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Abstract We investigate the behavior of correlations dynamics in a dissipative gain–loss system. First, we
consider a setup made of two coupled lossy oscillators, with one of them subject to a local gain. This provides
a more realistic platform to implement parity–time (PT ) symmetry circumventing the implementation of a
pure gain. We show how the qualitative dynamics of correlations resembles that for a pure gain–loss setup.
The major quantitative effect is that quantum correlations are reduced, while total ones are enhanced.
Second, we study the behavior of these correlations across an exceptional point (EP) outside of the PT -
symmetric regime of parameters, observing how different behaviors across the EP occur only in the transient
dynamics. This shows how PT symmetry plays a relevant role at large times.

1 Introduction

Parity–time (PT ) symmetric Hamiltonians have
attracted growing attention over the last two decades
as they may possess a real spectrum despite being non-
Hermitian [1]. A Hamiltonian H , not necessarily Her-
mitian, is PT -symmetric if it commutes with the anti-
Hermitian operator PT , where P and T are the parity
and time reversal operators, respectively.

A PT -symmetric Hamiltonian may possess a real
spectrum, in which case the PT symmetry is unbro-
ken, or a complex spectrum in the PT broken phase.
These two regimes are separated by a so called excep-
tional point (EP). These are peculiar non-Hermitian
degeneracies as at an EP, both eigenvalues and eigen-
states coincide, which are generally exhibited by non-
Hermitian Hamiltonians (even those lacking PT sym-
metry).

The importance of PT -symmetric Hamiltonians
has grown also due to their experimental realization
in optical platforms, where staggered real/complex
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refracting indices allow the implementation of clas-
sical PT -symmetric potentials [2–4]. A paradigm of
PT -symmetric setups is a pair of systems coherently
exchanging energy, where one of which is subject to
some form of leakage (loss) and the other one to pump-
ing (gain) [5–7]. Gain–loss PT -symmetric Hamiltoni-
ans often come up as effective tools to describe mean
field dynamics [8–10] or quantum trajectories without
jumps [11].

The realization of a pure gain is a major experimental
hindrance in implementing PT -symmetric systems at
the quantum level [12].

This is still an open problem, and many efforts have
been recently made in the direction of characterizing
the behavior of quantum features such as, e.g., cor-
relations [13], transport [14], and sensing [15] near
EPs [16–20].

In this work, we study quantum correlations in a gen-
eralized gain–loss PT -symmetric system, emphasizing
the differences with a pure gain–loss setup.

We first introduce our model, which we dub dissi-
pative gain–loss system (see Fig. 1): a pair of coher-
ently coupled lossy modes with only one of these sub-
ject to gain. Second, we study the dynamics of total
and quantum correlations when the system is in its PT -
symmetric configuration, exhibiting critical behavior at
the EP. Finally, we study the same correlations across
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Fig. 1 Dissipative gain–loss system. A pair of quantum
oscillators G and L that coherently exchange excitations
with rate g . Both modes G and L are subject to local losses
with rates γG and γL, respectively. Additionally, mode G is
subject to a local gain with rate ΓG. If parameters are set so
as to match the condition ΓG−γG = γL, then the mean-field
dynamics is described by a PT -symmetric Hamiltonian

another EP without PT symmetry, showing that differ-
ent behaviors across it appear only in transient dynam-
ics.

2 Dissipative gain–loss system

We consider a setup made of two quantum harmonic
oscillators labeled by G and L whose closed dynamics
is governed by the Hamiltonian

Ĥ = g (â†
LâG + H.c.). (1)

This describes an excitation exchange at rate g between
the modes âG and âL, that are usual bosonic ladder
operators.

We consider now the additional introduction of a
local loss on either mode and a gain only on mode L.
This makes the dynamics of the modes non-unitary and
described by the Lindblad master equation [21, 22] (we
set � = 1 throughout)

ρ̇ = − i[Ĥ, ρ] + 2γL D [âL]ρ

+ 2γG D [âG]ρ + 2ΓG D [â†
G]ρ (2)

with

D [Â]ρ = ÂρÂ† − 1
2 (Â†Âρ + ρÂ†Â).

Here, ρ is the joint density matrix of the two modes.
We work in a rotating frame so as to eliminate the free
Hamiltonian dynamics, which in turn does not affect
correlations between the two modes.

In the first line of Eq. (2), the second term describes
the leakage of the mode L at rate γL into a local zero-
temperature environment. In the second line of Eq. (2),
unlike Ref. [8], the first and second terms describe leak-
age and incoherent pumping on mode G at rates γG and
ΓG, respectively.

This configuration avoids the implementation of a
pure gain (i.e., an incoherent pump), which is exper-
imentally demanding [12]. We refer to this as a dissipa-
tive gain–loss system as, on top of gain (ΓG) and loss

(γL), we consider additional dissipation on mode G at
rate γG. If γG = 0, the pure gain–loss configuration is
retrieved.

2.1 First-moment dynamics

Master equation (2) implies a Schrödinger-like equation
iΨ̇ = H Ψ for the mean-field vector Ψ = (〈âL〉, 〈âG〉)T
with

H =
(

−iγL g

g i Γ̃G

)
, (3)

where Γ̃G = ΓG − γG is the effective gain rate and
〈ân〉 = Tr(ânρ) for n = L,G. The corresponding
dynamics is that of a classical dynamical system with
unbalanced gain and loss [23]. We note that the term
mean-field refers only to the mean dynamics of the field .
We do not use it in the sense of statistical mechan-
ics, i.e., as the approximation where correlations can
be neglected.

Matrix H has two complex eigenvalues given by

E± = −iγL−Γ̃G

2 ±
√

g2 −
(

γL+Γ̃G

2

)2

, (4)

with associated non-orthogonal eigenstates. The former
are purely imaginary (complex) if γL + Γ̃G > 2g (γL +
Γ̃G < 2g), coalescing at the EP γL + Γ̃G = 2g where
the corresponding eigenstates become parallel [5].

2.2 Second-moment dynamics

To go beyond a mean-field description of the dynamics,
we consider the quantum uncertainties of the two modes
described by the covariance matrix, whose entries are
defined as σij = 〈{Âi, Âj}〉 − 2〈Âi〉〈Âj〉, where Âi =
(âL, âG, â†

L, â†
G) [24].

Master equation (2) implies the following Lyapunov
evolution equation [25] for the covariance matrix

σ̇ = Y σ + σ Y T + 4D (5)

with

Y =
(

−iH 0
0 iH†

)
(6)

and D = �2 ⊗ diag(γL, Γ̃G + 2γG)/2. This shows how
the full dynamics indeed depend only on the mean-field
PT -symmetric Hamiltonian H.

The Lindbladian (2) is quadratic. As such, it trans-
forms Gaussian states into Gaussian states [26]. Accord-
ingly, we will consider the most classical uncorrelated
Gaussian initial state ρ0 = |αL〉〈αL|⊗|αG〉〈αG| with
|αn〉 (for n = L,G) a coherent state of amplitude αn.
The corresponding covariance matrix is σ0 = �2 ⊗ �2,
that is the same of the vacuum state (regardless of
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amplitudes αn). This is because a coherent state |α〉
contains only the noise of the vacuum, that is

〈0|Â2|0〉 = 〈α|Â2|α〉 − 〈α|Â|α〉2 (7)

with Â = x̂, p̂, for any amplitude α.
Therefore, up to a shift Ψ, the joint state of the sys-

tem is completely described by the covariance matrix σ
[26]. One of the advantages of working with Gaussian
states is that entropies, total and quantum correlations
can be calculated as functions of the covariance matrix,
as we discuss in the next section.

3 Classical and quantum correlations

To compare our results to those of [8], we focus on
two quantities: mutual information, which captures the
total amount of correlations among the two modes,
and quantum discord, which by definition measures
the pure quantum correlation between them. The for-
mer is defined as I = SG + SL − S where SL(G) =
−Tr(ρL(G) log ρL(G)) and S = −Tr(ρ log ρ) [27, 28] are
the local and global entropies, respectively. Mutual
information is zero only for product states; therefore,
it captures the total amount of correlations. Quantum
discord instead is defined by the difference of total and
classical correlations [29–31] and can be expressed as

DLG = SG − S + min
Ĝk

∑
k

pkS(ρL|k), (8)

where ρL|k = TrG(Ĝkρ)/pk is the state after a mea-
surement Ĝk made on G with outcome k and the mini-
mization is over all possible measurements. Similarly,
DGL is obtained by swapping G and L in Eq. (8).
More explicitly, the total von Neumann entropy is given
by S = f(ν−) + f(ν+), where f(x) = x+1

2 log[x+1
2 ] −

x−1
2 log[x−1

2 ], ν± are the symplectic eigenvalues given
by 2ν2

± = Δ ±
√

Δ2 − 4|σ|, Δ = |A|+|B|+2|C|, the
two-mode covariance matrix is

σ =
(

L C
CT G

)
, (9)

and |M |= det M . The local entropies are instead SM =
f(|M |), with M = G,L. The explicit form of quantum
discord is DLG = f(

√
|G|) − f(ν−) − f(ν+) + f̃

f̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2|C|2+(|G|−1)(|σ|−|L|)+2||C||
√

|C|2+(|G|−1)(|σ|−|L|)
(|G|−1)2

if δ < 0,
|G||L|−|C|2+|σ|−

√
|C|4+(|σ|−|G||L|)2−2|C|2(|σ|+|G||L|)

2|G|
otherwise.

(10)

Fig. 2 Total and quantum correlations dynamics in the PT
regime. Time behavior of mutual information (left panels)
and quantum discord (right panels) in the unbroken phase
(UP) (a, b), exceptional point (c, d), and broken phase (BP)
(e, f). Solid (dashed): pure (dissipative) gain–loss configu-
ration γG = 0 (ΓG/2), with UP, EP, and BP corresponding
to ΓG = g/2, g, 3g/2 (g, 2g, 3g), respectively

where δ = (|σ|−|G||L|)2 − |C|2(|G|+1)(|σ|+|L|). The
analogous expression for DGL is obtained by exchanging
G with L.

Notice that discord is generally asymmetric, i.e.,
DLG �= DGL. Based on its definition, discord captures
quantum correlations beyond entanglement, as separa-
ble states are generally discordant [31]. Therefore, the
two quantum oscillators are classically correlated only
when DLG(GL) = 0 and I �= 0.

In the special case of Gaussian states, the mini-
mization in (8) can be restricted to Gaussian measure-
ments [32], which yields an explicit expression for Gaus-
sian discord D [33, 34] capturing correlations beyond
entanglement since states with D > 1 are entan-
gled [34].

4 PT -symmetric regime

The system parameters can be tuned so to implement
PT symmetry by balancing loss and effective gain,
γL = Γ̃G, a condition which we will assume in this
section. The eigenvalues now simply read

E± = ±
√

g2 − Γ̃2
G. (11)
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Fig. 3 Asymptotic quantum correlations in the PT
regime. Long-time quantum correlations measured by quan-
tum discord DLG (DGL displays equivalent qualitative
behavior). The PT -symmetric regime, achieved by balanc-
ing loss and effective gain, corresponds to the region γG >
ΓG (purple and orange). In this regime, for each (ΓG, γG),
the value of γL is chosen so that PT symmetry holds. In
the unbroken phase, i.e., ΓG − γG < g, quantum discord
vanishes for any dissipation strength γG. Contrarily, in the
broken phase, it approaches a finite value, which decreases
with γG

Accordingly, PT symmetry is unbroken (broken) for
Γ̃G < g (Γ̃G > g). Note that, since all rates are posi-
tive, the PT -symmetric condition γL = Γ̃G imposes the
further constraint γG < ΓG. Therefore, the local bath
connected to oscillator G cannot be interpreted as a
thermal environment since the detailed balance condi-
tion would imply γG > ΓG [22, 35, 36].

As shown in Fig. 2, the dynamics of total and quan-
tum correlations (see Sect. 3 for details) are qualita-
tively analogous to that of a pure gain–loss setup [8].
Mutual information, capturing the total amount of cor-
relations (both classical and quantum) reaches a finite
stationary value in the unbroken regime Γ̃G < g, lin-
early diverges in the broken one Γ̃G > g, and logarith-
mically diverges at the EP Γ̃G = g (see Fig. 2a, c, e). On
the other hand, quantum discord (measuring quantum
correlations) vanishes in the unbroken phase and at the
EP, though with different scalings, while it approaches
a stationary value in the broken phase (c.f. Fig. 2b, d,
f).

It turns out that adding dissipation on mode G is to
increase the total amount of correlations and eventually
reduce quantum discord, as shown in Fig. 2. This effect
occurs as the gain process generally introduces mixed-
ness into the system, which helps creating discord, while
pure dissipation tends to enhance purity [8].

Figure 3 shows the behavior of asymptotic quan-
tum discord in the available PT -symmetric configura-
tions (γG < ΓG) in the parameter space. In the bro-
ken phase, quantum discord is finite and decreasing
with γG. In the non-PT -symmetric regime (γG > ΓG),

perfect gain–loss balance cannot be achieved. Notwith-
standing, the effective mean-field Hamiltonian exhibits
EPs and a similar investigation can be conducted.

5 Correlations dynamics in the non-PT
regime

The mean-field Hamiltonian for our master equation
exhibits EPs even away from the PT -symmetric regime.
It is natural to wonder whether correlations are sensi-
tive to these points.

An EP arises when varying the loss strength γL of the
only-loss cavity (L) between the PT -symmetric thresh-
old

γPT
L = ΓG − γG, (12)

and the so called loss-induced lasing threshold [19]

γth
L =

2g2

ΓG − γG
. (13)

The EP occurs at

γEP
L = 2g + γG − ΓG, (14)

as shown in Fig. 4.
Master equation (2) has recently been used to model

a double quantum dot setup exhibiting PT symme-
try [19]. Hence, we set parameter values matching those
considered in Ref. [19]: g = 2 (MHz), γG = 0.6 g and
Γ = 1.16 g, so to ensure that γPT

L < γEP
L < γth

L .
Contrarily to the PT -symmetric regime, total and

quantum correlations are not sensitive at large times to
this EP. As displayed in Fig. 5, quantum correlations
can amount up to 10% of total ones right at the lasing
threshold, where they also achieve half of the entangle-
ment threshold (see Sect. 3).

A different behavior below and above the EP can
be spotted only by looking at the transient dynamics.
Indeed, as shown in Fig. 6, below (above) the EP, both
mutual information and discord (do not) exhibit oscil-
latory behavior before reaching their stationary value.

Fig. 4 Mean-field spectrum. Imaginary part of the eigen-
values of H as a function of the only-loss cavity dissipation
rate γL
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Fig. 5 Asymptotic correlations in the non-PT regime. Sta-
tionary value of mutual information [left scale] in black
and quantum discord [right scale] DGL and DLG in pink
and orange, respectively. Contrarily to the PT -symmetric
regime, they both appear to be insensitive to the EP occur-
ring at γL = γEP

L

Fig. 6 Total and quantum correlations dynamics in the
non-PT regime. Time behavior of mutual information (left)
and quantum discord DLG (right) below [γL = 0.8g], at and
above [γL = 1.6g] the EP (orange, red and cyan, respec-
tively). Above the EP, oscillations are overdamped

6 Conclusion

We investigated the behavior of quantum and total cor-
relations in a PT -symmetric system beyond the pure
balanced gain and loss picture.

We first studied the effect of adding dissipation to
both modes of a gain–loss setup, which still enjoys
PT symmetry. We found that the qualitative time
behavior of mutual information and quantum discord in
this dissipative gain–loss system is similar to the pure
gain–loss case. In particular, total correlations increase,
while quantum ones are reduced. Also the asymptotic
behavior of quantum correlations is unchanged, van-
ishing in the unbroken regime and being finite in the
broken one.

We made a similar investigation across an EP with-
out PT symmetry, which appears by tuning the loss
strength. In this case, we still observe different dynam-
ical behaviors below, at and beyond the EP, though
these differences disappear at large times.

We observe how asymptotic distinct behaviors across
the EP occur only in presence of PT symmetry. This
suggests a deeper interplay between this symmetry and
long-time properties, which is left for future investiga-
tion.
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