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In this paper, the dynamic response of an Euler-Bernoulli beam with general boundary conditions (BCs)
and subject to a moving oscillator is examined. Notably, novel approximate closed-form expressions are
determined for the vertical responses of both the beam and the moving oscillator, specifically considering
the effect of damping in these systems, commonly omitted in standard approaches in the literature. In
this regard, a modal superposition procedure is adopted and combined with an appropriate expansion-
based approach of the dynamic response of the system, which naturally arises considering the
oscillator-beam mass ratio to be reasonably small. Further, general boundary conditions are treated
exploiting the use of a suitable set of orthogonal polynomial functions as beammode shapes. In this man-
ner, novel direct expressions for the response of the system are derived, in which the mode shapes coef-
ficients explicitly appear. This leads to a straightforward application of the proposed solution, irrespective
of the chosen BCs. Several numerical examples are presented to assess the reliability and accuracy of the
proposed approach, considering different cases of beam BCs, and moving oscillator’s parameters. Results
are validated by comparison with the data of finite element analyses, and numerical solutions of the com-
plete system of governing equations.
� 2023 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the past few decades, the dynamic behavior of beam-like
structures subjected to moving systems, as for instance bridges
excited by moving vehicles, has been an active field of research
in structural mechanics. Notably, this topic has nowadays gained
renewed attention among researchers in the field due to the appli-
cations in a wide range of current engineering problems, including
railway bridges crossed by high-speed trains and indirect struc-
tural monitoring techniques. Several research efforts have been
then devoted to the determination of efficient and accurate solu-
tions to this problem, which is generally numerically demanding.
In this regard, a comprehensive review of early works can be found
in [1], while some more recent contributions are detailed in [2,3].

Generally, the dynamic behavior of beam-like structures under
moving systems can be studied utilizing three main different mod-
els: the moving force model, the moving mass model, and the mov-
ing oscillator model. In the moving force model [4] the moving
system is described by a force travelling over the beam, neglecting
the interaction effects of the moving system’s inertia and stiffness,
thus representing the simplest, and probably most commonly
employed approach. This model, for instance, can capture some
of the features of the dynamic behavior of bridges subjected to
the action of moving vehicles, although it is strictly valid only
when the vehicle response is not required, and for reasonably small
mass of the vehicles. In this regard, recent contributions have
extended the first results reported in [1], focusing on more sophis-
ticated beam models, taking into account general boundary condi-
tions (BCs), multi-span beams, discontinuities, and non-classically
damped beams [5–8]. In this context, in [9] an analytical approach
is described for determining the response of uniform beams under
moving forces, with general boundary conditions and using com-
plex modal analysis. Further, in [10] some closed-form expressions
have been obtained for multi-span beams with general BCs sub-
jected to concentrated moving forces, using Laplace
transformation.

In the moving mass model, the moving system consists of a
mass travelling over the beam. It therefore represents an improve-
ment over the moving force model in capturing the behavior of a
bridge crossed by moving vehicles, since in this case the inertia
effects are taken into account. On the other hand, the stiffness of
the moving system is assumed to be infinite and, therefore, the
effects of the displacement of the moving body relative to the
beam are not considered. Clearly, these effects may become partic-
ularly relevant in the presence of pavement roughness, and they
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are required for the modern applications in structural monitoring
based on vehicle-bridge interaction dynamics [11]. Some early
contributions on this model can be found in [12–14], while more
recently in [15] the vibration of non-uniform beams with different
BCs has been investigated employing particular orthogonal poly-
nomial functions generated using a Gram-Schmidt process.

As far as the moving oscillator model is concerned, it is gener-
ally regarded as a the most accurate one, among the three afore-
mentioned models, which can be used to study the dynamic
interaction between a moving vehicle and the supporting bridge.
It yields a more realistic description of the interaction effects
between the moving systems and the beam, at the expense of
increased difficulty and complexity in the solution of the problem.
For this reason, several research efforts have been devoted to the
analysis and efficient solution of this problem. In this regard, some
contributions can be found in [1,11,16–19] dealing with methods
for the analysis of simply-supported beams subjected to moving
oscillators modeled as one degree-of-freedom (DOF) systems. For
instance, in [11] approximate closed-form expressions have been
derived for the response of a simply-supported beam crossed by
a vehicle modeled as a one DOF oscillator. Note that, these solu-
tions have been obtained approximately decoupling the originally
coupled equations of motion, neglecting the damping effects in
both the beam and the oscillator. Further, considering the com-
plexity involved in the numerical solution of this problem, several
papers have focused on its efficient numerical implementation also
using Finite Element (FE) procedures [20–23]. Recently, more
sophisticated models of moving oscillators have been studied in
the literature, employing a higher number of DOFs, to capture
more accurately the vehicle dynamics also in the context of railway
bridges [24–26]. In this regard, vehicle modeled as a 2 DOF systems
have been analyzed in [27], where the results in [11] have been
extended and some approximate closed-form expressions have
been derived for the response of a simply-supported beam, and
in [28], where a semi-analytical approach has been presented for
the dynamic response of non-classically damped beams with gen-
eral BCs based on a dynamic sub-structuring technique. Finally,
recently [29,30] an approximate analytical method has been pro-
posed to decouple the analysis of bridges crossed by vehicles mod-
eled as single or multi-degree-of-freedom systems, valid for
vehicle-to-bridge stiffness ratios.

In this context, it is worth mentioning that current applications
of the so-called vehicle-bridge interaction (VBI), related for
instance to indirect structural health monitoring (SHM)
approaches [31,32], has led to further renewed interest in this
topic. Specifically, first results in [11] have shown that, under some
circumstances, bridge frequencies could be detected by measuring
the response of vehicles travelling over the bridge. Experimental
verifications of these first analytical results have been reported in
[32], and later many research efforts have been devoted to refining
these procedures for extracting bridge frequencies [33–36], as well
as damping and mode shapes [37–40]. Notably, this could pave the
way towards the use of indirect low-cost techniques for SHM of
civil infrastructures, thus showing that the problem of the vibra-
tion response of beam-like structures under moving systems could
warrant further investigations.

On the base of the preceding conspectus, it is evident that to
date most of the literature has dealt with efficient numerical or
semi-analytical procedures for the solution of the problem, using
models of the moving system of various complexities to appropri-
ately account for the dynamic properties of the vehicle. On the
other hand, less attention has been paid so-far to the development
of analytical solutions for a direct determination of the response of
the system, that could be employed for many different purposes.

Note that, as previously mentioned, approximate closed-form
expressions have been reported only for the case of a simply-
2

supported beam subjected to a moving vehicle modeled as one
DOF oscillator [11] or a two DOF system [27]. In these cases, the
analyses have been carried out omitting the effect of the damping
in both the beam and the vehicle, and approximately decoupling
the originally coupled equation of motion assuming small vehicle
mass. Clearly, although the effect of the damping of the beam
may be negligeable, vehicle damping may be high, and hence it
may be not generally neglected. Nevertheless, this procedure has
led to rather simple expressions that have highlighted the presence
of the beam frequencies in the vehicle response for applications
related to the VBI method.

To the best of author’s knowledge, no further closed-form solu-
tions have been presented in the literature for the analysis of
beam-like structures under moving oscillators. Therefore, the solu-
tion to more general and common cases which could consider the
presence of damping, as well as comprise different BCs, remains an
open challenge and still need to be investigated.

On this base, in the present paper a procedure is introduced for
the determination of approximate analytical expressions for the
response of beams with general BCs subjected to a single DOF mov-
ing oscillator, taking into account the effect of damping. In this
regard, a major novel contribution of the paper is related to the
definition of the approximate closed-form solutions which have
been derived, for the first time, for both the beam and the moving
oscillator vertical displacements in time-domain, for any BC.
Specifically, these expressions have been determined following
an approach similar to the classical expansion/perturbation
method, often employed in the analysis of nonlinear dynamical
systems [41–43], assuming a small value of the ratio between
the mass of the moving oscillator and the beam. In this manner,
the originally coupled set of differential equations governing the
response of the system has been approximately decoupled. Inter-
estingly, it is shown that the zero-order approximation obtained
with the proposed approach reverts to the case in [11,27], simply
determined omitting the coupling term.

Further, the presence of general BCs has been treated appropri-
ately exploiting the use of mode-shape functions of polynomial
form, referred to as characteristic orthogonal polynomial (COPs),
generally used for the vibration analysis of plates [15,44,45]. In this
manner, simple expressions are derived which explicitly depend
on the coefficients of the COPs, thus rendering the application of
the proposed approach particularly straightforward for any chosen
BC.

Several numerical examples are presented to show the reliabil-
ity of the proposed procedure for various BCs, taking into account
different beam’s parameters as well as mass ratio velocities of the
moving oscillator. Finally, the accuracy of the proposed approach is
assessed through comparison with the results of the numerical
solution of the original set of coupled differential equations, and
data of FE analyses developed in the commercial software Abaqus.

Notably, the main aim of the paper is related to the determina-
tion of the responses of both the beam and the moving oscillator,
which are derived analytically, albeit approximately, for any BC
and taking into account the effect of damping. Further, the validity
of the involved approximations is addressed for the different ana-
lyzed cases. Clearly, the aforementioned problem could be solved
with reasonable efficiency using standard procedures for the
numerical solutions of the governing differential equations.
Nonetheless, the derived closed-form expressions can be particu-
larly useful, not only for assessing the reliability of other numerical
procedures, but for instance to perform computationally efficient
stochastic analyses of the problem [46–48] when, as costumery,
the irregular road profile is modelled as a stochastic process [49].
Additionally, on this base, analytical solutions in frequency-
domain could be also derived which may be leveraged in the con-
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text of the modern indirect SHM techniques based on the VBI
approach.

2. Problem definition

Consider an elastically supported Euler-Bernoulli beam of span
L with constant bending stiffness EI, coefficient of viscous damping
c, and mass per unit length l, as shown in Fig. 1. Left and right ends
comprise a linear vertical spring of stiffness k1 andk2, respectively,
and a rotational spring of stiffness r1 and r2, respectively. In this
manner, this beam can be assumed as a more general and refined
model with respect to the classical simply-supported beam often
used in the literature to capture the dynamic response of bridges.
Clearly, spring stiffnesses may assume values from zero to infinity,
thus capturing many different boundary conditions (BCs), includ-
ing clamped, simply-support, and possible stiffening effects that
may occur in real circumstances. Further, the beam is crossed by
a moving oscillator with constant speed v , as in Fig. 1, that may
be used to capture the main feature of a vehicle moving over the
bridge.

The moving oscillator is characterized by a mass mv , spring
stiffness kv , and damping coefficient cv , that takes into account
the damping effect of the vehicle’s suspension systems.

The equations of motion governing the transverse or vertical
response of the beam and moving oscillator are [1,2,10]

l €wþ c _wþ EIwIV ¼ f x; tð Þ; ð1:aÞ

mv€yþ cv _y� _wjx¼x�ð Þ þ kv y�wjx¼x�ð Þ ¼ 0; ð1:bÞ
where a dot over a variable stands for derivation with respect to
time, apexes denote derivatives with respect to coordinate x, and

x
�

tð Þ ¼ vt is the contact point position. Further, in Eq. (1) w x; tð Þ is
the vertical beam displacement at the point x and time t, y tð Þ is
the vertical displacement of the moving oscillator with respect to
its static equilibrium position, and f x; tð Þ is the interaction force

transmitted to the beam by the moving oscillator applied in x
�
. This

force can be generally expressed as follows:

f x; tð Þ ¼ v tð Þ mv g þ cv _y� _wjx¼x�ð Þ þ kv y�wjx¼x�ð Þ½ � d x� x
�� �

ð2Þ
Fig. 1. Beam crossed by

3

where d xð Þ is the Dirac’s delta function, and v tð Þ is the window func-
tion defined as

v tð Þ ¼ 1 for 0 6 t 6 L=v
0 for t > L=v

�
ð3Þ

Notably, taking into account Eq. (1.b), Eq. (2) can be equiva-
lently rewritten as

f x; tð Þ ¼ v tð Þ mv g �mv €y½ � d x� x
�� �

ð4Þ

which is more amenable for further manipulations.
As far as the BCs of Eq. (1) are concerned, taking into account

the well-known relations for the shear force T ¼ �EIwIII and the
bending moment M ¼ �EI wII , they can be expressed as follows
[28]

k1w 0; tð Þ ¼ �EI wIII 0; tð Þ
r1wI 0; tð Þ ¼ EI wII 0; tð Þ ð5Þ

for the left boundary x ¼ 0ð Þ, and
k2w L; tð Þ ¼ EIwIII L; tð Þ
r2wI L; tð Þ ¼ �EIwII L; tð Þ ð6Þ

for the right boundary x ¼ Lð Þ. Further, zero initial conditions are
assumed, implying that the beam is at rest when the oscillator
enters from the left end of the beam. Clearly, this assumption
merely simplifies the notation and does not affect the generality
of the proposed procedure. However, note that when the beam rests
on flexible vertical supports, appropriate modeling of the initial
conditions of the beam are required. This is necessary to accurately
capture the effect that may be caused by the arrival of the moving
oscillator on the beam, which generally produces a jump in the
beam’s acceleration response in t ¼ 0ð Þ. Alternatively, the moving
oscillator may be considered in equilibrium with the beam in
t ¼ 0ð Þ, if the beam is not complitely decoupled from the external
environment. In this case, no acceleration jump occurs, however
appropriate modeling of the approaching phase is required. Readers
may refer to [28], and reference therein, for further discussion on
this issue.

Following conventional modal analysis [1,18], the displacement
function w x; tð Þ can be expressed approximately as a series expan-
a moving oscillator.
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sion in terms of the assumed first N mode shape functions /j xð Þ of
the beam, satisfying the beam BCs. Therefore,

w x; tð Þ ffi
XN
j¼1

qj tð Þ/j xð Þ ð7Þ

where qj tð Þ is the jth modal displacement. Note that, as costumery,
the mode shapes /j xð Þ of the unloaded and undamped beam can be
evaluated as the solution of the following eigenproblem

/IV
j xð Þ ¼ k4j /j xð Þ; j ¼ 1; . . . ;N ð8Þ

where k4j ¼ l
EIx

2
j , andxj is the angular frequency of vibration for the

jth mode.
Substituting Eq. (7) into Eq. (1a), multiplying both sides by

/k xð Þ, and integrating with respect to x over the length of the beam,
the equations of motion of the beam in terms of the modal dis-
placements are

€qj tð Þ þ 2fjxj _qj tð Þ þx2
j qj tð Þ ¼ v tð Þ

/j x
�� �

l
R L
0 /

2
j xð Þdx

mvg �mv€y tð Þ½ �;

j ¼ 1; . . . ;N ð9Þ
where fj is the damping ratio of the jth mode, assuming the damp-
ing proportional to the mass [10]. It is worth mentioning that, Eq.
(9) has been obtained using classical orthogonality conditions, that
isZ L

0
/j xð Þ/k xð Þdx ¼ 0; 8 j–k ð10Þ

while the term
R L
0 /

2
j xð Þdx has been kept at the right-hand side of Eq.

(9) since it depends on the arbitrary chosen normalization
condition.

Next, substituting Eq. (7) into Eq. (1b), and dividing by the mass
mv , the equation of motion of the moving oscillator can be
obtained as

€y tð Þ þ 2fvxv _y tð Þ þx2
vy tð Þ ¼ 2fvxv

XN
j¼1

_qj tð Þ/j x
�� �

þxv
XN
j¼1

qj tð Þ xv/j x
�� �

þ 2fvv /I
j x

�� �h i ð11Þ

where fv andxv are the damping ratio and natural frequency of the
moving oscillator, respectively, and the following relation has been
used

_/j x
�

tð Þ
� �

¼
d/j x

�� �
d x

�
d x

�
tð Þ

dt
¼ v/I

j x
�� �

ð12Þ

Note that, Eqs. (9) and (11) represent a system of N þ 1ð Þ cou-
pled differential equations, governing the response of both the
beam and the moving oscillator. They are valid for general BCs
and comprise the effects of damping in the beam as well as in
the oscillator.

2.1. Formulation of the boundary conditions and classical mode shapes

As mentioned, mode shapes /j xð Þ in Eqs. (9) depend on the
specific BCs of the beam. In this regard, substituting Eq. (7) into
Eqs. (5) and (6) yields the BCs in terms of mode shapes

k1 /j 0ð Þ ¼ �EI/III
j 0ð Þ

r1 /
I
j 0ð Þ ¼ EI/II

j 0ð Þ
ð13Þ

for the left boundary x ¼ 0ð Þ, and
4

k2 /j Lð Þ ¼ EI/III
j Lð Þ

r2 /
I
j Lð Þ ¼ �EI/II

j Lð Þ
ð14Þ

for the right boundary x ¼ Lð Þ, respectively. Further, the well-known
solution of Eq. (8) can be written as [10]

/j xð Þ ¼ Aj cos kjx
� �þ Bj sin kjx

� �þ Cj cosh kjx
� �

þDj sinh kjx
� � ð15Þ

generally referred to as the characteristic function of the beam,
where Aj � Dj are the so-called mode shape coefficients. Next, dif-
ferentiating Eq. (15) and applying the BCs in Eqs. (13) and (14),
results in a set of algebraic equations that can be expressed in
matrix form as

U4�4 kj
� �

J4�1 ¼ 0 ð16Þ
where U4�4 is the characteristic matrix and J4�1 is a vector contain-

ing the mode shape coefficients as J ¼ Aj Bj Cj Dj½ �T . Clearly,
these coefficients can be found as the eigenvectors of Eq. (16), while
kj represents the corresponding eigenvalue, leading to the determi-

nation of the natural frequencies as xj ¼ k2j
ffiffiffiffiffiffiffiffiffiffi
EI=l

p
.

As previously mentioned, mode shapes can be appropriately
normalized according to an arbitrary chosen normalization condi-
tion. For instance, in many cases the mode shapes are mass-

normalized, so that l
R L
0 /

2
j xð Þdx ¼ 1. However, as it will be shown

in the following, it may be useful to normalize the mode shapes so
thatZ L

0
/2

j xð Þdx ¼ L ð17Þ

which can be easily done introducing a scale factor in the mode
shape coefficients [10].

In this manner, employing these normalized mode shapes, and
considering only the interval 0 6 t 6 L=v , Eqs. (9) and (11) become

€qj tð Þ þ 2fjxj _qj tð Þ þx2
j qj tð Þ ¼ a/j x

�� �
� e/j x

�� �
€y tð Þ;

j ¼ 1; . . . ;N
ð18:aÞ

€y tð Þ þ 2fvxv _y tð Þ þx2
vy tð Þ ¼ 2fvxv

PN
j¼1

_qj tð Þ/j x
�� �

þxv
PN
j¼1

qj tð Þ xv/j x
�� �

þ 2fvv /I
j x

�� �h i ð18:bÞ

where e ¼ mv= lLð Þ is a non-dimensional parameter, representing
the oscillator-beam mass ratio, while a ¼ eg has the dimension of
an acceleration.

3. Dynamic response of the system

The equations of motion in Eq. (18), governing the response of
the coupled system in Fig. 1, is a set of N þ 1ð Þ coupled linear dif-
ferential equations, comprising time-dependent coefficients, which
can be generally solved only through numerical procedures.

However, approximate analytical solutions could be obtained
considering that in several circumstances the mass of the moving
oscillator mv is negligible compared to the total mass of the beam
lLð Þ. Thus, the mass ratio e is generally very small, that is e � 1. In
this manner, an analytical, albeit approximate, solution of Eq. (18)
could be attempted following a procedure similar to the so-called
standard perturbation approach, also referred to as straightforward
expansion method [41], often employed in the analysis of nonlin-
ear dynamical systems [42,43]. Therefore, the solution of Eq. (18)
is approximately given in the form of an asymptotic expansion
using e as the perturbation parameter, that is
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qj tð Þ ¼ q 0ð Þ
j tð Þ þ eq 1ð Þ

j tð Þ þ e2q 2ð Þ
j tð Þ þ O e3

� �
; j ¼ 1; . . . ;N ð19:aÞ

and

y tð Þ ¼ y 0ð Þ tð Þ þ ey 1ð Þ tð Þ þ e2y 2ð Þ tð Þ þ O e3
� � ð19:bÞ

where the apex in parentheses refers to the order of the approxima-
tion. In this manner, substituting Eq. (19) into Eq. (18), and equating
coefficients of equal powers of e, yields the following set of uncou-
pled linear differential equations.

- Zero-Order

€q 0ð Þ
j þ 2fj xj _q

0ð Þ
j þx2

j q
0ð Þ
j ¼ a/j x

�� �
; j ¼ 1; . . . ;N ð20:aÞ

€y 0ð Þ þ 2fvxv _y
0ð Þ þx2

vy
0ð Þ ¼ 2fvxv

PN
j¼1

_q 0ð Þ
j /j x

�� �

þxv
PN
j¼1

q 0ð Þ
j xv/j x

�� �
þ 2fvv /I

j x
�� �h i ð20:bÞ

- First-Order

€q 1ð Þ
j þ 2fj xj _q

1ð Þ
j þx2

j q
1ð Þ
j ¼ �/j x

�� �
€y 0ð Þ

; j ¼ 1; . . . ;N ð21:aÞ

€y 1ð Þ þ 2fvxv _y
1ð Þ þx2

vy
1ð Þ ¼ 2fvxv

XN
j¼1

_q 1ð Þ
j /j x

�� �

þxv
XN
j¼1

q 1ð Þ
j xv/j x

�� �
þ 2fvv /I

j x
�� �h i ð21:bÞ

- Second-Order

€q 2ð Þ
j þ 2fj xj _q

2ð Þ
j þx2

j q
2ð Þ
j ¼ �/j x

�� �
€y 1ð Þ

; j ¼ 1; . . . ;N ð22:aÞ

€y 2ð Þ þ 2fvxv _y
2ð Þ þx2

vy
2ð Þ ¼ 2fvxv

PN
j¼1

_q 2ð Þ
j /j x

�� �

þxv
PN
j¼1

q 2ð Þ
j xv/j x

�� �
þ 2fvv /I

j x
�� �h i

ð22:bÞ
Note that in Eqs. (20–22) the dependance on time t has been

omitted for sake of conciseness, and they are valid only in the
interval 0 6 t 6 L=v . Further, observe that, although a depends

on e, the product a/j x
�� �� �

is kept in the zero-order equation Eq.

(20.a) since it is orders of magnitude greater than the last term
at the right-hand-side of Eq. (18.a).

As it can be seen, while the equations related to q pð Þ
j tð Þ (being p

the order of the expansion) can be solved once the solution to the
previous order y p�1ð Þ tð Þ is known, the response of the moving oscil-

lator y pð Þ tð Þ still depends on the solution of q pð Þ
j tð Þ. Therefore, Eqs.

(20–22) should be solved in sequence.
In passing, it should be mentioned that a similar reasoning has

been firstly employed in [11] for the case of a simply-supported
beam, following a rather heuristic approach in which Eq. (18.a)
has been directly decoupled from Eq. (18.b), approximately omit-
ting the last term at the right-hand-side of Eq. (18.a). In this man-
ner, a solution has been derived for the much simpler case of a
simply-supported undamped beam excited by a moving
5

undamped oscillator. Specifically, in [11] the response of the beam
has been given as

w x; tð Þ ¼
XN
j¼1

Dst;j

1� S2j
sin

jpx
L

sin
jpvt
L

� Sj sinxjt
� 	
 �

ð23Þ

where Dst;j ¼ �2mvgL
3= j4p4EI
� �

is the static deflection caused by

the vehicle with respect to the jth mode, while Sj ¼ jpv= Lxj
� �

is a
non-dimensional speed parameter. Analogous expressions have
been given for the response of the moving oscillator, here omitted
for sake of brevity. Clearly, these expressions are the solutions to
the zero-order expansion in Eq. (20), in which all the terms contain-
ing the damping ratios of the mode shapes and of the moving oscil-
lator are neglected.

3.1. Zero-order response of the beam

Analyzing Eq. (20.a), it can be observed that these represent the
equations of motion of the modal displacements of a beam excited
by a moving force. In this regard, pertinent closed-form solutions
have been reported in [10] for general BCs, applying a Laplace
transform approach, leading to rather unwieldy expressions for
the beam displacements, not amenable for numerical implementa-
tion. In addition, the involved complexity would not allow for a
straightforward determination of the moving oscillator’s displace-
ment, solving Eq. (20.b).

On this base, a different approach needs to be sought, which
could lead to closed-form expressions for the responses of both
the beam and the moving oscillator, not limited to the simply-
supported case given in Eq. (23). Clearly, general direct expressions
for the solutions to the zero-order expansion Eq. (20) could be
obtained based on the use of the classical Duhamel’s integral
approach, as

q jð Þ
0 tð Þ ¼ a

Z t

0
hj t � sð Þ/j vsð Þds ð24Þ

where

hj tð Þ ¼ 1
xd;j

e�fjxj t sin xd;j t
� � ð25Þ

in which xd;j is the jth damped natural frequency xd;j ¼ xj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2j

q
.

Note, however, that the integral in Eq. (24) cannot be easily
solved employing the representation of the mode shapes in Eq.
(15), since unwieldy expressions would be obtained for general
BCs, as shown in [10] for the simple case of the moving force
model.

Therefore, in this paper a different approach is proposed. Specif-
ically, mode shapes in Eq. (15) are substituted with an appropriate
set of orthogonal polynomials, as shown in [15,44,45], generally
referred to as characteristic orthogonal polynomials (COPs). The
first member of the set of COPs, that is u1 xð Þ, is constructed as
the polynomial of least degree satisfying all the boundary condi-
tions of the beam. Therefore, a fourth-degree polynomial is intro-
duced as

u1 xð Þ ¼
X4
k¼0

a1;k xk ð26Þ

where the coefficients a1;k can be found by applying the pertinent
BCs, as detailed in the Appendix A. Further, the following members
of the COPs are generated by using a Gram-Schmidt process as

u2 xð Þ ¼ x� P2ð Þu1 xð Þ ð27:aÞ

uk xð Þ ¼ x� Pkð Þuk�1 xð Þ � Qkuk�2 xð Þ; k ¼ 3;4; . . . ð27:bÞ
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where

Pk ¼
R L
0 xu

2
k�1 xð ÞdxR L

0 u
2
k�1 xð Þdx

ð28Þ

and

Qk ¼
R L
0 xuk�1 xð Þuk�2 xð ÞdxR L

0 u
2
k�2 xð Þdx

ð29Þ

Observe that, although u1 xð Þ satisfies all the BCs, both geomet-
ric and natural, the other members of the orthogonal set satisfy
only the geometric boundary conditions. Further, functions in Eq.
(26) do not generally satisfy the condition in Eq. (17). Thus, in this
case the appropriate set of COPs, employed for the solution of Eq.
(24), can be defined as

/
�
j xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR L

0 u
2
j xð Þdx

s
uj xð Þ; j ¼ 1; . . . ;N ð30Þ

Clearly, considering Eq. (26), mode shapes in Eq. (30) can be
more conveniently represented as

/
�
j xð Þ ¼

Xn
k¼0

aj;k xk; j ¼ 1; . . . ;N ð31Þ

where n ¼ 3þ jð Þ and aj;k are the coefficients of the polynomial in
Eq. (30) representing the jth mode shape of the beam.

In this manner, Eq. (20.a) can be rewritten as

€q 0ð Þ
j tð Þ þ 2fj xj _q

0ð Þ
j tð Þ þx2

j q
0ð Þ
j tð Þ ¼ a

Pn
k¼0

aj;k vtð Þk;

j ¼ 1; . . . ;N
ð32Þ

whose solution, based on Eq. (24), is

q 0ð Þ
j tð Þ ¼ a

Xn

k¼0

aj;kvk hj;k tð Þ ð33Þ

where

hj;k tð Þ ¼
Z t

0
hj t � sð Þ skds ð34Þ

Notably, the convolution integral in Eq. (34) can be more simply
determined than the one in Eq. (24), and is given as

hj;k tð Þ ¼ hj tð Þc Rð Þ
j;k tð Þ þ fjxjhj tð Þ þ _hj tð Þ

xd;j
c Ið Þ
j;k tð Þ ð35Þ

in which c Rð Þ
j;k tð Þ and c Ið Þ

j;k tð Þ are, respectively, the real and imaginary
part of cj;k tð Þ, defined as

cj;k tð Þ ¼ r�1�k
j C 1þ kð Þ � C 1þ k; rjt

� �� 
 ð36Þ
where rj ¼ �fjxj þ ixd;j, and C �; tð Þ is the incomplete Gamma func-
tion [50].

The numerical evaluation of Eq. (36) can be rather time con-
suming. However, expressing cj;k tð Þ for different values of k, and
after appropriate manipulation, the function hj;k tð Þ can be easily
determined using the following recursive relation

hj;k tð Þ ¼ � k
dj

2fjxj hj;k�1 tð Þ þ _hj;k�1 tð Þ
h i

þ tk

dj
; k P 1 ð37Þ

where dj ¼ f2j x2
j þx2

d;j, and the initial solution for k ¼ 0 is given as

hj;0 tð Þ ¼ � 1
dj

2fjxj hj tð Þ þ _hj tð Þ
h i

þ 1
dj

ð38Þ

Finally, taking into account Eqs. (7) and (33), the displacement
response of the beam can be directly given as
6

w x; tð Þ ffi a
XN
j¼1

Xn
k¼0

/
�
j xð Þaj;kvk hj;k tð Þ; n ¼ 3þ j ð39Þ

Next, corresponding velocity and acceleration responses can
also be obtained from Eq. (39) considering the derivatives of
hj;k tð Þ in Eq. (35). Specifically, performing these derivations directly
yields

_hj;k tð Þ ¼ _hj tð Þc Rð Þ
j;k tð Þ þ hj tð Þ _c Rð Þ

j;k tð Þþ
fjxj

_hj tð Þþ€hj tð Þ
xd;j

c Ið Þ
j;k tð Þ þ fjxjhj tð Þþ _hj tð Þ

xd;j
_c Ið Þ
j;k tð Þ

ð40Þ

and

€hj;k tð Þ ¼ €hj tð Þc Rð Þ
j;k tð Þ þ 2 _hj tð Þ _c Rð Þ

j;k tð Þ þ hj tð Þ€c Rð Þ
j;k tð Þþ

fjxj
€hj tð Þþh

v
j tð Þ

xd;j
c Ið Þ
j;k tð Þ þ 2 fjxj

_hj tð Þþ€hj tð Þ
xd;j

_c Ið Þ
j;k tð Þ þ fjxjhj tð Þþ _hj tð Þ

xd;j
€c Ið Þ
j;k tð Þ

ð41Þ
where, taking into account Eq. (36), the derivatives of the real and
imaginary parts of cj;k tð Þ are

_c Rð Þ
j;k tð Þ ¼ et fjxj tk cos txd;j

� � ð42:aÞ

_c Ið Þ
j;k tð Þ ¼ �et fjxj tk sin txd;j

� � ð42:bÞ
and

€c Rð Þ
j;k tð Þ ¼ et fjxj tk�1 kþ t fjxj

� �
cos txd;j

� �� txd;j sin txd;j

� �� 
 ð43:aÞ

€c Ið Þ
j;k tð Þ ¼ �et fjxj tk�1 kþ t fjxj

� �
sin txd;j

� �þ txd;j cos txd;j
� �� 


ð43:bÞ
3.2. Zero-order response of the moving oscillator

Once the dynamic response of the beam has been obtained, the
dynamic behavior of the moving oscillator can be determined solv-
ing Eq. (20.b), that can be rewritten as

€y 0ð Þ tð Þ þ 2fvxv _y
0ð Þ tð Þ þx2

vy
0ð Þ tð Þ ¼

XN
j¼1

f j tð Þ ð44Þ

where the function f j tð Þ takes into account the interaction effects
between the bridge and the moving oscillator and, considering Eq.
(31), is defined as

f j tð Þ ¼ 2fvxv _q 0ð Þ
j tð Þ/

�
j vtð Þ

þxv q
0ð Þ
j tð Þ xv /

�
j vtð Þ þ 2fvv /

� I

j vtð Þ

 �

ð45Þ

Solution of Eq. (44) can be determined by the Duhamel’s inte-
gral as

y 0ð Þ tð Þ ¼
Z t

0
hy t � sð Þ

XN
j¼1

f j sð Þ ds ð46Þ

where hy tð Þ represents the impulse response function of the moving
oscillator, given as

hy tð Þ ¼ 1
xdv

e�fvxv t sin xdv tð Þ ð47Þ

in which xdv is the damped natural frequency of the oscillator, that

is xdv ¼ xv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2v

q
.

Next, taking into account Eqs. (31) and (33) and substituting
into Eq. (45) yields
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f j tð Þ ¼ 2fvxva
Xn
k¼0

Xn
s¼0

aj;kas;kvkþs ts _hj;k tð Þ

þx2
va

Xn
k¼0

Xn

s¼0

aj;kas;kvkþs ts hj;k tð Þþ

2fvxva
Xn

k¼0

Xn�1

s¼0

sþ 1ð Þaj;kaj;sþ1vkþsþ1 ts hj;k tð Þ

ð48Þ

In this manner, Eq. (46) yields the approximate analytical dis-
placement response of the moving oscillator considering damping
and general BCs as

y 0ð Þ tð Þ ¼ x2
va

XN
j¼1

Xn

k¼0

Xn
s¼0

aj;kaj;svkþs I 1ð Þ
j;k;s tð Þ

þ 2fvxva
XN
j¼1

Xn
k¼0

Xn�1

s¼0

sþ 1ð Þaj;kaj;sþ1vkþsþ1 I 1ð Þ
j;k;s tð Þ

þ 2fvxva
XN
j¼1

Xn

k¼0

Xn
s¼0

aj;kaj;svkþs I 2ð Þ
j;k;s tð Þ

ð49Þ

where

I 1ð Þ
j;k;s tð Þ ¼

Z t

0
hy t � sð Þss hj;k sð Þ ds ð50:aÞ

and

I 2ð Þ
j;k;s tð Þ ¼

Z t

0
hy t � sð Þss _hj;k sð Þ ds ð50:bÞ

Notably, based on the expressions of the function hj;k tð Þ given in
a recursive form in Eqs. (37) and (38), explicit solutions of these
integrals can be obtained. Specifically, evaluating Eq. (50.a) for dif-
ferent values of s, and exploiting the properties of convolution inte-

grals, after several manipulations the function I 1ð Þ
j;k;s tð Þ can be

expressed recursively as

I 1ð Þ
j;k;s tð Þ ¼ � k

dj
_I
1ð Þ
j;k�1;s tð Þ � sI 1ð Þ

j;k�1;s�1 tð Þ þ fjxjI
1ð Þ
j;k�1;s tð Þ

h i

þ 1
dj
hy;sþk tð Þ; k P 1 ð51Þ

where

hy;sþk tð Þ ¼
Z t

0
hy t � sð Þssþk ds ð52Þ

whose solution is given as in Eqs. (37) and (38), appropriately sub-
stituting the coefficients appearing in hy tð Þ. Note that appropriate
terms required to initialize the recursive expression in Eq. (51)
are reported in Appendix B for sake of conciseness. Finally, consid-
ering the properties of the derivatives of the convolution integral,
Eq. (50.b) can be obtained in a straightforward manner as

I 2ð Þ
j;k;s tð Þ ¼ _I

1ð Þ
j;k;s tð Þ � s I 1ð Þ

j;k;s�1 tð Þ ð53Þ
Note that all the above reported integrals do not depend on the

employed BCs, since the pertinent coefficients aj;k appear explicitly
only in Eq. (49). Therefore, Eqs. (51)–(53) can be computed once
beforehand, thus greatly expediting the analyses.

3.3. Higher-order responses

Once the vertical displacement of the moving oscillator y 0ð Þ tð Þ
has been determined, a more accurate approximate expression of
the displacement response of the beam can be found considering
the higher-order expansions in Eqs. (21) and (22). In this regard,
taking into account only the first-order expansion, the terms
7

q 1ð Þ
j tð Þ can be obtained solving Eq. (21.a) that, as it can be seen,

approximately comprises the additional effect of the moving oscil-
lator on the vertical displacement of the beam, previously omitted
in Eq. (20.a).

Note that, a direct closed-form solution for q 1ð Þ
j tð Þ cannot be

determined due to the rather complex expression for y 0ð Þ tð Þ in Eq.
(49). However, considering the above reported novel analytical
solutions for y 0ð Þ tð Þ, a simple Duhamel’s integral approach can be
pursued, thus leading to the solution of Eq. (21.a) as

q 1ð Þ
j tð Þ ¼ �

Z t

0
hj t � sð Þ/

�
j vsð Þ€y 0ð Þ sð Þds ð54Þ

Clearly, based on Eq. (49), Eq. (54) can be also easily solved
numerically employing the standard numerical discretization pro-
cedures of the convolution integral implemented in any computa-

tional software. Further, once q 1ð Þ
j tð Þ has been obtained, the first-

order response of the moving oscillator displacement y 1ð Þ tð Þ can
be evaluated solving Eq. (21.b) following a similar approach.

Finally, taking into account Eqs. (7), and (19.a), a more accurate
solution of the displacement response of the beam, up to the first-
order term, is approximately given as

w x; tð Þ ffi
XN
j¼1

/
�
j xð Þ q 0ð Þ

j tð Þ þ eq 1ð Þ
j tð Þ

h i
ð55Þ
4. Applications

In this section, the reliability of the proposed solution for the
interaction problem of a damped beam subjected to a moving
oscillator is assessed. Specifically, the proposed approximate ana-
lytical solutions are here compared with those related to the com-
plete system (reference solution), obtained numerically solving the
coupled differential equations in Eq. (18). Several beam BCs have
been examined, showing the ability of the proposed approach to
capture efficiently the responses of the beam and the moving oscil-
lator in the different cases. In addition, results of Finite Element
(FE) method analyses are also presented as comparison for further
validation of the considered approach. In this regard, note that FE
data have been obtained in Abaqus software, modeling the entire
system with 3D elements for improved accuracy, using a total of
15,556 solid elements for the beam. Clearly, sensitivity analyses
have been previously performed for the FE solution to assess its
reliability.

Note that, for each of the considered cases, numerical analyses
have been carried out for different values of the beam’s and mov-
ing oscillator’s parameters to assess the range of validity of the
proposed approximate solutions. In this regard a reference set of
parameters has been assumed, considering those reported in
[11]. Specifically, the following data have been used: beam cross-
sectional area A ¼ 2m2, moment of inertia I ¼ 0:12m4, elastic
modulus E ¼ 27:5GPa, length L ¼ 25m, modal damping ratios
fj ¼ 0:0025 j ¼ 1; . . . ;Nð Þ, mass per unit length q ¼ 4800 kg=m,
mass of the moving oscillator mv ¼ 1200 kg (corresponding to a
mass ratio e ¼ 1%), spring constant kv ¼ 500 kN=m (corresponding
to a natural frequency xv ¼ 20:41 rad=s), damping ratio fv ¼ 0:08,
and velocity v ¼ 5m=s.

4.1. Simply supported beam

Consider the case of a beam simply supported at both ends,
crossed by a moving oscillator. This case has been thoroughly dis-
cussed in the literature, since it can capture the main features of a
bridge excited by a moving vehicle. In this regard, some approxi-
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mate analytical solutions have been reported in [11] for zero
damping condition for both the beam and the oscillator.

As far as the application of the proposed procedure is con-
cerned, the first mode shape can be determined as discussed in
the Appendix A, and is given in Eq. (A.9).

In Fig. 2 the displacement response of the mid-span of the beam
and of the moving oscillator are shown, considering the above
reported set of parameters. Specifically, in Fig. 2(a) proposed
approach approximate analytical solution (red line), obtained from
Eq. (39) using N ¼ 3, is compared with the reference solution,
obtained by numerical integration of system of differential equa-
tions Eq. (18) assuming N ¼ 5 (black dots), and results of the
enhanced first-order approximate solution in Eq. (55) (blue dashed
line). For sake of completeness, data obtained with the solution
proposed in [11], reported in Eq. (23), are also shown (blue dotted
line). Analogous results are reported in Fig. 2(b) for the response of
the moving oscillator.

As it can be seen, results of the proposed approximate analytical
solutions closely agree with the numerical solution of the complete
system, both in terms of displacement response of the beam and of
the moving oscillator. Clearly, as expected, Eq. (55) yields a more
Fig. 2. Analysis for the case of a simply supported beam: (a) Displacement response o

8

accurate solution with respect to Eq. (39). Further, small discrepan-
cies can be observed with respect to the FEM data, and this is due
to the inherent differences in the modelling procedure in Abaqus
software. Nevertheless, FEM data closely follow numerical results,
thus still assessing the accuracy of the proposed approach. Further,
Fig. 2(a) shows that the approach in [11] yields almost identical
results as those obtained by Eq. (35). On the other hand, Fig. 2(b)
shows a higher degree of discrepancy in terms of moving oscilla-
tor’s displacements between the solution in [11] and the numerical
results of the complete systems, due to the inherent additional
approximations involved in [11] related to the zero-damping
condition.

To further assess the accuracy of the proposed approach, addi-
tional analyses have been carried out varying the mass and the
velocity of the moving oscillator. Specifically, in Fig. 3 the
responses of both the beam and the moving oscillator are reported
for several values of the mass ratio e, obtained varying the moving
oscillator’s mass mv . Note that, since the proposed approach is
based on the main assumption of reasonably small oscillator-
beam mass ratio, these analyses have been carried out keeping
f the mid-span of the beam; (b) Displacement response of the moving oscillator.
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constant the value of xv to investigate only on the influence of the
parameter e.

As shown in Fig. 3, both the proposed analytical solution (red
line), and the first-order expansion solution in Eq. (55) (blue
dashed line), satisfactorily agree with the results of the numerical
integration of the equations of motion Eq. (18) (black dotted line),
for all the values of e. Clearly, as expected, greater accuracy is
achieved for smaller values of the mass ratio e, especially in terms
of the moving oscillator’s displacements.

Analogous analyses have been carried out considering several
values of the velocity of the moving oscillator (Fig. 4). As it can
be seen, the proposed approach results adequately match the
numerical data for all the considered values of velocity. Note that,
data in Fig. 4 are shown in terms of the position of the oscillator on
the beam to compare the results for several velocities.

An additional assessment on the accuracy of the proposed
approach can also be given considering the plot of the maximum
absolute displacement of the beam as a function of the velocity
of the moving oscillator. This is shown in Fig. 5 for several values
of the mass ratio e. Again, it can be observed that the analytical
Fig. 3. Response for several values of the mass ratio (simply-supported beam): (a) Disp
moving oscillator.
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solutions lead to almost the same results of the numerical integra-
tion of Eqs. (18) for all the considered values of e.

4.2. Beam with rotational springs

Next, consider the case of a beam connected with rotational
spring at both ends, characterized by equal rotational spring’s con-
stant r1 ¼ r2 ¼ r ¼ 108kN=rad, and crossed by a moving oscillator.
As far as the first mode shape in Eq. (31) is concerned, this is
reported in Eq. (A.10) in the Appendix A. Note that this case reverts
to the case of a simply-supported beam for r ¼ 0, and to the case of
a clamped–clamped beam for r ! 1. Therefore, it may more accu-
rately capture the behavior of a bridge crossed by a moving vehicle
when possible natural degradation and damages occurring at the
bridge supports are taken into account.

In Fig. 6 the displacement response of the mid-span of the beam
and of the oscillator are shown. Specifically, in Fig. 6(a) the first-
order expansion solution Eq. (55) (blue dashed line) is compared
with the numerical solution of the equations of motion Eq. (18)
(black dots), and the results of the approximate analytical solution
lacement response of the mid-span of the beam; (b) Displacement response of the



Fig. 4. Response for several values of moving oscillator’s velocity (simply-supported beam): (a) Displacement response of the mid-span of the beam; (b) Displacement
response of the moving oscillator.

Fig. 5. Maximum displacement of the beam with simply-supported BCs, as a function of the velocity for various mass ratio values.
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in Eq. (39) (red line). Analogous results are reported in Fig. 6(b) for
the vertical displacement of the moving oscillator.

As it can be observed in these figures, results of the proposed
approach closely agree with the numerical solution of the com-
plete system, thus validating the reliability of the proposed
method. Again, small differences can be observed with respect to
the FEM data, and this is due to the inherent differences in the
modelling procedure in Abaqus software. Nevertheless, FE data still
closely follow numerical results, thus assessing the accuracy of the
proposed approach. Further, again observe that the approximate
analytical solution in Eq. (39) also leads to reasonably good results,
although clearly Eq. (55) yields a more accurate solution.

Moreover, in Fig. 7 comparisons between the approximate ana-
lytical expressions (red line) and the numerical solutions of the
complete system in Eqs. (18) (black dots) are reported for different
values of the mass ratio e, again obtained keeping constant xv

while varying the mass of the moving oscillator mv .
As it can be seen in Fig. 7, the proposed approach can generally

capture the main features of the response of the system for all the
values of e. Notably, very good accuracy is achieved for lower val-
ues of the mass ratio. On the other hand, accuracy decreases when
the moving oscillator possess a larger mass, especially in terms of
Fig. 6. Analysis for the case of a beam with rotational springs: (a) Displacement respons
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y tð Þ. Thus, from these analyses it can be argued that the considered
approximate approach, and the related closed-form solutions,
could be employed for oscillator-beam mass ratio e lower than
1 %. For higher values of e, numerical solutions or higher-order
expansions would be required, especially for the response of the
moving oscillator’s displacement.

Further, an additional assessment on the accuracy of the pro-
posed approach for several values of the mass ratio is given in
Fig. 8. In this figure the maximum absolute displacement of the
beam is reported as a function of the velocity of the moving oscil-
lator. As it can be seen, the proposed approximate analytical solu-
tion in Eq. (39) leads to almost the same results of the numerical
solution of Eqs. (18) for all the values of e.

Finally, analyses have been performed varying the rotational
springs’ constant r, aiming to assess the validity and accuracy of
the approximate solution for different degree of stiffness of the
BCs. Pertinent results are shown in Fig. 9, where analytical solu-
tions (red lines) are juxtaposed with the numerical results of the
complete system in Eqs. (18) (black dots).

As it can be seen, the approximate analytical solutions satisfac-
torily match the numerical results for all the values of spring con-
e of the mid-span of the beam; (b) Displacement response of the moving oscillator.



Fig. 7. Response for several values of the mass ratio (beam with rotational springs): (a) Displacement response of the mid-span of the beam; (b) Displacement response of the
moving oscillator.

Fig. 8. Maximum displacement of the beam with rotational springs, as a function of the velocity for various values of the mass ratio.
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stant, although the accuracy of the involved approximation tends
to increase for higher spring stiffness.
4.3. Beam with general boundary conditions

As a last example, consider the case of an oscillator moving on a
beam connected at the left-end with a vertical spring (spring con-
stant k1 ¼ 109kN=m) and a rotational spring (spring constant
r1 ¼ 109kN=rad), while the right-end is simply-supported, that is
k2 ! 1 and r2 ¼ 0. This case is examined to assess the reliability
and applicability of the proposed procedure in dealing with more
challenging BCs. Note that, as previously mentioned, particular
attention should be paid to the initial condition of the beam, to
appropriate capture the effect caused by the arrival of the moving
oscillator on the left flexible support (see [28] for further details).
In this example, the moving oscillator reach the left-end of the
beam at the beginning of the observation, then crosses the beam
and suddenly leaves it after reaching the right-end. Therefore, in
this case, due to equilibrium condition, a jump in the acceleration
response of the beam is generated in t ¼ 0ð Þ. Further, as far as the
Fig. 9. Response for several values of spring stiffness (beam with rotational springs): (a)
the moving oscillator.
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first mode shape in Eq. (27) is concerned, this is reported in Eq.
(A.11) in the Appendix A.

In Fig. 10 the displacement response of the mid-span of the
beam and of the oscillator are shown. Specifically, in Fig. 10(a)
the first-order expansion solution Eq. (55) (blue dashed line) is
compared with the numerical solution of Eq. (18) (black dots),
and the results of the approximate analytical solution in Eq. (39)
(red line). Analogous results are reported in Fig. 10(b) for the
response of the moving oscillator.

As it can be observed in these figures, results of the proposed
approach closely follow the numerical solution of the complete
system, and the FEM data, especially in terms of beam displace-
ment. Further, again observe that the approximate analytical solu-
tion in Eq. (39) leads to sufficiently accurate results, although
clearly Eq. (55) yields a more precise solution.

In addition, analyses have been carried out for different values
of the mass ratio e, again keeping constant the value of the fre-
quency of the moving oscillator xv . Pertinet results are reported
in Fig. 11, where approximate analytical expressions (red line)
are juxtaposed to the data of the numerical solutions of the com-
plete system in Eqs. (18) (black dots).
Displacement response of the mid-span of the beam; (b) Displacement response of



Fig. 10. Analysis for the case of a beam with general BCs: (a) Displacement response of the mid-span of the beam; (b) Displacement response of the moving oscillator.
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As it can be seen in this figure, the proposed approximate ana-
lytical solution can generally capture the behavior of the response
of the system for lower values of e, especially in terms of beam dis-
placements. From these analyses it can be argued that the consid-
ered approximate approach, and the related closed-form solutions,
could be generally used for oscillator-beammass ratio e lower than
1 %. If higher values of e are employed, numerical solutions or
higher-order expansions would be required when the response of
the displacement of the moving oscillator is of concern.

Further, in Fig. 12 the maximum absolute displacement of the
beam is reported as a function of the velocity of the moving oscil-
lator, for several values of mass ratio. As it can be seen, again the
proposed approximate analytical solution in Eq. (39) leads to
almost the same results of Eqs. (18) for all the values of e, thus fur-
ther assessing the accuracy of the approach.

Finally, to assess the validity of the proposed approach for dif-
ferent degree of stiffness of the BCs, additional analyses have been
performed varying the vertical and rotational springs’ constants. In
this regard, pertinent results are shown in Fig. 13, where analytical
solutions (red lines) are juxtaposed with the numerical results of
the complete system in Eqs. (18) (black dots).
14
Figures show that the approximate analytical solutions mostly
follow the numerical results for all the analyzed cases. Clearly,
however, the accuracy of the involved approximation tends to
increase for higher spring stiffness, again leading to less accurate
results when low values of spring stiffness are employed, espe-
cially in terms of the moving oscillator’s displacement.
5. Concluding remarks

In this paper, a novel procedure is introduced for the determina-
tion of approximate closed-form expressions for the response of
beams endowed with general boundary conditions (BCs) and sub-
jected to a moving oscillator. Solutions are derived for both the
beam and the moving oscillator displacements in time-domain.
In this regard, the classical Euler-Bernoulli beammodel is assumed,
and the effects of damping in both the beam and the oscillator are
taken into account. Note that these expressions have been
obtained decoupling the originally coupled set of differential equa-
tions governing the response of the system. Specifically, this has
been accomplished approximately representing the solution as



Fig. 11. Response for several values of the mass ratio (beam with general BCs): (a) Displacement response of the mid-span of the beam; (b) Displacement response of the
moving oscillator.
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an expansion in terms of powers of the beam-oscillator mass ratio,
which is a generally small parameter. Further, the presence of gen-
eral BCs has been treated appropriately exploiting the use of mode-
shape functions of polynomial type, referred to as characteristic
orthogonal polynomial. In this manner, the coefficients of the poly-
nomials explicitly appear in the obtained analytical expressions,
thus rendering the application of the proposed approach particu-
larly straightforward for any chosen BC. On this base, closed-
form expression of the response of the system have been derived
for the zero-order expansion, which could be used to implement
higher-order solutions useful when larger masses of the moving
oscillator are employed.

Applications to three different possible cases of beam BCs have
been considered, and analyses have been carried out for several val-
ues of systems parameters, including different values of mass ratio
and velocity of the moving oscillator. The validity of the involved
approximations is addressed for the different analyzed cases. Fur-
ther, the comparison of the displacement responses determined
by the proposed approach vis-à-vis pertinent data obtained numer-
ically solving the original set of coupled differential equations, and
15
data of finite element analyses developed in a commercial software,
has demonstrated the accuracy and reliability of the proposed ana-
lytical expressions. As expected, results have shown that the accu-
racy of the proposed approach increases for smaller values of the
mass ratio, since this represents the main involved assumption of
the procedure. Specifically, for all the analyzed cases, it has been
seen that proposed approximate analytical solutions agree reason-
ably well with numerical results for mass ratio smaller than 1 %.
However, the accuracy may also vary depending on the selected
BCs, especially if flexible supports are adopted.

Clearly, the proposed procedure offers significant advantages in
determining efficiently, albeit approximately, the responses of the
beam-moving oscillator system. Further, considering the non-
negligible computational cost involved in the numerical integra-
tion of the original equation of motions, the herein presented solu-
tions could be exploited for performing computationally efficient
stochastic analysis when the irregular road profile is modelled as
a stochastic process. Lastly, analytical solutions in frequency-
domain could be also determined, which can be leveraged for
instance in the context of the modern techniques of structural



Fig. 12. Maximum displacement of the beam with general BCs, as a function of the velocity for various values of the mass of the moving oscillator.

Fig. 13. Response for several values of spring stiffness (beam with general BCs): (a) Displacement response of the mid-span of the beam; (b) Displacement response of the
moving oscillator.

A. Di Matteo Computers and Structures 280 (2023) 106989

16



A. Di Matteo Computers and Structures 280 (2023) 106989
health monitoring based on the vehicle-bridge interaction
approach.
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Appendix A. Determination of the first mode shape for general
BCs

In this appendix, the procedure described in [42] to determine
the first element of the COPs is briefly reported and applied to
the considered case of general BCs.

In this regard, the first member polynomial in the orthogonal
set is constructed so as to satisfy both the geometrical and natural
BCs of the beam. To this aim, considering the transformation of
variable x ¼ n=L, the BCs in Eq. (13) becomes

�k
�
1 /j 0ð Þ ¼ /III

j 0ð Þ
r
�
1 /

I
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j 0ð Þ;
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for the left boundary n ¼ 0ð Þ, and
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for the right boundary n ¼ 1ð Þ, where r
�
p ¼ rpL=EI and k

�
p ¼ kpL

3=EI,
with p being 1 or 2 (for left and right end, respectively).

Assuming the first beammode shape as a fourth-degree polyno-
mial as in Eq. (26), that is

u1 nð Þ ¼ a1;0 þ a1;1nþ a1;2n
2 þ a1;3n

3 þ a1;4n
4 ðA:3Þ

and applying the BCs in Eqs. (A.1) and (A.2), gives the mode
shape coefficients as
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Further, the first coefficient a1;0 can be found using the normal-
ization condition in Eq. (17), that in this case becomesZ 1

0
u2

1 nð Þ dn ¼ 1 ðA:8Þ

In this manner, substituting the pertinent values of the spring
stiffness coefficients in Eqs. (A.4-A.8), all the various mode shape
functions can be determined.

For instance, the first mode shape of a simply-supported beam

can be obtained assuming k
�
1 ¼ k

�
2 ! 1 andr

�
1 ¼ r

�
2 ¼ 0. Substitut-

ing these values in Eqs. (A.4-A.8), and taking into account Eq.
(30), the mode shape in Eq. (31) is
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Analogously, assuming k
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a beam with rotational springs at both ends can be determined as
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Finally, the case of a beam connected at the left-end with a ver-

tical and a rotational spring, and simply-supported at the right-end
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where C is a constant that can be found using Eq. (17).

Appendix B. Determination of the displacement response of the
moving oscillator

In this appendix, the terms required to initialize the recursive
relation in Eq. (51) are reported. Specifically, evaluating Eq. (50.a)
for k ¼ 0, Eq. (51) leads to the following expression
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After several manipulations, Eq. (B.2) leads to
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in which rv ¼ fvxv þ ixd;v , g1 ¼ fjxj � fvxv þ i xd;j þxd;v
� �

,
g2 ¼ fjxj � fvxv þ i xd;j �xd;v

� �
, and the overbar stands for com-

plex conjugate.
Next, evaluating Eq. (B.1) for s ¼ 0 yields
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and dv ¼ f2vx2
v þx2

d;v . Finally, evaluating Eq. (50.a) for s ¼ 0, Eq. (51)
leads to
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where, hy;k tð Þ given as in Eq. (52), can be expressed directly as

hy;k tð Þ ¼ � k
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þ tk

dv
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In this manner, the above reported equations can be employed

to find the expression of the function I 1ð Þ
j;k;s tð Þ through a recursive use

of Eq. (51), and thus the solution of the oscillator displacement in
Eq. (49).
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