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Introduction

The 21st century has witnessed unprecedented technological ad-
vances that have revolutionised how we perceive and use data. This
era of rapid technological development has led to exponential growth
in collecting and storing vast amounts of information. With the ad-
vent of the digital age, the accumulation of data has become a phe-
nomenon. Over the past two decades, the evolution of information
technology has pushed us into a realm where traditional data stor-
age and management methods are no longer sufficient. The sheer
volume, velocity and variety of generated data required a paradigm
shift in our approach. This paradigm shift paved the way for high
and ultra-high dimensional data, encompassing diverse data types
such as text, images, audio and video. To understand the scale
of this data explosion, consider that the estimated amount of data
stored at the beginning of 2003 was only 5 exabytes (5 ∗ 1018 bytes).
Astonishingly, today, the same amount of data is generated in just
two days, highlighting the staggering rate at which data is being
generated (Sagiroglu and Sinanc, 2013). This unprecedented wave
of data has ushered in a new era of opportunities and challenges.
It has opened the door to cutting-edge technologies such as artifi-
cial intelligence, machine learning and big data analytics, enabling
us to gain valuable insights and drive innovation across industries.
However, it has also presented us with the immense challenge of
efficiently storing, processing and extracting meaningful knowledge
from these vast data repositories. To successfully navigate this era of
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information abundance, individuals and organisations must harness
the power of advanced data management techniques, data-driven
decision making and scalable infrastructure. By harnessing the po-
tential of big data analytics and using intelligent algorithms, we can
unlock the transformative potential of these massive data sets. As
we move further into the 21st century, the era of data-driven in-
sights promises to reshape the world as we know it. By harnessing
the ever-growing sea of data, we can revolutionise industries, solve
complex problems and make impactful advances that can poten-
tially improve the lives of individuals and societies on a global scale.
This issue encompasses diverse domains of application, as noted by
Donoho (2000): in recent years, there has been a significant increase
in investments made towards data gathering and processing mech-
anisms across various industries. This growth primarily stems from
developing, managing, and storing vast amounts of data for scien-
tific, medical, engineering, and commercial purposes.

The availability of vast amounts of data, coupled with the emer-
gence of new scientific problems, has fundamentally transformed the
field of statistical thinking and data analysis. In particular, the
rise of high-dimensional problems has made dimensionality reduc-
tion and feature extraction indispensable techniques (Fan and Li,
2006). So, the emergence of this challenge requires the develop-
ment of new statistical methodologies to adapt to this new paradigm,
which starkly contrasts with the one in which statistics was born. In
the classical conception, statistics used to work in areas where the
number of measured variables was small, or at least smaller than the
number of observations that made up a sample. Statistical accuracy,
model interpretability, and computational complexity are fundamen-
tal pillars of statistical procedures (Fan and Lv, 2010). Typically,
in conventional studies, the number of observations n significantly
exceeds the number of variables or parameters J . Consequently,
maintaining all three aspects simultaneously does not require com-
promising efficiency. However, traditional methods encounter signif-
icant hurdles when the dimensionality J exceeds the sample size n.
These challenges encompass the development of more efficient infer-
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ence techniques, the establishment of asymptotic or nonasymptotic
theory, the enhancement of interpretability for estimated models,
and the achievement of computational efficiency and robustness in
statistical procedures.

The scenario where the number of predictors significantly ex-
ceeds the number of observations presents numerous challenges. In
classification contexts, attempting to utilize all dimensions for classi-
fication purposes would be counterproductive, as it would introduce
noise and compromise the accuracy of the classification process (Fan
and Fan, 2008; Hall et al., 2008). This issue becomes particularly
pronounced when the dimensionality J greatly exceeds the sample
size n, leading to many difficulties that need to be addressed (Fan
and Lv, 2008). One of the primary challenges stems from unimpor-
tant predictors that exhibit a high correlation with the response vari-
able due to the existence of significant associated predictors. This
correlation often results in substantial spurious correlations, further
complicating the task of variable selection. Distinguishing between
the truly relevant and irrelevant predictors becomes inherently chal-
lenging in such cases. Addressing the issue of variable selection
becomes imperative in scenarios where the number of predictors is
overwhelmingly large. Identifying the subset of features that effec-
tively capture the distinguishing characteristics between two groups
is crucial for accurate classification. By carefully selecting the rel-
evant predictors and excluding the irrelevant or noisy ones, we can
improve the quality and reliability of the classification process.

Another context in which high and ultra-high dimensionality is
tricky is model estimation. When the number of predictors or inde-
pendent variables is much larger than the number of observations,
this poses significant challenges and can lead to several problems in
the estimation process. This is well-known as the curse of dimension-
ality (Donoho, 2000): as the number of predictors increases, the data
becomes sparser in the high-dimensional space. This sparsity makes
it difficult to estimate the relationships between predictors and the
response variable accurately. The model may struggle to capture
the true underlying structure of the data, leading to decreased pre-
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dictive performance and reliability. Moreover, estimating models
with high-dimensional data requires more computational resources
and can be computationally intensive. As the number of predictors
increases, the time and memory requirements for model estimation
and evaluation also increase significantly. Dealing with large-scale
datasets in high-dimensional settings can pose practical challenges
regarding computational efficiency.

Classical statistical methods are not well-suited to address these
emerging challenges in these cases. Utilizing such methods often ne-
cessitates compromising at least one of the three fundamental pillars
mentioned earlier. Addressing these challenges requires advanced
statistical techniques, regularization, and dimensionality reduction
approaches. By carefully selecting informative predictors, managing
model complexity, and employing appropriate strategies, it is possi-
ble to mitigate the adverse effects of high dimensionality and enhance
the accuracy and interpretability of the estimated models. Different
approaches exist to perform variable selection and produce sparse
models, like test-based (e.g. Breaux (1967); Hendry and Richard
(1987)) or screening-based approaches (e.g. Fan and Lv (2008)).

Outline of the thesis

This thesis first reviews of the best-known approaches to reduce the
complexity of the models; next, it introduces a new proposal for se-
lecting variables by a penalized approach.

The first chapter delves into the various methodologies employed
for variable selection, covering test-based, screening-based, and penalty-
based methods. It explains the fundamental principles behind each
approach and underscores their significance in statistical modelling.
The chapter also establishes the connection between these approaches
and the context of the thesis.

The second chapter focuses on presenting the core of the thesis:
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the Adaptive Non-Convex Penalty (ANP) function. It discusses the
formalization of this function within the Generalized Linear Models
(GLMs) and Gaussian Graphical Models (GGMs) frameworks and
for grouped variables. The chapter emphasizes the unique features
of the ANP function, striking a balance between convex and non-
convex penalties for enhanced computational efficiency and variable
selection.

The third chapter explains the methodology used to fit the penal-
ized models, encompassing the ANP function in its different varia-
tions. It introduces the Alternating Directions Method of Multipliers
(ADMM) algorithm as the primary estimation tool and elucidates
the role of the Local Linear Approximation (LLA) technique in sim-
plifying certain algorithmic steps.

This fourth chapter includes simulation studies conducted to
evaluate the performance of the proposed ANP function against es-
tablished penalization methods (LASSO, SCAD, MCP) across differ-
ent scenarios. The simulations cover scenarios within GLM, grouped
variables, and GGM frameworks.

The fifth chapter compares the proposal with traditional penal-
ized models using real datasets. The chapter evaluates the effective-
ness of the proposal in practical scenarios and discusses its applica-
tion in GLM and GGM frameworks.

The concluding chapter summarizes the key findings and contri-
butions of the thesis. It reiterates the significance of the proposed
ANP function in addressing variable selection challenges and high-
lights its performance in various contexts.
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Chapter 1

Variable selection

In the scientific literature, three primary approaches for variable
selection are commonly considered: test-based, screening-based and
penalty-based.

The first approach, known as test-based methods, involves auto-
mated statistical tests or computations to determine whether one or
more variables should be included or excluded in the model. These
methods were among the initial attempts at variable selection and
aimed to assess the significance of variables. They provide a ba-
sis for deciding which variables should be included by conducting
statistical tests or evaluating relevant quantities.

The second one, the screening-based approach, does not strictly
focus on variable selection but instead aims to rank variables based
on their importance. This approach is particularly useful in situa-
tions where the dimensionality is high, with a number of variables
significantly larger than the number of statistical units. Screening-
based methods often combine with other procedures to identify the
most influential variables in ultra-high dimensional contexts.

Lastly, the penalty-based methods, refers to models that apply
constraints on the estimated parameters to promote sparsity in the
resulting model. These constraints encourage selecting a smaller set

17



18 CHAPTER 1. VARIABLE SELECTION

of variables when the number of variables exceeds the number of
statistical units. By penalizing the model for including unnecessary
variables, penalty-based methods facilitate the identification of the
most relevant variables.

In the context of this thesis, the proposed method belongs to
the penalty-based approach. It utilizes penalties (or regularization)
terms to promote the variable selection and to encourage sparsity in
the fitted model.

1.1 Test-based approach

The primary aim of this method is to focus on explanatory and
descriptive objectives. These methods determine the variables’ sig-
nificance and understand the underlying structure and relationships
within the data. The goal is often to identify or to understand how
different variables contribute to the variation in the response vari-
able. The emphasis is on model interpretability and the ability to
draw conclusions about the relationships between variables.

The most intuitive method belonging is the All-possible-regressions
(Garside, 1965), that test all possible subsets of the set of poten-
tial covariates and selects the “best model” using some quantity
that measures the model’s goodness (Akaike Information Criterion
(AIC, Akaike (1974)), Bayesian Information Criterion (BIC, Schwarz
(1978)), Hannan-Quinn Information Criterion (HQIC, Hannan and
Quinn (1979)), Mallows’ Cp (Mallows, 1973)). If P potential covari-
ates exist, the possible subsets to be tested are 2P . Instinctively, this
approach is computationally inefficient and time-consuming if many
explanatory variables are available. In contexts where the number of
variables exceeds the number of observations, the maximum number
of estimated parameters must be less than or equal to the number
of observations in the sample.

An alternative is a Stepwise regression, which consists of the iter-
ative, step-by-step construction of a regression model involving the
selection of covariates to be used. Operationally, it consists of adding
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or removing potential explanatory variables in succession and check-
ing the gain obtained at each step. The problem with these meth-
ods is that they involve estimating several regression models, and in
high-numbered contexts, the time required can be considerable.

There are more efficient alternatives to be used in the literature,
the best known of which are stepwise regression (Breaux, 1967) and
Autometrics (Hendry and Richard, 1987).

1.1.1 Stepwise regression

The stepwise regression (Breaux, 1967) is one of the well-known tech-
niques but currently is no longer widely used. It consists of a multi-
step technique. Each step evaluates whether to include or remove a
variable based on a criterion defined by the person using the method.
There were two possible approaches in its initial formulation: either
estimate an initial null model and add a new variable at each step
(forward step) or estimate a model with all variables and remove
one at a time (backward step). At each step, the introduction or re-
moval of a variable is done based on some criterion, which can be the
minimization of some information criterion or considering the trend
of the corrected R2. It is important to note that the models identi-
fied by these stepwise methods need not be the same: Berk (1978)
shows that the differences among the subset selection procedures are
surprisingly small, with one exception, no more than 7%. Further,
these procedures do not attempt to identify the ‘best’ models in that
they do not necessarily locate the model with the minimum residual
sum of squares. The first criticism of the method is that it explores
only one of the possible paths of the model (since, at each step, one
can add or remove a variable). Moreover, a common misconception
when using stepwise regression is to assign greater importance to
variables that are included or removed early in the model-building
process. The order in which variables are included or removed does
not necessarily reflect their true importance. An initially included
variable may become irrelevant or redundant in the presence of other
variables. Therefore, it is important to avoid misleading interpre-
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tations based solely on the order of variable inclusion or removal in
stepwise regression. To overcome this problem, a used solution is to
evaluate, at each step, if one of the variables is present in the model
or add a variable simultaneously. However, this does not entirely
solve the problem. Hurvich and Tsai (1990) demonstrate with a sim-
ulation study the stepwise procedure in a simple setting often fails
to select the true data-generating paradigm and suffers from under-
coverage of the estimated parameter coverage rates. However, they
also conclude that this is a broader problem and not only typical of
this technique: they argue that this problem arises from using only
one dataset for model selection and inference. They argue that a
possible solution to this problem is to perform model selection and
inference on separate parts of the dataset. Derksen and Keselman
(1992) observed that the degree of correlation between the predictors
dramatically influences the rate of variables correctly present in the
final model. The degree of collinearity is the component that most
influences the final result’s goodness. For this reason, it is essential
to choose the variables carefully to be used in the stepwise regres-
sion, avoiding selecting too many variables. The same study shows
that the sample size is essential to the procedure’s success, but this
is not as important as the correct selection of the variables to be
considered. A mistake often made when using stepwise regression is
to consider the variables that are included (or removed) firstly in the
model as more (or less) important. This can be misleading since,
for example, it is not uncommon to find that the first variable in-
cluded is useless in the presence of other variables (Hocking, 1976).
It could happen that when a variable’s introduction and removal are
evaluated at each step, one of the first variables to enter the model
is removed. This can also be attributed to the correlation between
the variables considered.

1.1.2 Autometrics

Autometrics is a powerful approach to automated variable selection
in econometric models. Developed by Hendry and Richard (1987),
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it was designed to address the challenges associated with traditional
manual variable selection methods, such as subjectivity and poten-
tial misspecification.

Autometrics employs an automated search algorithm to facilitate
the iterative selection and evaluation of potential variables for model
inclusion. It adheres to a general-to-specific approach, starting with
a comprehensive General Unrestricted Model (GUM) encompass-
ing all feasible specifications. The algorithm systematically assesses
the significance and relevance of candidate variables through suc-
cessive iterations, progressively refining the model to a simpler and
more congruent specification. To address high-dimensional features
and non-identifiability (when the number of variables exceeds the
number of observations) in the General Unrestricted Model, Auto-
metrics employs a straightforward approach called “block search”.
This technique involves dividing the regressors into smaller blocks,
ensuring that the size of each block is less than the number of vari-
ables (J). Subsequently, tests are conducted on each block, leading
to the removal of irrelevant variables. The remaining blocks are then
merged, and the iterative process continues.

During the iterative process of model complexity reduction, Au-
tometrics employs various criteria to evaluate the importance of each
variable. Information criteria such as the AIC and BIC are consid-
ered to provide insights into the trade-off between model fit and
complexity. Additionally, Autometrics utilizes statistical tests, in-
cluding t-tests and F-tests, to assess the significance of individual
variables. Variables with meaningful effects on the response vari-
able are retained, while those deemed insignificant are discarded.
Moreover, Autometrics recognizes the significance of outliers and
incorporates their detection into the model selection process, us-
ing, for example, the Impulse Indicator Saturated Selection (IIS)
developed by Santos et al. (2008). This method adds a set of indi-
cators to the GUM for each observation. It applies tests in a block
search manner to identify and remove observations that are inconsis-
tent with the model, effectively identifying outliers. By integrating
these techniques, Autometrics ensures the identification and poten-
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tial exclusion of observations that do not align with the overall model
structure.

One of the key advantages of Autometrics is its ability to deal
with the problem of model overfitting. This occurs when a model be-
comes too complex and begins to capture noise or idiosyncratic data
features, leading to poor out-of-sample performance. By reducing
overly complex models, Autometrics helps prevent overfitting and
promotes more reliable and robust model selection. In addition,
Autometrics can handle endogeneity (i.e., when the relationship be-
tween variables is influenced by factors not adequately accounted for
in the analysis) and simultaneity (i.e., when the explanatory vari-
able is jointly determined with the dependent variable), which are
common challenges in econometric modelling. Its iterative search al-
gorithm considers the potential presence of endogenous variables and
adjusts the model specification accordingly. This feature makes Au-
tometrics particularly suitable for complex economic models involv-
ing interdependencies between variables. Another notable strength
of Autometrics is its flexibility in dealing with structural breaks or
regime shifts. Traditional econometric models often assume con-
stant relationships over time, which may be false. Autometrics al-
lows the inclusion of dummy variables or structural break indicators
to capture relationship shifts, ensuring more accurate and dynamic
modelling. Despite its many advantages, Autometrics is not without
its limitations. The automated nature of the procedure means that
the researcher must interpret the results carefully and be cautious in
making conclusions. While Autometrics greatly simplifies the vari-
able selection process, it still requires careful consideration of the
underlying theory, data quality, and potential omitted variable bias.
In addition, Autometrics assumes that the true data-generating pro-
cess is well approximated by the candidate variables available for
selection. If important variables are not included in the initial pool
of candidates, Autometrics may fail to identify them, resulting in a
misspecified model. Therefore, it is crucial to be careful in select-
ing candidate variables to ensure an accurate representation of the
underlying relationships. Autometrics is available as an R package
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named gets (Pretis et al., 2018).

1.2 Screening-based approach

Screening methods represent a class of alternative techniques that
provide an intuitive and effective solution to the task of variable
selection, especially in the context where J >> n. The main goal is
to improve computational efficiency and manage the dimensionality
of the data, particularly in ultra-high-dimensional contexts. These
methods aim to reduce the feature space to a manageable size.

Introduced by Fan and Lv (2008) and subsequently extended,
these methods are based on measures of association between the
dependent variable and potential regressors. In this approach, vari-
ables are ranked according to their marginal association with the
response variable, allowing for the rapid identification of promising
candidates for inclusion in regression models. The convenience of
the screening-based methods lies in their computational efficiency,
enabling the rapid reduction of high-dimensional feature spaces with-
out the exhaustive computational burden.

However, it is essential to note that this approach does not di-
rectly select variables to include in models. Instead, it progressively
refines the candidate set by eliminating the less important variables,
leaving the selection of the final model to subsequent procedures
(e.g. with a penalty-based approach). This solution demonstrates
particular strength when dealing with situations where the number
of variables greatly surpasses the number of observations, a scenario
that challenges conventional selection methods.

1.2.1 Sure Independence Screening

The Sure Independence Screening (SIS, Fan and Lv (2008)) tech-
nique is a feature selection method that evaluates the importance of
each feature independently, primarily based on its correlation with
the response variable. Features with stronger correlations are consid-
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ered more important. One of the key advantages of SIS is its ability
to maintain model sparsity, ensuring that only a subset of the avail-
able features is included in the selected model. This is particularly
valuable in high-dimensional data scenarios. SIS also possesses the
”sure screening property”, which guarantees that important features
are included with high probability, provided specific conditions are
met. This property makes SIS a reliable technique for identifying
relevant variables. After reducing the dimensionality with SIS, tra-
ditional variable selection methods can be applied to the reduced
feature space. This combination of techniques allows for effective
feature selection and model building in complex data analysis tasks.

However, SIS has some limitations. The most important is that it
requires setting a threshold for variable selection, which determines
the number of excluded variables. The choice of this threshold can
be somewhat arbitrary and may benefit from optimization through
techniques like cross-validation or other model selection methods.

The Iterative Sure Independence Screening (ISIS) is an extension
of the Sure Independence Screening technique designed to improve
variable selection accuracy while addressing the challenge of select-
ing weakly correlated variables. ISIS takes an iterative approach
to variable selection: it considers the correlations between features
and the residuals obtained from a model that primarily relies on
the already selected variables. This conditional approach allows for
a more refined ranking of variables, considering the dependencies
among predictors. The core idea of ISIS aligns with the broader
concept of reducing false positives in variable selection. Consider-
ing variables’ conditional correlations within the selected subset en-
hances the screening process and provides a more accurate selection
of relevant features.

1.2.2 Reduction of False Positive Rate

To mitigate false positive results, which often plague screening meth-
ods, a promising approach is to employ a resampling technique sug-
gested by Fan et al. (2009b). This technique involves a simple yet
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effective strategy: randomly splitting the samples into two halves.
From these halves, two sets of active variables, denoted as Â1 and
Â2, are derived.

The key insight here is that if both Â1 and Â2 exhibit a cer-
tain property related to screening, then the composite set Â also
possesses this property. On the contrary, Â contains considerably
fewer falsely selected variables. This reduction in false positives can
be attributed to the rarity of an unimportant variable being ran-
domly selected twice within the vast, high-dimensional space. Thus,
Â effectively minimises the number of false positive variables.

Under specific exchangeability conditions, as explained by Fan
et al. (2009b), it can be established that the likelihood of selecting
at least r inactive variables is exceedingly low when n is substantially
smaller than J . This is particularly applicable to scenarios discussed
in the preceding two sections.

1.2.3 Covariate Assisted Screening and Estima-
tion

The Covariate Assisted Screening and Estimation (CASE, Ke et al.
(2014)) is a method proposed to address the challenges of variable
selection when dealing with rare and weak signals and a non-sparse
Gram matrix. The method is designed to exploit sparsity in the
Gram matrix while mitigating the issues introduced by sparsifying.

CASE begins by constructing a sparse graph called the ”Graph
of Strong Dependence” (GOSD) using the Gram matrix G. This
graph captures the relationships and dependencies between the de-
sign variables. This strategy effectively reduces the problem’s di-
mensionality while retaining most of the signals. Unlike brute-force
screening of all possible submodels, CASE uses information from
G to decide which size-m submodels to consider. CASE includes a
size-m submodel in the screening list if the m corresponding nodes
in the GOSD form a connected subgraph. In other words, CASE
screens submodels based on the connectivity of nodes in the graph,
which allows for more efficient screening. This method is designed
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for scenarios where signals are rare and weak. It adapts to the chal-
lenges posed by these types of signals and the specific characteristics
of the Gram matrix.

1.3 Penalty-based approach

The penalty-based approach primarily aims to create parsimonious
models that balance the trade-off between model complexity and
predictive accuracy. These methods focus on selecting variables
contributing to the model’s predictive performance: they are par-
ticularly valuable in prediction contexts.

To overcome some of the theoretical limitations of the other ap-
proaches, the literature has focused on using sparse estimators de-
rived from the idea of adding an appropriate penalty function to the
objective function. If a penalty function is “well-defined”, the model
can perform model estimation and selection simultaneously. The
sparsity assumption is formalized by saying that the J-dimensional
vector of parameters, denoting by ξ ∈ Ξ, has a sparse structure,
meaning that exists a set A ⊂ {1, ..., J} such that ξ̊j ∈ A iff ξj 6= 0.

The basic idea of the penalized approach is to maximize the
“loss function” of the model to the data (i.e., to maximize the fit
of the model to the data), adding a “penalty” component that is
a function of the estimated parameters. Let us denote a generic
convex objective function by f(ξ), such as residual deviance, log-
likelihood or check function. Penalized models are usually grounded
on estimating parameters and minimizing a new objective function

ξ̂ = arg min
ξ

f(ξ) + pλ(|ξ|),

where pλ(|ξ|) is a penalty function whose statistical properties of

the estimator ξ̂ are reflected.
λ is the tuning parameter, and the choice of it is crucial in pe-

nalized likelihood estimation. When the penalty parameter λ is set
to 0, all variables are selected, which can lead to an unidentifiable
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model when the number of variables J exceeds the sample size n.
On the other hand, when λ is very large, and the penalty function
satisfies certain conditions, no variables are selected. The optimal
choice of λ lies between these extreme values. The value of λ con-
trols the complexity of the selected model. A larger λ tends to result
in a simpler model with smaller variance in the estimation, while a
smaller λ leads to a more complex model with smaller bias. Balanc-
ing these biases and variances allows for an optimal choice of λ, often
determined using techniques like multi-fold cross-validation. Wang
et al. (2007a) found that generalized cross-validation selects models
containing all important variables but may include some unimpor-
tant ones with nonzero probability. On the other hand, the model
selected using BIC achieves model selection consistency and an ora-
cle property, which means it correctly identifies the true model with
high probability. When choosing a penalty, it is essential to consider
model misspecification since missing true predictors or misspecifying
the distribution family can lead to errors. Lv and Liu (2014) pro-
posed a semi-Bayesian information criterion (SIC) to address this
issue and improve model selection accuracy.

The literature on penalty functions is now boundless, and con-
ducting an exhaustive review of them would require dedicated work.
See, for example, Fan and Lv (2010) or Desboulets (2018) for broad
perspectives on high-dimensional statistical problems. As can be
guessed, the optimal inferential properties of ξ̂ depend heavily on
the penalty function. This leads to formalising which properties
guarantee optimal properties for the estimator. Formally, an esti-
mator produced by a proper penalty function should enjoy the three
properties stated by Fan and Li (2001):

1. sparsity: the estimator can reduce the number of parameters,
thus setting 0 for the noise-source parameters; a sufficient con-
dition is that arg minξ |ξ|+ p′λ(|ξ|) is positive;

2. continuity: the estimator is continuous in the data; in other
words, a slight change in the data should not result in a sig-
nificant change in the estimates; a necessary and sufficient
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condition for the penalty function to be continuous is that
arg minξ |ξ|+ p′λ(|ξ|) = 0;

3. unbiasedness: the estimator is nearly unbiased for large pa-
rameters; a sufficient condition is that limξ→∞ p′λ(|ξ|) = 0.

The first and second conditions imply that a penalty function
must be discontinuous at the origin to meet the requirements.

The authors further introduce the concept of the oracle prop-
erty, which is crucial to assess sparse estimator. To meet the oracle
property asymptotically, the estimator must fulfil the following con-
ditions:

• Identifying the correct subset of non-zero coefficients: the esti-
mated coefficients should correctly identify the subset of non-
zero coefficients, denoted as {Â = j : ξ̂j 6= 0}, which should
match the true subset of non-zero coefficients denoted as A.

• Optimal convergence rate: the estimator should possess an op-

timal estimation rate, given by
√
n(ξ̂A−ξA)

d−→ N(0,Σ), where
Σ represents the covariance matrix based on the knowledge of
the true subset model.

When satisfied by a sparse estimator, these properties indicate
that it performs optimally in identifying the correct non-zero co-
efficients and achieving the optimal estimation rate concerning the
true underlying model. From a computational perspective, penalty
functions should be chosen so that the resulting optimization prob-
lem is straightforward to solve. Focusing on the penalties able to
perform variable selection, it is possible to divide the penalty func-
tions into two classes, defined according to the geometric features
of the penalty function, i.e. convex and non-convex. Table 1.1 lists
some examples. Figures 1.1, 1.2 and 1.3 show the penalty functions
together with their derivatives and the threshold operator. Figure
1.4 portraits the penalties function for 2 coefficients.
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1.3.1 Convex penalty function

Convex penalties were the first functions to be proposed and have
the advantage of being easy to optimise due to their mathematical
properties, allowing efficient algorithms. However, they have the
disadvantage of providing biased estimates, which can affect the ac-
curacy of the results.

The Least Absolute Shrinkage and Selection Operator (LASSO)
is undoubtedly the most popular convex penalty function. It is
a special case of the more general penalty function, the Bridge
penalty function, proposed by Frank and Friedman (1993) and stud-
ied deeply by Fu and Knight (2000). As seen from Table 1.1, the
LASSO can be obtained from the Bridge penalty function by setting
γ equal to 1, i.e.

pλ (|ξ|) = λ|ξ|.

The LASSO estimator encourages both shrinkage and selection,
providing a balance between model simplicity and predictive accu-
racy. It enjoys excellent computational properties: stable algorithms
can be easily implemented and do not require complex optimizations.
An example is the Least Angle Regression (LARS) algorithm Efron
et al. (2004): it provides the whole solution path as a function of
the tuning parameter λ. Another very used algorithm is the Co-
ordinate Descent (Friedman et al., 2010b): it sequentially updates
coefficients cyclically and separately, maintaining the other coeffi-
cients as constants. Augugliaro et al. (2013) propose a method that
addresses monotonically decreasing sparsity for outcomes modelled
by an exponential family. This generalizes the equiangular condition
in a generalized linear model, where the Fisher information plays a
crucial role. While the computation of solution paths is non-trivial,
the method demonstrates favourable comparisons with other path-
following algorithms.

On the other hand, the estimator suffers from a non-negligible
bias proportional to the tuning parameter λ: the LASSO penalty
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enjoys the properties of sparsity and continuity but not unbiasedness
because

lim
ξ→∞

p′LASSO,λ(|ξ|) = λ.

Several authors have carefully investigated the LASSO model
consistency (Fu and Knight, 2000; Zou, 2006; Zhao and Yu, 2006):
broadly speaking, the LASSO recovers the true set A under specific
conditions on the covariance among covariates. In particular, Zou
(2006) shows that the inequality below

|cov(XĀ, XA)cov(XA)−1signA| ≤ 1,

called irrepresentable condition or neighbourhood stability (Mein-
shausen and Bühlmann, 2006), must hold for LASSO to be con-
sistent in variable selection where X can be the set of J covariates
or the set of J variables for which the partial correlation structure
is studied. The inequality is intended component-wise, and signA is
the vector of signs of the true parameter values. The asymptotic re-
sults provide insights and guidance for utilizing LASSO as a feature
selection tool, assuming that the standard regularity conditions on
the design matrix, as presented in Fu and Knight (2000), are satis-
fied. So, verifying whether the Irrepresentable Conditions hold for a
given dataset is crucial. If these conditions are not met, regardless
of the λ value, LASSO may not accurately select the appropriate
model.

The LASSO estimator exhibits a bias proportional to the size of
the tuning parameter λ. This bias contributes to increased error in
the estimator. Consequently, the LASSO estimator tends to select
smaller values of λ during model selection, as it aims to mitigate
the bias-related issues to reduce the mean squared error (Fan and
Lv, 2010). However, opting for a smaller λ value leads to selecting a
more complex model. This complexity arises from the trade-off be-
tween reducing bias and controlling the number of selected variables.
Consequently, the LASSO estimator often includes numerous false



32 CHAPTER 1. VARIABLE SELECTION

positive variables in the chosen model. This phenomenon can be at-
tributed to the inherent bias of the LASSO estimator, which drives
the preference for smaller λ values and, subsequently, the inclusion
of additional variables that may not be truly significant.

Zou (2006) proposed a solution to address certain limitations of
the LASSO method by introducing a modified version called the
Adaptive LASSO (AdaLASSO). He proposes the Adaptive LASSO
as a solution to address the inconsistency issues observed in the vari-
able selection process of the traditional LASSO method. The Adap-
tive LASSO achieves variable selection consistency using a weighted
LASSO penalty. This means that instead of assigning the same tun-
ing parameter value for all coefficients, the Adaptive LASSO allows
different λj , such that λj = wjλ, for each coefficient. The weights
are data-dependent and carefully chosen to optimize the variable
selection performance. Zou (2006) define the weight vector as

w =
1

|ξ̂|γ
,

where ξ̂ is a root-n–consistent estimator of the true coefficient, usu-
ally coming from the unpenalized estimator (if n > J), and γ > 0.
For this reason, the Adaptive LASSO is a two-step approach. By
introducing this adaptively weighted penalty, the Adaptive LASSO
can estimate the coefficients using different intensities of shrinkage.
Note how this allows some of the characteristics of non-convex penal-
ties to be enjoyed while retaining some of the advantages of convex
penalties.

A notable advantage of the Adaptive LASSO is its computational
efficiency. It can be solved using efficient path algorithms like those
employed in the traditional LASSO method. This also ensures that
the Adaptive LASSO can be applied to large-scale problems without
sacrificing computational feasibility.

One key advantage of the Adaptive LASSO is its “oracle prop-
erty,” which implies superior statistical performance w.r.t. LASSO.
However, its computational efficiency sets it apart from other ora-
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cle methods. Unlike other penalty functions that enjoy the oracle
property, the computational cost of Adaptive LASSO is comparable
to that of LASSO. The estimation process involves solving a convex
optimization problem based on an initial estimator, and the compu-
tational complexity remains the same as that of the LASSO. (Huang
et al., 2008).

It is worth noting that while the Adaptive LASSO enjoys the
oracle properties, which indicate its excellent performance when the
true underlying model is known, optimal prediction performance is
not automatically guaranteed.

1.3.2 Non-convex penalty function

The most well-known penalties for this group are SCAD (Fan and
Li, 2001) and MCP Zhang (2010a).

Non-convex penalty functions can overcome some of the limita-
tions of convex penalties. They can potentially provide almost unbi-
ased solutions while allowing variable selection. On the other hand,
there are two primary challenges in this context. First, computa-
tional issues arise, given the difficulty of optimizing a non-convex
function. Second, there is the possibility of encountering multiple
local solutions. It’s crucial to note the interconnection between these
two problems.

Two factors make a convex objective function desirable. First,
convexity guarantees that any algorithm that converges to a criti-
cal point of the objective function also converges to the only global
minimum. Second, convexity guarantees that ξ̂ is continuous w.r.t.
λ, which decreases the number of iterations the algorithm needs to
converge. Additionally, this makes selecting a suitable regulariza-
tion parameter value less difficult. From a statistical point of view,
convexity can also be preferred. Without it, ξ̂ is not necessarily con-
tinuous for the data, which means that a small change in the data
could result in a significant difference in the estimate (Breheny and
Huang, 2011).

Defining coordinate subspaces as a subspace of RJ (where each
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component is referred to as a covariate), a possible solution to check
what the global optima might is to consider the union of coordi-
nate subspaces, which allows examining the global optimality. So,
the union of all-dimensional coordinate subspaces of RJ is used to
investigate the global optimality of ξ̂. However, it is challenging to
demonstrate the global optimality of a local maximizer when J >> n
(Fan and Lv, 2011; Bühlmann and Meier, 2008).

Numerous algorithms have been proposed in the literature to
address penalized likelihood optimization issues using non-convex
penalties. Despite having fast processing times and relatively easy
implementation, none of these algorithms can address the case of
multiple local optimums. The LLA (Zou and Li, 2008) and coordi-
nate descent algorithms (Breheny and Huang, 2011) are not guaran-
teed to reach a global minimum, especially when λ is small. Despite
having a non-convex penalty component, it is still possible for the
objective function to be convex for ξ, under certain condition that
changes for different penalty functions. Gasso et al. (2009) claimed
that while a single iteration is undoubtedly computationally inex-
pensive, the optimality of such a plan is debatable because conver-
gence to a local or global minimum of the optimization problem is
not ensured. For this, the authors propose an algorithm based on
the Difference of Convex (DC) functions programming (Horst and
Thoai, 1999): a non-convex objective function is divided into the
difference of two convex functions, and the resulting problem is then
solved using a primal-dual strategy. Although the method ensures
convergence to a local optimum, it does not ensure that it is the
global optimum. In fact, from numerical studies, the authors be-
lieve that the algorithm being stuck in some “bad” local minimal is
the primary cause of the worse performance.

Yet another crucial consideration is the non-separability of some
of this penalty from the tuning parameter λ. Some penalties are
separable from the tuning parameter, i.e. pλ(·) = λp(·). The sepa-
rable penalties are preferable from a computational perspective be-
cause path-following algorithms can be used, making it possible to
quickly compute the entire regularization path. In contrast, the
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path-following algorithm cannot be used for non-separable penal-
ties, and the proposed algorithm appears to be much less effective
for approximating all regularization paths (Bühlmann and Meier,
2008).

The first non-convex proposal was proposed by Fan and Li (2001),
which introduces a penalty function called the Smoothly Clipped
Absolute Deviation (SCAD) penalty

pλ (|ξ|) =


λ|ξ| if |ξ| ≤ λ,
2γλ|ξ|−ξ2−λ2

2(γ−1) if λ < |ξ| < λγ,
λ2(γ+1)

2 otherwise.

This penalty function is designed to improve upon the properties
of both the L1 penalty and the hard thresholding penalty functions.
As can also be seen graphically in Figures 1.1 and 1.2, the SCAD
penalty in the neighbour of ξ is exactly LASSO, depending on λ;
thereafter the degree of shrinkage decreases until it is exactly zero.
It can be visualized as a quadratic spline function with knots in
λγ and λ. The SCAD penalty offers several advantages over other
penalty functions. Firstly, it avoids excessive penalization of large
parameter values. Additionally, it ensures a continuous solution,
which is desirable in many practical scenarios. The authors indicate
that with the appropriate selection of regularization parameters, the
proposed estimators perform on par with the oracle procedure for
variable selection, enjoying the three properties of sparsity, continu-
ity and unbiasedness.

Kim et al. (2008) studied SCAD’s properties when J >> n, a
case where assessing whether a solution is sub-optimal is more diffi-
cult. This shows that the prediction accuracy is inferior to the oracle
estimator, partly due to the sub-optimal selection of the regulariza-
tion parameter. Moreover, they provide sufficient conditions under
which the global optimum of the SCAD penalty is asymptotically
equivalent to that of the oracle estimator. Although this result is in-
teresting, the conditions are relatively strong, assuming that J ≤ n.
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The Minimax Concave Penalty (MCP) is similar to that of SCAD:
it is non-convex, but the derivative of the penalty function decreases
from the beginning, as shown in Figure 1.2. The penalty is defined
as

pλ (|ξ|) =

{
λ|ξ| − ξ2

2γ if |ξ| ≤ λγ,
1
2γλ

2 otherwise.

In his work, Zhang (2010a) presents the MC+ algorithm, a new
method for variable selection in high-dimensional linear regression.
MC+ combines the MCP with a penalized linear unbiased selection
(PLUS) algorithm. It overcomes biases in the LASSO and compu-
tational costs of subset selection. MCP achieves consistent variable
selection without assuming strong conditions, especially when the
number of variables is much larger than observations. It demon-
strates a high probability of correct sign matching, attains conver-
gence rates for coefficient estimation, estimates noise levels, and es-
tablishes continuity conditions. Simulation results validate MCP’s
effectiveness.

The MCP employs a specific formula to balance concavity and
convexity, and it aims to minimize a metric of maximum concav-
ity under certain conditions. These conditions ensure unbiasedness
and selection features. The MCP operates by achieving a trade-off
between unbiasedness and concavity through regularization.

The presence of the additional parameter γ gives rise to an un-
broken sequence of penalty and threshold operators, ranging from
γ → ∞ (representing the soft threshold operator) to γ → 1+,
corresponding to the hard threshold operator (Mazumder et al.,
2011). This property establishes the MCP has a continuous spec-
trum, bridging the domains of soft and hard thresholds.
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Figure 1.1: The four penalty functions. The values used for the
additional parameters are γBridge = 0.7, γSCAD = 3.7, γMCP = 3,
wAdaLASSO = 0.5 and the tuning parameter is λ = 1.
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Figure 1.2: The derivatives of the four penalty functions, displayed
over ξ > 0. The additional parameter values are set as γBridge = 0.7,
γSCAD = 3.7, γMCP = 3, wAdaLASSO = 0.5 and the tuning parameter
is λ = 1.
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1.3.3 Other penalty function

The penalty functions described are the best-known and most stud-
ied. There are also countless other proposals.

Breiman (1995) introduces the Non-Negative Garrotte (NNG) as
a novel method in subset selection regression. The penalty function
is defined as

pλ (|ξ|) =

(
1− λ

ξ̂OLS
2

j

)
The method is scale-invariant, and its performance is particularly

noteworthy when a significant proportion of the true coefficients are
non-zero. Comparatively, it performs as well or better than the com-
petitors (known in 1995) in predictive accuracy. Simulation results
highlight its stability and ability to find accurate predictors. While
the NNG estimates models with more non-zero coefficients than con-
ventional subset selection, the gains in accuracy compensate for the
increase in complexity.

Candes et al. (2008) propose a penalty function that encourages
sparsity more effectively than the traditional LASSO. The penalty
function they introduce is a weighted logarithmic sum of absolute
values that provides a more aggressive penalty for nonzero values
than the LASSO, particularly for values close to zero. This encour-
ages the optimization algorithm to push more coefficients to exactly
zero, promoting sparsity. This approach aims to strike a balance
between the sparsity-promoting properties of the Hard thresholding
(which counts the number of nonzero entries but is computationally
challenging) and the convexity and efficiency of the LASSO.

Lv and Fan (2009) presents the Smooth Integration of Counting
and Absolute Deviation (SICA)

pλ (|ξ|) = λ
(a+ 1)ξ

a+ ξ
,

where a > 0 is a shape parameter. It provides a unique method
to finely adjust feature sparsity, considering both feature presence
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and coefficient magnitudes. It achieves a balanced compromise be-
tween Hard thresholding and LASSO with an adjustable additional
parameter.

Zhang (2010b) introduces the Capped-L1 penalty defined as

pλ (|ξ|) = λmin(a, |ξ|), a ≥ ξ.

This function encourages certain parameters to be zero while
allowing others to retain their original magnitudes. The regular-
ization increases linearly with the magnitude of the coefficients up
to a predefined threshold or “cap.” Beyond this cap, the penalty re-
mains constant, preventing the coefficients from diminishing further.
Capped-L1 effectively controls the sparsity of the solution, striking
a balance between shrinking some coefficients towards zero while
preserving the importance of others.

Belloni et al. (2011) introduces the Square-Root LASSO: this
method overcomes the limitations of the conventional LASSO by
formulating it as a conic programming problem. This allows for effi-
cient algorithmic solutions. The proposal evaluates the performance
of the square-root LASSO through Monte Carlo experiments, com-
paring it to the traditional LASSO and related methods.



Chapter 2

The Adaptive
Non-Convex Penalty
Function and the
frameworks

As discussed in the first chapter, the primary objective is to address
the challenge of variable selection. To achieve this goal, we present a
novel penalty function to carry out variable selection. This chapter
introduces the new penalty function designed to improve the variable
selection process.

The following sections will first focus on formalizing our penalty
approach; it occupies a position in the spectrum of penalty functions
close to MCP and SCAD, striking a balance between the advantages
of both convex and non-convex penalties. This equilibrium enables
us to preserve the beneficial properties associated with non-convex
penalty functions, including enhanced variable selection, while also
harnessing the computational benefits of convex penalties. Some
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comparisons are presented in the last chapter. Then, we will delve
into the Generalized Linear Models (GLM) and Gaussian Graphi-
cal Model (GGM) domains. Within the GLM framework, we will
also specifically formulate the penalty function for grouped variables.
Once we have established this formal framework, we will proceed to
introduce our novel penalty function.

2.1 Methodological proposal

We define the Adaptive Non-Convex Penalty function (ANP) acting
on the generic model parameter ξj ,

pλ(|ξj |) = λ
√

2πνΦ

(
|ξj |
ν

)
. (2.1)

where λ > 0 is the usual tuning parameter, Φ(·) is the standard
Normal cdf and ν is an additional scale parameter that affects both
computational and inferential aspects. ν influences the “degree of
nonconvexity” of the penalty. It determines the amount of bias of
the resulting estimator. However, it turns out that ν also affects, to
some extent, the non-uniqueness of the solution. More specifically,
a large ν ensures the uniqueness of the solution, but the estimates
will be biased. On the other hand, a small ν can lead to severe non-
convexity, causing possible local optima in the resulting penalized
likelihood. However, as we will discuss in Section 3.6, for any λ-
value it is possible to find a lower bound for ν, denoted by νλ,min,
such that the solution is unique for any ν(λ) ≥ νλ,min. This turns
out to be a non-trivial advantage, as the non-convex penalties suffer
from the non-uniqueness issue when the degree of non-convexity of
the penalty function dominates the degree of convexity of the loss
function.

It is worth stressing that the choice of the standard Normal dis-
tribution is not due to some assumption about the distribution of
coefficients but only to the penalty shape.
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The Fan and Li (2001) conditions discussed in Section 1.3 are
fulfilled. In particular, the absolute value of the parameter ensures
the singularity at the origin so that the penalty can perform the
variable selection as in Table 1.1; moreover the non-convexity, ob-
tained at small ν, ensures unbiasedness of the non-zero estimates as
in SCAD and MCP. However, with respect to SCAD and MCP, the
proposed ANP (2.1) offers some additional advantages:

1. it is multiplicative respect to λ, namely pλ(·) = λ p(·) making
the penalty shape independent of λ unlike SCAD and MCP
penalties whose shape itself does depend on λ (and also on the
additional γ, see Table 1);

2. is infinitely differentiable throughout the domain, except one
point of discontinuity in zero; in particular, the second deriva-
tive is also continuous, which leads to some advantages (e.g.
on the computation of standard errors);

3. it is very flexible, i.e. the amount of non-convexity can be
easily tuned by the additional parameter ν.

In fact, it is easy to see that as ν →∞ the first derivative of the
proposed penalty (2.1) approaches to the sign function

lim
ν→∞

p′λ(|ξj |) = λ sgn(ξj),

which is exactly the LASSO. Figures 2.1 and 2.2 show the shape
of the ANP penalty functions for three different ν-values, along with
the first derivative. The proposed ANP, as ν varies, moves be-
tween two limiting cases: convex, i.e. LASSO, and a non-convex
penalty. The penalty takes the form and characteristics of a non-
convex penalty for intermediate values, and it exhibit some of the op-
timal features of SCAD and MCP penalties (nearly unbiased) while
keeping the LASSO appealing from a computational point of view.

While the proposed penalty function can be applied to different
frameworks wherein sparseness and unbiasedness are requested, we
will discuss its application in GLM’s, grouped variables’ and GGM’s.
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Figure 2.1: The shape of the ANP for different values of ν.

2.2 Generalized Linear Model framework

We assume that the ith observation of the outcome of interest, de-
noted by yi, is drawn from a distribution belonging to the family of
exponential dispersion models (Jørgensen, 1987), meaning that the
probability distribution function takes the following form:

f(yi;ϑi, φ) = exp

{
yiϑi − b(ϑi)

a(φ)
+ c(yi, φ)

}
,

where a(·) and c(·, ·) are specific functions, whereas b(·) denotes the
cumulant generating function. In the jargon of exponential disper-
sion models, ϑ ∈ R and φ ∈ R+ are called canonical and dispersion
parameter, respectively, and are related to the expected value and
variance of Yi by the following identities:

E(Yi) = b′(ϑi) = µ(ϑi), V (Yi) = a(φ)b′′(ϑi) = a(φ)V (ϑi),

where µ(·) and V (·) are called mean and variance function, respec-
tively. GLMs postulate that a J-dimensional vector of covariates
xi = (xi1, . . . , xip)

>, affects the expected value of the response Yi by
the known link function g(·),

g{E(Yi)} = x>i β = ηi,
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Figure 2.2: Derivative of ANP using ν 1 (dashed line), 3 (continuous
line) and 10 (dotted line).

where β is the vector of regression coefficients and ηi is the linear
predictor.

Using the notation introduced in Fan and Li (2001), the penalized
log-likelihood takes the form (Fan and Li, 2001)

Lλ(β) = `(β)−
J∑
j=1

pλ(|βj |),

where `(β) denotes the usual log-likelihood and pλ(|βj |) the penalty
function. In GLM framework, a lot of algorithms have been proposed
for estimating models with LASSO penalty function: an example are
the Least Angle Regression (LARS) algorithm (Efron et al., 2004)
and the Differential Geometric Least Angle Regression (dgLARS)
(Augugliaro et al., 2013), providing the whole solution path as a
function of the tuning parameter λ. Another popular algorithm is
the Coordinate Descent (Friedman et al., 2010b), which continuously
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updates coefficients cyclically and separately, maintaining the other
coefficients as constants.

Various optimisation algorithms have also been proposed for non-
convex penalty functions: approximations such as Local Quadratic
Approximation (LQA) (Fan and Li, 2001) and Local Linear Ap-
proximation (LLA) (Zou and Li, 2008) have been proposed; we will
discuss these deeply in Chapter 3. Other contributions include the
PLUS algorithm by Zhang (2010a), different version of Coordinate
Descent (Mazumder et al., 2011), and some algorithms which relies
on coordinate descent algorithms (Breheny and Huang, 2011).

In this framework, we can write our proposal as

pλ(|βj |) = λ
√

2πνΦ

(
|βj |
ν

)
.

Moreover, the standard errors for the estimated parameters can
be easily derived as we simultaneously estimate parameters and se-
lect variables. In accordance with established practices in likelihood-
based modeling, we can employ the sandwich formula as an estimator
for the covariance of the estimates of β̂Â. That is

ˆcov(β̂Â) = {∇2`(β̂Â) + Σλ(β̂Â)}−1 ˆcov(`(β̂Â))

×{∇2`(β̂Â) + Σλ(β̂Â)},

where Σλ(β̂Â) is a diagonal matrix with diagonal elements

λ exp{−
β̂2
Â

2ν2
}
β̂Â
ν2
.

This formula exhibits reliable accuracy, especially when dealing with
moderately sized samples.

2.2.1 Grouped variable

The formalization so far assumes that each variable is associated
with only one coefficient. However, the explanatory variables, such
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as gene expression research or basis spline, may sometimes be organ-
ised into groups. When a ”grouped” structure exists in the covari-
ates, variable selection should account for that. Here, the challenge
is to select relevant groups of variables that collectively contribute to
explaining the response variable. A model may also include grouping
to use previously acquired information with scientific value.

Following Huang et al. (2012), we consider a common J-factor
regression problem:

Y =

J∑
j=1

Xjβj + ε,

where Y is an n× 1 vector, Xj is an n× pj matrix correspond-
ing to the j-th predictor group, βj is the pj-dimensional coefficient
vector, ε ∼ N(0, σIn), and pj denotes the number of factors within
the j-th covariate group. Here, the response variable is centred,
and each Xj is orthonormalized using Gram-Schmidt orthonormal-
ization, equivalent to group-level standardization.

In this context, selecting important variables translates into iden-
tifying essential groups of variables or factors. Traditional variable
selection methods are designed primarily for individual variable se-
lection and may not be suitable for group-factor selection. In ad-
dition, these methods may select more factors than necessary, and
their solutions may depend on how the elements are represented.
Indeed, Huang and Zhang (2010) introduced the concept of strong
group sparsity to evaluate the signal recovery performance of the
group LASSO. They found that group LASSO outperforms stan-
dard LASSO when the signal is strongly group-sparse due to the
stability associated with a group structure and requires a smaller
sample size.

Let us define the generic penalized objective function for grouped
variables to be optimised
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Lλ(β) = `(β)−
G∑
g=1

p(‖βg‖; cgλ, γ). (2.2)

Here, p(·) represents a versatile penalty function, and its char-
acteristics directly influence the properties of the estimator. The
parameter γ is an optional parameter that allows adjustments to
the penalty function but is not always provided.

Notably, in the generic objective function expressed in (2.2),
when pg = 1 for all G, it reduces to the well-known objective func-
tion without grouped variables. Furthermore, it’s worth noting that
(2.2) can be used to estimate a penalized Generalized Linear Model.

Different specifications of the penalty function lead to variations
in the model and influence the properties of the estimator. For in-
stance, Bakin et al. (1999) introduced the group LASSO along with
a computational algorithm. Subsequent advancements in group se-
lection methods and algorithms were made by Yuan and Lin (2006).
The group LASSO, which incorporates the L2 norm of coefficients
associated with groups of variables into the penalty function, stands
as a natural extension of the LASSO method. This extension re-
tains computational advantages due to its convex nature, ensuring
the objective function possesses a unique optimum. Several alter-
native penalty functions have been adapted to accommodate data
with a group structure. For instance, Antoniadis (1997) delved into
block-wise shrinkage techniques for regularized wavelet estimation
in non-parametric regression problems. Their study explored vari-
ous methods for shrinking wavelet coefficients within their natural
blocks, encompassing block-wise hard and soft thresholding rules.

Wang et al. (2007b) introduced a group SCAD penalisation method
for selecting variables with time-varying coefficients in functional re-
sponse models. In a review article, Huang et al. (2012) extended the
concept to include 2-norm group SCAD, 2-norm group MCP, and
2-norm group bridge penalties. They demonstrated that the MCP
variant of this penalty function exhibits the desirable oracle prop-
erty. This property implies that the estimator has the potential to
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precisely identify the true underlying model, representing an ideal
scenario.

Depending on the context, individual group factors may or may
not possess direct scientific significance. In cases where specific fac-
tors within groups lack individual scientific importance, the primary
focus often shifts toward selecting groups as a whole rather than
individual factors. This concept, often called ’bi-level selection,’
involves considering both significant individual variables and signifi-
cant groups when individual variables are relevant. Various methods
have been proposed in the literature to facilitate this dual selection
process, targeting not only groups of variables but also coefficients
within these groups. Two notable approaches are additive penal-
ties (Friedman et al., 2010a) and composite penalties (Breheny and
Huang, 2009).

In the case of additive penalties, authors augment the objective
function with a secondary penalty function, enabling the selection
of both groups and individual variables. Conversely, the concept
of composite penalties presents an alternative perspective. It de-
composes the penalty functions associated with groups of variables
into a composite structure comprising two components: an internal
penalty function (fI), which penalizes coefficients within groups, and
an external penalty function (fO), which penalizes entire groups.

Notably, if the internal penalty function can effectively select spe-
cific coefficients, the global penalty function shrinks some coefficients
within groups to zero. Conversely, the coefficients within groups are
cancelled out collectively. Furthermore, researchers have derived a
local coordinate descent algorithm to facilitate this approach.

To adapt our penalty function for data structured into groups,
we shift the focus from individual coefficients to the L2 norm of
coefficient groups. Consequently, the penalty function in equation
(2.1) is redefined as:

p(‖βg‖; cgλ, ν) = cgλ
√

2πνΦ

(
‖βg‖2
ν

)
. (2.3)
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This is the grouped Adaptive Non-Convex Penalty (grANP).
Here, the coefficient cg is calculated as the square root of pg to
account for variations in the sizes of grouped variables.

Following the framework introduced by Breheny and Huang (2009),
the outer penalty fO corresponds to the Adaptive Non-Convex Penalty,
while the inner penalty fI takes the form of a ridge penalty. More-
over, this approach allows for considering distinct νg values, one for
each of the G different groups.

Indeed, the penalty function (2.3) does not shrink individual co-
efficients towards zero. However, if a bi-level selection approach is
deemed advantageous, one can explore the use of the Adaptive Non-
Convex Penalty as the inner penalty fI , defined as:

p(‖βj‖; cjλ, ν) = pλ,νO

 Kj∑
k=1

pλ,νI (|βk|)

 .

Here, the function p represents the ANP, and the additional pa-
rameter ν is indexed by I and O, allowing for the use of different
values in the two components. It’s worth noting that in this thesis,
we won’t delve deeply into exploring this bi-level formulation. Once
the scopes of application of the new penalty function are defined,
the challenge arises of estimating the model coefficients in different
cases, as well as making the appropriate selection of the additional
parameter ν. For this discussion, we defer to the next chapter.

2.3 Gaussian Graphical Model framework

Let Y be a J-dimensional random variable with joint distribution
f(y) and V = {1, . . . , J} is the associated set of vertices. Each
element in this set corresponds to a random variable within the
model. A probabilistic graphical model can be defined as the triplet
{Y, f(y),G}, where G = {V, E} is a graph whose edge set E encodes
the conditional dependence and independence structure among the
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J random variables. That is, Yh and Yk are stochastically indepen-
dent given the other random variables if (h, k) 6∈ E . The interested
reader may refer to Lauritzen (1996) for a comprehensive treatment
of probabilistic graphical models.

The Gaussian Graphical Model is grounded on the assumption
that Y ∼ Np(µ,Σ), i.e.

f(y;µ,Σ) = (2π)−J/2|Σ|−1/2 exp{−1/2(y − µ)>Σ−1(y − µ)}, (2.4)

where µ is the vector of expected values of Y , whereas Σ is the co-
variance matrix. The inverse of the covariance matrix, denoted by
Θ = Σ−1, is called precision matrix and its off-diagonal elements,
denoted as θhk, are the parametric tools by which density (2.4) fac-
torizes according to G, formally:

(h, k) 6∈ E ⇔ Yh ⊥⊥ Yk | YV\{h,k} ⇔ θhk = 0.

The pairwise relationships between the variables are encoded by
Θ: if there is no edge between two nodes, the variables are con-
ditionally independent, given all the other variables in the graph.
GGMs are widely used in biology, finance and social sciences be-
cause they provide a flexible tool to model complex relationships
between variables.

Suppose that a set of n independent and identically distributed
observations is drawn from the distribution (2.4) and denote the
corresponding GGM by {Y, f(y;µ,Θ),G}. In principle, inference on
the factorization of the density (2.4), and consequently on G, can be
carried out by maximizing the log-likelihood function:

`(Θ) ∝ log det Θ− tr(SΘ),

where S denotes the empirical covariance matrix. Then, the edge-
set E can be estimated by Ê = {(h, k) | θ̂hk 6= 0}.

Hence, the problem of estimating the edge set Ê is equivalent to
the problem of selecting the non-zero entries of Θ. There are sev-
eral ways to reduce the number of parameters in a GGM. Applying
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some structural constraints on the precision matrix (such as symme-
tries, Højsgaard and Lauritzen (2008); Ranciati et al. (2021)), using
a model selection procedure based on AIC, BIC or test statistics
(Dempster, 1972), or the Neighborhood Selection approach (Mein-
shausen and Bühlmann, 2006) which is one of the earliest sparse
inference techniques for the undirected Gaussian graph.

The Penalized Gaussian Graphical Model (pGGM) extends the
traditional GGM by introducing a penalty term to select a sparse
set of edges representing the dependencies between variables. This
approach allows only the most relevant edges to be selected, which
helps to mitigate the effects of overfitting, improves the interpretabil-
ity of the model, and makes the model scalable to large datasets.

Yuan and Lin (2007) proposed the Graphical LASSO (gLASSO),
which is defined by adding the LASSO penalty to the log-likelihood,
namely:

log det Θ− tr(SΘ)− λ‖Θ‖1,

where ‖Θ‖1 =
∑
i6=j |θij | and λ is the tuning parameter regulating

the sparseness: as usual, the higher the value, the sparser the esti-
mate. Fan et al. (2009a) propose to use SCAD or Adaptive LASSO.
Interestingly, MCP has not been proposed in this framework. Many
efficient algorithms were developed to estimate the coefficients of
gLASSO. Among this, Friedman et al. (2008) suggest transforming
the objective function using the dual and optimising the function
using the coordinate block descent method, optimizing one row and
one matrix column at a time. The dual problem is equivalent to
optimising a quadratic loss function with a LASSO penalty, so it
is possible to use all the well-known algorithms proposed in the lit-
erature to estimate each coefficient (Banerjee et al., 2008). In this
framework, we write our proposal as

pλ(|θhk|) = λ
√

2πνΦ

(
|θhk|
ν

)
.



Chapter 3

Model estimation

To estimate the penalized models (in their three different variations),
we propose using a version of the alternating directions method
of multipliers (ADMM) algorithm Boyd et al. (2011). In the al-
gorithm’s framework, a linear approximation will simplify certain
steps, known as the Local Linear Approximation (LLA) (Zou and
Li, 2008). Before delving into the algorithm’s specifics, we will pro-
vide an overview of how ADMM and LLA operate.

3.1 The ADMM algorithm

Optimization in mathematics refers to searching for optimal param-
eters of a - usually complex - system. Optimization problems are
found in many scientific fields, such as physics, chemistry, economics
and statistics.

In mathematics, an optimization problem is formulated as a
problem of minimizing or maximizing a function of one or more
variables. While in the minimization (or maximization) of single-
variable functions, analytical and algebraic methods can be used to
define minima (or maxima) precisely, in the study of multi-variable
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functions, mainly numerical methods are used for an approximate
definition of minima (or maxima). Several optimisation problems
impose additional constraints that the solutions must satisfy: these
can be equality or inequality.

In our context, the minimization problem can be rewritten as
an equality-constrained convex optimization minimization problem.
Among the different algorithms proposed in the literature, the one
we choose to use is the Alternating Direction Method of Multiplier
(ADMM) (Gabay, 1983), which is a simple but powerful algorithm
for convex and large-scale problems (as we shall see, it allows us
to treat J different problems in parallel and independently). The
method was introduced in the mid-1970s and studied throughout
the 1980s. It is based on combining two different algorithms (Dual
Ascent and Method of Multiplier). Before illustrating the ADMM,
the Dual Ascent and Multiplier Method will be briefly reviewed.

3.1.1 Dual Ascent and Dual Decomposition

Consider the following problem

min f(x)

s.t. Ax = b,
(3.1)

where x ∈ Rn, A ∈ Rm×n and f : Rn → R is convex. The
Lagrangian problem is

L(x, y) = f(x) + yT (Ax− b),

while the dual function is

g(y) = inf
x
L(x, y) = −f∗(−AT y)− bT y.

y is the dual variable, and f∗ is the convex conjugate function of
f . Then, the problem is to maximize g(y), which is equal to minimize
(3.1). After that we maximize g(y) finding the dual optimal point
y∗, we can find the optimal point x∗ as
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x∗ = arg min
x

L(x, y∗).

If f(x, y∗) is strictly convex, only one minimizer of L(x, y∗) exists.
The dual ascent method consists of iterating the updates.

xk+1 = arg min
x

L(x, yk) (3.2)

yk+1 = yk + αk(Axk+1 − b). (3.3)

The first step is an x-minimization step; the second is the update
id dual variable. The term α is a step size, and if it is correctly
chosen, the dual function increases in each step. As stated by Boyd
et al. (2011), the conditions under which the iteration is guaranteed
to converge to the optimal solution are quite conservative.

One of the greatest strengths of the Dual Ascent is that it can
lead to parallelising the algorithm if f is separable, or

f(x) =

N∑
i=1

fi(xi),

where x = (x1, ..., xN ) and xi ∈ Rni are subvectors of x. Parti-
tioning the matrix A, the Lagrangian can be rewritten as

L(x, y) =

N∑
i=1

Li(xi, y) =

N∑
i=1

(fi(xi) + yTAixi −
1

N
yT b).

So, the x-minimization step (3.2) can be treated in parallel and
independently, allowing the algorithm’s efficiency to be greatly in-
creased. So, the new iterating updates are

xk+1
i = arg min

xi

Li(xi, y
k) (3.4)

yk+1 = yk + αk(Axk+1 − b). (3.5)



58 CHAPTER 3. MODEL ESTIMATION

In this case, the name of the algorithm becomes Dual Decompo-
sition. From a computational point of view, the Dual decomposition
is structured in a phase of collecting the results for the calculation
of the residuals Aix

k+1
i at step (3.5), which are combined and then

redistributed for the N optimisations conducted in parallel at step
(3.4).

3.1.2 Augmented Lagrangians and the Method of
Multipliers

Augmented Lagrangian methods (Hestenes, 1969; Powell, 1969) are
a class of algorithms used to solve optimization problems with con-
straints. They transform the original problem into an unconstrained
optimization problem by transforming the constraints into penalty
terms of the objective function. They add a term to the objective
function to mimic the Lagrangian multiplier, which is different from
the Lagrangian multiplier. The unconstrained objective function is
the Lagrangian dual of the constrained problem with an additional
penalty term.

it brings robustness to the dual ascent method to yield conver-
gence without assuming the strict convexity of f . The augmented
Lagrangian for (3.1) is

Lρ(x, y) = f(x) + yT (Ax− b) +
ρ

2
‖Ax− b‖22. (3.6)

ρ is the penalty parameter. We can see that, for ρ = 0, the
augmented Lagrangian becomes the standard Lagrangian problem.
Note that the added penalty term is equal to 0. This can be viewed
as a Lagrangian problem

min f(x) +
ρ

2
‖Ax− b‖22

s.t. Ax = b.

Applying the dual ascent method to the problem, the algorithm
is
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xk+1 = arg min
x

Lρ(x, y
k) (3.7)

yk+1 = yk + ρ(Axk+1 − b). (3.8)

which is called Method of Multipliers. This is very similar to the
Dual Ascent, except for (3.7), where a penalty term is involved on
Lagrangian. ρ is the step size (similar to α in (3.3)).

The improvement in terms of convergence comes at some costs.
In fact, when f is separable, Lρ is not separable, so the x-minimization
step cannot be parallelized for each xi.

3.1.3 Alternating Direction Method of Multipli-
ers

The Alternating Direction Method of Multipliers (ADMM) is an
algorithm that combines the decomposition property of Dual Ascent
and the best convergence properties of the multiplier method. The
idea is to split an optimization problem into two parts, separable
across the splitting. The algorithm solves the problem

min f(x) + g(z)

s.t. Ax+Bz = c,

where x ∈ Rn, z ∈ Rm, A ∈ RJ×n, B ∈ RJ×m and c ∈ RJ .
As done in the Method of Multipliers, we form the augmented La-
grangian

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22.

The optimal points of the problem are denoted by

p∗ = inf{f(x) + g(z) |Ax+Bz = c}. (3.9)

The steps of the ADMM algorithm are as follows
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xk+1 = arg min
x

Lρ(x, z
k, yk) (3.10)

zk+1 = arg min
z

Lρ(x
k+1, z, yk) (3.11)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c), (3.12)

The role of ρ > 0 is the same of (3.6). The algorithm consists
of a x-minimization step (3.10), a z-minimization step (3.11) and a
dual variable update (3.12). In this algorithm, the variables x and z
are updated in an alternating way; for this reason, the algorithm is
called Alternating Direction. When f and g are separable, splitting
x and z allows for decomposition.

One of the problems of ADMM is the convergence speed to high
accuracy. It is often the case that ADMM converges with a modest
accuracy in a few steps, but it requires a large number of iterations
for high accuracy. On the other hand, one of the significant benefits
of ADMM is its convergence property, inherited from the Method of
Multipliers. Defining the residual r of k-iteration as

rk = Axk +Bzk − c,

it is possible to define a stopping criterion based on residuals. It
can be considered that the algorithm has reached convergence when

‖rk‖2 < ε,

where ε is the tolerance value. One of the possible extensions
of the ADMM algorithm concerns the parameter ρ: it is possible
to establish an updating scheme along with the iterations of the
algorithm, with the benefit of a higher convergence speed and lower
dependence on the chosen parameter ρ.
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3.2 Quadratic and Local Linear Approx-
imation

In their work introducing the SCAD penalty, Fan and Li (2001),
to estimate the model suggested iteratively, propose to approximate
the penalty function by a quadratic function locally and referred
to such approximation as Local Quadratic Approximation (LQA).
Consider the following penalized likelihood function

Q(ξ) =

n∑
i=1

`i(ξ)− n
J∑
j=1

pλj (|ξj |). (3.13)

Fan and Li (2001) propose to approximate the penalty function
as

pλj
(|ξj |) ≈ pλj

(|ξ(0)
j |) +

1

2
{p′λj

(|ξ(0)
j |)/|ξ

(0)
j |}(ξ

2
j − ξ

(0)2
j ), (3.14)

where ξ
(0)
j is an initial value close to the true value of ξj . Sub-

stituting (3.14) in (3.13) and setting the initial value ξ
(0)
j to the

un-penalized maximum likelihood estimate, the maximization of the
objective function is solved repeating

ξ̂k+1 = arg max
ξ


n∑
i=1

`i(ξ)− n
p∑
j=1

p′λj
(|ξ(k)

j |)

2|ξ(k)
j |

ξ2
j

 . (3.15)

Applying the LQA to the likelihood function, the penalized like-
lihood equation (3.15) transforms into a problem that can be solved
analytically using a closed-form solution. The algorithm is stopped
when ξ̂(k) converges. The problem of LQA is that it cannot have a
sparse representation: Fan and Li (2001) suggests to set a generic ξ̂j
= 0 if ξ̂j is very close to 0, say |ξ̂j | < ε0. Hunter and Li (2005) stud-
ied the convergence property of the LQA: their findings demonstrate
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that it performs a similar role to the E-step in the Expectation-
Maximization (EM).

To eliminate the instability of LQA, Zou and Li (2008) propose
a Local Linear Approximation (LLA), which guarantees a natural
sparse representation. They propose to approximate the penalty
function as

pλj
(|ξj |) ≈ pλj

(|ξ(0)
j |) + p′λj

(|ξ(0)
j |)(|ξj | − |ξ

(0)
j |). (3.16)

As shown in Figure 3.1, both LLA and LQA perform as con-
vex majorants for the concave penalty function pλj

(|ξj |). However,
LLA is a superior approximation since it represents the minimum
(tightest) convex majorant for the concave function.

Substituting (3.16) in (3.13) and setting the initial value ξ(0) to
the un-penalized maximum likelihood estimate, the maximization of
the new objective function is solved repeating

ξ̂k+1 = arg max
ξ


n∑
i=1

`i(ξ)− n
J∑
j=1

p′λj
(|ξ(k)

j |)|ξj |

 . (3.17)

The algorithm is stopped when ξ̂(k) converges. This problem is a
concave optimization problem if the likelihood function is concave.
So, in this form, the function to be optimized enjoys all the computa-
tional characteristics of a (weighted) LASSO, and can be solved with
the best-known algorithms in the literature, such as LARS (Efron
et al., 2004). (Zou and Li, 2008) demonstrate that, for a concave
penalty function pλ on [0,∞), the LLA has the ascent property, so

Q(ξ(k+1)) ≥ Q(ξ(k)), (3.18)

or

Q(ξ(k+1)) > Q(ξ(k)), (3.19)
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Figure 3.1: Local Quadratic Approximation (thin dotted lines) and
Local Linear Approximation (thin broken line) at ξ = 2 (a) and 3
(b). ν fixed to 1.

if the penalty function is strictly concave.

However, carious penalty functions yield different weighting schemes:
the LASSO utilizes a constant weighting scheme, while the noncon-
cave penalized likelihood can be seen as an iterative reweighted pe-
nalized problem, where the weights are adjusted at each iteration
based on the specific penalty function employed (Fan and Lv, 2010).

In Figure 3.1, the ANP (continuous line) for ν fixed at 1, LQA
(dotted line) and LLA (broken line) are reported. From a graphical
point of view, it is clear that the Local Quadratic Approximation is
not capable of shrinking some coefficient to 0 due to the absence of
singularity at the origin; on the other hand, the Local Linear Ap-
proximation maintain the singularity at 0, so it estimates naturally
some coefficients equal to 0.
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3.3 Generalized Linear Model

Using a local quadratic approximation of the log-likelihood func-
tion, it is well known that parameter estimation is carried out itera-
tively via the IWLS (see for example McCullagh and Nelder (1989)),
namely via minimization of the following

n∑
i=1

V ti (zti − x>i β)2 + λ
√

2πν

J∑
j=1

Φ

(
|βj |
ν

)
,

where V ti = V (ηti) is the weight matrix, zti = ηti+{yi−µ̂(ηti)}/V ti the
working response vector and ηi the linear predictor. The superscript
emphasizes the dependence on the previous value β(t−1). To apply
the ADMM we first set

f(β) =

n∑
i=1

V ti (zti − x>i β)2,

g(β̃) = −λ
√

2πν

J∑
j=1

Φ

(
|β̃j |
ν

)
,

then parameter estimation is performed via the following constrained
minimization problem

min
β,β̃

f(β) + g(β̃)

s.t. β − β̃ = 0,

According to the standard ADMM theory, the augmented scaled
Lagrangian function takes the form:

Qτ (β, β̃, γ) = f(β) + g(β̃) +
τ

2
‖β − β̃ + γ‖22,

where γ is a dual variable whereas τ is a non-negative penalty pa-
rameter that controls the algorithm’s convergence rate. The ADMM
algorithm consists in repeating the following three steps until a con-
vergence criterion is met:
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1: βk+1 = arg minβ Qτ (β, β̃k, γk)

2: β̃k+1 = arg minβ̃ Qτ (βk+1, β̃, γk)

3: γk+1 = βk+1 − β̃k+1 + γk.

Updating β. Step 1 involves the optimization of the augmented
scaled Lagrangian function with respect to β, thus it is equivalent
to the following problem:

βk+1 = min
β

1

n

n∑
i=1

V ti (yti − x>i β)2 +
τ

2
‖β − β̃k + γk‖22,

which admits solution in closed form:

βk+1 =

(
1

n
X>V tX + τI

)−1{
1

n
X>V tyt + τ(β̃k − γk)

}
,

where V t = diag(V t1 , . . . , V
t
n).

Updating β̃. Given βk+1 and letting β̊kj = βk+1
j + γkj , the mini-

mization problem in Step 2 can be written as follows:

β̃k = min
β̃

J∑
j=1

{
τ

2
(β̊kj − β̃j)2 − λ

√
2πνΦ

(
|β̃j |
ν

)}
, (3.20)

which shows that the objective function in Step 2 is additive, imply-
ing that the optimization problem can be solved in parallel. Given
the non-linear structure of the proposed penalty function, to solve
the jth sub-problem, we propose to use the Local Linear Approxi-
mation (LLA) proposed by Zou (2006). So, the second Step is com-
puted as the solution of a sequence of new minimization problems
involving a new objective function that replaces the penalty function
with a suitable local approximation. Formally, β̃ is obtained by the
following iterative procedure:

1: Let β̃t be a starting value
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2: repeat
3: Let wt = exp{−(β̃t/ν)2/2}
4: β̃t+1 = arg minβ̃

τ
2 (β̊k − β̃)2 + λwt|β̃|

5: until convergence criterion is met
6: Return β̃k+1 = β̃t+1

It is easy to recognize that Step 4 is a weighted LASSO problem;
therefore, using the results given in Friedman et al. (2007), we have
that the updating step of β̃k+1 admits the following solution in closed
form, i.e., β̃k+1 = S(β̊k;wkλ/τ), where S(x;λ) = sign(x)(|x|−λ)+ is
the soft-thresholding operator. We will refer to the support identified
by the estimated coefficients as Â = {j : β̂j 6= 0}.

Regarding step 5 (convergence criterion), for each value of the
parameter λ, two convergence criteria are evaluated based on two
quantities:

R1 =
1

J

√
(β̃t − β̃t+1)2

R2 =
1

J

√
(βt+1 − β̃t)2

The algorithm stops if both quantities are below a convergence
threshold of ε.

3.4 Grouped variable

Our approach extends the optimization process to accommodate
varying values of νj . Again, we consider the standard local quadratic
approximation of the log-likelihood function, following the principles
outlined by McCullagh and Nelder (1989). Specifically, let β̂t repre-

sent an appropriate initial point, and define ηti = x>i β̂
t. With this,

we can approximate the minimizer of the objective function (2.2),
incorporating the grouped ANP, as follows:
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β̂t+1 = arg min
β

1

n

n∑
i=1

V ti (yti − x>i β)2 − cjλ
√

2πν

J∑
j=1

Φ

(
‖βj‖2
ν

)
,

where V ti = V (ηti) and yti = ηti + {yi − µ(ηti)}/V ti denotes the ith
working response of the IWLS algorithm. The above approxima-
tion shows that estimating β̂ involves solving a series of penalised
weighted least squares regression problems, which can be efficiently
solved using the ADMM algorithm. For a comprehensive discussion
of ADMM algorithms, we refer the interested reader to Boyd et al.
(2011). We begin defining β̂t+1 as solution of the following linear
equality-constrained problem:

min
β,β̃

f(β) + g(β̃)

s.t. β − β̃ = 0,

where:

f(β) =
1

n

n∑
i=1

V ti (yti−x>i β)2, and g(β̃) = −cjλ
√

2πν

J∑
j=1

Φ


∥∥∥β̃j∥∥∥

2

ν

 .

The augmented scaled Lagrangian function is:

Qτ (β, β̃, γ) = f(β) + g(β̃) +
τ

2
‖β − β̃ + γ‖22.

γ is the dual variable, and τ is a non-negative penalty parameter
that governs the rate of convergence of the algorithm. The ADMM
algorithm involves the following three steps, which are repeated until
a convergence criterion is satisfied:

1: βk+1 = arg minβ Qτ (β, β̃k, γk)

2: β̃k+1 = arg minβ̃ Qτ (βk+1, β̃, γk)

3: γk+1 = βk+1 − β̃k+1 + γk.
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Update for β: step 1 involves optimizing the augmented scaled
Lagrangian function with respect to β. Hence, it is equivalent to
solving the following problem:

βk+1 = min
β

1

n

n∑
i=1

V ti (yti − x>i β)2 +
τ

2
‖β − β̃k + γk‖22,

which admits a closed-form solution:

βk+1 =

(
1

n
X>V tX + τI

)−1{
1

n
X>V tyt + τ(β̃k − γk)

}
,

where V t = diag(V t1 , . . . , V
t
n).

Update for β̃: having βk+1, we update β̃ in Step 2 by setting
β̊kj = βk+1

j +γkj and then solving the following minimization problem:

β̃k = min
β̃

J∑
j=1

τ2 (β̊kj − β̃j)2 − cjλ
√

2πνΦ


∥∥∥β̃j∥∥∥

2

ν

 . (3.21)

The objective function in Step 2 can be broken down into smaller
parts, meaning the optimization problem can be solved in parallel
for each group. However, solving these sub-problems separately can
be challenging because the proposed penalty function is non-linear.
To overcome this, we suggest using the Local Linear Approxima-
tion (LLA) method proposed by Zou (2006) to solve the j-th sub-
problem. Thus, Step 2 solves a new sequence of minimization prob-
lems by replacing the penalty function with an appropriate local
approximation. This procedure is iterative and results in obtaining
β̃ by:

1: Let β̃t be a starting value
2: repeat

3: Let wt = cj exp

{
−
(∥∥∥β̃j∥∥∥

2
/ν
)2

/2

}
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4: β̃t+1 = arg minβ̃
τ
2 (β̊k − β̃)2 + λwt|β̃|

5: until convergence criterion is met
6: Return β̃k+1 = β̃t+1

Step 4 involves a weighted LASSO problem. We can use the findings
shown in Boyd et al. (2011) to compute the solution as a closed-
form for updating β̃k+1. Specifically, the update step for β̃k+1 can
be obtained using S(β̊k;wkλ/τ), where Sz(a) = (1 − z/‖a‖2)+a :
Rm → Rm is the vector soft thresholding operator. When a is a
scalar, the formula simplifies to its scalar form. Furthermore, this
expression extends the formula provided by Friedman et al. (2007).

3.5 Gaussian Graphical Model

We start by redefining the solution of our minimization problem
as the solution to the following equality-constrained minimization
problem, with matrix variables Θ and Z:

min
Θ,Z�0

− `(Θ) + λ
∑
h,k=1

√
2πνΦ

(
|Zhk|
νhk

)
s.t. Θ− Z = 0.

The augmented scaled Lagrangian function takes the form:

Q(Θ, Z, U) = −`(Θ) + λ
∑
h,k=1

√
2πνΦ

(
|Zhk|
νhk

)
+
τ

2
‖Ω− Z + U‖2F −

τ

2
‖U‖2F ,

where τ > 0 is a penalty parameter, U � 0 is the scaled dual
matrix and ‖ · ‖F denotes the Frobenius norm, respectively. The
solution of the problem can be computed by the following procedure:

1: repeat
2: Θk+1 = arg minΘ�0−`(Θ) + τ

2‖Θ− Z
k + Uk‖2F ,
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3: Zk+1 = arg minZ�0
τ
2‖Θ

k+1−Z+Uk‖2F+λ
∑p
h,k

√
2πνΦ

(
|Zhk|
νhk

)
,

4: Uk+1 = Uk + Θk+1 − Zk+1

5: until convergence criterion is met

Updating Θ. The problem in Step 2 has been studied in Boyd et al.
(2011), where the authors show that updating the precision matrix
estimator admits a closed-form solution. To gain more insight into
the updating formula, consider the first-order optimality condition
of the problem in Step 2, which can be rewritten in the following
more convenient form:

τΘ−Θ−1 = τ(Zk − Uk)− S. (3.22)

Let QΛQ> be the spectral decomposition of τ(Zk − Uk) − S, then
from the equation (3.22) we can immediately conclude that Θk+1 can

be written as QΛ̃Q>, where Λ̃ is a diagonal matrix whose elements
are the solutions of the equation τ Λ̃− Λ̃−1 − Λ = 0, i.e.:

λ̃ii =
λii +

√
λ2
ii + 4τ

2τ
,

which is always positive because τ > 0.

Updating Z. Before going into the technical details of updating
the matrix Z, note that the objective function in Step 3 has the
following additive structure:

τ

2

J∑
h,k=1

{
(θk+1
hk + Ukhk − Zhk)2 + λ

√
2πνΦ

(
|Zhk|
νhk

)}
,

which implies that the minimization problem in Step 3 can be de-
composed into J(J+1)/2 univariate optimization problems that can
be solved in parallel. Therefore, the rest of this section will focus on
how to solve the sub-problem:
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Zk+1
hk = arg min

Zhk

τ

2
(θk+1
hk + Ukhk − Zhk)2

+ λ
√

2πνΦ

(
|Zhk|
νhk

)
.

Even in the GGM framework, we solve the problem using the
Local Linear Approximation (LLA) method (Zou and Li, 2008), i.e.
Zk+1
hk is computed as the solution to a sequence of new minimisa-

tion problems with a new objective function obtained by replacing
the penalty function with a suitable local approximation. Formally,
Zk+1
hk is obtained by the following iterative procedure:

1: Let Z̃khk be a starting value
2: repeat
3: Let whk = exp{−(Z̃khk/νhk)2/2}
4: Z̃k+1

hk = arg minZ̃hk

1
2 (θk+1

hk + Ukhk − Z̃hk)2 + λ
τwhk|Z̃hk|

5: until convergence criterion is met
6: Return Zk+1

hk = Z̃k+1
hk

The Step 4 is a weighted LASSO problem; therefore, using the results
given in Friedman et al. (2007), we have that the updating step of

Z̃k+1
hk admits the following closed-form solution:

Z̃k+1
hk = S(θk+1

hk + Ukhk;
λ

τ
whk),

where S(x;λ) = sign(x)(|x| − λ)+ is the soft-threshold operator.

After describing the algorithms for coefficient estimation, the
next chapter will evaluate the performance of the proposed penalty
function against the leading competitors known in the literature.

3.6 About the choice of ν

The role of ν is crucial in the proposed approach. While sparseness is
preserved, ν affects both computational and inferential aspects. As
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discussed in section 2, as ν increases the ANP approaches to LASSO,
making the estimates biased. On the other hand, the lower ν the
less biased the solution. In other words, the parameter ν determines
the convergence rate of the proposed estimator to the maximum
likelihood one: the lower the value, the higher the convergence rate.
However, using lower values of ν does not come without drawbacks,
as the objective function will have local minima. To understand how
ν may affect the number of local solutions of the objective function,
consider the gradient of (3.20)

−τ(β̊ − β̃) + λ exp

{
− β̃

2

2ν2

}
sgn(β̃). (3.23)

From (3.23), it is easy to see how ν influence gradient, from which
it is possible to guess its influence in both computational terms and
estimation results.

In Figure 3.2, it is possible to see, from a graphical point of
view, how ν acts on the gradient. The gradient is not monotonic for
parameter values that are too small: the solutions are more than one.
By increasing the value of ν, the gradient will become monotonic,
and the solution will be unique. Conversely, the convergence speed
decreases as the value of ν increases. Hence arises the problem of
defining the lowest value of ν such that only one solution can be
obtained (typical property of convex penalties), having the highest
convergence rate to the maximum likelihood estimates and thus the
lowest bias (property of nonconvex penalties).

Due to the decomposition obtained with the ADMM (which
makes it possible to split the estimate of the non-sparse solution
from the sparse one), it is possible to go into the detail of the β̃
estimate, making its diagnosis possible: in this way it is possible
to study what component introduces the presence of local multiple
solutions, that is, the excessive degree of the non-convexity of the
penalty (as already known in the literature). By tying the degree of
non-convexity to the additional parameter ν, it is possible to work
on the degree of the non-convexity of the penalty, so that it does not
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Figure 3.2: Gradient (3.23). λ = 2, τ = 2, β̊ = 1. The parameter ν
influences the shape of the gradient, determining the number of so-
lutions. Beyond a certain threshold, the problem will have a unique
solution.

dominate over the convexity of the likelihood.

The crucial point is to find the lowest value of ν that guarantees
the monotonicity of (3.23), i.e. its first derivative must always be
greater than or equal to 0. Since the optimal value of ν depends on
λ, we will make the dependence explicit by writing νλ,min. Let us

consider the derivative of (3.23) with respect to β̃

1− λ

τ
exp

{
− β̃

2

2ν2
λ

}
˜|β|
ν2
λ

, (3.24)
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we want that (3.24) is greater than or equal to 0, so

λ

τ
exp

{
− β̃

2

2ν2
λ

}
˜|β|
ν2
λ

≤ 1.

To solve the inequality only with respect to νλ, we consider the
maximum value the quantity can assume, which occurs when β̃ is
equal to νλ.

λ

τ
exp

{
− β̃

2

2ν2
λ

}
˜|β|
ν2
λ

≤ max
β̃

λ

τ
exp

{
− β̃

2

2ν2
λ

}
˜|β|
ν2
λ

≤ 1.

Finding the solution for the maximum value of β̃ implies the
solution for any value that β̃ can assume. The maximum value
occurs when β̃ takes on a value equal to νλ, i.e.

λ

τ
exp

{
−1

2

}
1

νλ
≤ 1. (3.25)

From (3.25) is easy to obtain

νλ,min ≥
λ

τ
exp

{
−1

2

}
.

This important result makes it possible to find the smallest value
of λ for each value of νλ,min that guarantees the highest convergence
rate to maximum likelihood estimates, avoiding numerical instability
problems during coefficient estimation. We will refer to νλ,min when
νλ,min is exactly equal to λ

τ exp
{
− 1

2

}
.

In the context of grouped variables, the value is slightly different:
this value does not depend only on λ, but also on

√
pj , i.e.

νλ,min = νλ,j,min =
λ
√
pj

τ
exp

{
−1

2

}
. (3.26)

If the size of the groups is the same, this value is the same for
each group; on the other hand, if pj is different in the groups, the
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value depends on the different groups. Since the value is propor-
tional to

√
pj , one can consider a single minimum value, fixing it to

the maximum value across the J different values of
√
pj .

From here, it is clear why we define our penalty as adaptive:
thanks to this result; it is possible to adapt the degree of non-
convexity of the penalty based on the level of shrinkage applied (i.e.,
on the level of λ).

Additional considerations should be made, however. The νλ,min
value found should not be regarded as the best value to estimate
the penalized model; it should be understood as the lower bound
of a range of possible values for finding the best ν value to use.
However, based on numerical studies carried out (and not reported),
no substantial differences can be appreciated for small variations in
the parameter.
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Chapter 4

Simulation

In this chapter, we undertake an extensive simulation study to thor-
oughly assess the performance of the proposed penalty function com-
pared to well-established alternatives from the existing literature,
namely LASSO, SCAD, and MCP. The simulations are designed
to cover a wide array of scenarios and are carried out within both
the Generalized Linear Model (with and without grouped variables)
and the Gaussian Graphical Model frameworks. Additionally, we
also present simulation studies to investigate the influence of the
parameter ν.

4.1 Mean Squared Error and Area Un-
der Curve

We employ two key evaluation metrics to present the results of our
simulation study comprehensively: the Mean Squared Error (MSE)
and the Area Under Curve (AUC).

Let ξ be the generic parameter to be estimated, regardless of the
framework. The AUC derived from the Receiver Operating Charac-
teristic (ROC) curve. The ROC curve is constructed using the False

77
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Positive Rate (FPR) and the True Positive Rate (TPR), defined as
follows:

FPR(λ) =
Card(ξ̂bh(λ) 6= 0 | ξh = 0)

Card(ξh = 0)
,

TPR(λ) =
Card(ξ̂bh(λ) 6= 0 | ξh 6= 0)

Card(ξh 6= 0)
.

AUC provides a comprehensive assessment of methods’ abilities
to select the subset of coefficients and estimate parameters accu-
rately.

Our second evaluation metric is MSE, which quantifies the accu-
racy of the estimator. MSE is calculated as the mean of the squared
errors and is defined by the following formula

MSE(λ) =
1

B

J∑
h=1

B∑
b=1

(
ξ̂b,h(λ)− ξh

)2

,

where b is the index related to the replicates, ξh are the true
coefficients, and ξ̂b,h are the estimated coefficients. We evaluate
MSE at different point along the estimated path and across a range
of tuning parameter values, including 80%, 60%, 40% and 20% of
λmax, i.e. the maximum value within each simulation . Moreover,
we compute MSE for the entire set of coefficients ξ and separately
on the subset of non-null coefficient (ξ ∈ A) and null coefficients
(ξ /∈ A). This approach enables us to discern performance variations
across different parameter settings.

These two metrics offer a widespread means of evaluating the
performance of the penalty methods under investigation, allowing
us to draw meaningful conclusions about their effectiveness.
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4.2 GLM framework

While our method works for GLMs such as Poisson or Binomial, only
the Gaussian case is examined. The underlying model for generating
the response variable is given by:

yi = β0 +

J∑
h=1

xihβh + σsεi, εi ∼ N (0, 1).

We explored two main simulation scenarios:

1. Low-dimensional setting: We considered sample sizes n of 30,
60, and 90 observations with J = 100 variables. Two different
values σs = 1 and σs = 2, were examined.

2. High-dimensional setting: Here, we kept the sample size n
fixed at 100 observations while increasing the number of vari-
ables to J = 1000. We again studied two noise levels: σs = 1
and σs = 5.

The covariates xi were generated from a Normal distribution with
mean 0 and a Toeplitz correlation matrix Σjk = 0.5|j−k|. For each
case, only ten coefficients were set as non-null, and their positions
were randomly chosen. We considered two scenarios for generating
non-zero coefficients: in the former, the values of these non-null co-
efficients were randomly drawn from a uniform distribution U(1, 2),
while in the latter, they were drawn from U(2, 3). Consequently, we
had 16 different scenarios, with 100 replicates for each run.

We considered the minimum allowable value for the additional
parameter, i.e. νmin. We set additional parameters for SCAD and
MCP to 3.7 and 3, respectively.

Table 4.1 presents the median Area Under the Curve based on
the results, where the dataset comprises J = 100 variables.

The table is structured to showcase performance across different
combinations of parameters. Specifically, it investigates the influence



80 CHAPTER 4. SIMULATION

Table 4.1: Median AUC of simulation results with J = 100, varying
n, β and σs

β values

n σs Penalty β ∼ U(1, 2) β ∼ U(2, 3)

30 1 LASSO 0.790 0.800
SCAD 0.671 0.680
MCP 0.665 0.666
ANP 0.687 0.689

5 LASSO 0.761 0.792
SCAD 0.659 0.667
MCP 0.655 0.666
ANP 0.645 0.681

60 1 LASSO 0.979 0.983
SCAD 0.985 0.988
MCP 0.994 0.995
ANP 0.991 0.991

5 LASSO 0.958 0.978
SCAD 0.955 0.982
MCP 0.939 0.992
ANP 0.932 0.988

90 1 LASSO 0.993 0.993
SCAD 0.994 0.993
MCP 1.000 1.000
ANP 1.000 1.000

5 LASSO 0.983 0.992
SCAD 0.988 0.994
MCP 0.996 1.000
ANP 0.992 1.000
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of sample size and noise level on the AUC for each penalty method
under two distinct scenarios of coefficient distributions.

LASSO excels in scenarios with low and high noise levels, show-
casing its effectiveness in situations with a limited sample size. No-
tably, our proposed penalty slightly outperforms other non-convex
penalty functions, indicating its superior performance in this con-
text. In this context, leveraging a higher value of ν could enhance
our proposed method’s AUC performance. Section 4.5 will provide
a more in-depth exploration of strategies to improve outcomes in
these specific scenarios.

In scenarios with a sample size of n = 60, under both low (σs =
1) and high noise levels (σs = 5), the ANP consistently outperforms
LASSO and SCAD, achieving higher AUC values. This indicates
that the proposed penalty function demonstrates a superior ability
to accurately identify the subset of non-null coefficients in situations
characterised by moderate sample sizes and varied noise levels. In
the case of the largest sample size tested, all penalization methods
yield excellent results, with our proposal and MCP standing out,
achieving perfect AUC values of 1. This underscores the robust
performance of our approach in scenarios with larger sample sizes,
showcasing its ability to distinguish between true positives and false
positives accurately.

Tables 4.2, 4.3, and 4.4 show the Mean Squared Errors for all
scenarios across four different values of λ, focusing on subsets of co-
efficients (β ∈ A), subsets of null coefficients (β /∈ A), and the entire
vector of coefficients. The tuning parameter λ varies at different
levels.
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Table 4.2 presents the MSE values for n = 30, revealing insights
into the performance of different penalization methods across sce-
narios. Despite observing higher errors in our penalty for the vector
of non-zero coefficients, the scenario slightly shifts positively when
focusing on the active set. Our method, particularly at higher tun-
ing parameter values, often surpasses LASSO in effectiveness, which
seems the most balanced penalty. However, when considering the
entire coefficient vector, the analysis suggests our method’s sensitiv-
ity to error for non-zero coefficients, positioning it as less favourable
in this broad assessment.

When the sample size is n = 60 (Table 4.3), our proposal con-
tinues to provide the largest errors for the vector of null coefficients,
but it is observed that the distance to the competitors gets thin-
ner; again, LASSO seems to be the best method. Regarding the
vector of active coefficients, our method outperforms the competi-
tors in terms of MSE: while the differences are imperceptible for
high values of λ, corresponding to very sparse estimated models, the
differences become more pronounced as variables enter the model,
particularly with smaller values of λ, sometimes reaching half the
errors of the competitors. Decreasing distance from competitors
for null coefficients and better performance for nonzero coefficients
makes our method the best method for errors over the entire vector
of coefficients, always achieving the lowest MSE values.

When the sample size increases (Table 4.4), the problem with the
error for null coefficients remains. However, focusing on the vectors
of non-null parameters, we observe that our errors continue to be
the lowest across every value of the tuning parameter and in every
setting, demonstrating a significantly greater distance than the pre-
vious table’s case. Particularly, when coefficients are generated with
higher intensity, for very small values of λ, our error can be up to a
tenth of that obtained with LASSO and SCAD. Similar assessments
can be extended to the global error: The gap from competitors is
narrowed, but our proposal remains the best in every scenario and
for every degree of sparsity.

However, some assessments must be made. Competitors exhibit
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superior performance when considering the vector of null coefficients
(i.e., β /∈ A). The result of the MSE for the coefficients not belonging
to the active set seems to contradict that obtained in the AUC (the
result may erroneously suggest that our model estimates too many
non-zero variables). This is not true: our penalty allows each newly
active coefficient to have a high magnitude instantly, given that the
maximum non-convexity of the penalty function guaranteeing a sin-
gle solution allows the active coefficients to be almost non-biased;
conversely, the other three penalty functions attenuate the magni-
tude of the newly active coefficients that should be null, thus making
the total error committed lower. The error obtained with the LASSO
is the lowest of all scenarios since the penalty imposes the highest
shrinkage on the coefficients. This observation prompts a strategic
consideration for adjusting the tuning parameter ν, aiming to re-
fine our penalty’s performance closer to LASSO’s efficiency. Further
exploration of this adjustment strategy offers promising avenues for
enhancing our method, as detailed in Section 3.6.

Furthermore, in the high-dimensional case (J = 1000), we present
AUC and MSE values across four distinct values of λ.

Table 4.5: Median AUC of simulation results with J = 1000 and n
= 100, varying β and σs

β ∼ U
σs Penalty U(1,2) U(2,3)

1 LASSO 0.999 0.999
SCAD 0.999 0.999
MCP 1.000 1.000
ANP 1.000 1.000

5 LASSO 0.784 0.936
SCAD 0.639 0.836
MCP 0.641 0.797
ANP 0.667 0.833

Table 4.5 provides simulation results for the median Area Under
the Curve under varying conditions, including J = 1000 and n =
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100, exploring different combinations of penalty methods, β distribu-
tions, and σ values. When σ remains relatively low, the performance
of the penalty functions is virtually indistinguishable, with negligi-
ble differences. However, as σ increases, the non-convex penalties
exhibit slightly inferior performance compared to the LASSO.
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Table 4.6 presents the Mean Squared Errors for the experiments
conducted in the previous subsection. Analyzing the entire vector
of coefficients, our proposed method performs better than competi-
tors when the noise levels are moderate, across different values of
λ and for each type of distribution considered for the coefficients.
When narrowing our focus to the subset of truly non-zero coeffi-
cients (β ∈ A), our approach with the specified ν values consistently
achieves superior results. Our model performs similarly with respect
to other penalties when noise levels are low in scenarios where we are
specifically interested in the subset of truly null coefficients (β /∈ A).
However, as noise levels increase, employing a higher ν value ap-
pears to be a favourable strategy, leading to improved performance
compared to competitors.

4.3 Grouped variables framework

The performance of the proposed estimator is compared with the
well-known group-LASSO, group-SCAD, and group-MCP estima-
tors. To assess the quality of the estimator, we consider three differ-
ent data generation models, similar to those proposed by Yuan and
Lin (2006):

• In the first scenario, we simulated J=150 latent variables, X ∼
Np(0,Σ), with a Toeplitz correlation matrix Σjk = 0.5|j−k|.
We then categorized each Xj into three groups (0, 1, or 2),
depending on whether it was less than Φ−1(1/3), greater than
Φ−1(2/3), or in between. Consequently, the design matrix
Z will have 300 columns. We randomly selected eight differ-
ent groups of variables with non-zero coefficients, and for each
group we drew two coefficients randomly from a uniform dis-
tribution (U(1, 8));

• In the second model, we consider combining the two models.
We generated 75 variables according to the first model and
then generated 75 other independent vectors from a standard
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normal distribution (N(0, 1)). For each of the 75 vectors, we
considered its third-degree polynomial. This resulted in a de-
sign matrix Z with 375 columns. We randomly chose eight
group variables different from 0, and their coefficients were
drawn from a uniform distribution (U(1, 2)).

For each model, we generated y = Zβ + ε, where ε ∼ N(0, 1.5)
and n = 50. In each scenario, we conducted 500 simulations. To
evaluate the performance of the estimators, we computed the MSE
and the AUC. Regarding the MSE, we considered, for each replicate
and each estimator, the minimum value obtained in the λ-path. This
way, we compared the best value that the estimator could achieve.
In terms of additional parameters, we set γ to 4 for SCAD and 3 for
MCP (as done by default in the R package “grpreg” (Breheny and
Huang, 2015), used for simulations). For our proposal, we used the
minimum value of ν, defined as (3.26). Table 4.7 shows the results
of the numerical study.

Table 4.7: Values averaged over the 500 replicates (standard devia-
tion in brackets)

Group ANP Group LASSO Group SCAD Group MCP

Model I
AUC 0.956

(0.04)
0.882
(0.04)

0.946
(0.04)

0.959
(0.04)

MSE 2.175
(1.20)

8.664
(2.29)

2.207
(1.11)

2.161
(1.22)

Model II
AUC 0.866

(0.08)
0.891
(0.06)

0.886
(0.07)

0.883
(0.07)

MSE 1.554
(0.47)

1.807
(0.39)

1.486
(0.42)

1.597
(0.47)

Examining the results for the first model in the provided table,
the AUC values are high across all groups, indicating good model
performance in distinguishing between the classes. Group MCP has
the highest AUC (0.959), closely followed by Group ANP (0.956) and
Group SCAD (0.946). Group LASSO has the lowest AUC (0.882),
suggesting it is less effective in this model than the others. The
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standard deviation is 0.04 for all groups, indicating a similar level of
variability in the AUC metric across the methods. The MSE values
vary significantly across the groups. Group MCP has the lowest
MSE (2.161), slightly better than Group ANP (2.175) and Group
SCAD (2.207), indicating these methods are more accurate in their
predictions. Group LASSO has a considerably higher MSE (8.664),
with a higher standard deviation (2.29), suggesting less accuracy
and more variability in its predictions.

In the framework of the second model, the AUC values are gen-
erally lower, suggesting Model II is a more challenging scenario.
Group LASSO leads in this model with an AUC of 0.891, an in-
teresting contrast to its performance in Model I. The other groups
have AUC values close to each other, ranging from 0.866 (Group
ANP) to 0.886 (Group SCAD), with Group MCP slightly lower at
0.883. The standard deviations range from 0.06 to 0.08, indicating
slightly more variability in AUC scores in Model II than in Model I.
The MSE values are lower across all groups in Model II compared to
Model I, indicating all methods perform better in accuracy. Group
SCAD has the lowest MSE (1.486), suggesting it is the most accu-
rate method in Model II. The MSE values for the other groups are
relatively close, with Group LASSO having a slightly higher MSE
(1.807) than the others.

4.4 GGM framework

In this section, we present the results of our simulation studies com-
paring the performance of our penalization approach in the context
of Graphical Gaussian Models against LASSO and SCAD. The pri-
mary objective is to assess the effectiveness of our proposal in ac-
curately recovering the underlying graphical structure of the data
while examining the errors incurred during coefficient estimation.

We consider a dataset with a dimensionality of J = 100, resulting
in a Θ matrix of size 100 × 100 that encodes the graph structure.
To simulate the sparse nature of this graph, we randomly set θi,j =
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θj,i = 1 with θi,j ∼ Ber(0.1). We investigate the performance across
four distinct sample sizes, namely, n = 30, 60, 90, and 120.

Table 4.8 presents the Mean Squared Errors calculated using
the three different methods: our proposed method, gLASSO, and
gSCAD. These results are evaluated under various tuning parameter
values (λ) for each sample size, providing insights into the accuracy
and robustness of these methods in the context of GGMs.
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The table’s results highlight differences in the performance of the
ANP, LASSO, and SCAD penalty methods across various simulation
scenarios characterized by changing sample sizes and regularization
strengths. As regularization strength decreases from 80% to 20%,
we observe a general trend of decreasing MSE for coefficients within
the active set (θ ∈ A) across all penalty methods and sample sizes.
This indicates that a less strict penalty, or lower λ, tends to im-
prove the accuracy of estimating non-zero coefficients (as expected).
Conversely, for coefficients not within the active set (θ /∈ A), an
increase in MSE with decreasing λ is observed, suggesting that a
stronger penalty aids in effectively reducing the estimates of truly
zero coefficients towards zero, thus diminishing their contribution to
the overall MSE.

The effect of sample size on MSE is also evident, with larger
sample sizes consistently leading to reduced MSE for both sets of
coefficients. This improvement is more pronounced for coefficients
within A, likely due to the increased data providing a more solid ba-
sis for accurately estimating non-zero coefficients. When comparing
the three penalty methods, the differences in MSE are relatively mi-
nor, suggesting that ANP, LASSO, and SCAD perform comparably
in estimation accuracy. However, slight variations can be seen, par-
ticularly at lower levels of λ for coefficients not in A, where SCAD
occasionally exhibits slightly higher MSE values compared to ANP
and LASSO.

In evaluating the performance across all coefficients (∀θ), the
MSE trends closely mirror those observed for coefficients inA, though
with expected slight increases in MSE since the evaluation now also
encompasses the accuracy of estimating zero coefficients. This com-
prehensive evaluation underscores the importance of selecting ap-
propriate λ and penalty methods based on the modelling objectives,
including the need to precisely identify significant predictors while
minimizing the impact of non-significant ones.

Table 4.9 presents the median Area Under the Curve values.
As the sample size increases from 30 to 120, a clear trend of in-
creasing median AUC values is observed for all penalty methods
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Table 4.9: Median AUC of simulation results with J = 100, varying
n.

Penalty
n ANP LASSO SCAD
30 0.608 0.605 0.610
60 0.711 0.698 0.713
90 0.781 0.757 0.782
120 0.841 0.811 0.841

(as expected). The ANP and SCAD methods exhibit very similar
performance across all sample sizes.

While showing a consistent improvement in median AUC values
with increasing sample sizes, LASSO generally performs slightly less
effectively than ANP and SCAD. Although respectable at n = 120,
LASSO’s median AUC of 0.811 is lower than the 0.841 achieved by
both ANP and SCAD.

4.5 The effect of ν

As sketched above, the additional parameter ν influences the results,
specifically the convergence speed of non-null coefficients to the max-
imum likelihood estimates. The smaller the value, the closer the
estimates. However, the smallest allowable value of ν (i.e. νmin) is
not always the best. The maximum likelihood theory requires that
n is “sufficiently larger than J” (see, for example, Sur and Candès
(2019)). If n < J , ML theory does not apply: estimates far from
the ML ones are expected to perform better in these contexts. If
νmin does not guarantee to have the best solution when n < J , the
natural question is about the optimal ν, i.e. νopt.

To try to provide some insights about νopt, we investigate the
evolution of the estimator’s performance as ν and the n/J ratio
change, a further simulation study was undertaken. We simulated
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data from

yi = β0 +

J∑
j=1

xijβh + εi εi ∼ N (0, 1).

The number of coefficients is fixed to J = 100 (only pA = 10 are non-
null); to study the influence of ν at different sample sizes, we consider
different n. Some preliminary studies suggests that the νopt depends
on n/pA. In other words, the cardinality of the active set. Then,
we will consider 21 different sample-size n: the first 20 are fixed to
have n/pA ratios in [0.2, 3] and equally-spaced, the last is fixed to
have n/pA = 4. The covariates are defined as xi ∼ N (0,Σ) with
the Toeplitz correlation matrix, i.e. Σjk = 0.5|j−k|. The locations of
non-null coefficients are randomly chosen, and their values are drawn
randomly from a U(1, 2). We ran 100 replicates for each scenario,
and for each replicate, we fitted 40 different penalized models using
40 different ν-values, i.e.

νk = k × νmin.

The 40 different values of ν proved are composed of an “expansion
factor” k ≥ 1: in this way, different values of increasing ν are used,
guaranteeing the solution’s uniqueness. The different values of k are
40 equispaced values in [1, 100]: the first value we use, therefore,
corresponds to νmin; on the other hand, as the “expansion factor”
increases, the estimated model becomes more and more similar to
LASSO. In each simulation, the parameter λ was set to the value
that minimises the BIC.

Figure 4.1 shows the values of the MSE varying the coefficient
of expansion (i.e. ν) and the ratio n/pA. The MSEs have been
standardised in [0,1] by column, to make it easier to read the results
when the ratio n/pA varies: a standardisation carried out on all
values would not have made the interpretation of the result easier,
since the variations in the results due to the effect of k would have
been covered by the influence of the ratio n/pA. Values close to 0
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Figure 4.1: Scaled MSE (by n/pA), varying k and n/pA. Lighter
squares correspond to lower MSE (better).

indicate better performance (as they correspond to the best values
for a given n/pA), while values close to 1 indicate poor performance
(as they are close to the maximum MSE calculated for a given n/pA).

It can be seen from the graph that in the presence of a low sam-
ple size with respect to a high number of non-null parameters, the
best performance is obtained using a high value of n/pA. The inter-
pretation of this result is quite simple: by using small values of ν,
the estimates of the model quickly get closer to the maximum like-
lihood estimates. Since the maximum likelihood estimator requires
the sample size to be larger than the number of parameters to be
estimated, the penalised estimator with small ν therefore “inherits”
the same difficulties as the maximum likelihood estimator. In this
context, using a LASSO-like form of the penalty (which introduces
bias into the estimated parameters at the cost of reduced variance)
gives better results. Conversely, as the ratio n/pA increases, the
performance obtained with a reduced value of ν tends to improve;
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for values of the ratio n/pA greater than about 2, the MSEs cal-
culated with the smallest value of ν are always the better. This
is because the maximum likelihood estimator performs better with
more information available, and so does the penalised model.

In the simulation study, we tried the same setting with much
higher values of n/pA (up to 20), and the pattern remained the
same. However, for readability reasons, we reported values up to
n/pA equal to 4.
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Figure 4.2: Scaled AUC (by n/pA), varying k and n/pA. Lighter
squares correspond to higher AUC (better).

Figure 4.2 shows the results based on the AUC. The values have
been standardised with respect to the different n/pA values for the
same reasons as above. In this context, however, the best results
are obtained for the n/pA values that have a value of 1, since they
correspond to the combination that obtained the highest AUC value
(and therefore the best identification of the correct subset of non-
zero coefficients).

Again, it can be observed that for larger values of n/pA, the
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use of large ν gives better results: as n/pA increases, it is more
convenient to use smaller ν. Although the rationale is the same as
that observed in Figure 4.1, in the case of the AUC it is observed
that the reversal of the trend occurs much earlier (already for n/pA
equal to 1.1, the use of the smaller ν is better).
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Chapter 5

Real data analysis

In this section, we delve into analyzing two real-world datasets:
the aim is to assess any differences between our penalized model
and those known from the literature. This exploration is essential
for confirming how well the Adaptive Non-Convex Penalty function
works in practical situations. By comparing our approach with es-
tablished methods, we highlight our model’s advantages and poten-
tial limitations within the context of Generalized Linear Models and
Gaussian Graphical Models.

The analysis begins by presenting the real-world dataset selected.
Through the analysis, we aim to showcase the performance of the
ANP function in handling real-world data and provide insights into
comparison with traditional penalized methods.

5.1 GLM framework

The dataset utilized in this analysis originates from the ”Childhood
Asthma and Environmental Study,” which was carried out between
September 2011 and 2017. This extensive research was conducted at
the Pediatric Pulmonology & Allergology outpatient clinic, part of

101
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the CNR-IBIM research unit. The dataset has been obtained from
the PhD thesis of Cilluffo (2018).

This dataset focuses on 529 asthmatic children aged 5–17 years
and encompasses a wide array of variables collected through a modi-
fied version of the SIDRIA (Italian Studies on Respiratory Disorders
in Children and the Environment) questionnaire. This comprehen-
sive dataset includes socio-demographic characteristics, parental his-
tory of asthma, early and current outdoor and indoor environmental
exposures, child’s history of wheezing, co-morbidities, asthma sever-
ity level, and asthma control status.

Pulmonary function tests were conducted using a portable spirom-
eter to measure the Forced Expiratory Volume in the first second
(FEV1), with results appropriately transformed based on the Global
Lungs Initiative guidelines. The goal is to assess the determinants
of lung function, considering some patient variables.

We estimate four penalized regression models to achieve this:
our novel proposal and the established LASSO, SCAD, and MCP
methods.

The dataset under analysis comprises n = 529 units, with J =
82 explanatory variables at our disposal. Given the insights from
the simulation results detailed in Section 4.5, we adopt the smallest
permissible value for ν in our proposed model. Concurrently, we set
the tuning parameters to 3.7 and 3 for SCAD and MCP, respectively.
We estimate the competitors’ models using the ncvreg R package.

Figure 5.1 provides a comparative depiction of the path coeffi-
cient for the four penalized regression models. The path coefficient
graph for LASSO underscores the constant shrinkage, with param-
eters intensifying steadily as they approach the peak at λ near 0.
A similar pattern is initially discernible for SCAD and MCP; both
begin akin to LASSO due to their overlap in the early penalization
phase. However, the graph reveals a pivotal moment where the co-
efficient intensities for SCAD and MCP increase significantly until
they reach a stage where the growth is very small.

In contrast, our proposed model exhibits a distinctive pattern:
upon activation, each parameter’s estimate promptly explodes in
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intensity. This estimate remains the same until the activation of
another parameter, delineating a swift ‘convergence’ to the values
akin to those from maximum likelihood estimates. This behaviour
reflects, even graphically, the maximum speed of convergence of the
estimates to those of maximum likelihood. However, the behaviour
observed for our proposal is typical of the choice of parameter ν,
which has been set at the minimum allowable value. By increasing
ν, the path will increasingly resemble that of LASSO.

Coefficients ANP MCP SCAD LASSO
Intercept 94,32 95,91 95,24 95,98
Age // -0,24 -0,18 -0,15
Asthma (ref = No) -7,63 -6,74 -5,63 -4,53
Gender (ref = F) 10,42 10,44 9,77 7,22
Pasthma (ref = No) // // -0,27 -0,49

Table 5.1: Estimated non-null coefficients for penalized models at λ
minimizing BIC

Table 5.1 shows the estimated non-zero coefficients for each model,
selecting the regularization parameter that minimizes the BIC. Null
coefficients, which the models deem non-significant at this λ value,
are omitted to enhance the table’s clarity. The “//” entries, repre-
senting null coefficients at the optimal BIC λ, reflect each model’s
decision-making on variable selection.

Notably, the ANP model did not find Age and Pasthma (i.e.
indicating a paternal history of asthma) as significant predictors at
this λ level, suggesting a possible lower impact of these variables.
In contrast, MCP and SCAD attribute a slight negative influence
to Age and Pasthma, indicating these factors slightly reduce the
response variable when other covariates are held constant.

The consistent negative coefficient for Asthma across all models
confirms its expected inverse relationship with the outcome. Gender
shows a positive association in all models, with LASSO attributing
a lesser magnitude, potentially indicating a more conservative esti-
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mation.

5.2 GGM framework

In this context, we will use the stock prices of companies listed in the
S&P500 index from 2003 to 2008, a market-capitalization-weighted
index tracking the performance of 500 of the largest publicly traded
companies in the United States. Widely used as a barometer for the
overall health of the U.S. stock market, it serves as a benchmark for
investors and is categorized into distinct sectors. The included spans
many areas, such as Energy, Financials, Health Care and Utilities.

For the purposes of the analysis, we will focus, in particular, on
companies that fall within the Utilities sector. The decision to fo-
cus on the “Utilities” category involves examining companies that
provide essential services such as electricity, water and gas. The
objective is to evaluate the potential existence of a conditional de-
pendency structure among various actors within this sector. We will
estimate penalized Gaussian graphical models to achieve this, elu-
cidating company interdependencies. Additionally, we will evaluate
whether the “optimal” outcomes derived from the diverse models
exhibit divergences or remain consistent.

The dataset contains 32 companies operating in the Utilities sec-
tor, and for each of them, we have 1260 share prices for each of the
opening days from 2003 to 2008.
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Figure 5.2: Heatmap of the correlation matrix of stock prices of
companies

The correlation matrix heatmap in Figure 5.2 illustrates the pair-
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wise correlations between variables. The colour intensity represents
the strength and direction of the correlations. Only the upper tri-
angular portion of the matrix is displayed, and coefficient values
are shown in black. Examining the graph reveals a robust positive
correlation in the price trends of all companies, albeit with vary-
ing degrees of intensity—indicating a tendency for them to rise or
fall collectively. Notably, two companies stand out from this general
pattern. Firstly, PPL Corporation (PPL) appears somewhat discon-
nected from the overall trend, except for its correlation with EQT
Corporation (EQT). Secondly, NextEra Energy Resources (NEE)
exhibits an inversely proportional correlation compared to the re-
maining companies.
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Figure 5.3: Histogram of the upper triangle values of the correlation
matrix

The histogram in Figure 5.3 displays the distribution of values
in the upper triangle of the correlation matrix. It confirms earlier
observations, reaffirming a predominant positive and strongly cor-
related values pattern. The scarcity of values below zero further
supports the overarching trend, indicating a collective inclination
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Penalty BIC # Edges
ANP 685895.7 32
SCAD 772283.3 163
LASSO 823649.2 232

Table 5.2: BIC and number of edges by penalty function

for the stock prices to rise or fall simultaneously.

Building upon these visual explorations, our analysis estimates
penalized Gaussian graphical models using our penalty function,
LASSO, and SCAD to study the structured sparsity and conditional
dependencies among stock prices.

The resulting graphical models are assessed using Bayesian In-
formation Criterion (BIC) values. Specifically, we calculate BIC
values for each penalty method across a range of tuning parameter
values, enabling us to identify the optimal model complexity that
balances the goodness of fit with model parsimony. The additional
parameter ν is settled to the minimum value allowable νmin, while
γSCAD = 3.7.

Looking at Figure 5.4, notable differences emerge among the pre-
cision matrices estimated by various penalty methods. The precision
matrix obtained with LASSO, which minimizes the BIC, appears re-
markably dense, comprising 232 links (46.77% of possible links) and
resulting in a BIC value of 823649.2. An intermediate scenario is ob-
served with SCAD, producing a graph with 163 links (32.86%) and
a BIC equal to 772283.3. In contrast, our proposed penalty method
generates a sparse graph with only 32 links (6.45%) and a lower BIC
equal to 685895.7.

It is essential to emphasize that the BIC value for our proposed
penalty is much lower than that calculated with the other mod-
els. Our method offers a more interpretable scenario, facilitating a
clearer interpretation of the underlying reality. While further in-
vestigation is warranted, the observed superior performance may be
attributed to the unique characteristics of the Adaptive Non-Convex
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Figure 5.4: Precision matrix graph for the corresponding method.
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Penalty, such as its ability to balance sparsity, unbiasedness and the
degree of non-convexity, as discussed in Section 3.6.



Chapter 6

Conclusions

This thesis introduces an innovative method, the Adaptive Non-
Convex Penalty function, specifically tailored to tackle the com-
plexities of high-dimensional data analysis through a penalty-based
approach. Our methodology extends the application of Adaptive
Non-Convex Penalty to encompass Generalized Linear Models, ac-
commodating grouped variables and Gaussian Graphical Models.
This extension positions our approach as a versatile and adaptable
tool for diverse applications.

The fundamental innovation resides in our meticulously designed
penalty function, strategically crafted to address the challenges in-
herent in high-dimensional settings. At the heart of the methodol-
ogy lies the parameter ν, which is pivotal in determining solution
uniqueness and governing the convergence rate towards maximum
likelihood estimates. By harnessing the power of the Alternating Di-
rection Method of Multipliers, we deciphered the non-convex nature
of the penalty function, thereby identifying the νmin value, crucial
for ensuring gradient monotonicity and consequently ensuring the
uniqueness of the solution. Thanks to this step, it is possible to
define the degree of non-convexity of the penalty function so that
it does not override the degree of convexity of the loss function. In
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this way, we can guarantee the optimal convexity of the penalised
objective function, thus recovering all benefits.

Our approach underwent extensive simulations benchmarked against
existing penalization techniques across diverse frameworks: it often
performs better than all competitors. Despite varying performance
outcomes, our methodology exhibits superior qualities in many sce-
narios, notably in the Mean Squared Error and Area Under the
Curve values.

Furthermore, our findings provide valuable insights into param-
eter selection. The impact of the parameter ν on estimation error
and non-zero coefficient identification, particularly concerning the
ratio of observations to variables (n/pA), offers practical guidance.
Optimal ν selection varies based on the dataset’s characteristics,
emphasizing the need for tailored parameter tuning in different sce-
narios.

The adaptability and performance of the ANP estimator posi-
tion it as a compelling alternative to established methods, partic-
ularly in applications necessitating variable selection, both in high
dimensional context and not. By offering a robust solution to high-
dimensional data challenges, our approach promises advancements
in fields where precision and data-driven insights are paramount.

On the other hand, while ANP is designed for high-dimensional
settings, its performance might not be superior in all high-dimensional
scenarios. It’s essential to evaluate, for future progress, the specific
characteristics of the dataset, such as the noise level and the true
sparsity of the model, before applying ANP and possibly to adapt
the best value of ν.

There are still numerous potential advancements concerning the
function. Drawing insights from the findings derived through the
examination or simulation of the ν effect, it becomes evident that
exploring the link between the optimal parameter value and the ratio
n/pA would be crucial. However, given that the active set’s cardi-
nality is unknown, a plausible approach could involve investigating
the relationship between νopt and the model’s degrees of freedom.
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The idea of an optimal selection of the parameter ν can (and prob-
ably must) be understood as the search for more optimal values:
the advantage of adjusting the non-convexity of the penalty func-
tion along the path of the coefficients may entail the characteristic
of determining different speeds of growth of the magnitude of the
coefficients. While it may be plausible to think that coefficients that
are activated earlier are the potential truly non-zero coefficients (and
that those activated towards λ = 0 constitute noise), a slower rate of
parameter explosion proportional to the decrease of the λ parameter
may seem convenient. This can be translated into using more values
of the parameter ν, whose values will be inversely proportional to
the value of λ.

In addition, a primitive version of the penalizedcdf package can
be downloaded on CRAN, which only allows (at the moment) the
estimation of a penalised linear model using the ANP function. Cur-
rently, the computational demand, especially for very large datasets,
can be a limitation.

In conclusion, our thesis underscores the merits of our proposed
ANP estimator and elucidates its potential implications across vari-
ous frameworks. Our methodology’s adaptability, performance, and
practical insights position it as a robust tool for high-dimensional
data analysis and pave the way for future advancements in data-
driven research.
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