, and metabolic disorders. These theories are 

not mutually exclusive, because inflammation plays a relevant role in both 

vascular lesions and metabolic disorders (Vasto et al 2008; de la Torre 

2004; Milionis et al 2008; Vasto et al 2007; Candore et al 2010a; Candore 

et al 2010b; Elks et al 2010). 

amino acids), present in common forms of dementia, and 

neurofibrillary tangles originating from hyperphosphorylation of 

microtubular tau protein. 

Indeed, several population-based studies have recently described MS 

and T2DM as a risk factors for AD. Furthermore, these data were also 

confirmed in the pre-AD status, the so-called mild cognitive impairment. 

But from the age of 85 the association between MS and accelerated 

cognitive decline vanishes (van den Berg et al 2007). However, data are not 
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definitive and negative results have also been published (Ahtiluoto et al 

2010; Luchsinger 2010; Sanz et al 2009).  

In 2005, a new theory was proposed about the possibility to consider 

AD as a third form of diabetes. AD brains were analyzed postmortem, 

showing, in the frontal cortex, lower levels of insulin, IGF-1 and insulin 

receptor. These data showed that later stages of AD were associated with an 

up to 80% decrease of these parameters compared to healthy brain (Steen et 

al 2005). According to the latter association, some authors proposed the 

concept of ‘‘metabolic cognitive syndrome’’ when describing co-occurrence 

of AD and MS (Frisardi et al 2010). 

Environmental elements like diet, lifestyle, smoking, and 

socioeconomic status are critical contributors in these disorders and, from a 

molecular point of view, an impairment in insulin signaling pathway has 

been suggested to have a key role in their pathogenesis (Wilcox 2005). 

Insulin is known to be a peripheral regulator of nutrient storage, but it is also 

essential for the control of energy balance and for many other functions 

(neurotransmitter release, neuronal outgrowth, tubulin activity, neuronal 

survival, and synaptic plasticity) in the central nervous system by processes 

not linked to modulation of glucose uptake that occurs in peripheral tissues 

(Wang et al 1992; Tanaka et al 1995; Cole et al 2007). 

Neuronal insulin signaling pathway has an important function in 

mammalian fat storage and in C. elegans and Drosophila, the cellular 

signaling systems mediating these effects bear remarkable homology to 

those described in mammals (Porte et al 2005).  

The pathways described are depicted in Figure 4. 
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Figure 4. INSULIN/IGF-1 PATHWAY AND AGEING, AGE-RELATED 
DISEASEAS AND LONGEVITY. When insulin (or IGF-1) binds  to its receptor the IRSs 
contact the PI3K. PI3K activates the via of the second messenger PIP3. SHIP2 is an 
antagonist of PI3K and together regulate the levels of the second messenger PIP3: PI3K 
phosphorylates PIP2 giving PIP3; conversely SHIP2 removes a phosphate from PIP3 to 
obtain PIP2. This second messenger leads to the activation of AKT that activates IKK that 
inhibits IkB linked to NF-kB. Thus NF-kB can translocate to the nucleus acting as TF for 
inflammatory genes. Moreover, AKT inhibits FOXO3A preventing the transcription of 
homeostatic genes and acts on GSK3 too. Also SIRT1 can act on FOXO3A. 
Outside the cell, a soluble form of KLOTHO can inhibit the insulin/IGF-1 signalin thus 
possibly contributing to the transcription of homeostatic genes and consequently to 
longevity.   
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1.4 DIFFERENT APPROACHES TO STUDY AGEING AND 

LONGEVITY 

The ageing and longevity are multi-factorial events in which genetic, 

epigenetic, stochastic and environmental factors seem to have a crucial role 

(Caruso et al 2012; Montesanto et al 2012). 

Approximately 25% of the overall variation in human lifespan can be 

attributed to genetic factors, which become more relevant for extreme 

longevity. Conditioning factors, which arise in the first part of life account 

for another 25% of such variability; life circumstances at adult and old age 

may account for about the remaining 50% (Herskind et al 1996; Ljungquist 

et al 1998; Skytthe et al 2003; Vaupel et al 1998)

 

. Concerning the role of 

genetics, as we discussed in our paper (Incalcaterra et al 2013), three 

approaches are the most used and useful to assess biomarkers of ageing and 

longevity: the candidate gene approach, the meta-analysis and the genome-

wide association studies (GWAS).  

1.4.1 CANDIDATE GENE APPROACH 

The candidate gene approach is a hypothesis-driven method widely 

employed by case–control studies. The case control study compares subjects 

with a specific disease or outcome of interest that represent the cases with 

subjects that do not have the disease or outcome that represent the controls. 

The aim of this type of study is to analyzed if the different frequency 

of each event is manifested in a statistically significance manner, calculating 

the association with a chi square test to determine the relationship between 

the risk factor and the disease. It is an observational study because no 

interventions are made in the subjects analyzed. In particular, in our case, 
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the genotype and allele frequencies of two populations are compared: one 

affected and one unaffected by a complex trait. If the identified allelic 

variants are more prevalent in the affected population as compared to 

unaffected, these genotypes are associated with the trait. Of course, 

consistent replication of study in different population is needed to validate 

the data and to identify the variant as a biomarker.  

The lack of replication may not necessarily imply a false association, 

but might simply point to the need for more studies in certain populations or 

more detailed study of the function of a particular gene, taking into account 

different gene-environment interactions.  

In the last years, our group has extensively investigated by candidate 

gene approach the role of inflammation and in particular of specific 

immune-inflammatory molecules in ageing and longevity (Balistreri et al 

2012; Incalcaterra et al 2013; Balistreri et al 2013). In the Table below 

(Table 3), extracted from an our recent report, are depicted the data 

obtained from the association of genetic variants with the risk of myocardial 

infarction (MI) and with longevity using centenarians as healthy controls. 

These data are obtained in a Sicilian homogeneous population but 

are only partially agree with data previous shown in different population. In 

particular, the approach of the so called “positive biology” was used for this 

study. CO are characterized by a reduction in the onset of CVDs thus alleles 

associated with these diseases would not be included in the genetic 

background favoring longevity. The aim of “positive biology” is to focus 

the attention on the cause of positive phenotypes rather than pathologic to 

understand the biological mechanism of healthy ageing. The results in the 

table clearly demonstrate that in MI subjects, the SNPs investigated are 

overrepresented respect to centenarians that, conversely, present variants 
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that are protective against CVDs (see the paper for the references, abstract 

n°3, n°5 and n°10).  

 
Table 3. GENETIC VARIANTS ASSOCIATED WITH MYOCARDIAL 
INFARCTION AND LONGEVITY. 
 

 
 
1 

 

This missense polymorphism alters the extracellular domain of TLR-4, so it attenuates the 
TLR4 signaling pathway and diminishes the inflammatory response to Gram-negative 
pathogens. In particular, it may influence inflammatory responses and the risk of major 
inflammatory age-related diseases, such as AS, by affecting the production of inflammatory 
mediators.  

2 

 

A non functional allele, resulting from a 32-bp deletion in exon 4, determines a loss of 
expression of functional CCR5 receptor. So, this genetic variant may have a protective role 
against AMI as consequence of an attenuated inflammatory response that should determine 
a slower progression of atherosclerotic lesion among CCR5Δ32 carriers.  

3

 

 Located within a putative binding site for the transcription factor Sp1, associated with a 
different transcription of gene.  

4 

 

SNPs in promoter region and exon-1 of 5-LO gene, respectively, able to modify the gene 
transcription or the putative protein.  

5 

 

It has been claimed to be functional, modifying gene transcription or modifying the 
putative protein derived from gene translation.  

6 This SNP causes a shift from proline to serine at amino acid 319. In a mouse model of 
atherosclerosis, the mouse Cx37 protein was shown to be atheroprotective by properly 
regulating leukocyte recruitment, namely one of the first inflammatory steps in 
atherosclerotic process.  
7

production, even if contrasting literature data have been reported. In particular, the 
homozygous -1082GG genotype seems to be associated with higher IL-10 production 

 SNP in the IL-10 proximal gene region (considered potential target for transcription 
regulating factors) involved in genetic control of IL-10 
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respect to G>A heterozygous and AA homozygous genotypes. Furthermore, this SNP 
seems to be functionally relevant. It has been demonstrated that −1082 A carriers (low 
producers) seem likely develop a major number of chronic inflammatory diseases.  
 
8 

 

It results in a severe protein deficiency that is characterized in the homozygote state by 
levels of plasma concentrations that are lower by 84 % when compared with levels in MM 
individuals and in the MZ heterozygote state, by intermediate levels that are lower by 17 %. 
It has been suggested that α1AT deficiency could lead to less cleaved fragments of α1AT 
(i.e. the pro-inflammatory peptide C-36) of α1AT in atherosclerotic plaques, and thereby 
reduce AS inflammatory process..  

9

inflammatory response. 

 This mutation in the pyrin gene is liable to lead to leukocyte survival otherwise designed 
to follow the apoptotic pathway, increasing the 

 
Reference in Incalcaterra et al 2013, abstract n°5. 
 

1.4.2 GENOME-WIDE ASSOCIATION STUDY 

As we discussed in our paper (Incalcaterra et al 2013), GWAS 

consists in a scanning of whole genome, analyzing markers to find variants 

associated with the trait of interest using a case-control study. It is important 

to note that the finding of common genetic variants with low allelic 

frequency across studies is consistently difficult because of the multitude of 

data to analyze. 

Population admixture that may produce possible false positives due 

to different genetic backgrounds among ethnic groups is another limit. A 

family-based association study and the analysis of geographically isolated 

population could permit to improve the detection of true positive genetic 

association loci, in particular those of modest size (see paper for the 

references, abstract n°5).  

GWAS is a useful tool for the identification of longevity associated 

alleles with frequency above 5%. Each, taken singularly, has a moderate or 

null effect but, borrowing a concept from pharmacology, it is possible to 
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speculate that more alleles have, en bloc, a synergic rather than an additional 

effect. It means a potentiated effect respect to the sum of alleles. On the 

other hand, GWAS is not the best tool to study longevity because it is 

necessary to collect thousands of individuals to identify the expected OR. 

For this reason it could be preferred to use GWAS to formulate an 

hypothesis verifying it with different traditional research methods.  

In this aspect, a GWAS on 410 long lived individuals (LLI) and 553 

young control individuals investigated the relation between rs10491334 of 

the calcium/calmodulin-dependent protein kinase IV (CAMKIV) gene, a 

variant previously reported in association with diastolic blood pressure, and 

human longevity. To confirm this association in vitro study was conducted 

establishing that CAMKIV activates the survival proteins AKT, SIRT1, and 

FOXO3A, thus resulting indirectly involved in insulin pathway. Moreover, 

homozygous carriers of rs10491334 have a significant reduction in 

CAMKIV expression pointing to a detrimental role for the SNP and to its 

involvement with human longevity (Malovini et al 2011).  

 

1.4.3 SYSTEMATIC REVIEW AND META-ANALYSIS 
Systematic review and meta-analysis are two strictly linked very 

useful tools for the researchers. In particular, a systematic review permits to 

explore the existing literature to verify if data of different studies in different 

populations about the same variable have a significance if they are analyzed 

all together. It typically involves several steps: the identification of the 

question, the selection of databases, the choose of the adapt strategy, the 

management of the filters in the database to select paper that answer the 

original question (inclusion and exclusion criteria) and the extraction of the 
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data in a standardized format. A "meta-analysis" provides a statistic tool to 

quantitatively synthesize and combine the data selected with the systematic 

review. Thus “every meta-analysis should be based on an underlying 

systematic review, but not every systematic review leads to a meta-analysis” 

(http://researchcore.org/faq/answers.php?recID=5). 

Thus, the use of meta-analyses has recently become an important 

part of genetic research mainly to reconcile studies about the same genetic 

variant that gave inconsistent results.  

One interesting “pro” of these is for example the possibility to 

overcome the limit of GWAS linking to the standard threshold of 

significance, highlighting genes or gene variants with weak effect on a 

specific phenotype as associated to that phenotype. This is particularly 

relevant in longevity research because it is well known that genetic 

background and longevity are strictly linked but few genetic variants 

associated with longevity exist.  

With these approaches, besides our results on the association of 

specific allelic variants of IGF-1R, FOXO3A with longevity and KLOTHO 

with health ageing, many other genetic variant were pointed out to ageing 

and longevity research for a gain or a loss of association: the negative 

association with longevity in Italian centenarians of the GG genotype of 

interleukin-6 previous associated in European centenarians (Di Bona et al 

2009) or the positive association with longevity of a specific haplotype 

(rs915179, rs2485662, rs4641, rs1468772) from LMNA gene (Conneely et 

al 2012). 

Moreover, putting together similar genetic data of 5 studies of 

centenarians from USA, Europe and Japan, the result was that many of the 

variants analyzed in these studies were associated to extremely long life 
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(Sebastiani et al 2013). However, a weakness of meta-analysis is that it does 

not overcome problems that were inherent in the design and execution of 

primary studies. 

Combining studies of poor quality with those that were more rigorously 

conducted is not useful and can lead to worse estimates of the real effect.  
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2. AIM OF THE THESIS 
The new frontier in ageing investigation is the promotion of healthy 

ageing and longevity, rather than the intervention on specific age-related 

diseases. In a recent consensus workshop held in Erice, it has been talk 

about possible interventions to slow ageing 

(http://longevityinstitute.usc.edu/SicilyMeetingProgramFINAL2013.pdf) 

(Figure 5). 

 
Figure 5. MECHANISMS THAT DELAY AGEING PROCESS. The main source of 
damage for the macromolecules, including the DNA, is the metabolism that determines 
over production of radical oxygen species (ROS) due to the reduction of efficiency of the 
mithocondria. Low levels of GH/IGF-1 likely increase the efficiency of mitochondria  with 
a consequent reduction of ROS production. At the same time,  the low levels mean 
prevention of insulin resistance and consequently control of inflammation process. Limited 
levels of ROS are also due to antioxidant mechanism physiologically active inside the cells. 
P53 is usually inactive because of is binding with MDM2. Stress and environmental stimuli 
determine the activation of p53 that has the role to maintain  genomic stability. All these 
systems contribute to delay ageing process. 
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Hence, the new goal is to increase lifespan but in healthy condition: 

the “heal thspan”. It is well known that reduction of nutrient sensing 

pathway signaling increases lifespan in model organisms. 

In rodents, calorie restriction without malnutrition, reduces 

insulin/IGF-1 signalling, increasing maximal lifespan up to 50%. Indeed, in 

model animals, long-term calorie restriction, reduces metabolic factors 

associated with some age-related diseases: oxidative stress, sex hormones 

and insulin levels, adiposity and inflammation (Longo et al 2010).  

However, since calorie restriction is difficult to realize in human 

beings, it may be preferred to reach healthy ageing acting on modifiable 

lifestyle factors as diet and nutrition. Moreover, further target should be the 

control of pro-inflammatory status, characteristic of ageing, as extensively 

discussed in our reports (Balistreri et al 2013, abstract n°12; Accardi et al 

2014; Balistreri et al 2014). 

Thus the aim of my PhD was to explore the mechanisms that drive 

ageing and longevity focusing the attention on the role of insulin/IGF-1 

pathway and of inflammatory mechanisms, well known to be among the 

main driver to these phenotypes. Through reviews we explored the literature 

to summarize the existing data up to date. With systematic reviews and 

meta-analyses we identified some genetic variants of proteins that take part 

in the insulin/IGF-1 pathway, both directly or indirectly. Moreover, we 

conducted a case-control study to verify the association of two SNPs of the 

protein SHIP2 to T2DM and AD. 

The obtained results will be discussed in the light of the methods to 

slow ageing. 
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Can Alzheimer Disease Be a Form of Type 3 Diabetes?

Giulia Accardi,1 Calogero Caruso,1 Giuseppina Colonna-Romano,1 Cecilia Camarda,2

Roberto Monastero,2 and Giuseppina Candore1

Abstract

Alzheimer disease (AD) and metabolic syndrome are two highly prevalent pathological conditions of Western
society due to incorrect diet, lifestyle, and vascular risk factors. Recent data have suggested metabolic syndrome
as an independent risk factor for AD and pre-AD syndrome. Furthermore, biological plausibility for this rela-
tionship has been framed within the ‘‘metabolic cognitive syndrome’’ concept. Due to the increasing aging of
populations, prevalence of AD in Western industrialized countries will rise in the near future. Thus, new
knowledge in the area of molecular biology and epigenetics will probably help to make an early molecular
diagnosis of dementia. An association between metabolic syndrome and specific single-nucleotide poly-
lmorphisms (SNPs) in the gene INPPL1, encoding for SHIP2, a SH2 domain-containing inositol 5-phosphatase
involved in insulin signaling, has been described. According to recent data suggesting that Type 2 diabetes
represents an independent risk factor for AD and pre-AD, preliminary results of a case–control study performed
to test the putative association between three SNPs in the SHIP2 gene and AD show a trend toward association
of these SNPs with AD.

Introduction

Alzheimer disease (AD) is the most common form of
dementia, accounting for more than 50% of all cases

of dementia.1 It occurs primarily after age 65, and for this
reason it is classified as an age-related disease. The excep-
tion is the familiar early-onset form (with Mendelian in-
heritance) that represents about 1% of all cases.2 Its
prevalence is approximately 1% between 65 and 69 years
and is higher than 50% in individuals above 95 years.3 AD is
a neurodegenerative disorder with the typical features
characterized by the impairment of memory, language, at-
tention, executive functioning, apraxia, agnosia, and apha-
sia. Cognitive, but also behavioral, symptoms cause a
reduction of functional activities compared to a previous
level of functioning.1–3

According to the amyloid hypothesis, AD is character-
ized by accumulation of senile plaques constituted by de-
posits of the abnormal form of amyloid b (Ab) protein
(Ab40–42 amino acids), present in common forms of de-
mentia, and neurofibrillary tangles originating from hy-
perphosphorylation of microtubular tau protein. These
structures accumulate progressively in the brain starting
from the hippocampus and then spreading to the cerebral
cortex, where neurons are lost, causing memory, language,
and general cognitive impairment.3

However, today some different pathophysiological theo-
ries regarding AD exist, suggesting that the disease could be
driven by inflammation, vascular changes, and metabolic
disorders. These theories are not mutually exclusive, because
inflammation plays a relevant role in both vascular lesions
and metabolic disorders.3–8 Indeed, several population-based
studies have recently described Type 2 diabetes as a risk
factor for AD. Furthermore, these data were also confirmed
in the pre-AD status, the so-called mild cognitive impair-
ment. However, data are not definitive and negative results
have also been published.9–11

Most recently, metabolic syndrome, which represents a
cluster of metabolic factors—insulin resistance, abdominal
obesity, glucose intolerance, hypertension, hyperinsulinemia,
and raised fasting plasma glucose—has also been described
in association with an increased risk of AD.12,13 Interestingly,
strong evidence suggests that systemic inflammation and
central adiposity contribute to and perpetuate metabolic
syndrome.8 All of these alterations predispose individuals to
type 2 diabetes and cardiovascular disease.8–14

Genetic background, age, sex, diet, physical activity, and
habits in general all influence the prevalence of the meta-
bolic syndrome and its components. Twenty years ago in
the Mediterranean area, it was assessed that 70% of adults
have at least one of the disorders characterizing metabolic
syndrome. However, in the European population, the rate
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of metabolic syndrome is 7%–30%.15,16 Worldwide there are
1.1 billion overweight people with a body mass index (BMI)
between 25 kg/m2 and 30 kg/m2 and 312 million with a
BMI > 30 kg/m.14 In the last 40 years, the rate of obesity in
the United States has increased, and today 66% of adults
have a BMI > 25 kg/m2 and half of those have a BMI
> 30 kg/m.17

Another link between obesity, inflammation, insulin
signaling, and dementia is the amyloid precursor protein
(APP),18 a transmembrane protein from which the Ab40–42

fragment that forms senile plaques originates.3 APP is con-
sidered an adipokyne, producing and processing Ab40–42 in
adipose tissue. This fragment is expressed in fat tissues
and overexpressed in abdominal adipocytes of obese
patients.18

Recent data support an increased susceptibility for AD
in patients with metabolic syndrome,19 but from the age of
85 the association between metabolic syndrome and ac-
celerated cognitive decline vanishes.20 On the other hand,
some American scientists hypothesize that AD is a third
form of diabetes.21 This hypothesis was formulated in 2005
when 45 AD patients were analyzed postmortem, showing
lower levels of insulin in the brain. In particular, the au-
thors analyzed the frontal cortex of AD individuals, cal-
culating the concentration of insulin, insulin-like growth
factor 1, and insulin receptor. Data showed that later
stages of disease were associated with an up to 80% de-
crease of these parameters compared to healthy brain.21

According to the latter association, some authors proposed
the concept of ‘‘metabolic cognitive syndrome’’ (MCS)
when describing co-occurrence of AD and metabolic syn-
drome. Indeed, dementia and metabolic syndrome present
some overlap both in predisposition factors and in altered
signaling cascade. Environmental elements like diet, life-
style, smoking, and socioeconomic status are critical con-
tributors in these disorders. Altered insulin signaling
pathway has a key role in their pathogenesis. In particular
insulin resistance might be the first step toward both dis-
orders, constituting a bridge between AD and metabolic
syndrome.22

Metabolic-Cognitive Syndrome: Insulin
and the Central Nervous System

Insulin is known to be a peripheral regulator of nutrient
storage, but it is also essential for the control of energy
balance in the central nervous system (CNS). Neuronal in-
sulin signaling pathway has an important function in
mammalian fat storage and in Caenorhabditis elegans and
Drosophila, the cellular signaling systems mediating these
effects bear remarkable homology to those described in
mammals.23

There is substantial evidence demonstrating insulin action
in the control of neuronal function in cortical and hippo-
campal areas, which are involved in memory processing and
cognitive functioning.24,25 Insulin directly influences neurons
by processes not linked to modulation of glucose uptake.
Neurotransmitter release, neuronal outgrowth, tubulin ac-
tivity, neuronal survival, and synaptic plasticity are all di-
rectly modulated by insulin.26–29 The insulin signaling
pathway modulates synaptic plasticity, promoting the re-
cruitment of c-aminobutyric acid (GABA) receptors on

postsynaptic membranes, influencing N-methyl D-aspartate
receptor (NMDA) conductance (neuronal Ca2 + influx)
and regulating receptor a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) cycling.30,31

The MCS was elaborated on 2010 by Frisardi and his
colleagues. It is based on the co-existence, in patients, of
metabolic syndrome and cognitive impairment of degener-
ative or vascular origin.22 Insulin resistance can be mani-
fested in peripheral tissues or directly in the brain as an
insulin resistance brain state that contributes to cognitive
impairment and neurodegeneration for the reason described
above.22

Many molecules participate in the regulation of the insulin
signaling pathway; therefore, an alteration in the function or
expression of some of these proteins causes a reduction in
glucose uptake. Consequently, glucose accumulates in the
blood, determining hyperglycemia and hyperinsulinemia.
Hyperglycemia induces an increase of the peripheral use of
insulin, which results in a reduction of insulin disposable for
the brain. Because insulin is essential for memory, learning,
neuronal survivor, and longevity processes, the alteration of
its concentration might cause important consequences on tau
and Ab processing.24,25 For example, an impairment of in-
sulin signaling pathway causes a reduction of the activity of
phosphatidylinositol 3-kinase (PI3K) and consequently a re-
duction in AKT/protein kinase B (PKB) pathway. This leads
to an increase of glycogen synthase kinase 3 a/b (GSK-3 a/b)
activity that phosphorylates tau protein and causes in-
traneuronal Ab accumulation.21

Moreover, glucose metabolism plays a role in the protein
posttranslational modification involving the hexosamine
biosynthetic pathway, which leads to the generation of O-N-
acetylglycosamine (O-Glc-NAc). If insulin resistance is es-
tablished, intraneuronal glucose metabolism is impaired.
Consequently, the amount of O-Glc-NAcylation is reduced.
This posttranslational modification competes with the
phosphorylation process, thus more phosphate groups are
added with an increase of the amount of phosphorylated tau
protein.32

Insulin is also involved in the APP metabolism.33 APP
competes with the insulin receptor. Thus, its inefficient deg-
radation might play a key role in AD brain insulin resistance.34

SHIP2: A Modulator of the Insulin Pathway

When insulin binds to its membrane receptor, it activates a
signaling cascade involving phosphoinositides and the
AKT/PKB pathway.24 To regulate cellular levels of lipid
secondary messengers such as phosphatidylinositol (3,4,5)-
triphosphate (PtdIns [3,4,5]P3), cells use two major classes of
phosphoinositide phosphatases—the inositol polyphosphate
3-phosphatase PTEN and the SH2 domain-containing inosi-
tol 5-phosphatases 1 and 2 (SHIP1 and SHIP2).35

SHIP2 is a protein that catalyzes the degradation of lipid
secondary messenger phosphatidylinositol 3,4,5-triphos-
phate (PIP3) to produce phosphatidylinositol 3,4-diphos-
phate (PIP2). Thus, SHIP2 is an antagonist of PI3K that takes
part in insulin signaling, phosphorylating PIP2 to obtain
PIP3. Because the PI3K pathway plays a key role in the
biological effects of insulin, the attenuation of the PI3K-
mediated insulin signaling pathway could be associated with
insulin resistance in type 2 diabetes.36
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Many studies underline the role of SHIP2 as negative reg-
ulator of insulin signaling.35–37 Its overexpression reduces both
insulin-stimulated mitogen-activated protein kinase and AKT
activation, leading to downregulation of glucose uptake to-
ward failed recruitment of GLUT4 in cell membrane and gly-
cogen synthesis in 3T3-L1 adipocytes and L6 myotubes.38–40

Moreover expression of SHIP2 is greatly increased in the
skeletal muscle and fat tissue of diabetic mice.41

In addition, the SHIP2 gene (INPPL1) is localized in
human chromosome 11q13–14, which is suggested to be
linked to type 2 diabetes characterized by insulin resistance
and hypertension.42–44 Therefore, SHIP2 could be involved in
the pathogenesis of insulin resistance of type 2 diabetes mel-
litus in humans and also in the metabolic syndrome, in which
insulin resistance represents the first step toward.36,41–43,45

A study conducted by Kaisaki et al.45 shows a significant
association between single-nucleotide polymorphisms
(SNPs) of INPPL1 (rs2276047, rs9886, and an insertion/de-
letion in intron 1) and type 2 diabetes and metabolic syn-
drome in European populations. This finding was partly
confirmed by another study conducted by Kagawa et al. in
the Japanese population.46

Conclusion

Metabolic syndrome and AD constitute a worldwide prob-
lem, especially for Western societies, due to co-morbidity
(mainly vascular), lifestyle (i.e., diet, exercise, smoking, al-
cohol), and increasing age. Considering the increasing data
that have focused recently on the association between AD
and metabolic syndrome, it could be speculated that AD
could be a third form of diabetes.21

Metabolic syndrome is a condition that predisposes to
type 2 diabetes, which is characterized by systemic inflam-
mation, insulin resistance, obesity, high cholesterol levels,
and sedentary lifestyle, all conditions related to an increased
risk for AD.47 Due to increasing age, prevalence of AD in
Western industrialized populations will be higher in the fu-
ture. Thus, new knowledge regarding molecular biology and
epigenetics that would enable an early molecular diagnosis
of dementia is welcome.3

Discovery of new genes and proteins involved in
physiological pathways can be crucial for the identifica-
tion of altered mechanisms involved in the pathophysi-
ology of AD and consequently in signaling pathways.
Such discoveries would allow finding new target proteins,
developing new molecular risk profile for diagnosis and
prevention, and planning early interventions.6 In this re-
gard, we are extending previous research on the associa-
tion of INPPL1 SNPs and metabolic syndrome to AD.
With this aim, we are conducting a case–control study
evaluating the putative association between INPPL1 SNPs
and AD. Preliminary results obtained show a trend to-
ward association of these SNPs with AD, thus strength-
ening the hypothesis of a close relationship among AD,
metabolic syndrome, and diabetes.
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Abstract

Chronic inflammation is a major biological mechanism underpinning biological ageing process and age-related
diseases. Inflammation is also the key response of host defense against pathogens and tissue injury. Current opinion
sustains that during evolution the host defense and ageing process have become linked together. Thus, the large
array of defense factors and mechanisms linked to the NF-κB system seem to be involved in ageing process. This
concept leads us in proposing inductors of NF-κB signaling pathway as potential ageing biomarkers. On the other
hand, ageing biomarkers, represented by biological indicators and selected through apposite criteria, should help to
characterize biological age and, since age is a major risk factor in many degenerative diseases, could be
subsequently used to identify individuals at high risk of developing age-associated diseases or disabilities. In this
report, some inflammatory biomarkers will be discussed for a better understanding of the concept of biological
ageing, providing ideas on eventual working hypothesis about potential targets for the development of new
therapeutic strategies and improving, as consequence, the quality of life of elderly population.

Keywords: Biological ageing process, Inflammatory network and its effects in ageing, NF-κB signaling pathway as
hub of inflammatory ageing network, Inflammatory biomarkers
Introduction
Ageing is a complex process, induced by an intricate
interaction of genetic, epigenetic, stochastic and envir-
onmental factors. They determine the lost of molecular
fidelity followed by an improved entropy [1,2]. As result,
loss complexity and random accumulation of damages (i.e.
particularly damages to nuclear and mitochondrial DNA)
at cellular, tissue, organ levels and/or of whole body arise,
compatibly with the disposable soma theory of ageing [3].
Thus, it establishes a condition, which modifies both
architecture and functioning of physiological processes
and regulatory (immune and endocrine) systems. This de-
termines a deterioration of the homeostasis. Accordingly,
it becomes more easily vulnerable to internal and external
stressors, frailty, disability and disease (Figure 1). On the
other hand, the loss of DNA integrity, the principal ran-
dom damages able in modifying cellular fidelity and indu-
cing cellular and whole body senescence, determines the
decline of the functionality of stress resistance and survival
pathways (i.e. autophagic uptake mechanisms, chaperone
* Correspondence: carmelarita.balistreri@unipa.it
Department of Pathobiology and Medical and Forensic Biotechnologies,
University of Palermo, Corso Tukory 211, Palermo 90134, Italy
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reproduction in any medium, provided the or
systems, DNA repair mechanisms, apoptotic process,
immune/inflammatory response), involved in cellular and
organism defense to environmental stress and maintaining
homeostasis [2]. However, a large heterogeneity in occur-
rence, complications, speed, and age and gender manifest-
ation of ageing process at cellular, tissue, organ levels and/
or of whole body has been observed in humans. Among
human people, there are individuals at the age ≥90 years
still in good mental and physical conditions, and others
that at the age ≥ 60 years show cognitive difficulties, and/
or the onset of chronic inflammatory diseases, such as
Alzheimer’s disease (AD), cardiovascular disease (CVD)
and type 2 diabetes mellitus (T2DM) and cancer [4].
The principal causes of the heterogeneity in human

ageing rate, measured as decline of functional capacity
and stress resistance, seem to be genetic and environ-
mental factors. However, the overall impression is that
environmental factors are the major determinants of
both ageing and age-related diseases [4,5]. Thus, ageing
process is not a genetically programmed process [5].
This consideration is based on studies on heritability of
age-related diseases and ageing [6,7]. A similar value of
heritability in lifespan and age-related diseases, such as
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Figure 1 Ageing process results by the lost of molecular fidelity followed by an improved entropy. This determines loss complexity and
random accumulation of damages (i.e. particularly damages to nuclear and mitochondrial DNA) at cellular, tissue, organ levels and/or of whole
body. Thus, it becomes more easily vulnerable to internal and external stressors, frailty, disability and disease.
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cancer, AD, CVD and T2DM, has been identified (35%
vs. 40%, respectively) [8,9]. However, this does not imply
that genetic factors have an irrelevant role in ageing and
age-related diseases. For example, mutations identified
in familial forms of AD consented understanding its mo-
lecular mechanisms, such as the toxicity of amyloid β
peptide and potential therapeutic targets in more com-
mon sporadic late onset AD [10]. Common suggestion is
based on both a complex contribution of genetic factors
in ageing and diseases of later life and weak effects of in-
dividual genes [5]. Furthermore, diverse genetic factors
are associated with ageing and exceptional longevity.
Human genome-wide genetic analyses have revealed
only few age-related loci and polymorphic longevity
genes [11-13]. Among these, current promising candi-
dates are Sirtuins, Forkhead box O protein (FoxOs) and
the field of epigenetics. Functional genomics, i.e. expres-
sion profiling studies, have revealed a group of genes
which are differently expressed in ageing, such as
immune/inflammatory genes [14].
From the observations described above, another crit-

ical point of ageing process emerges based on the con-
cept of biological age as real expression in human of
both ageing rate and onset of the common diseases of
later life rather than chronological age [15]. This concept
opened an important area of research focused on identi-
fying of potential molecular targets as biomarkers of
human biological ageing [16]. On the one hand, it could
consent to develop potential anti-ageing treatment strat-
egies. On the other hand, probable anti-ageing treat-
ments could retard or prevent age-associated diseases
resulting in widespread health, social and economic
benefit. Such treatment could include genetic engineer-
ing, such as gene therapy or endogenous gene repair, or
pharmacological therapies, or changes in lifestyle, i.e.
physical activity, diet.
In this report, many of these aspects are discussed,

giving particular emphasis in describing some bio-
markers of inflammation. In particular, the data dis-
cussed in this report are based on an expert opinion
derived on the findings from author’s studies on ageing,
age-related diseases and inflammation.

Definition and selection criteria of ageing biomarkers
As established by National Institute of Health, a bio-
marker is a “feature objectively measured and evaluated
as an indicator of normal biologic processes, pathogenic
processes, or pharmacologic responses to a therapeutic
intervention” [16,17].
In the case of ageing process, this definition might

concern measures related to physical changes, such as
grey hairs, reduced skin elasticity, wrinkles, reduced
muscle strength or changes in the near vision, which are
thought to be the result of molecular mechanisms
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occurring in the old age [18]. However, they reflect the
chronological age rather than the biological age, which
is the most important indicator of health and potential
lifespan [15].
A biomarker of real ageing should reflect a process of

biological ageing, be easily reproducible in cross-species
comparison, be easily obtainable. Since ageing is the re-
sult of the deterioration of more than one system or
process, it would be more appropriate to consider differ-
ent biomarkers. Panels of biomarkers associated with
conditions, alterations or changes of a set of critical sys-
tems to assess the biological age of any organism should
be used [16,18].
The gerontologists have begun to face this problem

already in the early 1980s, with the development of a
large number of ageing biomarkers [16,18]. Despite the
numerous efforts and the support in this research from
National Institute of Ageing, the major number of bio-
markers is still to date under discussion, like inflamma-
tory markers, hormones, markers of oxidative stress or
telomere shortening [16,18]. Most (perhaps all) markers
are also not really proven in longitudinal studies in
humans. In addition, they have been considered for a
variety of purposes, which are not distinguished suffi-
ciently. Most studies used biomarkers as tools for com-
paring ageing rate in several populations or cohorts of a
single population. In contrast, others considered bio-
markers for person-specific predisposition, which repre-
sents much more challenging, principally because
ageing, as a biological process, is not well defined at in-
dividual level. In addition, the research of comparative
or predictive biomarkers have determined the attempted
use of measure panels associated with survival, health
of old age, frailty, age-related (multi) morbidity and
mortality [16,18].
However, none of the identified biomarkers is a “real”

biomarkers of ageing. They are commonly related to age
and diseases. In addition, the major number has been
developed and tested for diseases in which biological age
is the single biggest risk factor, such as peripheral blood
cellular telomere length, indicators of immuno-
senescence, even without correlations with disease-
specific diagnoses. In addition, biomarkers of age-related
diseases and ageing have been preferentially identified in
younger-old populations (typically aged 60–85), but not
Table 1 Criteria for a biomarker of ageing process

I It must predict the rate of ageing. In other words, it would estimate
predictor of lifespan than chronological age alone.

II It must monitor a basic process that underlines the ageing process, n

III It must be able to be tested repeatedly without harming the person

IV It must be something that works in humans and in laboratory anima
before being validated in humans.
in oldest-old (aged 85 and above) [16,18]. For example,
blood pressure, indicators of metabolic syndrome and
telomere length do not associate significantly with age-
related morbidity or mortality in population-based stud-
ies of the oldest-old [19-21]. Thus, biomarkers of ageing
and age-related diseases in understanding the health tra-
jectories of the oldest-old are unexplored. It is import-
ant that this lacuna is filled given the rapid growth in
the number of very old people in many contemporary
populations.
For an ageing biomarker, it is important to know not

only its definition, but also the criteria for its selection.
Accordingly, the American Federation for Ageing Re-
search suggested detailed criteria, recently reviewed by
Sprott [16] and Johnson [18]. Based on these criteria, a
true biomarker of ageing, in order to be both accurate
and useful, should predict a person’s physiological, cog-
nitive and physical function in an age-related way. In the
same time, it should be easily testable, and not harmful
to test individuals. For example, it could be a blood test
or an image technique, by performing accurately and re-
producibly without the need for specialized equipment
or techniques. It should be tested preliminary in labora-
tory animals, such as mice, and successively in humans.
Thus, a biomarker needs to be simple and inexpensive
to use. They should cause little or no pain and stress
(see Table 1) [16,18].
Furthermore, current research on ageing biomarkers is

also focusing in identifying molecules which also are
able in giving clinical indications. On the other hand,
biomarkers represent a hot topic and have the ability to
change our life, if real prediction, on an individual basis,
can be made in the future.

Description and ageing biological effects of inflammatory
network
Immune system is evolved to defend the host against
microbial invasion, and to counteract tissue damage elic-
ited by chemical or physical agents or trauma,
maintaining consequently the homeostasis and tissue re-
pair [22]. In both conditions, it responds in a appropri-
ate manner by inducing apposite reactions (i.e. of
suitable degree, with the involvement of a different array
of cells and mediators), called inflammatory responses
[22,23]. Inflammatory responses can be evocated initially
where a person is in their total lifespan. Operationally, it must be a better

ot the effects of diseases.

, for example, a blood test or an imaging techniques.

ls, such as mice. This is so that it can be tested in laboratory animals
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as localized tissue reactions and subsequently as acute
phase reaction, represented by systemic cytokine-induced
reactions, including leukocytosis, fever, somnolence, an-
orexia, activation of hypothalamic-pituitary-adrenal axis
and increased level of glucocorticoids, and acute phase
synthesis, i.e. C reactive protein (CRP), in the liver. A
complex network of molecules (the mediators) and cells
(neutrophils, monocytes, mast cells, endothelial cells, etc.)
characterize these reactions. They work together in con-
cert and interact mediating the activation of different sig-
naling pathways and the expression and transcriptional
regulation of hub genes. The hub genes receive and direct
the activity of many other genes [22,23]. Thus, these re-
sponses are induced through an inflammatory network.
Recent studies on topology of this network evidence the
crucial role of some mediators in driving the different cel-
lular interactions and regulating the type of inflammatory
reaction. Several mediators as pro- and anti-inflammatory
molecules are involved [24]. Their release is modulated by
different factors linked to well-known Nuclear Factor
(NF)-κB pathway [25,26]. In addition, the magnitude of
their production varies individually because of genetic het-
erogeneity. Single nucleotide polymorphisms (SNPs) in
several genes and epigenetic factors seem to be involved
[27]. Among the inflammatory mediators, the classical
pro-inflammatory cytokines, Tumor necrosis factor α
(TNF-α), Interleukin-1 (IL-1) and IL-6, play a key role.
They are able in inducing both local and systemic effects
[28]. When the causes of the inflammatory reaction are of
a high intensity, their production is increased. Thus, they
are released in the circulation provoking the acute phase
response. In contrast, the anti-inflammatory cytokines,
such as IL-10 are able to regulate the activation of in-
flammatory cells, by inhibiting the release of pro-
inflammatory cytokines and therefore turning off the
inflammatory processes [29].
Whether tissue health is not restored or in response to

stable low grade irritation, inflammation becomes a
chronic condition provoking continuous damages in the
surrounding tissues. The collateral damage caused by
this type of inflammation usually accumulates slowly,
sometimes asymptomatically for years but can eventually
lead to severe tissue deterioration [30].
From the above, it emerges that the inflammatory re-

sponse is not per se a negative phenomenon. It is pro-
grammed by the evolution in neutralizing infectious
agents, playing a beneficial role until the time of
reproduction and parental care. In contrast, in old age, in
a period largely not foreseen by evolution, it can deter-
mine a detrimental effect through chronic inflammatory
responses (“antagonistic pleiotropy”) in several/ all tissue
and organs, which are cause of both the ageing phenotype
and chronic diseases [24,30]. A low chronic grade of in-
flammation, the “inflammageing”, characterized by a 2 to
4-fold increase in serum levels of inflammatory mediators
has been identified in ageing [31]. It seems to be as opti-
mal predictor of mortality and, as mentioned above, a crit-
ical risk factor in the pathogenesis of several age-related
chronic diseases as AD, CVD, T2DM, sarcopenia, frailty
and functional disability [32].
Augment of age-related body fat and consequent in-

crease of visceral adiposity, age-related decline of sex
hormones, oxidative and genotoxic stress, cellular and
tissue damage, nutrition, alterations of physical condi-
tion of gut microbiota, other organs (brain, liver) and
systems (immune and endocrine) have been associated
with inflamm-ageing [32-34]. In addition, factors linking
to physiological stress, such a long-term smoking and
depression, seem also to contribute to inflammageing
[32-34]. However, the most important factor for age-
related inflammation is the long-life pathogen burden
[30]. Some recent studies have, indeed, evidenced associ-
ations between past infections and levels of chronic in-
flammation and increased risk of heart attack, stroke,
and cancer [32,34]. For instance, persistent peripheral
multibacteria infection, such as periodontitis, associated
with gram-negative anaerobic bacteria capable of
exhibiting localized and systemic infections in the host,
is considered as possible aggravating cofactor in subjects
with vascular diseases and risk factor for the onset of
other age-related diseases, such as AD [30].
Of special relevance is the inflammation status in cen-

tenarian people. The literature data seem to be apparently
contradictory. Increased levels of both inflammatory and
anti-inflammatory mediators and significant frequencies
of protective genotypes have been assessed in centenarians
than the old subjects [30,35]. As consequence, identifying
of apposite biomarkers likely in long lived subjects should
be necessary. This might permit a preferential and se-
lected development of pleiotropic therapeutic interven-
tions acting concomitantly on different targets and at
different levels.

Inflammatory ageing biomarkers: the crucial role of NF-κB
activators
Ageing is not a genetically programmed process, as de-
scribed above [5]. In contrast, it is recognized as an en-
tropic process, characterized by loss of molecular fidelity
and subsequent accumulation of different products [1,2].
In addition, it has been recently proposed that during
evolution the host defense and the ageing process have
become linked together [2]. Host defense and ageing
mechanisms seem to be overlapping. In particular, host
defenses seem to be involved in ageing process, to active
inflammatory network and also to evocate the release of
so-called senescence associated secretory phenotype
(SASP), represented by a myriad of factors, such as the
pro-inflammatory mediators [36,37]. A large range of
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defense factors and mechanisms are involved in inducing
of inflammatory network, and are all (or the major num-
ber) linked to the NF-κB pathway, an ancient signaling
pathway specialized to the host defense [25,26]. In
particular, the NF-κB system is a cytoplasmatic sensor
constituted by a protein-complex (Rel family proteins-
RelA/p65, c-Rel and RelB- and NF-κB components-
p50/p105 and p52/p100) and inhibited commonly by
binding to IκB proteins (IκBα, IκBβ, IκBγ, IκBδ, IκBε,
IκBζ and Bcl3). In some cases, its inhibition is induced
through the action of several signaling pathways and
negative feedback loops acting through different mecha-
nisms at various levels of signaling cascades. In contrast,
its activation can be evocated both by immune insults
and external and internal danger signals associated with
senescence and ageing process, such as oxidative and
genotoxic stress and tissue injuries [25]. Namely, its in-
duction is linked to several recognition pathway, i.e.
Toll-like receptors (TLRs) and inflammasome, as well as
through different upstream kinase cascades via canonical
or non-canonical pathways. IKKα/β and NIK are the
most important upstream kinases, although several ki-
nases can directly regulate the transcriptional capacity of
NF-κB factors. IKKγ, generally called NEMO, is an im-
portant regulatory component of the IKK complex being
linked upstream to genotoxic signals and IL-1 and TNF
receptor mediated signaling. Activating kinases phos-
phorylate IκB proteins which are released from the com-
plex and then degraded in proteasomes. Subsequently, the
NF-κB complexes, having the crucial role of pleiotropic
mediator of gene expression, translocate into the nucleus
and transactivate the expression of special sets of target
genes, codifying different SASP molecules, including pro-
inflammatory cytokines, chemokines, adhesion molecules,
eicosanoids, growth factors, metallo-proteinases, nitric
oxide, etc. [25]. On the other hand, emerging experimen-
tal data principally performed on human skin fibroblasts
have convincingly demonstrated the role of NF-κB signal-
ing as the major pathway stimulating SASP phenotype
[36-40]. Among the endogenous NF-κB inducers, a par-
ticular action is mediated by oxidative stress, DNA dam-
age and immune defense, which are typical features of the
entropic ageing process and age-related diseases [25].
These observations lead in considering NF-κB as hub

of ageing inflammatory network, whose the mentioned
factors act as NF-κB activators and pro-ageing factors.
With advancing age, these factors increase and deter-
mine a sustained NF-κB activation, eliciting a host
defense “catastrophe”, responsible of SASP release. In
turn, SASP, which occurs in several cells (i.e. fibroblasts,
epithelial cells, endothelial cells, astrocytes, preadipocytes,
and leukocytes as well as in postmitotic cells) participates,
together the phenomenon of inflammageing, in the low
chronic inflammation, improving both entropic ageing
process and onset risk for age-related degenerative dis-
eases, as result of harmful responses (i.e. chronic inflam-
matory responses, increased apoptotic resistance, decline
in autophagic cleansing and tissue atrophy) (see Figure 2)
[2,36,41]. Thus, chronic inflammation predisposes individ-
uals to various age-related diseases. For example, the pro-
inflammatory SASP of senescent endothelial cells has been
proposed to contribute to CVD by initiating and fueling
the development of atherosclerotic lesions. In addition,
the expression of a SASP by astrocytes, which has been
documented both in cells that were made senescent in
culture as well as cells that were isolated from aged brain
tissue, has been suggested to initiate or contribute to
neuroinflammation, responsible of many neurodegenera-
tive diseases, such as AD, causing or exacerbating age-
related decline in both cognitive and motor function [42].
In the light of this evidence, the research has focused

the attention on identifying pro-ageing factors, “NF-κB
activators”, as possible ageing biomarkers. Here, we de-
scribe some of them as promising inflammatory bio-
markers of ageing and age-related diseases.

Oxidative stress, mitochondrial dysfunction, oxidative stress
and activation of inflammasomes
Among the ageing modifications, mitochondrial alter-
ations happen. They include an increased content of oxi-
dation products and a diminished functional activity,
conditions described and called as mitochondrial dys-
function [38,39]. An enhance of mitochondrial content
in oxidation products, accompanies the entropic ageing
process, and protein carbonyls, thiobarbituric acid reactive
substances, ROOH and 8-hydroxy-2′-deoxyguanosine are
the major markers. Recent experimental data on animal
models, such as rats and mice, demonstrate the increase
of these molecules with ageing in different tissues and or-
gans [43]. In addition, current evidence underlines the in-
crease of levels of several oxidative products in human
biofluids, such as urine, serum, plasma, and blood, from
old individuals than young subjects [44].
Mitochondrial dysfunction and oxidative stress are not

associated only with ageing process, but also with the
pathogenesis of several age-related diseases, as reported
by recent experimental literature data [45-48]. Their detri-
mental effects are commonly attributed to disturbances in
energy metabolism and increased Reactive oxygen species
(ROS) production, and the crucial role of mitochondria in
apoptotic cell death. In addition, mitochondria dysfunc-
tion and oxidative stress seem to provoke and potentiate
inflammatory responses, even if the mechanisms remain
elusive [38,39]. However, recent evidence sustains a crucial
role of mitochondria in the regulation of innate immun-
ity/inflammatory responses through different ways [49,50].
Among these, one is mediated by ROS which can induce
the assembly of multi-protein inflammatory complexes
60



Figure 2 NF-kB system is at the hub of aging inflammatory network Its activation is induced by different factors, such as mitochondria
dysfunction, oxidative stress, activation of Inflammasomes, decline of autophagic cleansing. Other NF-kB activators are activation of
innate/inflammatory responses by PAMPs and DAMPs, elevated induction of insulin/IGF1 pathway, acetylation and O-glycosylation of
components of NF-kB pathway, and DNA damage. NF-kB system induces entropic ageing process and release of SASP.
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called inflammasomes [49,50]. In particular, they activate
Nod-like receptor protein 3 (NLRP3), a member of these
complexes and a major sensor of cellular stress signals,
such as ROS. Subsequently, NLRP3 triggers the caspase-1
mediated maturation of precursors of IL-1β and IL-18
cytokines [51,52]. Thus, an endogenous stress-related in-
flammation is activated, defined by Medzhitov as “para-
inflammation” [53]. The exact mechanism involved in
the ROS-induced NLRP3 activation is still unclear. It has
been recently demonstrated by Zhou and colleagues that
ROS could activate NLRP3 inflammasomes via the redox
regulation of thioredoxin/thioredoxin-interacting protein
balance [54]. In addition, the ROS can directly activate
the inflammasomal pathways through the oxidation of
thiol groups in leucine-rich repeat domain of NLRP3.
Furthermore, under loss of mitochondrial integrity, mito-
chondria secrete DAMPs, such as ROS, ceramide, mito-
chondrial DNA and formyl peptides, which can also
provoke activation of NLRP3 inflammasomes local and
para-inflammation responses [55,56].

Decline of autophagic function and induction of mTOR
As described above, mitochondria with disrupted integ-
rity and a deficiency in cellular housekeeping can acti-
vate through different ways NLRP3, and also NLRP1
(another member of inflammasomes) in some tissues
like brain, and stimulate inflammation [41,49,51]. In this
context, the efficient function of autophagic uptake and
lysosomal degradation of dysfunctional mitochondria
should be a crucial element in maintaining tissue
homeostasis [41]. Autophagy is, indeed, an ancient
housekeeping mechanism, which regulates cellular
homeostasis by facilitating the removal of misfolded pro-
teins and dysfunctional organelles, such as mitochondria
[57,58]. However, authophagic capacity seems to be
compromised in ageing and age-related diseases, as pro-
posed in “garbage can” hypothesis of Brunk and Terman
[55]. On the other hand, there is growing evidence on
inflammasome activation in many pathological condi-
tions. Thus, a deficiency in authophagic housekeeping
could trigger an inflammatory component and aggravate
their pathogenesis [41,49,50,56-58]. After ten years of
experimental work, the “garbage can” hypothesis still
seems to be valid, since different research approaches
have demonstrated clearly the decline of autophagy with
ageing and the increased mitochondrial dysfunction
[41,49,50,56-58]. Accordingly, the ageing decline in au-
tophagy creates problems in cellular housekeeping func-
tions, which stimulate NF-κB signaling directly or via
inflammasomes trigger SASP and provoke the onset of
entropic ageing phenotype [41]. Inflammatory NF-κB
signaling seems also to have the capacity to repress
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autophagy and to induce this destructive interplay be-
tween autophagy and inflammasomes [41,49,50,56-58].
In particular, TNF-α can induce or repress autophagy in
a NF-κB dependent manner. In presence of NF-κB signal-
ing, TNF-α activates mammalian Target of Rapamycin
(mTOR), a major autophagy inhibitor. On the contrary,
in cells lacking of NF-κB activation, TNF-α stimulates
the expression Beclin 1, an enhancer of autophagy
[41,49,50,56-58].
TOR is a highly conserved serine/threonine kinase and

a central controller of cell growth, metabolism and age-
ing. mTOR is activated in response to nutrients, growth
factors and cellular energy. Deregulation of mTOR has
been implicated in inflammation, ageing and several age-
related diseases (i.e. cancer, metabolic syndrome, neuro-
logical diseases) [59]. It interacts with several proteins to
form two distinct complexes named mTOR complex 1
(mTORC1) and 2 (mTORC2), differentially activated by
distinct extracellular and intracellular signals. mTORC1
responds to amino acids, stress, oxygen, energy, and
growth factors and is acutely sensitive to rapamycin. It
promotes cell growth by inducing and inhibiting ana-
bolic and catabolic processes, respectively, and also
drives cell-cycle progression. mTORC2 responds to
growth factors and regulates cell survival and metabol-
ism, as well as the cytoskeleton. mTORC2 is insensitive
to acute rapamycin treatment but chronic exposure to
the drug can disrupt its structure. The activation of
mTORC1 by growth factors and nutrients inhibits au-
tophagy and promotes protein synthesis. Over time, this
may promote cellular stress (protein aggregation, organ-
elle dysfunction, and oxidative stress), which might lead
to damage accumulation and a reduction in cell function
and thus promote the development of aging-related dis-
eases. Also, mTORC1 activation induces stem cell ex-
haustion, which reduces tissue repair and promotes
tissue dysfunction [59].

Activation of innate/inflammatory response by PAMPs and
DAMPs
During ageing, clonotypic immunity declines. This con-
dition is defined immune-senescence [30]. In contrast, in-
nate immunity seems to be efficiently activated and to
induce a chronic inflammatory phenotype, as mentioned
above [30]. The activation of innate immunity is medi-
ated through the linking of pattern recognition receptors
(PRRs), multi-ligand and evolutionarily conserved recep-
tors (i.e. TLRs, NLRs and RIG-I-like receptors), with in-
vading pathogen structures, called pathogen-associated
molecular patterns (PAMPs), and endogenous danger
molecules, the DAMPs [26]. This determines the release
of different inflammatory mediators (i.e. IL-6 and TNF-α)
by NF-κB pathway [25]. Among PRRs, TLRs, and mainly
TLR4 and TLR2, recognize not only PAMPs, but also a
large number of different alarmin age type DAMPs, in-
cluding high mobility group box 1 (HMGB1), S100, heat
shock protein (HSP)-60 and −70, and defensins [26,34]. In
addition, both TLR2 and −4 have a key role in the patho-
genesis of several age-related diseases [34]. Accordingly,
variants of genes codifying these molecules seem to mod-
ify the susceptibility of age-related diseases and survival to
extreme age, as recently described in our study [27]. On
the other hand, the +896A/G (Asp299Gly; rs4986790) and
+1196C/T (Thr399Ile; rs4986791) TLR4 SNPs have been
phenotypically associated with changes in the production
of pro- and anti-inflammatory cytokines, and principally
the Asp299Gly SNP seems to have a key role in AD,
prostate cancer, atherosclerosis and, reciprocally, in lon-
gevity [27,34].
Furthermore, an intriguing and innovative hypothesis

has been recently suggested based on the crucial role of
microRNAs in the dysfunction of TLRs signaling and the
acquisition of SASP with NF-κB activation. Thus, these
conditions can be considered as two interconnected phe-
nomena [60].
During ageing, proteins, DNA and lipids, long-live

macro-molecules can be targets of different age alter-
ations. i.e. the Maillard reaction, a well known non-
enzymatic glycosylation mechanism, induced as result of
enhance of oxidative stress and hyperglycemia [2]. This
results in the formation of protein glycation products,
called AGEs (advanced glyaction end products), consid-
ered pro-ageing factors and activating NF-κB pathway
by their linking with characteristic PRR receptors, the
RAGE receptors (receptor for advanced glycation end
products). With advancing age, AGE content increases
in tissues. AGE process also improves in diabetes, ath-
erosclerosis, neurodegeneration and several inflamma-
tory diseases. The major harmful AGE effect in ageing
seems to be the maintenance of anti-apoptotic and pro-
inflammatory phenotype. Of special note is the glycation
of collagen and elastin which seem to have a key role in
vascular pathologies [26].

Induction of NF-κB signaling pathway by pro-inflammatory
cytokines (mediated/or not by lipid rafts)
Activation of innate immunity in ageing process (see
above) determines the production and release of SASP,
such as different inflammatory molecules. Among these,
pro-inflammatory cytokines are mostly observed to be at
elevated level in elderly people. These cytokines can also
activate the NF-κB pathway and this way can propagate
and aggravate the inflammatory changes. IL-6 and TNF-
α are clearly up-regulated with ageing, even if their exact
role in the ageing process has been difficult to establish
because of their complex and cell-type functions [25].
Recent evidence reported that NF-κB pathway activa-

tion via pro-inflammatory cytokines, and particularly via
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TNF-α, can be mediated by lipid rafts. Precisely, the
binding of TNF-α to the TNF receptor (TNFR) results in
receptor clustering within specialized domains at the cell
surface, named as lipid rafts, which function as physical
platforms for various molecules and are involved in a
variety of biologic processes, such as molecular sorting,
membrane trafficking, and signal transduction. For ex-
ample, lipid rafts are important in the primary steps of
T-cell antigen receptor signaling and B-cell antigen re-
ceptor signaling via triggering the phosphorylation of
adaptor proteins [61]. The dynamic recruitment of
ligand-bound receptors into lipid rafts has been sug-
gested to be critical for the initiation of signaling trans-
duction, including the NF-κB pathway. Legler and
colleagues [62] reported that translocation of TNFR to
lipid rafts is essential for TNF-α-mediated NF-κB activa-
tion, and disturbances in lipid raft organization switch
the effect of TNF-α signaling from NF-κB activation to
apoptosis, demonstrating that lipid rafts are crucial for
the outcome of TNF-α-activated signaling pathways. In
addition, lipid rafts have also been demonstrated to be
required for NF-κB activation induced by IL-1, lipopoly-
saccharides, CD40L, or CD3/CD28, and the disruption
of lipid rafts results in the inhibition of NF-κB activation
mediated by these stimuli [63-65]. These studies indicate
that lipid rafts play important roles in the activation of
proximal NF-κB signaling.

Excessive stimulation of insulin/ insulin like growth factor
(IGF) signaling
An excessive insulin/IGF signaling has been demon-
strated to accompany ageing process [2]. Insulin/IGF
signaling determines detrimental age effects via NF-κB
pathway evoking activation of IκB kinase α/β complex.
As consequence improving of inflammatory responses
and resistance of apoptosis are induced. Given that
impairing the signaling of insulin/IGF signaling pathway
can activate the FOXO-dependent lifespan extension,
this implies the role of NF-κB pathway in driving the
ageing process via insulin/IGF axis [66].

Post-translation modifications of the members of NF-κB
pathway
Members of NF-κB pathway are targets of several post-
translation modifications. They influence both the activa-
tion of the pathway and transcriptional efficiency of NF-
κB system [2,25]. Phosphorylation and ubiquitination are
the major regulatory changes during activation. Acetyl-
ation, O-glycosylation and sumoylation can also control
the transcriptional efficiency of NF-κB system during
stress condition., i.e. inflammatory responses. In addition,
increased protein acetylation can also activate cellular sen-
escence. On the other hand, molecules involved in cellular
survival, such as the Sirtuin molecules (see below), and
particularly SIRT 1 and 6, can deacetylate a NF-κB com-
ponent, the p65, and repress NF-κB signaling [2,25].
Glucose tolerance decline, cause of insulin resistance

and hyperglycemic disorders, determines O-glycosylation.
Chronic hyperglycemia mediates glucotoxicity through
AGE formation or via the production of O-linked N-
acetylglucosamine (o-GlcNac)-modified proteins. On the
other hand, levels of O-glycosylated proteins increase
during ageing. In particular, an increased O- glycosyla-
tion of Ikkβ protein, able to enhance NF-κB activity, has
been observed during ageing. O-glycosylation can also
target p65 NF-κB protein and potentiate the transcrip-
tional efficiency NF-κB components. This action is reg-
ulated by p53 protein, which can inhibit glycolysis and
subsequently suppress the activation of Ikkβ/ NF-κB
signaling [2,25].

DNA damages
One of the major stochastic age mechanism is genomic
instability [2,67]. DNA lesions appear during ageing in
both nuclear and mitochondrial DNA, as result of free
radicals and oxidative stress. Under genotoxic stress, the
major pathways activated are p53, NF-κB and PARP-1
(poly-(ADP-ribose)-polymerase-1) [67]. In particular, ac-
tivation of NF-κB signaling represents one of the princi-
pal cellular features evoked by DNA damage [68]. The
DNA damage-dependent NF-κB activation cascade is de-
fined NEMO shuttle, since an essential NF-κB modula-
tor (NEMO; as mentioned above) under genotoxic stress
forms an complex with PIDD (p53-induced protein with
a death domain) and RIP1 (receptor interacting protein)
kinase [69]. This complex accumulates in nuclei and a
nuclear matrix ligase (PIASy) can sumoylate the NEMO
protein. Sumoylation is a prerequisite to allow a Ataxia
telangiectasia mutated (ATM) kinase to phopshorylate
NEMO protein. Subsequently, NEMO is desumoylated
and the NEMO/ATM complex is exported from nuclei
in cytoplasm where it activates Ikk kinases, by triggering
NF-κB signaling. This consents to prevent the p53-
induced apoptosis, since Ikk kinases phosphorylate p53
and induce its degradation by proteasomes [67-69].
Another hallmark of DNA damage is the induction of

PARP-1 pathway, an ubiquitously expressed member of
PARP family of enzymes able to modify proteins by poly
(ADP-ribosyl)lation. PARP-1 is a sensor of DNA damage
and maintains the genome integrity by regulating DNA
repair [70]. In addition, PARP-1 is considered a novel
co-activator of NF-κB signaling, which can potentiate
the NF-κB activation in genotoxic stress [25,71]. Fur-
thermore, it is one of the proteins involved in the regula-
tion of the length of nucleoprotein structures located at
the ends of chromosomes, the telomeres [71]. Telomeres
are subject to shortening at each cycle of cell division
and are highly sensitive to damage induced by oxidative
63



Table 2 Potential therapeutic interventions and effects
on targets of inflammatory network

Therapies Target effects

Monoclonal antibodies against these
cytokines and their receptors

Reduction of levels of
IL-6, TNF-α

Non-steroidal anti-inflammatory drug

Agonists of cytokine receptors or
PRR receptors for people who do
not respond to (or comply with)
NSAID therapy

Antibody-mediated stimulation of
the decoy TLR receptors, such as
TAM receptors, or of the intracellular
TLR regulators for people with
pro-inflammatory alleles in TLR4
and TLR2 genes

Statin therapy

Physical activity

Administration of prebiotics
and probiotics

Caloric restriction Decrease of oxidative stress

Polyphenols

Use of drugs having mimic
CR action

Caloric restriction Mitochondria biogenesis as
preventive action against
mitochondrial dysfunction

Use of drugs having mimic
CR action

Polyphenols

Caloric restriction Reduction of the activation
of NF-KB pathway

Terpenoids

Resveratrol

Use of specific miRNAs

Administration of prebiotics
and probiotics

Use of drugs having mimic CR
action Curcumin

Caloric restriction: inhibition
of mTOR pathway

Preventive action on the
possible reduced activity
of autophagic cleansing

Rapamycin: inhibition of
mTOR pathway

Curcumin: influences the
mTOR pathway

Caloric restriction Reduction of the excessive
activation of Insulin/IGF1
pathway

Metformin with CR mimic response
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stress. During ageing, both chronic inflammation and
oxidative stress induce increased base oxidation. In con-
trast, to the majority of genomic DNA, there is evidence
that telomeric DNA is deficient in the repair of single
strand breaks. Thus, it creates a persistent damage of
telomeres and a faster rate of telomere shortening,
which induces cellular senescence and a faster rate of
biological ageing. Since chronic oxidative stress plays a
major role in the pathophysiology of several chronic in-
flammatory diseases, it has been hypothesized that telo-
mere length is reducing at a faster rate during oxidative
stress. On the other hand, telomere shortening has been
assumed a biomarker of premature cell senescence in
vascular and metabolic diseases [71,72]. Therefore, as-
sessment of telomere length as well as the evaluation of
both function and integrity of PARP-1 might be useful
biomarkers of both biological ageing and disease onset
and progression [71,72].

Potential strategies against ageing and age-related
diseases: drug and nutrition interventions and life-style
modifications, and their effects on targets of
inflammatory network
An excessive activation of NF-κB signaling pathway
characterizes the entropic ageing process, responsible of
inflamm-ageing and SASP phenotype, and the conse-
quent onset of several age-related diseases [31-34,36].
This is plausible since nearly all insults enhancing the
ageing process are well-known activators of NF-κB sig-
naling system, as illustrated in Figure 2. The NF-κB sig-
naling pathway also represents the lynchpin of host
defense receiving the input signaling from the PRR re-
ceptors and subsequently organizing the transcriptional
output response against the acute danger [25,26]. In
both two cases, the sustained activation of NF-κB signal-
ing pathway can trigger and enhance the entropic ageing
process in many different ways, as above described [1,2].
Thus, the NF-κB system is at the hub of ageing process.
This concept leads us in considering molecules and mech-
anisms linked to NF-κB signaling system as potential age-
ing biomarkers, as described. In addition, we also suggest
them as targets for the development of new therapeutic
strategies against ageing and age-related diseases.
On the basis of data reported herein, we proposed some

suggestions on possible therapeutic drug and nutrition in-
terventions and life-style modifications, and their effects
on targets of inflammatory network (see Table 2).

Anti-inflammatory drug interventions

➢Use of monoclonal antibodies and/or non-steroidal
anti-inflammatory drugs The presence of “high-risk”
levels of IL-6 and TNF-α in elderly people suggests the
possibility to develop preventive measures using specific
inhibitors, such as monoclonal antibodies against these
cytokines and their receptors. Reduction of inflamma-
tory mediators may be also induced through non-
steroidal anti-inflammatory drug (NSAID) therapy. For
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people who do not respond to (or comply with) NSAID
therapy, other more sophisticated preventive approaches
may be possible, including the use of agonists of cyto-
kine receptors or PRR receptors, i.e. TLR4 and −2, par-
ticularly in subjects carriers of high inflammatory
responder alleles [27,34]. On the other hand, the activa-
tion of PRR receptors, such as TLR4 and −2, evocated
by PAMPs or DAMPs particularly upon ageing, induce
the release via NF-κB pathway of a large number of
components of SASP, such as pro-inflammatory IL-6
and TNF-α cytokines [26,34]. In addition, the magnitude
of cytokine production, and in general that of all pro-
inflammatory mediators, has been shown to vary indi-
vidually and is likely based on genetic heterogeneity.
One or more functional SNPs in one or more innate
immunty genes might be responsible. Accordingly, re-
cent studies have suggested the role of +896A/G TLR4
SNP in cytokine production. In particular, high levels of
pro-inflammatory cytokines were observed in carriers
bearing the +896A/G TLR4 SNP [27,34].
Another possible therapeutic intervention in subjects

with pro-inflammatory alleles of TLR4 and TLR2 genes
might be antibody-mediated stimulation of the decoy
TLR receptors, such as TAM receptors, or the intracel-
lular TLR regulators (i.e. Supressor of cytokine
signaling-SOCS molecules), involved in the inhibition of
the inflammatory response, by mediating TLR degrad-
ation, or the activation of competitive or depho-
sphorylation functions [73]. The sequential induction of
these pathways, and their integration with upstream
TLR and cytokine signaling networks, may limit the in-
flammatory response and maintain innate immune sys-
tem homeostasis. A better understanding of the
regulatory mechanisms of this cascade may have import-
ant implications for therapeutic intervention in human
immune disorders and reduce the risk development for
several age-related diseases [27,34].

➢Statin therapy Statin therapy has been demonstrated
to have benefical effects in reducing primary and sec-
ondary CVD risk through the lipid-lowering, but also
in inducing anti-ageing actions, such as inflammatory
molecule lowering, especially IL-6 and CRP. On the
other hand, results from Justification Trial Evaluating
Rosuvastatin (JUPITER) confirmed that statin treat-
ment in apparently healthy subjects with elevated
CRP and non-elevated Low density lipoprotein choles-
terol resulted in significant reduction in both these
markers and CVD [74].

Nutrition interventions and life-style modifications

➢Caloric restriction Another possible anti-ageing strat-
egy, able to reduce the biological effects of NF-κB
signaling pathway in ageing, is the notable caloric re-
striction (CR) [75]. Restricting the intake of calories has
been practiced as a method for increasing both the
length and quality of life for over 500 years. Experimen-
tal work confirming the success of this approach in ani-
mals has accumulated over the last 100 years. CR may
extend life by up to 50% in rodents, with progressively
less impact the later in life it is started. This effect is
matched by profound impacts on age-related diseases,
including reduced risk of cancer, neurodegenerative dis-
orders, autoimmune disease, CVD and T2DM [75]. The
disposable soma theory of ageing suggests that CR
evolved as a somatic protection response to enable ani-
mals to survive periods of food shortage [4]. The shut-
down of reproductive function during CR is consistent
with this suggestion, but other features of the
phenomenon are less consistent with this theory. Some
researchers have, indeed, proposed that in rodents it
may be mostly an artifact of domestication. CR induces
profound effects on animals at all levels from the tran-
scriptome to whole animal physiology and behavior. An-
imals under CR lose weight which is disproportionately
contributed to by white adipose tissue. Generally animals
on CR change their activity patterns. Thus, they are
more active prior to food delivery each day, but total ac-
tivity may be unchanged or reduced [75]. Considerable
debate has occurred over the effects of CR on resting
metabolic rate (RMR). Total RMR declines, but as body
mass and body composition also change it is unclear
whether metabolism at the tissue level also declines, is
unchanged or even increases. Body temperature univer-
sally decreases. Hunger is increased and does not seem
to decline even with very long term restriction. Circulat-
ing adipokines are reduced reflecting the reduction in
white adipose tissue mass under CR [75]. There is also a
large reduction in circulating insulin and glucose levels.
There are profound tissue level changes in metabolism
with a generalized shift from carbohydrate to fat
metabolism.
Four pathways have been implicated in mediating the

CR effects. They are the insulin/IGF-1signaling pathway,
the Sirtuin pathway, the adenosine monophosphate
(AMP) activated protein kinase (AMPK) pathway and
mTOR pathway [75]. These different pathways may
interact and all play important roles mediating different
aspects of CR response. Exactly how they generate the
health benefits remains open for debate. However, one
of the major impact of CR is the reduction of oxidative
stress [76]. As described above, the major cellular source
of ROS are the mitochondria. Isolated mitochondria
from animals under CR show a reduced ROS produc-
tion. In particular, CR results in an increase in the level
and activation of adenine nucleotide translocase and un-
coupling proteins able to reduce the mitochondrial
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membrane potential. This results in a decline in super-
oxide radical (O2) production and a less damage to the
lipids in the mitochondrial membrane reduced ulteriorly
by increases in the membrane lipid saturation [76]. In-
creases in superoxide dismutase convert superoxide into
hydrogen peroxide and increased levels of Se-dependent
glutathione peroxidase and catalase convert this to water
reducing the production of the toxic hydroxyl radical
(OH). Lowered levels of OH diminish the oxidative dam-
age to proteins and DNA, which is further ameliorated
by enhanced levels of degradation and base excision re-
pair respectively [76]. Furthermore, CR induces mito-
chondrial biogenesis, as evidenced by changes in
mtDNA levels, and protein levels [77]. Such effects on
mitochondrial biogenesis are consistent with the idea
that there may be a tissue level increase in oxygen con-
sumption under CR which is accommodated in the re-
duced overall energy budget by the reduced amount of
metabolizing tissue.
In addition, CR increases the levels of a member of

Sirtuin family (SIRT1 to SIRT 7), NAD + dependent
deactylases involved in the regulation of the activity of
many proteins, energy metabolism, cell survival and lon-
gevity [78,79]. In particular, CR increases the expression
of SIRT1 in multiple tissues, even if this effect does not
appear to be uniform in all tissues or across different
studies [80]. It has been demonstrated that SIRT1 inter-
acts with p65/RelA protein and specifically cleaves the
acetyl group form, the lysine-310 of p65 protein, in-
volved in enhancing the trans-activation efficiency of
NF-κB system [81,82]. Thus, SIRT1 is a potent inhibitor
of NF-κB system.
An enhanced autophagy is also induced by CR via the

inhibition of mTOR or the activation of AMPK pathway.
This last is an evolutionary conserved sensor for distur-
bances in cellular energy balance and a major inductor
of autophagy. Thus, CR acts directly or indirectly as in-
hibitor of NF-κB system [75,81,82].
Based on these observations, it is possible to assume

that CR has beneficial effects, i.e. the extension of the
average and maximum life span and delaying the onset
of age-associated changes. However, this has been
proven only in animal models, such as yeast, worms,
flies and some mammals (rats and mice), and some
criticisms (as above suggested) lead to consider it as
an artifact of domestication, particularly in rodents
[75,83-85]. In higher mammals, CR delays many diseases
associated with aging including cancer, diabetes, athero-
sclerosis, CVD and neurodegenerative diseases [86,87].
The incidence of these diseases increases with age and
they contribute significantly to mortality. Therefore, CR
could increase life span by increasing the body’s general
state of health and providing a nonspecific, resistance to
chronic diseases and metabolic derangements [86,87].
However, the ultimate question, how does CR effect the
human body, was studied in a limited number of experi-
ments [88]. The study of CR effects on human longevity
faces ethical and logistical challenges since the average
life span is close to 80 years for the population in devel-
oped countries. Therefore, human studies are focused
on measuring the CR-related changes that could slow
the aging process and the progression of chronic dis-
eases thus increasing life span. The most convincing evi-
dence that CR could have a positive effect in humans
was provided by experiments by Fontana and coworkers,
by the Comprehensive Assessment of Long-Term Effects
of Reducing Calorie Intake (CALERIE Phase 1), and by
data obtained on the members of the Caloric Restriction
Society [89-93].
Fontana and coworkers [89] assessed the effect of a 6-

year long CR diet on risk factors for atherosclerosis in
adult male and female adults (age range 35–82 years)
and compared them to age-matched healthy individuals
on typical American diets (control group). The total
serum cholesterol level and low-density lipoprotein
(LDL) cholesterol levels, the ratio of total cholesterol to
high-density lipoprotein cholesterol (HDL), triglycerides,
fasting glucose, fasting insulin, CRP, platelet-derived
growth factor AB, and systolic and diastolic blood pres-
sures were all markedly lower in the CR group. The
HDL cholesterol was higher after CR. Medical records of
individuals in the CR group indicated that, before they
began CR, they had serum lipid-lipoprotein and blood
pressure levels in the expected range for individuals on
typical American diets, and similar to those of the com-
parison group. Thus, this study concluded that long-
term CR can reduce the risk factors for atherosclerosis.
The effect of fat loss induced by either (a) a long-term

20% CR or (b) a 20% increased energy expenditure (IEE)
by exercise on coronary heart disease (CHD) risk factors
was detected in a one-year randomized, controlled trial
on 48 non-obese male and female subjects. The CR or
exercise induced reductions in body fat were quantita-
tively similar and were accompanied by similar reduc-
tions in most of the major CHD risk factors, including
plasma LDL-cholesterol, total cholesterol/HDL ratio,
and CRP concentrations. Thus, these data evidenced that
long-term CR or IEE of the same magnitude lead to sub-
stantial and similar improvements in the major risk fac-
tors for CHD in normal-weight and overweight middle-
aged adults [90].
The effects of a 1-year, 20% CR regime or 20% IEE by

exercise, on the oxidative damage of DNA and RNA,
was evaluated by white blood cell and urine analyses in
normal-to-overweight adults. Both interventions signifi-
cantly reduced oxidative damage to both DNA and RNA
in white blood cells compared to baseline. However,
urinary levels of DNA and RNA oxidation products did
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not differ from baseline values following either 1-year
intervention program. The conclusion of the study was
that either CR or IEE by exercise reduce systemic oxida-
tive stress which is reflected in a decreased DNA or
RNA oxidative damage [91].
CALERIE, a research program initiated by the Na-

tional Institute on aging and involving three research
centers, performed in the Phase 1 three pilot studies to
determine whether long-term (6–12 months) effects of
20–25% CR in free-living, non-obese humans could be
investigated and to evaluate the adaptive responses to
CR. This randomized, controlled, clinical trial concluded
that CR subjects had a lower body weight, a decreased
whole body and visceral fat, a reduced activity energy ex-
penditure, improved fasting insulin levels, improvements
in cardiovascular disease markers (LDL, total cholesterol
to HDL ratio, and CRP), and no change in bone density
compared to controls [88]. In the ongoing CALERIE
Phase 2, the researchers are testing whether 2 years
sustained 25% CR of ad libitum energy intake results in
beneficial effects, similar to those observed in animal
studies [92].
Members of the Caloric Restriction Society (CRS) re-

strict food intake with the expectation that this would
delay the disease processes responsible for secondary
aging and to slow the primary aging process. Compared
to age-matched individuals eating typical American di-
ets, CRS members (average age 50 ± 10 yr) had a lower
body mass index, a reduced body fat, significantly lower
values for total serum cholesterol, LDL cholesterol, total
cholesterol/LDL, and higher HDL cholesterol. Also
fasting plasma insulin and glucose values were signifi-
cantly lower than in the age-matched control group. Left
ventricular diastolic function in CRS members was similar
to that of about 16 years younger individuals. Chronic in-
flammation was reduced by CR and this was reflected in
significantly lower levels of plasma CRP and TNF-α [88].
Aging is associated with a progressive reduction in

heart-rate-variability (HRV)—a measure of declining
autonomic function—and also a worse health outcome.
The effect of a 30% CR on heart autonomic function
was assessed by 24-hour monitoring of HRV in adults
on self-imposed CR for 3 to 15 years and compared with
an age-matched control eating a Western diet. The CR
group had a significantly lower heart rate and signifi-
cantly higher values for HRV. Also, HRV in the CR indi-
viduals was comparable to published norms for healthy
individuals 20 years younger. The authors suggest that
CR reset the balance between the sympathetic/parasym-
pathetic modulation of heart frequency in favor of the
parasympathetic drive thus increasing the circadian vari-
ability of heart rate [93].
Thus, in humans CR could delay many diseases associ-

ated with aging including cancer, diabetes, atherosclerosis,
cardiovascular disease, and neurodegenerative diseases. As
an alternative to CR, several CR mimetics have been tested
on animals and humans, as described below.

➢CR mimetic drugs: biguanides, stilbenes and drugs
Considerable effort has been directed in recent years to
find drugs that mimic the CR response. Promising can-
didates are those that intersect with the critical signaling
pathways identified above and include biguanides such
as metformin, capable to target insulin signaling path-
way, stilbenes (e.g. resveratrol) affecting sirtuin activity
and drugs such as rapamycin that interact with mTOR
signaling. Whether it will ever be possible to find drugs
that capture the health benefits of CR without the nega-
tive side-effects remains unclear. Moreover, even if such
drugs are developed how the current licensing system
for drug use in western societies would cope with them
may be a further obstacle to their use [75,88,94-96].

➢Polyphenols and resveratrol (a stilbene phytochemical)
As mentioned above, several plant derived, folk medical
compounds and extracts have been claimed to have anti-
ageing effects [75,88,97-101]. However, only a small num-
ber of traditional remedies has been subjected to a clinical
trial. Recently, many promising compounds have been
identified and scrutinized. Among these, there are poly-
phenols (i.e. flavonoids and terpenoids), the major ingredi-
ents of fruits, vegetables and different spices [75,88,97-101].
Many of polyphenols are inhibitors of NF-κB signaling
system, since they are potent antioxidants, and as conse-
quence they can inhibit ROS production and activation of
NF-κB signaling system [97-101]. Some of them (i.e. terpe-
noids) can also directly inhibit Ikk/ NF-κB signaling
[97-101]. Accordingly, it has been found that low-doses of
terpenoids can trigger cellular stress response and subse-
quently induce adaptive stress resistance, condition de-
fined hormesis [97-101]. Stress resistance involves several
molecular adaptations via the activation of AMPK path-
way and the subsequent increase in the expression of sur-
vival genes, such as Sirtuins, FOXOs and p53 [97-101]. Of
special note is the effect of resveratrol, a stilbene phyto-
chemical. It induces activation of SIRT1 via AMPK path-
way, and indirectly inhibition of NF-κB signaling system
via the activation of survival genes [97-101].

➢Curcumin It has been postulated that a natural agent,
curcumin, could influence cellular senescence [102].
Curcumin has attracted the attention of researchers and
clinicians as an anti-inflammatory and anti-oxidant
agent with a potential use in the therapy of many dis-
eases with an inflammation constituent, e.g. cancer,
CVD, AD, rheumatoid arthritis and metabolic syndrome.
A plethora of studies using animal and cell line models
have been undertaken to elucidate the molecular
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mechanisms and biological effects of curcumin and
some clinical trials are underway. Sikora and colleagues
[103] proposed that curcumin might act as an anti-aging
agent not only by inhibition of NF-κB, but also by
indirect influence on cellular senescence via mTOR.
However, they also showed that conversely curcumin
can induce senescence in colon cancer cells [104]. More-
over recent studies by Quitschke [105] also revealed
the prosenescence activity of curcumin. Nonetheless,
curcumin has many molecular targets and evokes a bi-
phasic hormetic dose–response [106]. Thus, one cannot
exclude that much lower concentration of curcumin
than that used in these studies will inhibit/postpone cel-
lular senescence or, at least, through NF-kB inhibition
will reduce SASP. Interestingly, curcumin was shown to
prolong life of model organisms such as Caenorhabditis
elegans and Drosophila melanogaster, but did not influ-
ence (similarly to resveratrol) the life span of mice [107].

➢Physical activity Promising evidence suggests a role
of physical activity in reducing the levels of inflamma-
tory markers. Several speculations have been advanced
[108-111]. However, the mechanisms underlying its anti-
inflammatory effects seem complex and not fully eluci-
dated. It has been recently considered that the decreased
production of proinflammatory cytokines may originate
from a reduction of adiposity, or the release of muscle
derived IL-6 [108-111]. This last seems to induce several
metabolic adaptations, i.e. hepatic glycogenolysis and lip-
olysis, and the release of cytokine inhibitors (i.e. IL-1ra,
sTNFR and IL-10) and cytokine with potent anabolic ef-
fect, as IL-15 [108-111].

➢Probiotics and/or prebiotics Administration of
probiotics and/or prebiotics to elderly seems to induce
changes in several inflammatory parameters (i.e. pro-
inflammatory cytokine lowering, CRP reduction), demon-
strating that manipulation of gut microbiota may result in
modification of functionality of an aged immune system.
On the other hand, intestinal microbiota seems to play a
fundamental role in maintaining human health. Its sup-
posed importance in human physiology has recently led to
label human subjects as “metaorganisms” because of their
close symbiotic relation with indigenous gut microbiota.
The “metaorganisms” hypothesis evidences the use of diet-
ary supplementation with probiotics and prebiotics, as
therapeutic strategy to preserve human health particularly
during that life period not foreseen by evolution- “ageing”-,
that inexorably alters gut microbiota composition, stability
and functionality [112,113].

Conclusions
From all observations described above, chronic inflam-
mation has been proposed as the major biological
mechanism underpinning the entropic ageing process
and age-related diseases [31-34,36]. Inflammation is also
the key response of host defense against pathogens and
tissue injury [25,26]. In addition, it is current opinion
that during evolution the host defense and ageing
process have become linked together [2]. Thus, the large
array of defense factors and mechanisms linked to the
NF-κB system seem to be involved in the entropic age-
ing process [2,25]. This concept leads us in proposing
inductors of NF-κB signaling system as potential ageing
biomarkers and promising targets for the development
of new therapeutic strategies against ageing and age-
related diseases. In this report, we describe some inflam-
matory mechanisms linked to NF-κB signaling system as
potential ageing biomarkers. In addition, some sugges-
tions on their role as promising targets for the develop-
ment of new therapeutic strategies have been discussed.
Our interest has been, particularly, focused on possible
interventions on molecular survival and resistance stress
pathways, capable to reduce or inhibit NF-κB signaling
pathway. However, it is not impossible to predict,
whether these possible interventions (appropriate and
specific drug therapies, lifestyle modifications, use of CR
mimetics and other preventive therapeutic strategies)
can very reduce or retard the onset of ageing biological
phenotype and the onset risk of age-related diseases. Dif-
ferent motivations lead us to have prudence. Firstly, the
major literature data on anti-ageing effects of thera-
peutic strategies have been obtained from studies on ani-
mals. Thus, potential therapy interventions on the basis
of pathways identified in model organisms may be an
illusion, because gains in longevity achieved in these or-
ganisms seem to decline with organismal complexity or
depend on idiosyncratic physiology. Furthermore, life-
span in some organisms may be less plastic than in
others. In addition, there are still enormous gaps in our
knowledge about how metabolic pathways operate and
interact. Serious side effects may constrain the effective-
ness of pharmacological interventions.
The best treatment might be that which consents the

repair of macromolecular damage. However, it is not
clear that all toxic lesions associated with ageing process
have been identified, or whether practical and appropri-
ated strategies exist to eliminate them, as those men-
tioned above. Today, the researchers are becoming to
speculate the concept based on reprogramming cellular
senescence as way of organism rejuvenation or at least
to alleviate age-related diseases considering cellular sen-
escence as target model [114-116]. This hope derives by
results of recent studies on progeroid mice demonstrat-
ing the possibility to reverse progeroid phenotype
through genetic manipulation. This intervention of
avoiding or reversing cellular senescence is based on in-
duced pluripotent stem cell technology, which opened a
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new avenue of autologous regenerative medicine and the
possibility to activate telomerase and change the telo-
mere length [117,118]. Accordingly, other studies are
needed to confirm and extend these current data. For
example, genomic, transcriptomic and epigenetic investi-
gations may eventually lead to better understanding the
molecular and cellular inflammatory mechanisms associ-
ated with biological ageing. In addition, for the develop-
ment of anti-ageing therapies for human, it should be
more appropriate identifying cellular and serum ageing
biomarkers and potential targets using apposite study
model, such as centenarian offspring, healthy elderly
people with a family history of longevity, as recently sug-
gested [119]. On the other hand, the research of
biomarkers of ageing and age-related diseases in under-
standing the health trajectories of the oldest-old is unex-
plored territory. It is important that this lacuna is filled
given the rapid growth in the number of very old people
in many contemporary populations. The goal of this re-
search might guarantee improving of life quality rather
than searching the elixir of long life.
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ABSTRACT 

Nowadays is clearly evident that genetic background constitutes integral part of ageing and 

longevity. Many studies on long lived people have been conducted emphasizing the role of certain 

genes in long life. Classic case-control studies, genome wide association studies and high 

throughput sequencing have permitted to identify a variety of genetic variants seemingly associated 

with longevity. Over the years, ageing research has focused on insulin/IGF-1 signaling pathway 

because of its evolutionary conserved correlation with life-span extension in model animals. Indeed, 

many single nucleotide polymorphisms (SNPs), associated with longevity were identified in genes 

encoding proteins that take part in this metabolic pathway. Closely related to this pathway is the 

Klotho gene. It encodes a type-I membrane protein expressed in two forms, membrane and secreted. 

The last form acts suppressing oxidative stress and growth factor signaling and regulating ion 

channels and transporters. In particular, its over-expression seems to be able to suppress 

insulin/IGF-1 signaling extending life span. Thus, our aim was to put together the results showed in 

literature concerning the association between the functional variant of KLOTHO  “KL-VS” stretch 

that contains six polymorphisms in linkage disequilibrium and successful ageing to quantify the 

possible effect of the variants. The results of our systematic review indicate that Klotho KL-VS 

variant is associated with healthy ageing. 

 

Keywords: Ageing, Klotho, Longevity, Systematic review 
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INTRODUCTION 

The ageing and longevity are multi-factorial events. Genetic, epigenetic, stochastic and 

environmental factors seem to have a crucial role in ageing and longevity. Approximately 25% of 

the overall variation in human lifespan can be attributed to genetic factors, which become more 

relevant for extreme longevity. Conditioning factors, which arise in the first part of life account for 

another 25% of such variability; life circumstances at adult and old age may account for about the 

remaining 50%. Concerning the role of genetics, three approaches, candidate gene approach, 

genome-wide association studies (GWAS) and meta-analysis have been used to assess the 

contribution of different polymorphisms (1-3). 

The candidate gene approach is a hypothesis-driven method widely employed by case-

control studies. The genotype and allele frequencies of two populations are compared: one affected 

and one unaffected by a complex trait, like longevity. If the identified allelic variants are more 

prevalent in the population in study as compared to controls, these genotypes are associated with the 

complex trait (4).  The number of reported studies on the association between one or multiple single 

nucleotide polymorphisms (SNPs) and ageing and longevity is greatly increasing even though a 

large number of these studies show inconsistent results (for an extensive analysis of “old”  and 

recent data refers, to 2, 5). Consistent replication in different populations has been argued as strong 

evidence of a true association. However, the genetics of ageing and longevity is complex and may 

alter according to gender and country. The lack of replication may not necessarily imply a false 

association, but might simply point to the need for more studies in certain populations or more 

detailed study of the function of a gene, taking into account different gene environment interactions, 

since, as previously stated,  ageing and longevity phenotypes are strongly affected by life-style and 

environmental factors and by complex epistatic and pleiotropic effects in several genes (1, 6, 7).  

GWAS consists in a scanning of whole genome analyzing markers to find variants 

associated with the trait of interest using a case-control study.  It is  important to note that the 

finding of common genetic variants with low allelic frequency across studies is consistently 
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difficult because of the multitude of data to analyze. In addition, population admixture may produce 

possible false positives due to different genetic backgrounds among ethnic groups. However,  

GWAS  is an useful tool for the identification of  complex trait associated alleles with frequency 

above 5%. Each, taken singularly, has a moderate or null effect but it is possible to speculate that 

more alleles have, en bloc, a synergic rather than an additional effect (4). With GWAS approach of  

long-living individuals, several loci have reached a genome wide significant level not always 

confirmed in different studies (3,8).  

However, some interesting data have recently been obtained, such as those derived by meta-

analysis (9). Meta-analysis provides a mean to quantitatively synthesize association data across 

studies of the same genetic variant. Thus, the use of meta-analyses has recently become an 

important part of genetic research mainly to reconcile previously conducted studies that gave 

inconsistent results (4, 9). 

The gene Klotho, aptly named after one of the Greek goddesses Fates, believed by the 

ancients to spin the thread of life,  encodes a type-I membrane protein expressed in two forms, 

membrane and secreted. It  was discovered about fifteen years ago, as a gene which, if knocked out 

in mice, precipitates their accelerated ageing, including short lifespan, while its over-expression 

suppresses ageing and extends lifespan (10,11). On this basis,  some human studies sought to 

demonstrate an association between the functional variant of Klotho  “KL-VS” stretch that contains 

six polymorphisms in linkage disequilibrium, involved in modulation of its activity by influencing  

trafficking and catalytic activity of its secreted form, and ageing and longevity. However, the  

results have been inconsistent (12-15). 

The aim of this study was to review the studies available to date on the correlation between 

the KL-VS variant of  KLOTHO gene and human ageing and longevity. We used a meta-analytic 

approach to quantitatively synthesize the possible effect of the variant and to reconcile the study 

inconsistencies. 
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METHODS 

Selection of studies 

The primary source of the studies addressing the role of KLOTHO KL-VS variant in 

longevity was the PUBMED database (from January 2003 to September 2013) limited to English 

language literature. The medical subject headings used for PUBMED search were “Klotho”, KL-VS 

variant, “ageing” and “longevity”.  

The abstracts found were read to identify studies examining the association between the 

above mentioned allele and ageing and longevity in healthy aged or centenarians. We also 

performed a manual search of references cited in published articles. The studies were read in their 

entirety to assess their appropriateness for inclusion in the meta-analysis.  

Any human population-based association study, independently on sample size, was included 

if it met the following criteria: 1) case-control study; 2) there were at least two comparison groups 

of which one consisted of healthy aged or long-living individuals; 3) tested association between 

ageing and longevity and the variant. 

Data extraction 

Extraction of data was independently performed by DDB, GA and CV  who compared 

results and agreed on a consensus; disagreements were settled by discussion. 

Statistical analysis 

For meta-analysis, data were analyzed using Review Manager, version 5.1, a statistical 

software package for managing and analyzing all aspects of a Cochrane Collaboration systematic 

review (The Cochrane Collaboration, Oxford, UK, 1999). Controls were assumed to be as young or 

younger subjects compared to aged and long-living individuals, which represented the cases. But 

the cut-off value between cases and controls varied greatly among individual studies. The overall 

odds ratio (OR) between the frequencies of alleles in both cases and controls was estimated with 

models based on both fixed-effects and random-effects assumptions. The fixed effects model 

considers only within-study variability. The random effect model uses weights that incorporate both 
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the within-study and between-study variances. Because of the high heterogeneity between the 

populations of most of the studies included in this meta-analysis, we have presented the results of 

random-effects models that are the most conservative ones (16). The 95% Confidence Interval (95% 

CI) of the OR was also calculated.  
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RESULTS 

Characteristics of the studies. 

Four studies on the association between Klotho KL-VS variant and ageing have been  

identified by our search strategy (12-15). The Arking et al. study (12) was performed on three 

different populations (Bohemian Czech, Baltimore Caucasian, Baltimore African-American) and 

thus it has been considered as three different studies for the inclusion in the meta-analysis. The 

other three studies were performed on US Caucasians (13), Italians (14), and Indians (15). The 

studies were  conducted on 2,913 aged people (from 199 to 723) and 2,206 controls (from 226 to 

463) on aggregate.  A remarkable heterogeneity is shown in the age of enrolled populations both in 

cases (range, from 41 to 109 years) and controls (range, from newborn to 65 years). In regard to 

Majumdar et al.  study (15), we include in the meta-analysis only the healthy control population. 

Thus, people equal or under 40 are considered as the control population, whereas people over 40 are 

considered as aged (Table 1A). The frequency of the Klotho genotypes in both cases and controls 

reported in each of the studies included in the meta-analysis is shown in the Table 1B. It should be 

noted that in the Invidia et al.  study (14) a single SNP 115G>A, was used to tag KL-VS haplotype 

since all six SNPs occur in perfect linkage disequilibrium.   

META-ANALYSIS 

The effect for the KL-VS variant on ageing, suggested as favoring longevity,   through a 

putative increase of secreted Khloto levels, has been estimated for each study. Five out of six 

studies (12A,B,C,14,15)  show a little favorable effect on longevity, but only two of these reach the 

statistical significance (12A, 14). In contrast, the Novelli et al. study (13) show a little detrimental 

effect on longevity. The pooled summary OR for the genotypic comparison between the wild type 

(wt/wt) vs. the heterozygous (wt/KL-VS) variant is 1.14 (OR: 1.14, 95% C.I.: 1.00–1.30) with a 

marginal statistical significance (p=0.05) using the random-effects model (Figure 1A). In contrast, 

when we compare the Klotho wt homozygous subjects (wt/wt) vs. KL-VS-bearing genotypes 
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(wt/KL-VS + KL-VS/KL-VS), the summary OR is 1.10 (95% C.I.: 0.97–1.25; p=0.13), suggesting 

that KL-VS homozygous subjects not only do not show any advantage in ageing, but seem to have a 

disadvantage (Figure 1B), although this comparison does not reach the statistical significance. This 

observation seems to be confirmed by  comparing KL-VS homozygous people (KL-VS/KL-VS) vs. 

Klotho wt homozygous + heterozygous subjects (KL-VS/wt + wt/wt) (OR: 0.73; 95% C.I.: 0.41–

1.30; p=0.29), but, also in this case, with a statistically not significant result (Figure 1C). Notably, 

the I
2
 value for heterogeneity in this last comparison is 50%, showing a significant between-study 

heterogeneity compared to the first two comparisons which do not show any between-study 

heterogeneity (I
2
=0%).  
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DISCUSSION 

Our meta-analysis summarizes the evidence to date regarding the association between 

Klotho KL-VS variant and ageing and longevity, representing a pooled total of 2,913 cases and 

2,206 controls. The results indicate a significant association of the  variant with healthy ageing and 

longevity, despite the serious limitations of the study.  

The results of this study are subjected to many limitations, which could partially mask the 

true genetic effect. First of all, it must be emphasized that there is a remarkable heterogeneity 

between the populations included in the different studies, both in the cases and the controls. In fact, 

while the Arking et al. study (12) uses the newborn as control group, the other three studies use 

people under 35 (13), under 40 (15) or between 19-65 year (14). There are many differences also 

between the ageing populations, leading, in some cases, to an overlapping between cases and 

controls of different studies (Table 1A).  

The populations included in the analysis are from different ethnicity. However, a subgroup 

analysis exploring the effect on Klotho genetic variant on populations of the same ethnic groups 

cannot be performed, given the low number of available studies.  

It should be noted, then, that the Arking et al. study (12)  shows a genetic effect only in the 

Bohemian Czech population, suggesting that genetic or environmental factors could influence the 

observed effect. However, homozygous elderly individuals were underrepresented in the three 

populations under study (see below). 

Although the presence of the KL-VS variant in heterozygosis is associated with ageing and  

longevity compared to the Klotho wild type gene, the KL-VS variant in homozygosis show an 

opposite effect. This could be due to a true genetic effect only in heterozygous people, with a 

mechanism  not related to the gene dose. Alternatively, it could be due to the little sample size of the 

KL-VS homozygous group (Figure 1C) which hampers the reliability of the statistical analysis. This 

latter hypothesis is suggested by the high between-study heterogeneity and the high within-study 
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variance observed in the comparison between KL-VS homozygous group and the KL-VS 

heterozygous group + wild type (Figure 1C), with studies showing conflicting results, differently 

from the other comparisons (Figures 1A, 1B).  However,  cross-sectional and prospective studies 

confirm a genetic model in which the KL-VS allele confers a heterozygous advantage in 

conjunction with a marked homozygous disadvantage with low levels of high-density lipoprotein 

cholesterol, high systolic blood pressure, increased risk of stroke and early onset coronary artery 

disease, and mortality (17, 18) .     

Finally, in Invidia et al.  study (14) it has been demonstrated that the KL-VS variant has 

been observed to be increased in elderly, but not in the group of long-living people, suggesting that 

this KL-VS heterozygous genotype is favorable for survival in old people, its beneficial effect 

decreasing thereafter, and becoming no more evident at the extreme ages. 

Concerning the function of Klotho leading to such effects on healthy ageing and longevity, 

the soluble form of Klotho, released from cell membranes into the serum, has homology to the 

family 1 glycosidases that cleave glycosidic bonds in sugars, glycolipids and glycoproteins. It acts 

on several targets including the receptor of insulin/insulin-like growth factor (IGF-1) signaling 

pathway (10,11). It is noteworthy that its activity seems inversely correlated with the activity of this 

pathway: the decreased lifespan of Klotho knockout  mice is rescued by the Insulin/IGF-1 pathway 

inactivation  (19). Thus, it is possible that secreted Klotho protein may modify glycans of the 

insulin/IGF-1 receptors that inhibits their activity and/or alters cell surface abundance (10,11).  

The inhibition of this pathway has a critical role in the determination of longevity and 

several variants which reduce this signaling have been identified: some studies have shown their 

association with longevity (9). The bond of Insulin/IGF-1 to the specific receptor activates the 

phosphatidylinositol-3’kinase  through the insulin related substrate. It leads to the activation of AKT 

that, in turn, inhibits Forkhead box O3A (FOXO3A).  FOXO3A acts as transcription factor, 

activating the expression of many homeostatic genes, including anti-oxidant catalase and 

mitochondrial manganese-superoxide dismutase (11,20), hence the inhibition of this pathway 
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induces resistance to oxidative stress. 

We can conclude that KL-VS variant, that influences the trafficking and catalytic activity of 

the secreted protein, favors healthy ageing and longevity inhibiting Insulin/IGF-1 signaling pathway. 

In fact, adequate suppression of this pathway is an evolutionarily conserved mechanism for anti-

ageing and lifespan extension since this pathway negatively regulates transcription factors FOXO 

involved in upregulation of homeostatic genes (9-11,20).    
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LEGEND TO FIGURE 

Figure 1A. Meta-analysis of six case-control studies of the Klotho KL-VS polymorphism and 

ageing using the random-effects model. The odds ratio and 95% confidence interval (CI) for the 

effect of the wt/KL-VS vs. wt/wt genotypes on ageing are plotted on the graph. Studies are arranged 

chronologically based on the year of publication.  

Arking A 2002: Bohemian Czech population; Arking B: Baltimore Caucasian population; Arking C: 

Baltimore African-American population. 

 

Figure 1B. Meta-analysis of six case-control studies of the Klotho KL-VS polymorphism and 

ageing using the random-effects model. The odds ratio and 95% confidence interval (CI) for the 

effect of the KL-VS/KL-VS+ wt/KL-VS vs. wt/wt genotypes on ageing are plotted on the graph. 

Studies are arranged chronologically based on the year of publication.  

Arking A 2002: Bohemian Czech population; Arking B: Baltimore Caucasian population; Arking C: 

Baltimore African-American population. 

 

Figure 1C. Meta-analysis of six case-control studies of the Klotho KL-VS polymorphism and 

ageing using the random-effects model. The odds ratio and 95% confidence interval (CI) for the 

effect of the KL-VS/KL-VS vs. wt/KL-VS+ wt/wt genotypes on ageing are plotted on the graph. 

Studies are arranged chronologically based on the year of publication.  

Arking A 2002: Bohemian Czech population; Arking B: Baltimore Caucasian population; Arking C: 

Baltimore African-American population. 
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TABLE 1.  A. Clinical characteristics of the populations included in the meta-analysis 

Study 

 (year of publication) 

Population Cases  Controls 

  n Age  n Age 

       
Arking et al. (2002) Bohemian Czech 415 ≥75  390 newborn 

       

Arking et al. (2002) Baltimore Caucasian 723 ≥65  420 newborn 

       

Arking et al. (2002) Baltimore African-

American 

242 ≥65  226 newborn 

       

Novelli et al. (2008) U.S. Caucasian 708 93-

105 

 332 <35 

       

Invidia et al. (2010) Italian 626 66-

109 

 463 19-65 

       

Majumdar et al. 

(2010) 

Indian 199 >40  375 <40 

       

 

TABLE 1B. KLOTHO genotypes in case and control population 

 

 Study 

 (year of 

publication) 

Population  wt/wt wt/KL-

VS 

KL-VS/KL-

VS 

n 

       

Arking et al (2002)         

cases  Bohemian Czech  308 103 4 415 

controls    307 73 10 390 

 

cases Baltimore Caucasian 

 

530 185 8 723 

Controls    309 100 11 420 

Cases 

 

 

 

169 68 5 242 

controls                                        

Baltimore African-

American  

 

156 58 12 226  

       

Novelli et al (2008)         

Cases U.S. Caucasian  517 170 21 708 

controls    241 85 6 332 

         

Invidia et al (2010)         

cases Italian  439 174 13 626 

Controls    348 103 12 463 

         

Majumdar et al 

(2010)   

 

     

cases Indian  140 53 6 199 

controls    270 99 6 375 
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Abstract  

Some studies have shown that polymorphisms in the insulin growth factor-1 (IGF-1) 

signaling pathway genes could influence human longevity. However, the results of different 

studies are often inconsistent. Our aim was to investigate by systematic review and meta-

analysis the association of the common polymorphisms defining the genetic variability of the 

IGF-1 signaling pathway associated with human longevity. Eleven studies investigating the 

association between the polymorphisms in the IGF-1 signaling pathway genes (IGF-1, IGF-1 

receptor (IGF-1R), Forkhead box O3A (FOXO3A) and Silent mating type information 

regulation 1 (SIRT1)) and longevity were found and analyzed. The model-free approach was 

applied to meta-analyze these studies. No association was reported between the single 

nucleotide polymorphisms (SNPs) of IGF-1 and longevity in the available study. The meta-

analysis of available data from four studies, showed a significant association with the IGF-1R 

polymorphism rs2229765, suggesting that subjects with the A-bearing genotype have greater 

chance of longevity. Concerning the five studies on FOXO3A SNPs, for the rs2764264 

significant association with longevity was observed for C allele when only males were 

included in the analysis. Statistically significant results were obtained for other SNPs as well, 

i.e. rs2802292 ( G allele), rs9400239 and rs479744 (T and A alleles, respectively). For 

rs9400239 the association was observed in male long lived with a lower odds ratio than in 

centenarians while in rs479744 it was highlighted a significant association in centenarians. 

Concerning SIRT1, no association between the SNPs under study and longevity was observed 

in the only available report. Current findings suggest that both IGF-1R and FOXO3A 

polymorphisms could be associated with longevity. The high degree of between-study 

heterogeneity and the low number of available studies underline the need for further 

methodologically adequate analyses to confirm these evidences. 

KEY WORDS: FOXO3A, IGF-1; IGF-1R, longevity, meta-analysis, SIRT1, SNP. 
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INTRODUCTION 

Genetic background represents an integral part of successful ageing and longevity, as 

emphasized by many studies on long-living individuals (LLI) and centenarian offspring, 

supporting a role for certain genes in long life. Established data are available only for 

Apolipoprotein E (APOE), but classic case-control studies, genome wide association studies 

and high throughput sequencing identified several other genetic variants possibly associated 

with longevity. In recent years, ageing research has focused on Insulin/Insulin-like growth 

factor-1 (IGF-1) signaling pathway, i.e. IGF-1, IGF-1 receptor (IGF-1R), Forkhead box O 

(FOXO) 3A, and Silent mating type information regulation 1 (SIRT1), because of its 

evolutionary conserved correlation with life-span extension in model animals, such as yeast, 

nematodes, fruit flies and mice (Figure 1). Indeed, many gene mutations, in particular single 

nucleotide polymorphisms (SNPs), associated with longevity or with increased life-span, 

were identified in gene encoding proteins that take part in this metabolic pathway. Moreover, 

the same effects on life-span were obtained in different animal models, manipulating 

orthologue genes [1-4].  

In these models, calorie restriction, causing life-span extension and IGF-1 signaling 

reduction, is associated with decreased IGF-1 circulating levels [3]. In human beings, ageing 

is associated with lower IGF-1 circulating levels [5], and in longevous people IGF-1R has 

been correlated with modulation of human life-span through the attenuation of IGF-1 

signaling [6].  

Both IGF-1 and IGF-1R polymorphisms theoretically modulating the IGF-1 pathway 

have been studied for their correlation with longevity, but the evidence to date is not 

conclusive [6, 7-10].  

The IGF-1 pathway downstream transcription factor (TF), FOXO3A, has also been 

extensively studied for its role in longevity (Figure 1). This gene belongs to the forkhead 
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family and encodes a TF with the typical domain of this family, forkhead box, a conserved 

DNA-binding domain. It is one of the orthologue of daf-16 in C.elegans, a TF involved in 

stress resistance and longevity [11, 12]. Some FOXO3A SNPs have been associated with 

longevity in different ethnic populations. In particular, certain variants were found in 

nonagerians and with higher frequency in centenarians, highlighting their relevant role in 

successful ageing. One explanation may be the increased activity of FOXO3A on downstream 

genes involved in survival [13-16].  

In addition, FOXO3A interacts with sirtuins, a family of histone deacetylase enzymes, 

identified as anti-ageing molecules in model organisms (Figure 1). SIRT1, one of the seven 

human sirtuin isoforms, called SIRT1-SIRT7, deacetylates FOXO3A modulating its response 

to oxidative stress [17]. 

On the basis of findings from experimental and animal models, some human studies 

sought to demonstrate an association between specific SNPs involved in modulation of 

Insulin/IGF and longevity. However, the sample size of most of the studies is inadequate and 

the results often inconsistent. 

The aim of this study was to review the studies available to date on the correlation 

between the polymorphisms in genes involved in IGF-1 pathway and human longevity. 

When possible, we used a meta-analytic approach to quantitatively synthesize the 

possible effect of each SNP and to reconcile the study inconsistencies. 

 

METHODS 

Selection of studies 

The primary source of the studies addressing the role of Insulin/IGF-1 pathway 

polymorphisms in longevity was the PUBMED database (from January 2003 to March 2013) 

limited to English language literature. The medical subject headings used for PUBMED 
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search were “IGF-1”, “IGF-1R”, “FOXO3A”, “SIRT1”, “polymorphisms”, and “longevity”. 

The specific “SNPs” of the “Insulin/IGF-1 pathway” genes, ,“rs2288377, rs5742612, 

rs35767, for IGF-1”, “rs2229765, for IGF-1R”, “rs2764264, rs2802292, rs1226094, 

rs7762395, rs9400239, rs479744, for FOXO3A”, and “rs3758391, rs2273773, for SIRT1”. 

The abstracts found were read to identify studies examining the association between 

the above mentioned SNPs and longevity in healthy LLI or centenarians. We also performed 

a manual search of references cited in published articles. The studies were read in their 

entirety to assess their appropriateness for inclusion in the meta-analysis.  

Any human population-based association study, independently from sample size, was 

included if it met the following criteria: 1) case-control study; 2) there were at least two 

comparison groups of which one consisted of long-living individuals; 3) tested association 

between longevity and SNPs; 4) available allelic/genomic frequencies and reference SNP ID 

number (rs#). 

Data extraction 

Extraction of data was independently performed by GA, CV and DDB who compared 

results and agreed on a consensus; disagreements were settled by discussion. 

Statistical analysis 

For meta-analysis, data were analyzed using Review Manager, version 5.1, a statistical 

software package for managing and analyzing all aspects of a Cochrane Collaboration 

systematic review (The Cochrane Collaboration, Oxford, UK, 1999). Controls were assumed 

to be as young or younger subjects compared to long-living individuals, which represented 

the cases. But the cut-off value between cases and controls varied greatly among individual 

studies. The overall odds ratio (OR) between the frequencies of alleles in both cases and 

controls was estimated with models based on both fixed-effects and random-effects 

assumptions. The fixed effects model considers only within-study variability. The random 
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effect model uses weights that incorporate both the within-study and between-study 

variances. Because of the high heterogeneity between the populations of most of the studies 

included in this meta-analysis, we have presented the results of random-effects models that 

are the most conservative ones [18]. The 95% Confidence Interval (95% CI) of the OR was 

also calculated.  

 

RESULTS 

Characteristics of the studies  

The main features of the studies analyzed in our paper are listed in Table 1. 

IGF-1  

           Only one study on the association between IGF-1 rs2288377, rs5742612, rs35767 

SNPs and longevity was identified by our search strategy [7]. This study was conducted on 

Chinese Han population. 485 cases of LLI and 392 controls were analyzed. The mean age 

was 94.92±3.15 years for cases and 56.5±10.1 for controls.  

IGF-1R  

Four case-control studies on the association between IGF-1R rs2229765 and longevity 

were identified by our search strategy [6, 8-10]. Three out of four studies were conducted on 

an Italian population. The remaining study was conducted on Ashkenazi Jews in North 

America. All the analyzed studies had case-control design with a total number of 646 cases 

and 1185 controls. In two out of four studies the number of males and females was not 

reported, while in the Suh et al. study only females were studied [6]. The study sample size 

varied from 240 to 671 [6, 10]. The age range varied from 85 to 109 years for cases and from 

17 to 85 years for controls.  

FOXO3A  

Five case-control studies on the association between FOXO3A SNPs (rs2764264, 
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rs2802292, rs1226094, rs7762395, rs9400239, rs479744, rs1935949 and rs4946935) and 

longevity were identified [13-16, 19]. The studies were conducted on different Caucasian 

populations, except the Willcox et al. study, which was conducted on Japanese and the 

Pawlikowska et al. study, which was conducted on Ashkenazi. The Willcox et al. study was 

conducted only on male subjects; the Anselmi et al. and Soerensen et al. studies analyzed 

separately data from males and females. The Pawlikowska et al. study did not analyze 

separately data from males and females. The Flachsbart et al. study did not report 

males/females percentage for controls. The study sample size varied from 615 to 1825. The 

age range varied from 90 to 110 years for cases and 18 to 94 years for controls. 

SIRT1  

Only one study on the association between SIRT1 rs3758391 and rs2273773 SNPs 

and longevity was identified by our search strategy [20]. This study was conducted on a 

German population. 1026 cases and 547 controls were analyzed. The  study did not report 

males/females percentage both for cases and controls. The age range varied from 95 to 109 

years for cases and from 60 to75 years for controls.  

Meta-Analysis  

              The data concerning the association of genes involved in IGF-1 signaling pathway 

with longevity are reported in Table 2. 

 

IGF-1R  

Four studies were available for the inclusion in the meta-analysis of the association 

between the rs2229765 SNP (3174 G>A) and longevity [6, 8-10]. The effect for the A allele 

and for the A-bearing genotype of IGF-1R, suggested as favoring longevity, was estimated 

for each study. Regarding the allelic comparison (A vs. G), three out of four studies showed a 

favorable effect on longevity, while, the Bonafè et al. study showed a detrimental effect on 
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longevity [6, 8,-10] (Figure 2A). The pooled summary OR for the allelic comparison is 1.14 

(A vs. G, 95% CI: 0.82–1.59; p=0.43) with not significant statistical result using the random-

effects model. In contrast, when we analyze subjects with A-bearing genotype, the summary 

OR is 1.73 (AA + AG vs. GG, 95% CI: 1.16–2.58; p=0.007) with statistically significant 

result using the random-effects model, suggesting that subjects with low IGF-1 level 

associated genotypes (AA or AG) have greater chance to attain longevity. There is evidence 

of heterogeneity between the results of individual studies (A vs. G: I2=82%; AA + AG vs. 

GG: I2=68%) (Figure 2A and 2B). The Bonafè et al. study is the influential one for the allelic 

comparison, since removing this the heterogeneity change from 82% to 0%, while the Suh et 

al. study is the influential one for the genotypic comparison, since removing this the 

heterogeneity change from 68% to 0%. The exclusion of the Suh et al. study from the 

genotypic analysis did not change the overall result (OR without Suh et al.: 1.43 95% CI 

1.14-1.79), the exclusion of the Bonafè et al. study from the allelic comparison change the 

overall result (OR without Bonafè et al.: 1.35 95% CI 1.15-1.58), with a statistically 

significant result as well.  

A statistically not significant result for the allelic comparison (A vs. G: OR: 1.10, 95% 

CI: 0.72–1.67; p=0.65) but a statistically significant effect for the genotypic comparison (AA 

+ AG vs. GG: OR: 1.43, 95% CI: 1.43–1.79; p=0.002) is obtained when the analysis is 

limited to the Italian population [8-10]. 

 

FOXO3A  

Three studies were available for the inclusion in the meta-analysis of the association 

between the rs2764264 and rs2802292 SNPs and longevity [13, 15, 16]. Data were suitable 

only for allelic comparison. For the rs2764264 we report a statistically not significant effect 

for the C allele, putatively favoring longevity (OR [C]: 1.20, 95% CI: 0.95–1.51; p=0.12, I2 
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52%) (Figure 3A), but a statistically significant results when only males were included in the 

analysis (OR [C]: 1.38, 95% CI: 1.13–1.69; p=0.002; I2 0%), showing that the C allele is 

associated with longevity only in males (Figure 3B). For the rs2802292 SNP, we report 

statistically significant results for an association between the G allele and longevity, when we 

compared both the overall and the male population (overall population OR [G]: 1.37, 95% CI: 

1.03–1.83; p=0.03, I2 52%; male population OR [G]: 1.49, 95% CI: 1.22–1.82; p=0.0001, I2 

0%). But, for this SNP, two out of three studies reported data only for males [13, 16]. 

Data for the rs7762395, rs9400239 and rs479744 were reported in two studies, the 

Soerensen et al. and Flachsbart et al. studies [14, 15]. For the rs7762395, we do not report 

statistically significant association between the A allele and longevity both for LLI (OR [A]: 

1.15, 95% CI: 0.96–1.38; p=0.14; I2 0%), and centenarians (OR [A]: 1.17, 95% CI: 0.95–

1.43; p=0. 13, I20%). For the rs9400239 and rs479744, we show a statistically significant 

association between the minor allele (T for rs9400239 and A for rs479744) and longevity 

when only males LLI from the Soerensen et al. study were included (rs9400239 OR [T]: 1.20, 

95% CI: 1.01–1.43; p=0.04; rs479744 OR [A]: 1.22, 95% CI: 1.00–1.48; p=0.05), but not for 

the entire population (rs9400239 OR [T]: 1.13, 95% CI: 0.98–1.32; p=0.10; rs479744 OR 

[A]: 1.16, 95% CI: 0.99–1.37; p=0.07). 

For the last two SNPs (rs9400239 and rs479744) we also calculated the effect of the 

minor allele in a centenarian population showing a statistically significant association not 

only in males (rs9400239 OR [T]: 1.37, 95% CI: 1.07–1.76; p=0.01; rs479744 OR [A]: 1.41, 

95% CI: 1.07–1.86; p=0.01), but for the entire population (rs9400239 OR [T]: 1.32, 95% CI: 

1.06–1.64; p=0.01; rs479744 OR [A]: 1.41, 95% CI: 1.11–1.79; p=0.005).  

 

Single Study Results (Table 2) 

IGF-1. No association was reported between the rs2288377, rs5742612, and rs35767 SNPs of 
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the IGF-1 gene and longevity in the Xie et al. study [7].  

FOXO3A. For the FOXO3A rs1226094 SNP, a statistically significant association between 

the T allele and longevity was reported in males in the Soerensen et al. study [15]. For the 

FOXO3A rs1935949 and rs4946935 SNPs, a statistically significant association with 

centenarians was reported in  the Pawlikowska et al. study [19].  

SIRT-1. No association was reported between the rs3758391 and the rs2273773 of the SIRT-

1 gene and longevity in the Flachsbart et al. study [20]. 

 

DISCUSSION 

Ageing is considered the product of an interaction among genetic, epigenetic, 

stochastic, lifestyle and environmental factors which in turn influence longevity, i.e. the 

ability to survive beyond the species-specific average age of death [21-23]. A variety of 

models in lower organisms and in mammals demonstrate that single genetic mutations are 

able to increase life-span. In particular, mutations in genes that are homologous to those 

encoding proteins involved in mammalian Insulin/IGF-1 pathway affect life-span in yeast, 

nematode and fruit fly [3, 24]. Figure 1 shows the principal components of this pathway. In 

animal models, all the effects of this pathway on the extension of life-span depend on its 

decreased activity leading to a reduced phosphorylation of daf-16/FOXO TFs that increase 

translocation to the nucleus and their activity [3, 24]. During evolution, the pathway has 

diverged from a single receptor in invertebrates to multiple receptors and more complicated 

pathways and regulatory networks in mammals. However, a series of genetic manipulations 

in mouse have provided evidence that this pathway also affects ageing and longevity in 

mammals [3]. The effect of FOXO on life-span may be linked to its action as a transcription 

factor on a multiple homeostatic pathways in response to decreased Insulin/IGF-1 signaling 

[3].  
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Interestingly, other genes that increase life-span, i.e. the enzymes histone deacetylase 

sirtuins, when overexpressed, interact with FOXO. In particular, SIRT1 deacetylates 

FOXO3A and modulates its response to oxidative stress [2,25].  

In humans, several case-control studies have been performed to establish an 

association between longevity and genetic polymorphisms in this pathway including sirtuins. 

There is a substantial but not conclusive evidence of an effect in some genes of this 

pathway on achievement of longevity. So, in the present paper we performed a systematic 

review and meta-analysis with the aim to reconcile the study inconsistencies. 

Eleven studies investigating the association between the SNPs in the Insulin/IGF-1 

signaling pathway genes, i.e. IGF-1, IGF-1R, FOXO3A and SIRT1 and longevity were found 

and analyzed [6-10, 13-16, 19, 20] (Table 1). For the meta-analysis, the model-free approach 

was applied (Table 2, Figure 2, 3 A e B).  

No association was reported between the SNPs of IGF-1 and longevity in the available 

study although these SNPs could affect IGF-1 serum levels, known to modulate ageing and 

longevity [7]. On the other hand, higher circulating levels of IGF-1 have also been associated 

with longer leukocyte telomere length, a key biomarker of human ageing, in healthy subjects 

[26]. 

Available data from four studies [6, 8-10], show, instead, a statistically significant 

association of longevity with the IGF-1R polymorphism rs2229765, suggesting that subjects 

with the A-bearing genotype responsible for a reduced signal transduction have higher chance 

of attaining longevity. The relevance of IGF-1R for longevity is further suggested by a meta-

analysis performed on participants from Study of Osteoporotic Fractures and Cardiovascular 

Health Study that shows a significant association with longevity for the rs2272037 SNP [19]. 

Concerning the five studies on FOXO3A SNPs [13-16, 19], for the rs2764264 

significant association with longevity was observed for the C allele when only males were 
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included in the analysis. The same was true for other SNPs, i.e. rs2802292, G allele (but for 

this allele 2 out of 3 studies reported data only for males) and for the rs9400239 and rs479744 

(T and A alleles, respectively) that were reported only in 2 studies. This result is not 

surprising because it has been claimed that males and females follow different strategies to 

attain longevity and several case-control studies have been positive only in males [4, 27]. 

Concerning the C allele it is interesting to note that in the Willcox et al. study, the C-carrier 

cases were healthier at the baseline examination despite the fact that they were, on average, 

11 years older [13].  

The rs479744 (A allele) and the rs9400239 (T allele) SNPs were significantly 

associated with longevity in centenarian  population, as well as rs1935949 and rs4946935 

SNPs. Also these results are not surprising, because centenarians represent the survival tail of 

the population [21]. Thus, they may be particularly enriched for beneficial variants in 

longevity assurance genes. In addition, it is relevant that the population based Leiden 85-plus 

study also found a FOXO3A haplotype, but no single SNP associated with an increased 

mortality [28].  

Concerning SIRT1, no association between the SNPs under study and longevity was 

observed in the only available report [20].  

On the whole data obtained by our study clearly demonstrate that two players of 

Insulin/IGF-1 pathway are associated with human longevity, i.e. IGF-1R and FOXO3A. Since 

drugs able to modulate this pathway are under scrutiny, these data suggest the possibility that 

successful ageing might be pharmacologically modulated. However, it has to be clear that we 

have no understanding in which directions these SNPs could possibly act. 

In any case, extensive studies of the whole pathway are needed, including the recent 

reported gene codifying calcium/calmodulin-dependent protein kinase IV (CAMKIV). In fact, 

it has been claimed that a variant of this gene is associated with longevity by influencing 
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CAMKIV protein expression, hence allowing the activation of FOXO3A by the native protein 

[23]. 
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LEGENDS TO FIGURES 

Figure 1. Insulin/IGF1 signaling pathway and its implication in longevity. The 

Insulin/Insulin growth factor-1 (IGF-1) signaling pathway has a critical role in the 

determination of longevity. The bond of Insulin/IGF-1 to the specific receptor  (IGF-

1R/INSR) activates the phosphatidylinositol-3’kinase (PI3K)  through the insulin related 

substrate (IRS). It leads to the activation of AKT, through phosphatidylinositol(3,4,5)-

trisphosphate, that, in turn, inhibits Forkhead box O3A (FOXO3A), whereas Silent mating 

type information regulation 1 (SIRT1) activates it. FOXO3A acts as transcription factor, 

activating the expression of many homeostatic genes. Several variants which reduce this 

signaling have been identified: some studies have shown their association with longevity (see 

text). 

Figure 2. Meta-analysis of four case-control studies of the IGF-1R rs2229765 

polymorphism and longevity using the random-effects model. The odds ratio and 95% 

confidence interval (CI) for the effect of A vs. G allele (2A) and the AA + AG vs. GG 

genotypes (2B) on longevity are plotted on the two graphs. Studies are arranged 

chronologically based on the year of publication. M-H: Manten-Hanzel; C.I.; Confidence 

interval. 

  

Figure 3. Meta-analysis of three case-control studies of the FOXO3A rs2764264 

polymorphism and longevity using the random-effects model. The odds ratio and 95% 

confidence interval (CI) for the effect of the C allele on longevity for the whole population 

(3A) and for males only (3B) are plotted on the two graphs. Studies are arranged 

chronologically based on the year of publication. M-H: Manten-Hanzel; C-I: Confidence 

Interval. 
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Table 1. Main features of the studies analyzed. 
Gene SNP Studies Ethnicity Cases Controls 

n F M Age range or 
mean  

age(±SD) 

 n F M Age range or 
mean age 

(±SD) 
               

IGF-1 rs2288377 Xie et al '08a Han  485 239 246 94.92±3.15  392 212 180 56.5±10.1 

             

rs5742612 Xie et al '08a Han  485 239 246 94.92±3.15  392 212 180 56.5±10.1 

             

rs35767 Xie et al '08a Han  485 239 246 94.92±3.15  392 212 180 56.5±10.1 

                        

  
 

            

IGF-1R rs2229765 Bonafè et al '03b Italian 162 NA NA 86-109  248 NA NA 17-85 

Suh et al '08c Ashkenazi 79 79 0 95-108  161 161 0 79.5 

Albani et al '09d Italian 222 133 89 85-106  288 141 147 70-85 

Barbieri et al '12e Italian 183 NA NA 96±4  488 NA NA 49±16 

                      

  
 

            

FOXO3A rs2764264  Willcox et al '08f Japanese 213 0 213 95-106  402 0 402 73-81 

Anselmi et al '09g Italian 480 199 281 90-109  335 140 195 18-48 

Soerensen et al '10h Danish 1089 776 313 92-103  736 365 371 46-67 

 

            

rs2802292 Willcox et al '08f Japanese 213 0 213 95-106 402 0 402 73-81 

Anselmi et al '09g Italian 480 199 281 90-109 335 140 195 18-48 

Soerensen et al '10h Danish 1089 776 313 92-103 736 365 371 46-67 

 

            

rs1226094 Soerensen et al '10h Danish 1089 776 313 92-103 736 365 371 46-67 

 

            

rs7762395 Flachsbart et al '09i German 1031 764 267 95-110 731 NA NA 60-75 

Flachsbart et al '09i French 535 NA NA 103.8 553 NA NA 18-70 

Soerensen et al '10h Danish 1089 776 313 92-103 736 365 371 46-67 

            

rs9400239 Flachsbart et al '09i German 1031 764 267 95-110  731 NA NA 60-75 

Soerensen et al '10h Danish 1089 776 313 92-103 736 365 371 46-67 

           

rs479744 Flachsbart et al '09i German 1031 764 267 95-110  731 NA NA 60-75 

Soerensen et al '10h Danish 1089 776 313 92-103 736 365 371 46-67 
 

rs1935949 Pawlikowska et al 
'09j 

Ashkenaz
i 

383 286 97 95-108  363 207 156 43-94 

rs4946935 Pawlikowska et al 
'09j 

Ashkenaz
i 

383 286 97 95-108  363 207 156 43-94 

                        

  
             

SIRT1 rs3758391 Flachsbart et al '06k German 1026 NA NA 95-109  547 NA NA 60-75 

             

rs2273773 Flachsbart et al '06j German 1026 NA NA 95-109  547 NA NA 60-75 
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a. [7]; b. [8]; c. [6]; d. [9]; e. [10]; f [13]; g. [16]; h. [15]; i. [14]; j. [19].; k. [20]. 
NA: not assigned;  SNP: single nucleotide polymorphism; SD: standard deviation; IGF-1: 
insulin growth factor-1; IGF-1R: insulin growth factor-1 receptor; FOXO3A: forkhead box 
O3A; SIRT-1: silent mating type information regulation 1. 
 
 

113



 

Gene SNP Studies Nucleotide 
change 

Cases/controls Summary Results Association 
(Pos/Neg) 

Findings 

        
IGF-1 rs2288377 Xie et al ‘08a  T>A 485/392 -  No association 
        
 rs5742612 Xie et al ‘08a C>T 485/392 -  No association 
        
 rs35767 Xie et al ‘08a T>C 485/392 -  No association 
        
        
IGF-1R rs2229765 Bonafè et al ‘03b A>G 646/1185 OR = 1.73 (95%CI 1.16, 2.58.) 4/0 The presence of at least an A 

allele favors longevity 
  

  Suh et al ‘08c     
  Albani et al ‘09d     
  Barbieri et al ‘12e     

        
        
FOXO3A rs2764264  Willcox et al ‘08f 

Anselmi et al ‘09g 

Soerensen et al ‘10h 

C>T 1782/1473 
807/968 

 

OR (All) = 1.20 (95%CI 0.95, 1.51) 
OR (Males) = 1.38 (95%CI 1.13, 1.69) 

3/0 
3/0 

The C allele is associated to 
longevity in males 

        
  

rs2802292 
 
Willcox et al ‘08f 

Anselmi  et al  ‘09g 

Soerensen  et al  ‘10h 

 
G>T 

 
1782/1473 
807/968 

 

 
OR (All) = 1.37 (95%CI 1.03, 1.83) 
OR (Males) = 1.49 (95%CI 1.22, 1.82) 

 
3/0 
3/0 

 
The G allele is associated to 
longevity. Data available 
only for males in 2 out of 3 
studies 

  
rs1226094 

 
Soerensen  et al  ‘10h 

 
C>T 

 
1089/736 
313/371 

 
OR (All) = 1.13 (95%CI 0.92, 1.40) 
OR (Males) = 1.38 (95%CI 1.08, 1.75) 

 
1/0 

 
The T allele is associated to 
longevity in males 
 

  
rs7762395 
- LLI 
 
 
-Centenar. 

 
 
Flachsbart  et al 
(GER) ‘09i 

Soerensen  et al  ‘10h 

 
Flachsbart  et al 
(FRA) ‘09i 

Flachsbart  et al 
(GER) 09i 

 
 

G>A 
 
 

G>A 

 
 

2120/1467 
 
 

1066/2020 

 
 
OR (All) = 1.15 (95%CI 0.96, 1.38) 
 
 
OR (All) = 1.17 (95%CI 0.95, 1.43) 
 

 
 

2/0 
 
 

3/0 

 
 
No significant association to 
longevity for LLI 
 
No significant association 
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Table 2. Association between polymorphisms of genes involved in the IGF (insulin growth factor) signaling pathway to longevity. 
Results LLI and controls are reported for all the comparisons. All the comparisons are allelic based, except for IGF-1R, which was a genotypic comparison. For the 
Flachsbart et al 2009 study data on centenarians, available separately for French and German populations, are also reported. The minor allele is underlined.  

Soerensen  et al  ‘10h 

 
 

  
rs9400239 
-LLI 
 
 
-Centenar. 

 
 
Flachsbart et al 
(GER) ‘09i 

Soerensen  et al  ‘10h 

 
Flachsbart et al 
(GER) 09i 

Soerensen et al ‘10h 

 

 
 

T>C 
 
 

T>C 

 
 

2120/1467 
1344/1102 

 
531/1467 
418/1102 

 
 
OR (All) = 1.13 (95%CI 0.98, 1.32) 
OR (Males)* = 1.20 (95%CI 1.01, 1.43) 
 
OR (All) = 1.32 (95%CI 1.06, 1.64) 
OR (Males)* = 1.37 (95%CI 1.07, 1.76) 
 

 
 

2/0 
2/0 

 
2/0 
2/0 

 
 
Significant association only 
for males 
 
Significant association in 
centenarians 

  
rs479744 
-LLI 
 
 
-Centenar.  

 
Flachsbart  et al 
(GER) ‘09i 

Soerensen  et al  ‘10h 

 
Flachsbart et al 
(GER) ‘09i 

Soerensen et al ‘10h 

 

 
 

A>C 
 
 

A>C 

 
 

2120/1467 
1344/1102 

 
531/1467 
418/1102 

 

 
 
OR (All) = 1.16 (95%CI 0.99, 1.37) 
OR (Males)* = 1.22 (95%CI 1.00, 1.48) 
 
OR (All) = 1.41 (95%CI 1.11, 1.79) 
OR (Males)*= 1.41 (95%CI 1.07, 1.86) 

 
 

2/0 
2/0 

 
2/0 
2/0 

 
 
No significant association 
 
Significant association in 
centenarians 

  
rs1935949 
-Centenar. 

 
 
Pawlikowska et al. 
'09j 

 
 

NA 

 
 

383/363 

 
 
OR (All) = 1.36 (95%CI 1.05-1.74) 
 

  
 
Significant association in 
centenarians 

        
  

rs4946935 
-Centenar 

 
Pawlikowska et al. 
'09j 

 
NA  

 
383/363 

 
OR (All) = 1.33 (95%CI 1.03-1.72) 
 

  
Significant association in 
centenarians 

        
SIRT1 rs3758391 Flachsbart  et al  ‘06k 

 
T>C 1026/547 -  No association 

        
 rs2273773 Flachsbart  et al  ‘06k 

 
T>C 1026/547 -  No association  

115



*For this comparison the OR (males) data from males were available only from the Sorensen’s et al study. The Flachsbart et al (GER) study included data from both males 
and females. 

a. [7]; b. [8]; c. [6]; d. [9]; e. [10]; f [13]; g. [16]; h. [15]; i. [14]; j. [19]; k [20]. 

LLI: long-lived individuals; OR: odds ratio; CI: confidence interval; NA: not assigned;  SNP: single nucleotide polymorphism; IGF-1: insulin growth factor-1; IGF-1R: insulin growth 
factor-1 receptor; FOXO3A: forkhead box O3A; SIRT-1: silent mating type information regulation 1- 
.  
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ABSTRACT 

Strong evidence suggests that systemic inflammation and central adiposity contribute to and 

perpetuate metabolic syndrome. All of these alterations predispose individuals to type 2 diabetes 

mellitus (T2DM), cardiovascular disease, as well as Alzheimer’s disease (AD), all characterized by 

chronic inflammatory status. On the other hand, extensive abnormalities in insulin and insulin 

growth factor(IGF)-I and IGF-II signaling mechanisms in brains with AD have been demonstrated, 

hence suggesting that AD could be a third form of diabetes.  The Src homology domain-containing 

inositol 5-phosphatase(SHIP)2, has an important role in insulin pathway because its over-

expression causes impairment of insulin/IGF-1 signaling. Since some single nucleotide 

polymorphisms (SNP) of the gene encoding SHIP2, were significantly associated in T2DM patients 

with  metabolic syndrome and some related conditions, we decided to conduct a case-control study 

on this gene, analyzing AD and T2DM subjects as cases and young, old and centenarians as 

controls.  Our results suggest a putative correlation between the rs144989913 SNP and ageing, both 

successful and unsuccessful, rather than age-related diseases. Since this SNP is an insertion/deletion 

of 28 base pairs, it might cause an alteration in SHIP2 expression. It is noteworthy that SHIP2 has 

been demonstrated to be a potent negative regulator of insulin signaling and insulin sensitivity. 

Many studies demonstrated the association of insulin/IGF1 pathway with ageing and longevity, so it 

is tempting to speculate that the found association with SHIP2 and ageing might depend on its 

effect on insulin/IGF-1 pathway. 

 

 

Keywords: Ageing, Alzheimer's disease, Insulin pathway, Longevity, SHIP2, Type 2 Diabetes 
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INTRODUCTION 

Ageing is an ineluctable process resulting from the interaction among genetic, epigenetic, 

stochastic and lifestyle factors [1, 2]. However, in vivo studies in model animals demonstrate that 

single genetic mutations are able to modulate life-span. Insulin/Insulin Growth Factor(IGF)-1 

pathway seems to be correlated to human life-span and its homologous are closely conserved in the 

main experimental models such as yeast, nematode and fruit fly in which mutations in genes 

encoding proteins involved in this pathway affect life-span [3]. 

Insulin is the most potent anabolic hormone and is essential for appropriate tissue 

development, growth, and maintenance of whole-body glucose homeostasis. Insulin resistance (IR) 

reflects impairments in insulin signaling pathway, but, molecular mechanisms implicated are not so 

clear, although inflammatory process is involved. IR is one of the features of metabolic syndrome 

(MS), a pre-diabetic status [4, 5]. 

Interestingly, strong evidence suggests that systemic inflammation and central adiposity 

contribute to and perpetuate MS. All of these alterations predispose individuals to type 2 diabetes 

mellitus (T2DM), cardiovascular disease, as well as Alzheimer’s disease (AD), all characterized by 

chronic inflammatory status [6–12].  

In 2005 a group of American scientists hypothesized that AD could be a third form of 

diabetes. They demonstrated extensive abnormalities in insulin and IGF-I and IGF-II signaling 

mechanisms in brains with AD, showing that while each of the corresponding growth factors is 

normally made in central nervous system neurons, the expression levels are markedly reduced in 

AD [13]. 

Nowadays many evidences demonstrate the presence of IR in subjects with 

neurodegeneration, such as AD or Parkinson’s patients [14]. AD, the most common form of 

dementia, is characterized by accumulation of senile plaques constituted by deposits of the 

abnormal amyloid protein (Aβ 40–42 amino acids) and neurofibrillary tangles originating from 
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hyperphosphorylation of microtubular tau protein. The amyloid hypothesis is not the unique for the 

pathogenesis of AD. Indeed, different pathophysiological theories exist focusing the attention on 

inflammation, vascular changes and metabolic disorder. The most plausible hypothesis is that all 

these theories are not mutually exclusive and could be taken together. Actually, inflammation plays 

a relevant role in both vascular lesions and metabolic disorders and could be the link between AD 

and T2DM [15–17]. Moreover, some authors proposed the concept of ‘‘metabolic cognitive 

syndrome’’ based on the co-occurrence of AD and MS. Indeed, dementia and MS present some 

overlap both in predisposition factors, such as diet, smoking, socio economic status and life style 

and in altered signaling cascades, i.e. nutrient sensing pathway as the insulin one [18].  

The Src homology domain-containing inositol 5-phosphatase(SHIP)2, has an important role 

in insulin pathway. It leads to the activation of AKT, acting on glycogen synthase kinase (GSK)3 

(Figure 1) [19, 20]. Dysregulation of GSK3 activity determines neuronal cell death, 

hyperphosphorylation of tau protein and the production of amyloid protein with an involvement in 

neuropathology of AD [21, 22]. Many studies underline the role of SHIP2 as probable negative 

regulator of insulin signaling [19, 23-25]. A study conducted by Kaisaki et al. in T2DM subjects 

demonstrated a significant association between single-nucleotide polymorphisms (SNPs) of 

INPPL1 (rs2276047, rs9886, and rs144989913) and metabolic syndrome or correlated features [26], 

finding partly confirmed by another study [27]. Moreover, a study conducted in non-T2DM subjects 

with hypertension (one of the features of MS previous associated with the SNPs), found no 

association, identifying the T2DM as condition probably necessary for the association [28]. 

Starting from all these studies and observations, we decided to conduct a case-control study 

on this gene, analyzing AD and T2DM subjects as cases and young, old and centenarians as 

controls with the aim to strengthen the association between the above mentioned age-related 

diseases. In particular, we studied two polymorphisms of INPPL1, the rs9886 and the rs144989913. 
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MATERIAL AND METHODS 

Sample collection 

Informed consent was obtained from all cases of T2DM or guardians of AD patients and 

controls according to Italian law. On the whole, we collected 468 whole blood samples in EDTA 

Vacutainer. 

Specifically, we enrolled 127 unrelated young (mean age 35) randomly selected from blood 

donors and 105 old people (mean age 72), as controls. They were checked and judged to be in good 

health based on their clinical history and on blood tests (complete blood cell count, erythrocyte 

sedimentation rate, glucose, urea nitrogen, creatinine, electrolytes, C reactive protein, liver function 

test, iron, proteins, cholesterol and triglycerides). Moreover, we selected 119 subjects probably 

affected by AD (mean age 77) as cases. AD  patients were diagnosed according to standard clinical 

procedures and followed the NINCDS/ADRDA and DSM-III-R criteria. Cognitive performance and 

alterations were measured according to the Mini-Mental State Evaluation and the global 

deterioration scale. These cases were defined as sporadic because their family history did not 

mention any first degree relative with dementia [29, 30]. 117 subjects affected by T2DM (mean age 

68), diagnosed according to joint criteria of American Diabetes Association, the European 

Association for the Study of Diabetes and the International Diabetes Federation were enrolled as 

cases, as well. Moreover, we analyzed 20 DNA samples of centenarians belonging to our DNA 

bank.  

Genetic analysis 

Peripheral whole blood samples were collected and genomic DNA was extracted from 

leukocytes by a commercial kit. We genotyped the SNP rs144989913, that is an insertion/deletion 

(I/D) of 28 base pair, by classic PCR and the rs9886 by amplification-refractory mutation system 

(ARMS PCR). The size separation was conducted using agarose gel electrophoresis (3%). 
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Statistical analysis 

The data were tested by χ
2
 test for the goodness of fit between the observed and expected 

genotype frequencies according to the Hardy-Weinberg equilibrium (HWE). Differences in allele 

and genotypic frequencies of the two SNPs among the groups were evaluated by gene count and χ
2
 

test.  
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RESULTS 

A total of 488 individuals have been genotyped for the two SNPs. The frequencies of the 

genotypes of all SNPs under investigation, both in cases and controls, are in HWE. Table 1 shows 

the genotype and allele frequencies in all subjects of the two SNPs of INPPL1. For the rs9886 we 

did not find any association, both for genotypic and allelic frequencies (data not shown). The 

distribution of the rs144989913 genotype between T2DM and young, old and young and young and 

centenarians, is significantly different. The frequency of heterozygous genotype was increased in 

T2DM and AD patients as well as in old and centenarians respect to young subjects. According to 

the genotype, a significant difference in the rs144989913 allele frequencies between T2DM and 

young, AD and young, old and young and young and centenarians is observed. There are no 

significant differences for genotype and allele frequencies between T2DM and old or centenarians, 

AD and old or centenarians and old and centenarians. Focusing on allelic frequencies of the D allele 

of rs144989913, we highlight, with a 3x2 table, a growing significant increase (P=0.0016) of D with 

increasing age (young= 0,39; old=0,11; centenarians=0,15).  

Gender analysis demonstrate that the significant difference in the rs144989913 genotypic 

and allele frequencies between T2DM and young, AD and young and old and young are present 

only in males rather than in both males and females (data not shown). Due to small number of 

centenarians, we couldn’t study the gender effect in this population.    
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DISCUSSION 

Our study concerns the association between INPPL1 SNPs and age-related diseases, ageing 

and longevity. The results indicate a significant association of the rs144989913 with both successful 

and unsuccessful ageing. In previous report, rs9886 and rs144989913 were shown to be associated, 

in haplotype, with rs2276047, to hypertension, obesity, MS and T2DM but no association with the 

only rs2276047 was shown [26]. Thus we exclusively analyzed the two above mentioned SNPs but 

we obtained significant results for rs144989913 only. 

Both genotypic and allelic frequencies of rs144989913 showed significant association of this 

SNP between young and old in general, rather than between elderly and the specific age-related 

diseases. The frequency of D allele increase from young to centenarians. Therefore, in a further step 

it should be analyzed the life expectancy in aged patients with D allele in comparison with I allele. 

Moreover, the specific association with males in not surprising because it has been claimed that 

males and females follow different strategies to attain longevity and several case-control studies 

have been positive only in males [31-33].  

Concerning the function of SHIP2, it is noteworthy that its acts inside the signaling cascade 

of insulin, hence its alteration in terms of function and expression may cause insulin pathway 

impairment. Indeed, in vivo studies, demonstrated that SHIP2 is a potent negative regulator of 

insulin signaling and insulin sensitivity [18, 22-24]. Many  studies demonstrated the association of 

insulin/IGF1 pathway with ageing and longevity. The replication of specific results in model 

organisms led to conduct studies also in human [3,33].  

It is tempting to speculate that rs144989913 alleles may differently influence gene 

expression because they consist in a variation of 28 base pair. They may differently modulate the 

insulin pathway involved in ageing and longevity, hence functional studies are mandatory to 

confirm this suggestion.  
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In conclusion, our results are  only a small contribute in ageing research but represent the 

first study that coupled INPPL1/SHIP2 and ageing. INPPL1 might be a “new” interesting gene in 

ageing research and this study represent the first tile. 
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GENOTYPE T2DM (n=117) (A) AD (n=119) (B) YOUNG (n=127) (C) OLD (n=105) (D) CENTENARIAN (E)(20) 

      

      

I/I 97 (0.83) 97 (0.81) 117 (0.92) 81 (0.77) 14 (0.70) 

I/D 20 (0.17) 22 (0.19) 10 (0.08) 24 (0.13) 6 (0.30) 

D/D 0 0 0 0 0 

P AvsC=0.028* 

AvsD=ns* 

AvsE=ns* 

BvsC=0.013* 

BvsD=ns* 

BvsE=ns* 

CvsD=0.0013* 

CvsE=0.0031* 

DvsE=ns*  

      

ALLELE      

      

I 214 (0.91) 216 (0.91) 244 (0.96) 186 (0.88) 34 (0.85) 

D 20 (0.09) 22 (0.09)  10 (0.039) 24 (0.11) 6 (0.15) 

P AvsC=0.034** 

AvsD=ns** 

AvsE=ns** 

BvsC=0.017** 

BvsD=ns** 

BvsE=ns** 

CvsD=0.0020** 

CvsE=0.004** 

DvsE=ns**  
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Table 1. rs144999813 genetic distribution and allele frequency for cases represented by Alzheimer’s disease 

subjects and Type 2 diabetes mellitus subjects and controls represented by young, old and centenarians 

subjects and association of the rs144999813 between cases and controls and young and aged people. 

*The significance of the different genotype distribution among groups was calculated by chi-square test 

(3x2 table). 

**The significance of the different allele distribution among groups was calculated by chi-square test (2x2 

table). 

 

T2DM: Type 2 diabetes mellitus. AD: Alzheimer’s disease. I: insertion. D: deletion. 
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Figure 1. Insulin/IGF-1 pathway and SHIP2 action. This signaling pathway has a critical role in the 

determination of longevity. The bond of Insulin/IGF-1 to the specific receptor  (IGF-1R/INSR) 

activates the phosphatidylinositol-3’kinase (PI3K)  through the insulin related substrate (IRS). It 

leads to the activation of AKT, through phosphatidylinositol(3,4,5)-trisphosphate, that, in turn, 

inhibits Forkhead box O3A (FOXO3A), that acts as transcription factor, activating the expression of 

many homeostatic genes.  In the meantime, the downstream signal activated from PIP3 leads to the 

activation of AKT/PKB that phosphorylates and inactivates the glycogen synthase kinase 3 (GSK3). 

SHIP2 acts on the substrate lipid secondary messenger PIP3 to produce phosphatidylinositol 3,4-

diphosphate (PIP2). Thus, SHIP2 is an antagonist of PI3K that phosphorylates PIP2 to obtain PIP3, 

attenuating the PI3K-mediated insulin signaling pathway. 

 

 Page 15 of 15 

R
ej

uv
en

at
io

n 
R

es
ea

rc
h

SH
IP

2:
 a

 “
N

E
W

” 
in

su
lin

 p
at

hw
ay

 ta
rg

et
 f

or
 a

ge
in

g 
re

se
ar

ch
 (

do
i: 

10
.1

08
9/

re
j.2

01
3.

15
41

)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.

140



8. DISCUSSION AND CONCLUSION 
The present thesis strengthen the suggestion of the central role 

played by insulin/IGF-1 pathway in human ageing and longevity. 

Human population is very heterogeneous because of the different genetic 

background and different environmental stimuli thus it has not been yet 

possible to identify a clear panel of biomarkers of ageing and longevity. 

Longevity is a complex trait influenced by familial component and 

other determinants.  

Besides environmental factors (diet, physical activity, health habits, 

socio-cultural factors and life-style in general), genetic differences 

contribute at least for 25% in different human lifespan (Herskind et al 1996; 

Yashin et al 1999; Christensen et al 2006; Willcox et al 2006a; Willcox et al 

2006b; Bishop et al 2007). Indeed, twin studies show that genetic factors 

contribute to the variation in human lifespan by approximately 25% but in 

populations with a large number of exceptional survivors, the genetic 

contribution to lifespan may be much higher (Gundmundsson et al 2000; 

Kerber et al 2001; Perls et al 2002; Willcox et al 2006b).  

The number of candidate genes studies, GWAS, meta-analyses and 

genome scanning about ageing and longevity has increased markedly over 

the years. The individuate genes are those presumably involved in ageing or 

longevity. But, nowadays, the nutrient-sensing pathways, i.e. insulin/IGF-1 

pathway, are probably the most studied in this field of research. 

Nonetheless, many studies have associated antioxidant mechanisms 

(i.e. superoxide dismutases, SODs), immune-inflammatory responses, lipid 

metabolism (APOE, APOB, ACE, APOC3) and stress resistance (HSPA1A 

and HSPA1L) to human longevity and this reflects its multifactorial 
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influence. To asses this trait and the processes that lead to ageing, specific 

genes or genome scanning and phenotypic and biochemical effects of gene 

variants are studied in LLI and centenarians. Indeed, they are the best 

models for these kind of studies, also because genetic contribution to human 

longevity has been estimated to be most profound during the late part of life. 

Unfortunately, the intrinsic complexity and the heterogeneity among 

people make studies on ageing and longevity difficult to standardized, also 

because it is not easy to collect an adequate population in terms of number 

and information related to previous event happened in life. For this reason, 

it could be helpful to study model organisms to identify potential candidates 

and to apply new knowledge or hypothesis to human. Indeed, many studies 

in model organisms, such as yeast, nematodes, fruit flies and mice, have 

been conducted demonstrating that a single genetic mutation or a single 

environmental intervention can modulate lifespan. There are many possible 

candidate genes for human longevity but, up to now, only one has been 

shown positive results in different studies and populations: the APOE gene 

(Christensen et al 2006).  

The APOE E4 isoform has been linked to elevated cholesterol, 

CVDs, age-related cognitive decline, and dementia. It is more strongly 

associated with AD than longevity and other conditions. Homozygosity for 

the E4 allele confers up to 15-fold risk for AD in whites and 8-fold risk in 

African Americans compared with the most common ApoE genotype. Thus, 

ApoE

But a growing body of evidences shows that dietary intervention and 

genetic alterations in gene encoding proteins that take part in metabolic 

nutrient-sensing pathways can modulate lifespan (Bonafè et al 2003; Suh et 

 may influence longevity through premature atherosclerosis and age-

related diseases (Murabito et al 2012). 
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al 2008; Willcox et al 2008; Albani et al 2009; Anselmi et al 2009; 

Flachsbart et al 2009; Soerensen et al 2010; Ziv et al 2011). It depends on 

the hyper o ipo activation of these signaling due to genetic mutations that 

under or over express regulative molecules leading to different expression of 

homeostatic genes.  

During evolution, this pathway has diverged from a single receptor 

in invertebrates to multiple receptors and more complicated pathways and 

regulatory networks in mammals. 

The first signaling cascade associated with ageing and longevity was 

the insulin/IGF-1 pathway in C. elegans. It was shown that mutation that 

reduce the daf-2 function, orthologue of IGF-1 receptor, and mutation in 

age-1, homologue of PI3K, lead to both increased life span and stress 

resistance (Dorman et al 1995; Apfeld et al 1998).  

Also in mice and in primates the modulation of this pathway can 

extend life-span and delay age-related pathologies leading to the conclusion 

that these associations are evolutionary conserved (Bartke 2005; Anderson 

et al 2009; Fontana et al 2010).  

Our results, obtained from meta-analyses and candidate gene 

approach, support data previous shown for the role of specific SNPs in 

ageing and longevity. 

Among others, FOXO3A probably represents one of the genes that 

more influence longevity, association observed in different ethnic 

populations. Moreover, a multitude of studies in C. elegans support its role. 

Daf-16 is the homologue of FOXO in the nematode. Evidences 

demonstrated that it protects cells from oxidative stress that constitutes a 

nerve centre in ageing process, increasing life-span (Kenyon 2005). Daf-16 

is a TF that modulates the expression of SOD2, acting as free radical 
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scavenger (Honda et al 1999). It seems that the role of FOXO3A in human 

might be the same, acting as a TF on multiple homeostatic genes in response 

to decreased insulin/IGF-1 signaling and consequently increasing life-span 

(Ziv et al 2011). Interestingly, other genes that increase life-span, i.e. the 

enzymes histone deacetylase sirtuins, interact with FOXO. 

In particular, SIRT1 deacetylates FOXO3A and modulates its 

response to oxidative stress (Salminen et al 2009).  

Our studies confirm previous studies about the association between 

FOXOA3A, IGF-1R and longevity but no association was reported between 

IGF-1 and SIRT1 (for the analyzed SNPs), although, for IGF-1, its SNPs 

could affect the serum levels, known to modulate ageing and longevity and 

higher circulating levels of IGF-1 have also been associated with longer 

leukocyte telomere length, a key biomarker of human ageing, in healthy 

subjects (Barbieri et al 2009).  

This would be consistent with the hypothesis that most longevity 

genes have modest or small effect sizes. It is also possible that small sample 

size and the remarkable heterogeneity often observed in the populations 

included in the different studies, in terms of age and ethnicity of both 

control and cases groups, limited our detection ability. Another explanation 

could be that these contrasting results are due to the insulin/IGF-1 paradox 

(Koshiyama 2012).  

Moreover, we observed sex-specific differences in the association of 

the genetic variation with survival during old age. In particular, about 

FOXO3A the significant association with longevity was observed 

specifically when only males were included in the analysis. Also for the 

rs144989913, SNP of INPPL1, we obtain a specific association in males. 
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This is not surprising because, as we discussed in our paper (Caruso 

et al 2013), it has been claimed that males and females follow different 

strategies to attain longevity and several association studies have been 

positive only in males (Capri et al 2008). The reason are obviously 

multifactorial, with a socio-cultural component that can be distinguish from 

biological trait linked to longevity. In some cases our result became positive 

only in centenarians. Also this result is not surprising, because centenarians 

represent the survival tail of the population (Caruso et al 2012).  

Our second meta-analysis on the association between KLOTHO KL-

VS variant (stretch that contains six polymorphisms in linkage 

disequilibrium), ageing and longevity indicated a significant association of 

the variant with healthy ageing and longevity, despite the serious limitations 

of the study. This association is limited to KL-VS heterozygous people 

because the KL-VS homozygous undergoes to a detrimental effect of the 

polymorphism indicating a possible association mechanism not related to 

the gene dose. It should be noted that in one study the genetic effect was 

shown only in one population, suggesting that genetic or environmental 

factors could influence the observed effect. These contrasting results could 

be linked to the reason mentioned above that partially mask the true genetic 

effect. 

However, cross-sectional and prospective studies confirm a genetic 

model in which the KL-VS allele confers a heterozygous advantage in 

conjunction with a marked homozygous disadvantage with low levels of 

HDL cholesterol, high systolic blood pressure, increased risk of stroke and 

early onset coronary artery disease, and mortality (Arking et al 2003; Arking 

et al 2005).  
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Coming back to the crucial nodes upstream to insulin/IGF-1 

pathway, certainly we have to highlight the importance of the second 

messenger PIP3. Indeed, from this molecules start the signal that activate 

the kinase AKT, involved in many crucial cellular activity. To regulate PIP3 

level, the cell uses a kinase and a phosphatase, PI3K and phosphatase and 

tensin homolog 

Variation in SHIP2 levels may cause insulin pathway impairment. 

and SHIP2. Since the role of SHIP2 is the less clear, we 

analyzed the association of some its SNPs with age-related diseases. 

Indeed, in vivo studies, demonstrated that SHIP2 is a potent negative 

regulator of insulin signaling and insulin sensitivity (Clement et al 2001; 

Soeda et al 2010). Since the rs144989913 alleles is an insertion/deletion of 

28 base pairs, it is tempting to speculate that might differently influence 

gene expression of INPPL1. Of course functional studies are mandatory to 

confirm this suggestion but the increased frequency of the deletion allele 

from young to centenarians may be due to a different expression of SHIP2 

that reduce the insulin signaling possibly favoring longevity. 

AKT also regulates the gene expression by modulating the function 

of several TF. Among these, it can stimulate the NF-kB pathway that is 

known to be involved in ageing process. 

Consequently it could be speculated that a reduction in insulin 

signaling may reduce the activation of NF-kB thus slow down the 

transcription of inflammatory genes. As we discussed in our paper 

(Balistreri et al 2012), these kind of genes contribute to immunosenescence, 

phenomenon also influenced by genetics. The different results obtained in 

Sicilian centenarians, both males and females, and in subjects with 

myocardial infarction get further support to the influence of genetics to 

determine longevity and to the different strategies between males and 
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females to reach longevity. These strategies are driven by both biological 

and socio-cultural characteristics and are the reasons for which women live 

longer that men in developed countries.  

Summarizing, the studied allelic variants reduce the insulin/IGF-1 

signaling, hence, we agreed that a down regulation of this pathway can 

increase lifespan in human leading to healthy longevity. Moreover, we agree 

that inflammatory pathways have a crucial role as well. Indeed, as 

previously discussed for the Sicilian population, there was an association 

between SNPs responsible for a low production of inflammatory mediators 

and longevity.  

Unfortunately, one of the limits to the discovery of the common 

longevity features is probably the gene-gene and gene-environment 

interaction but many evidences show that genetic factors are involved in 

longevity in humans and contribute more, after 85 years of age. 

In any case, these data clearly suggest that intervention on ageing 

and longevity should be based both on nutrient pathways and inflammatory 

network. 

In rodents, both dietary restriction (DR) and mutations in nutrient 

and growth signaling pathways can extend longevity by 30-50% and lower 

the incidence of age-related loss of function and disease, including tumors 

and neurodegeneration. DR also increases “healthspan” and protects against 

diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in 

humans it causes changes that protect against these age-related pathologies 

(Omodei et al 2011). 

However, although some forms of DR may be beneficial, this severe 

dietary regimen that induces major health benefits is not a desirable option 

for most people. Drugs that target nutrient-sensing pathways and mimic the 
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effects of DR to obtain the health benefits of DR are more realistic, but 

before they can be considered for chronic administration they require large 

investments. 

An alternative approach might be a close adherence to MD that 

includes an healthy lifestyle. MD is a real culture that has been reported to 

contribute to better health and quality of life in the Mediterranean countries. 

Especially in Sicily and Sardinia, where many longevous people 

exist, this “cultural habit” is common. The Elderly Prospective Cohort 

Study identified a reduced overall mortality among old people that live in a 

“Mediterranean way” and in particular in that people consuming 

monounsaturated (MUFA) fatty acid instead of satured (Trichopoulou et al 

2005; Bürkle et al 2007). 

Meta-analyses of prospective cohort studies demonstrate that the 

adherence to MD can significantly decreases the risk of mortality from 

CVDs (in particular from coronary heart disease) and the incidence of PD, 

AD and cancer (Sofi et al 2008; Estruch et al 2013). It is well established 

that the pathophysiology of common age-related disease is associated with 

chronic inflammation and oxidative stress and that LDL oxidation is one of 

the major risk factor for the development of CVDs (Candore et al 2010b). 

Extra virgin olive oil (EVOO), the main source of polyphenols in 

MD, is composed by MUFA, mainly oleic acid, that reduces LDL 

cholesterol levels in comparison with saturated fats. In vivo, three 

mechanistic studies have shown that EVOO phenolic compounds are able to 

bind to LDL and this may increase the resistance to oxidation. Furthermore, 

the inhibition of NF-kB pathway activation by polyphenols could explain 

part of its anti-inflammatory properties. EVOO also contains carotenoids, 

sterols, lycopene, and hydrophilic phenolics (oleuropein, oleocanthal, 
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hydroxytyrosol and tyrosol), all bioactive compounds (Pitozzi et al 2012). In 

vivo and in vitro research has suggested that the dietary intake of EVOO 

with high polyphenols content may attenuate inflammatory response and 

therefore reduce the risk of chronic inflammatory diseases (Corona et al 

2009; Konstantinidou et al 2010; Khymenets et al 2009). Oleuropein is a 

radical scavenger that blocks the LDL oxidation (de la Torre-Carbot et al 

2007). Moreover, in vitro studies demonstrated the Ibuprofen–like activity 

of oleocanthal and hydroxytyrosol carried out the inhibition of the 

cyclooxygenases 1 and 2, responsible for prostaglandin production, in a 

dose-dependent manner (Beauchamp et al 2005; Gonzalez-Santiago et al 

2010).  

Thus these data strengthen the probability that successful ageing may 

be pharmacologically modulated.  

Nowadays, the healthcare costs in many countries are very high 

because of the increased aged populations and the consequent increase of 

age-related diseases. Hence, interventions to slow ageing and/or to age 

successfully are urgently necessary. Indeed, success in increasing longevity 

in laboratory organisms has shown that ageing is not an immutable process. 

It has been calculated that if ageing is slowed for seven years, the 

age specific risk of death, frailty, and disability will be reduced by about 

half at every age. People who reach the age of 60 in the future would 

resemble current 53 year olds, and so on. On the other hand, if ageing is 

combined with extended years of healthy life, it could also produce 

unprecedented social, economic, and health dividends. Understanding of the 

ageing process should have a prominent role in new strategies for extending 

the health of a population that is highly susceptible to the diseases of ageing. 
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Thus, investigating ageing and longevity pathophysiology, 

particularly disentangling low grade inflammation, is likely to provide 

important clues about how to develop drugs that can slow or delay ageing. 
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