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Abstract

The interaction between a light mode and a mechanical oscillator via radiation pressure in
optomechanical systems is an excellent platform for a multitude of applications in quantum
technologies. In this work we study the dynamics of a pair of optomechanical systems interacting
dissipatively with a wave guide in a unidirectional way. Focusing on the regime where the cavity modes
can be adiabatically eliminated, we derive an effective coupling between the two mechanical modes
and explore the classical and quantum correlations established between the modes in both the
transient and the stationary regime, highlighting their asymmmetrical nature due to the unidirectional
coupling. Noteworthy, we find that a constant amount of steady correlations can exist at long times.
Furthermore we show that this unidirectional coupling establishes a temperature gradient between
the mirrors, depending on the frequencies’ detuning. We additionally analyze the power spectrum of
the output guide field and we show how, thanks to the chiral coupling, from such spectrum it is
possible to reconstruct the spectra of each single mirror.

1. Introduction

Optomechanical systems, with light modes interacting with massive mechanical oscillators, have attracted a
considerable interest for their possible application in quantum technologies [1, 2]. Depending on the working
point, the optomechanical interaction can be used to cool the mechanical mode near to its ground state [3-8] (a
technique applied also to levitating nanospheres [9]), to generate squeezing [ 10—12] or to create entanglement
between optical and mechanical modes [13—15]. These configurations can be mixed in an appropriate way in
order to generate purely quantum states of the mechanical oscillators (e.g. generation of single phonon
states[16]).

A natural extension of the standard single mode - single mirror oscillators setups consists of several coupled
modes. We can distinguish two major and distinct setups. The first one is called Multimode optomechanical
system [17-21], and consists of several mechanical oscillators interacting with the same cavity. In
Optomechanical array instead, each mechanical oscillator interacts locally with its own cavity-mode but an
effective coupling between neighbouring mirrors is implemented by photons and/or phonons tunneling
[22-24].

In this work we propose the largely unexplored setup in which the cavity modes are dissipatively coupled via
aunidirectional waveguide [25-28] in a cascaded configuration [29-33]. This arrangement induces a non-
reciprocal interaction, at first between the cavities and then between the mechanical oscillators [34]. While
previous studies have explored similar setups, none of them has specifically addressed pure unidirectional
coupling [35]. For instance, in [36, 37], the authors study the synchronization between two resonators driven by
ablue detuned laser, which leads to a self-sustained oscillatory dynamics and in [38] the possibility of creating
non-reciprocal devices that control the flow of thermal noise towards or away from specific quantum devices in
anetwork has been explored. However, in spite of the above, the full potential of cascaded coupling between a
pair of optomechanical systems remains largely unexplored, especially when it comes to the effective coupling
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Figure 1. (a) Sketch of the model involving two optomechanical systems: Each system consists of an optical mode and a mechanical
mode, mutually interacting through the radiation pressure force induced by external laser power. We stress that these optomechanical
systems are coupled to a unidirectional waveguide. In this context, the operators g, ,, p, , represent the mechanical position and
momentum, while d 5, flltz are the creation and annihilation operators for the optical modes. The parameters yand « denote the
mechanical and optical decay rates, respectively. Furthermore, §2; , refer to the natural frequencies of the mechanical modes, and g
represents the coupling strength between the optical and mechanical modes due to radiation pressure. The amplitude of the coherent
driving of the laser is denoted as E. (b) Effective model describing the coupling between the mirrors, obtained by performing an
adiabatic elimination of the optical modes. Within this framework, the effective frequencies of the mechanical modes are denoted as
fog, and I‘ffg represents the effective decay rates. Moreover, A (as defined in equation (18)) represents the cascaded effective coupling
between the two mechanical modes.

between the two mechanical modes. To fill this gap, we derive the equations describing the effective coupling
between the two mirrors by adiabatically eliminating the cavity modes. We then characterise the correlations
established between the mirrors in terms of mutual information and quantum discord, the latter being the best
quantifier when one is interested in asymmetries between the two mirrors. Asymmetrical correlations like
quantum discord and EPR steering had been investigated in other optomechanical setup [39—42]. We show that
asymmetric non-zero correlations persists even in the steady state. Additionally, we explore the consequences of
the asymmetry in the coupling, arising from the unidirectionality, and its implications for establishing a
temperature gradient between the two modes. Notably, this temperature gradient vanishes in the case of
perfectly symmetrical bidirectional coupling.

This work is organized as follow: in section 2 we present our model and we introduce its Hamiltonian. By
employing Langevin equations we characterise the evolution of the system in terms of mean values and
fluctuations. The fluctuations are further analysed using Lyapunov equation for the covariance matrix. In
section 3, we derive an equation of motion for the effective dynamics of the two mechanical oscillators. This is
achieved by performing an adiabatic elimination of the cavity modes. In section 4, we investigate the correlations
between the two mechanical modes through the evaluation of mutual information and quantum discord.
Interestingly, we find that these asymmetric correlations (Discord) retain non-zero values even in the stationary
state, indicating the potential for establishing persistent correlations. In section 5, we show how, in the cooling
regime, the unidirectional coupling leads to the thermalization of the two mechanical modes at different
temperatures, depending on the frequency mismatch of the mirrors. This reveals the so far unexplored setup to
engineer a temperature gradient using the cascaded configuration. Section 6 focuses on the analysis of the power
spectra of the two mirrors and the output field mode, establishing the relationship between them. In section 7 we
study the stability regions of the parameters space, exploring when the system can exhibit multistability. Finally
in section 8 we draw our conclusions.

2. The system: two cascaded optomechanical cavities

Our system consists of two optomechanical mirrors each coupled to the same unidirectional waveguide. Such
mediated indirect interaction (see figure 1) leads to a cascade scenario in which the first system drives the
following one without back action. Each subsystem consists of a mechanical harmonic oscillator with mass m
and frequency €2; coupled to a cavity field by means of its radiation pressure. As €2;is much smaller than ¢/2L (cis
the speed of light and L stands for the cavity length) we can consider a single cavity mode [43, 44] and write the
following Hamiltonian for both subsystems:
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where d; is the cavity mode annihilation operator with optical frequency w, of the j-th subsystem and 4; ( }3j)
stands for dimensionless position (momentum) operators of mechanical mode. The term proportional to
g = w / L,/I/(m$) describes the optomechanical coupling, while the last term is the coherent input field with

frequency w;. The quantities E; are related to the input powers P;by E; = /2xP;/(fiwr) ) where k is the cavity
decay rate. In arotating frame at laser frequency wy, we define A = w, — wy and equation (1) becomes

ﬁQj A2, A2 . AT A
=> WA - g]q])a aj + T(q]. + b)) + ihE;(@a] — &) )
j
In the following we focus on the scenario in which the dynamics of the second optomechanical system is driven
only by the output field of the first cavity. Therefore, henceforth, we assume that the external laser pumps the
first cavity only (i.e. E;, = 0).

Due to the inherently open nature of our system, we consider that each mechanical mode is coupled to its
respective environment, which is assumed to be at a finite temperature [45]. Additionally, we account for photon
leakage from the cavities. Specifically, we assume that the optical dissipation occurs through a unidirectional
waveguide, resulting in a cascade-like coupling between the two optical modes mediated by the interaction with
the guide [34].

Following the standard input-output prescription of optical quantum Langevin equations ([46]), we
introduce the radiation vacuum input noise operator @ [47, 48] and the Brownian noise operator & ; [45] with
autocorrelation functions:

(@n(yaint (1)) = 6(t — ') (a)
({&(0), §(NY) = vy + D6 — ¢ (3b)

where 7; denotes the decay rate of the j-th mirror and 72; = 1/(exp(7£2;/kgT) — 1) in which kp is the Boltzman
constant and T'is the temperature of the mechanical modes’ bath. Although the cavity and the resonator are at
the same temperature, the cavity frequency is typically orders of magnitude larger than the mechanical
frequency, therefore the average number of photons in the optical environment is negligible. Based on the
preceding analysis, we can derive the following quantum Langevin equations for the field operators d;:

da,

E = ——[al, Hs] — Eal VR le (461)
dé\lz ~ AN N Ai
— = ——[d, Hs] — —d, — kdy — Jra™ 4b
5 h[ 2> Hs] e 1 K (4b)
and the mirror operators g, p,
dq. i
j )
— = _—_[4, H 5a
dt h[qj | o
ap i H A 2 b
E = _E[Pj) s] — Vij —JY fj (50)

Mean field equations and fluctuations Dynamics - The combined dynamics of the field-mirror system
resulting from equations (4) and (5) is nonlinear. To investigate the quantum characteristics of optomechanical
systems, a common method is to initially seek the mean field solution of the field and mechanical operators, and
subsequently analyze the linearized dynamics of quantum fluctuations around these average values.
Accordingly, we represent the operators as the sum of their average value (a cnumber) and a small quantum
fluctuation.

0=1(0) +[6—(6)] =0+ 60 (6)

This leads to the following set of non linear differential equations for the mean values

dQ;(1)
d]t = ijj(t) 7
dap;
;:t) =~ - %P® +1GOF g w
D _ B - id@ A + E 7
dt 2
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dAy(t)
dt
where we defined Aj(t) = A — gjQ;(¢) and Gj(t) = gA,(¥). Itis important to note the inherent asymmetry in
comparison to the bidirectional case (cfr. appendix B.1). Solving equation (7) and using equations (6) into
equations (4) and (5), we can write the following linearized set of equations for the fluctuations, where we keep
only terms O(66):

—%Az(t) — B (D) A (1) — KAL) (7d)

dég;
] A
— = Q;6p, (8a)
dsp, . R
_dtf = —064; + (Gf6a; + Gjdal) — v6p, — & (8b)
déa, _ iG164, — il 80y — Zoa, — yRa" (8¢)
dt 2
djiz = IGz(Séz — IAZ (5&2 — géﬁz — Ii(sal - \/Eﬁin (8d)

Covariance matrix and Lyapunov equation - Given that the set of quantum Langevin equation (8) is linear and
the quantum noise is Gaussian, we can fully characterize the quantum fluctuations dynamics in terms of the
covariance matrix C, whose elements are defined by Cj = 1/2(#;1; + il;i1;) with if = ®%:1 { qj, ﬁj, %, )7].} and
the cavity field quadratures as X = 1/+/2 (@ + a%), § = —i/ J2 (4 — a%). Itfollows that the C matrix obeys the
following Lyapunov equation [5, 49]:

dC(t)
dt

- ) (S 0 (N N
= S(1)C(t) + C(t)S(t) + N with § = (SR Sz)and N = (le Nz) &)

The block matrices entering in the drift (S) and diffusion (N) parts, reflect the unidirectionality of the model
(as can be seen comparing them to the ones of the bidirectional case cfr. appendix B.1):

o 9 o0 0

00 0 O
T -m@Gy o —k/2 A Koo -k o
Re(G) 0 —A; —r/2 00 0 —x
and
0 0 00 0000
0 y2a;+1) 0 0 0000
o - 11
N=1 0 w000k 0 (1)
0 0 0 K 000 K

3. Effective mirrors dynamics

The optomechanical coupling, combined with the coupling of the cavity modes to the unidirectional waveguide,
gives rise to an effective mediated interaction between the two mechanical modes. In the weak coupling regime
(Gj < k), we can explicitly derive an effective interaction by adiabatically eliminating the cavity field degrees of
freedom associated with the cavities. Indeed, if G; < x we can focus on evolution of mechanical operators b; and
b_;, defined through 64; = (bje %" + Eje"ﬂf' 1)/~/2 and 6‘5j =1 (E;emft — bje=™%")/\/2. By considering these
operators, we effectively eliminate the rapid timescale associated with the evolution of the cavity field [50]. From
equation (8), dropping counter-rotating terms, one obtains

dgj il oo et
— = G¥8a4; + G;6al) — Lbj — —
dt \/5 ( 177 7 J) 2 J \/E

3 (12)

The expressions for the cavity fields fluctuations can be found solving the respective equations in the frequency
domain by using O@t) = 1/27 L z:o O(w)e~ ™, Therefore we rewrite the last two of the equation (8) as

by (w) = X, (W)@ (W) VE + iG164,(w)) (13a)
b (w) = Xo, (W)@ (W)VE + G264, (W) — k6@ (w)) (13b)
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where we introduced the natural susceptibility of the optical modes Xa;
1
K2 —i(w— A)

Xg; (W) = (15)

The optical input noise can be neglected as it is small compared to the mechanical thermal noise, given that
the system evolves at room-temperature. So, back in time domain we obtain

San(t) = ﬁ_; f dwy,, () 83, (w)e " (15a)
bintt) = 2= [, ()(0,0) — wbi@)e (15b)

Thanks to the properties of convolutions in Fourier transforms, assuming that b; and E]T vary slowly in time,
equation (15a) become

8ai(t) = %(blxm(szl)e-’ﬂlf + by (— e (16a)

A Gy - ) _ ]
6a2(t) = %(bzxaz(Qz)e—tQZt + bZTX:Z(_QZ)elQZt)
ilﬁJGl

J2

By substituting these results into equation (12) and neglecting non-rotating terms, we derive the following
coupled equations of motion for the mirrors operators only:

(B Xy (2 X, (WM 4 By (=) (— e (16b)

db, yeff T ( ff 7) s de!

—L = i p — (T + L )by — 17

dt Ba T DY AN & (17a)
dby ey (reff + 1)5 — B, — —ieiwztg (17b)
o 5 02 2 > 2 > 1)01 5 o2

inwhich F;ff and Q;ff are the effective (induced by the adiabatically eliminated optical fields) decay rate and

mechanical frequencies, defined respectively as the real and imaginary part of | Gj|? (X, ) — X’:( —$))/2,and
7

A(€2y) is the effective cascaded coupling between the two mirrors (see figure 1), defined by

AW) = GG (—w)XE(—w) — GEGix, (@) Xy, (). (18)

These equations can be recast in a covariance matrix equation form (cfr. equation (9)) with i = ®?: 1 {Ej, E].T}. In
this case, the blocks entering in the drift S and diffusion N matrices turn out to be

_'Qe.ff_(pe.ff l) 0
182 ity ~A(Q) 0 )

Sj = Sk = ( *
0 et — (Fiff n %) 0 —A()

and

(@A + 1) 0 {00
Nj_( 0 v (2 + 1)) N”_(o 0)

Notice that the noise matrix N is diagonal due to the fact that we have dropped counter-rotating terms. So, as
said in the beginning, we have found that, looking on a timescale larger than the one describing the cavities
modes evolution, mirror’s interaction mediated by the cavities can be described as an effective coupling.

4. Mutual information and quantum discord

Once equation (9) is solved, we can analyse and conveniently characterise the mirrors correlations—both in the
transient and in stationary regimes—by means of the mutual information, which can be evaluated from the
covariance matrix, as shown in [51], in terms of its symplectic invariants and symplectic eigenvalues (see
appendix A).

As shown in figure 2, the time evolution of the mutual information is characterised by distinct phases. Ina
first phase the two mirrors do not develop correlations of any kind. After this brief transient, we see the
emergence of both quantum and classical correlations which however vanish in the next phase. The last phase,
however, is characterized by a finite amount of correlations as described by the plateaus in the mutual
information and in the discord represented in the plots in figure 2. Comparing this result with the temperature

5
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Figure 2. (Left) Mutual information between the two mirrors as a function of time in the cooling regime (A = 2;). The dotted line
refers to the case {2, = 0.75(;, the dashed line refers to the case 2, = €2, and the dot-dashed one refers to the case 2, = 1.25€2;. The
box in the right corner zooms on the long time region where is shown the establishment of steady state correlations (Right) Quantum
discord D(A|B) in the same cases considered for the mutual information. The box in the right corner shows a zoom of the discord
values on the long time region. For these plots the following parameters’ values have been considered: m = 150 ng, 2, /(27) = 1 MHz,
v/(@27m) = 1 Hz(redv;), T = 300K, L = 25 mm, x = 1.34 MHz, A = 1064 nm, and P; = 2 mW and time is expressed in units of
7 = 27/Q;. These values are consistent with the state of the art experiments and unless otherwise specified these are the ones
considered in all the shown results.
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Figure 3. Temperatures of mechanical modes, as defined in equation (20), as a function of time. The solid line refers to the temperature
of the first mirror, the dotted one refers to the temperature of the second mirror in the case €2, = 0.75¢2,, the dashed line represents
the temperature of the second mirror in the case 2, = €2, while the dot-dashed one represents the temperature of the second mirror
in the case 2, = 1.25Q,.

behaviour reported in figure 3 can be observed that the rebirth of correlations occurs subsequent to
thermalization of the second mirror. The amount of quantumness and, most importantly, the asymmetrical
nature (due to the unidirectional coupling) of such correlations can be characterized in terms of quantum
Discord [52, 53].

This different type of quantum correlations can be nonzero even in the case of separable states which implies
that some bipartite quantum states can show correlations that are incompatible with classical physics. For our
system we can adopt the Gaussian quantum Discord [54, 55]. Quantum Gaussian Discord is defined as the
difference between mutual information and classical correlations. Classical correlations are defined as the
maximum amount of information that one can gain on one subsystem by locally measuring the other subsystem
[51] and so, by this definition, quantum Discord is not symmetric with respect to the interchange of the two
subsystems. In particular in this case, where the coupling is unidirectional, the Gaussian discord is maximally
asymmetrical due to the fact that measuring the first subsystem one cannot recover any information about the
second one.

The quantum Discord D(A|B) plotted in figure 2 refers only to the one relative to the second subsystem
conditioned to the first, indeed performing a measure on the second mirror one can recover some information
on the first one, but the converse is not true. In fact D(B|A) is identically zero at all times. That is expected due to
the unidirectionality of the coupling. Furthermore also for the quantum discord there is a non zero value also in
the stationary state. Both mutual information and quantum Discord are plotted in figure 2 for three distinct

6
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Figure 4. (Left) Time at which the second mechanical mode reaches the stationary state as a function of its frequency (Right)
Temperature of the second mechanical mode in the stationary regime as a function of its frequency.

values of 2,, 2, = 0.7502, 2, = Q; and 2, = 1.252;, and it can be seen that they follow pretty much the same
behaviour, butin the resonant case (i.e. {2, = §2;) the correlations are much larger than in the other cases.

5. Finite temperature gradient

Here we will show that in the cooling regime, due to the effective unidirectional coupling, a temperature gradient
is established between the two mechanical modes. In fact in the cooling regime, i.e. A = (2;, the optical field
generates extra damping on the mechanical mode. Such optical damping, caused by radiation pressure, depends
on both the position Q and the speed with which the mirror changes its position. At t = 0 the phonons associated
to the mechanical oscillator motion are in a thermal equilibrium state. Then, the interaction between the
photons and the phonons, as described by the last term in equation (2), leads to a change of the phonon number
which fluctuates due to the coupling to its environment, consisting of a hot phonon bath at temperature T. The
goal of optomechanical (sideband) cooling is to reduce the amount of such fluctuations thereby cooling it down.
The mean energy of the mirrors is evaluated

h&2; 1
Ui(t) = —=({8a}(0) + (6p,(1)%) = ﬁQj(nfff(t) + E) (19)
with njeff (t) obtained by the solution equation (9) of covariance matrix as 1/2(Cy; + C,, — 1) for the first
mechanical mode and 1/2(Css + Cg — 1) for the second one.
The effective temperature of the movable mirrors are then given by
Y
ksIn(1 + 1/n57 (1)

T (1) = (20)

When the two mirrors have the same frequency, i.e. {2, = ), (figure 3), the steady state is characterised by a
higher temperature of the second mirror with respect to the first one. This is a consequence of the
unidirectionality of the coupling. Indeed, as shown in appendix, such temperature gradient is absent in the
bidirectional case.

To further investigate the properties of this temperature gradient, the temperatures of the second mirror
were evaluated varying its frequency. Due to the mismatch between the optical detuning and the frequency of the
mechanical mode in the second optomechanical system, which corresponds to a variation in the cooling
efficiency, the time at which the second mirror reaches a steady temperature value, t,, increases as shown in
figure 4 as long as the frequency is moving apart from the resonant case §2, = 2,

It can be seen in figure 5 that for different values of 25, varying the detuning between the pump and the first
cavity, one can always tune it in such a way that it creates a temperature gradient between the mirrors. The
stationary correlations between the two mirrors, evaluated as the mutual information in the stationary regime,
shows a peak in correspondence to the minima of the second mirror temperatures.

6. The steady state and the power spectra

One of the experimentally accessible quantities for the optomechanical systems is the power spectrum of the
cavity output field which allows to reconstruct the spectrum (and so the dynamics and the temperature) of the

7
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Figure 5. (Left) Temperature gradients of mechanical modes Tfﬁ — T]eff, where Tfff is defined as in equation (20), in the stationary
limit for different values of €2,. In particular, the curves refer to the cases 2, = 0.75€2;, 2, = §2; and 2, = 1.25€,. (Right) Mutual
information between the two mechanical modes in the stationary limit for the same values of €2,.

mechanical mirror [56]. We now show how in this cascaded configuration, the spectrum in output from the last
cavity contains informations about the two mirrors and allows to reconstruct their dynamics. In order to
evaluate the spectra of the cavity output and the two individual mirrors, it’s necessary to evaluate the stationary
state of the system. As shown in the previous sections, the linearized equations for the fluctuations equation (8)
can be solved in the frequency domain. The correlation functions equation (3) become

(@™ (w)art (W) = §(w + W) (2la)
N , hQ; ,
({&§w), &(WN}) = 27y coth 6w + W, (21b)
2kg T
while the equations for the fluctuations of cavity field modes are equation (134) and the equations for the
positions of the mirrors become
84,(w) = X;(@)(G;8a] (@) + GF6a;(w) + &(w)) 22)
where we have introduced the natural susceptibilities of the mechanical modes
&
@) = (23)

Q? — w? — iwy

The mirror’s position fluctuations can be expressed in terms of effective susceptibilities and noise operators:

64,(w) = X (W) & (W) (24a)
64,(w) = xS (w) €M (w) (24b)
with
off Xj(w)
; = 25
Xj (@) == i1GiX; () (g, (W) = X (—w) (25a)
Mw) = & W) — i (W) & WAW) (25b)

Note that the effective susceptibility of the mechanical oscillators Xj?ff (w) are modified by the radiation
pressure [3]. Furthermore, in the second of equation (244), the effective noise seen by the second mirror,
modified by the presence of the first, is made explicit. It is now clear how the position fluctuations of the first
(64,) of the two mechanical modes depends only on its local thermal bath, while the second one (64,) depends
also on the thermal bath of the first via the optical field.

In the same way, for the cavity field fluctuation we have

81 (W) = G Xy (W)X (W) & (W)
802 (W) = G X o, (W) XST (W) EST (W) — iG1EX, (W) Xy (W) XT (W) (W)

(26a)
(26b)

6.1. Power spectra
From equations (24a) and (264), thanks to equation (21a), it is possible to evaluate the position spectrum of the
two mirrors defined by
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Figure 6. (Left) Mirror’s Spectra - In this figure we plot the power spectrum equation (28) of the first mechanical mode and of the
second one for three different frequencies, from top to bottom, 2, = Q,/2,Q, = Q; and Q, = 38, /2. (Right) Output Spectra -
Spectrum of the output field from the second cavity. In this case P = 10~ *mW.

s =—=[ e (50,0 54,) @7)

obtaining
Siw) = @ + DIx;" (W) (28a)
SHw) =72 + DI @ — k281w x5 (@) PIAW) 2 (28b)

from which one can obtain the variances (6q]?> trough

+oo dw
A2\ A q
(64;) = j: o SH(w) (29)

We are also interested to the output power spectral density that would be detected in an homodyne detection
of the output fluctuations éx°% = 1//2 (6a°* + saTou) where

A" (w) = a™N(w) — VE@(w) — VR i (w) (30)

The spectrum of such fluctuations can be obtained as

Pout(w) — dQefi(erQ)t <xout(w)xout(Q)> (31)

1 f +00
N2 J-0
Using equation (21a) in the frequency domain one finds

2
P (w) ~ Y Kj(w) SH(w) (32)
j=1

with Kj(w) = |G;j Xa, (w) — G]?k X;kj(—w) [? / 2. From equation (32), it follows, as shown in figure 6, that the
output field from the second cavity contains information on the power spectra of both mechanical modes as it
simply proportional to the sum of the two mechanical power spectra. A similar result was obtained, for a single
optomechanical system, in [56]. Consequently, the peaks observed in the cavity’s output spectrum reflect those
of the individual mirrors’ spectra. Hence, one can infer the power spectrum of each individual mirror by fitting
the peaks of the spectrum, given that the power spectrum of an individual optomechanical mirror is well
approximated by a Lorentzian curve [2].
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Figure 7. (Left) Stability plot for the first mechanical oscillator. It shows the ratio between the power due to radiation pressure and the
power dissipated as a function of the amplitude of oscillation and the detuning between the pump and the cavity[58]. (Right) Stability
Graph for the second mechanical oscillator, it shows the ratio between the power due to radiation pressure and the power dissipated as
afunction of the amplitude of oscillation and the detuning between the pump and the cavity. In both the plots, the stable states are
those for which the power due to the radiation pressure P4, = G (|Aj|2Qj) equals the power dissipated Py;c = vy <Q]2>

The appearance of two peaks in the power spectra of the first mirror, as depicted in figure 6, is contingent on
the selected value for the first cavity’s pump power. Specifically, these dual peaks manifest at a particular power
pump value and progressively move farther apart as the power value increases.

7. Self-induced oscillations and multistability

Up until this point, our analysis has primarily focused on stable states by employing specific parameter values.
However, we will now delve into the nonlinear regime for the average values and demonstrate how to identify
stable states by tuning the system’s parameters. As the optomechanical coupling becomes stronger and damping
becomes weaker, the system’s nonlinearities become significant and cannot be neglected any longer. In this
regime, the system exhibits instabilities, leading the mirror to enter a state of what is known as ‘self-sustained
oscillations’. In the following, we will explore these nonlinear dynamics and outline the conditions required to
achieve stable states amidst the presence of these oscillations[57, 58]. In this regime the mean position of the
mirrors can be written as Q;(t) = Qj + a; cos(§;t). Putting this into equation (7), the exact solutions for the
cavity modes amplitude Aj, in the long time limit, can be written as

Ai(t) = exp I:iglozl%m:lzqunelﬂmt (33a)
1 n

Ay(t) = exp [igzazsmg()ﬂ] Z A;mlei(szl(n+l>+szzm)t (33b)

2 n,m,l

with
—
Al ZIn( & I)Xal(_an)El (34a)
O

At = g g =B 22 A - + D — amEy (34b)

) 0, O

where J,,(x) is the Bessel function of first kind and y o, are the susceptibilities defined in equation (15). The stable
states of the system are those for which the total time-averaged force vanishes and the power due to the radiation
pressure Pryg, = G (1A Q]> equals the power dissipated Py = v (Qf) By plotting the ratio P,,4/ Py for the two
subsystems as a function of A;and detuning A, we obtain diagrams that illustrate the parameter regions
corresponding to stable states. These diagrams, shown in figure 7, provide valuable insights into the values of A;
and A where the system exhibits stability.

Multistability - A characteristic feature of optomechanical systems is that, in the regime in which A; = 0, they
exhibit multistability. A given intensity of the light pumped in the cavity can lead to different steady states of both
cavity photon number and mechanical position [2, 59]. From equation (7), taking the stationary limit, we can
find the equations for the average number of photons in the two cavities Nji.e.
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Figure 8. Steady-state position of the cantilevers as a function of detuning for 2, = 3/48;(left), 2, = ;(center) and 2, = 5/
40 (right). Asknown in literature [2, 59], the positions of mirrors show multistability. In a single optomechanical system the
mechanical position have three stable solutions, but due to the unidirectional coupling the second one shows three or more stable
solutions depending on the detuning between the two mirror’s frequencies.
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—N; — N+ | A+ — N, — kN =0 35b
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and once found these, we can find the average cantilever positions as

g.
Q= 2IN: 36
= 6)
We note that the first of equation (35) has three roots, but, as shown also in [59], only two of these solutions are
stable solutions, specifically the lower and the higher ones while the middle one is unstable and can’t be observed
experimentally. Regarding the equation for the second cavity a richer behaviour is obtained, as shown in figure 8.

8. Conclusion

In summary, this study has provided a comprehensive characterization of the dynamics of two optomechanical
systems indirectly coupled via a chiral waveguide in a cascaded configuration. In the weak coupling regime, we
employed an adiabatic elimination technique to derive effective equations governing the mirror dynamics.

By examining the evolution of correlations between the two mechanical modes, we quantified their mutual
information and quantum discord over time. Remarkably, our results demonstrate that these correlations
persist even in the stationary state, indicating a non-zero value of steady correlations. Furthermore, we
investigated the steady-state temperatures of both mirrors for different values of §2, and various A parameters.
Our findings revealed the existence of a finite temperature difference between the two mirrors when employing
this indirect effective coupling approach. This suggests the exciting possibility of engineering a temperature
gradient between the mechanical modes using such a setup. Additionally, we analysed the power spectra of the
two mechanical modes and the output spectrum of the second cavity. Remarkably, our study shows that by
measuring the latter, it becomes feasible to reconstruct the spectra of the mirrors accurately. To ensure the
stability of the mirror dynamics, we explored the regions of stability as a function of the first cavity pump.
Moreover, we delved into the potential existence of multiple steady states for both cavity photon number and
mechanical position concerning a specific intensity of light pumped into the first cavity.

The findings regarding correlations, temperature gradients, spectrum reconstruction, stability regions, and
multiple steady states open up new possibilities for controlling and manipulating these complex systems for
various applications.
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Appendix A

A.1. Two modes mutual information and quantum discord
Asknown by [51] given a two-mode Gaussian state covariance matrix

C= (ST I;), (A1)

where A, Band D are 2 x 2 matrices one can define four local symplectic invariants, [, = det (A), L, = det (B),
L = det (D), I = det (C) and its symplectic eigenvalues

p In + I3 — 4l
+ = - -

. (A.2)

whereIn = I, + I, + 2Is.
Mutual information, defined for two quantum systems A and B as

Z(AB) = S(py) + S(pg) — S(pap) (A3)

(where S(p) refers to Von Neumann entropy) can be evaluated, in the case of continous variables gaussian states,
in terms of those symplectic invariants as

I(AB) = f(JI) + f(JR) — f(dy) — f(d-) (A4)

1 1 1 1
x)=|x+ —|lo (x—i——)—(x——)lo (x——). A5
f(x) ( 2) g 5 5 )log 5 (A.5)
Mutual information quantifies the correlations between two quantum systems. Quantum discord, interpreted

as the amount on quantumness of these correlations, is then defined as

D(A|B) = T(AB) — C(A|B) (A.6)

with

where
C(AIB) = max lS(pA) - ZPA(@” (A7)

is the total amount of classical correlations and ) ,E, = 1 is a positive operator value measurement (POVM).
In terms of symplectic invariants of covariance matrix, quantum discord can be evaluated as

D(AIB) = f(JL) + f(dy) + f(d2) + FNW), (A-8)
where
2
lzlu + 42+ (4L — DL — 1) ] o A — 1
— 2 =
W (4L, — 1) (h + 41)(1 + 4b) I3 (A.9)
hh+ I, — I} — (hh + Iy — I})* — 4L b1, sthersise
20
Appendix B

B.1.Bidirectional case

In order to consider the most general case in which the two subsystems are coupled through a bidirectional (non
chiral) waveguide it’s necessary to introduce two vacuum input noise operators, 44’ and /", one for each of the
direction of propagation in the waveguide, with autocorrelation functions:

@"ar () = 656t — ) with i,j=R,L (B.1)

and the same Brownian noise operators & ; defined in equation (2).
Once defined these new operators, one can straightforwardly follow the procedure described in the previous
sections and find the new set of non linear differential equations for the mean values

dqQ;(t)
dt

— Q;P(1) (B.2a)
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Figure B1. In this figure is reported the temperature of the two mirrors in the unidirectional (dashed and dot-dashed lines) and
bidirectional (solid line) as a function of time, for E; = E, = Eand y = 27 - 10* Hz. In order to compare systems with constant total
decay rate in the unidirectional case the decay rates were fixed with values kg = xand k; = 0, while in the bidirectional case

Kkr = k1 = K/2.Inthe first case one can see that a temperature gradient is established while in the latter is not present anymore.

dP,(t)

= = QO — B +IGOF g (B.2b)
% _ _gAl(t) — MDA — kAW + B (B.2¢)
% _ —gAz(t) — AN Ay (E) — KAL) + Es (B.2d)

and for the fluctuations one can again find a Lyapunov equation that the covariance matrix C of the system must
obey

dC(t
d—i) =S C@1) + C)S(t) + N (B.3)
in which the drift (S) and diffusion (N) matrices now become (cfr. equation (9))
Sl 812 (Nl NIZ)
S = and N = B.4
&n&) No N, B4
with
0o 9 0 0
00 O 0
Tl -mG) 0 -k A PP loo -k 0
Re(G) 0 —A; —x 00 0 =r
and
0 0 0 O 00 0 O
o @i+ 0 0 oo 0 o
NJ*() 0 2k 0 N127002/<; 0
0 0 0 2k 00 0 2k

It’s possible now to calculate the temperature as defined in equation (20) and, as shown in figure B1, in the
case in which the two optomechanical systems are pumped (i.e. E, = E; = E) it can be seen that no gradient of
temperature is established between the two mirrors.

Appendix C

C.1. Effective Lorenzian peak

The expression for the spectra in equation (28) can be rearranged, expliciting the expressions of Xeff Xi and o
in the form that, in the limit of w; =~ €2;, is a Lorenzian curve. Indeed if we write Xeff, expliciting the
susceptibilities we obtain

13
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Figure C1. Spectrum of the first mirror plotted using the exact expression (solid line) and with the one obtained approximating the
spectrum as a lorenzian (dashed line).

Xf'tff(w) _ X](CU)
f 1= 1G P, (@) Oy (@) — XE(—w)
Q,
= . . (C.D)
. . 1 1
Q) —w? —iw — llGjlzﬂj(:i(u}AJ‘) N ;i(erAj))
If we define Q]- (w)and ’yj(w) as
W= T T =
(£ + @- A& + @+ A7)
Y(w) =7+ 1G22 % (C2)
7 - 12 2 '
(£ + @- a9 + @+ a7)
we can rewrite equation (C.1) as
Q,
X W) = = - (C3)
Qi) — W = Fww
which in the neighborhood of w = 2 can be approximated by
Q,
X;ff(w) _ ] (C.4)

D) — W — FHQw

Being proportional to the squared modulus of x;ff, the spectra will have the shape of a Lorenzian curve as shown
in figure C1.
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