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Abstract
We employ a machine learning-enabled approach to quantum state engineering based on
evolutionary algorithms. In particular, we focus on superconducting platforms and consider a
network of qubits—encoded in the states of artificial atoms with no direct coupling—interacting
via a common single-mode driven microwave resonator. The qubit-resonator couplings are
assumed to be in the resonant regime and tunable in time. A genetic algorithm is used in order to
find the functional time-dependence of the couplings that optimise the fidelity between the
evolved state and a variety of targets, including three-qubit GHZ and Dicke states and four-qubit
graph states. We observe high quantum fidelities (above 0.96 in the worst case setting of a system of
effective dimension 96), fast preparation times, and resilience to noise, despite the algorithm being
trained in the ideal noise-free setting. These results show that the genetic algorithms represent an
effective approach to control quantum systems of large dimensions.

1. Introduction

Quantum state engineering is an essential enabling step for a variety of quantum information tasks,
including the initialization of quantum simulators [1], the loading of classical data for quantum-enhanced
analysis [2], or the generation of resourceful states in quantum communication networks [3]. In particular,
quantum entangled states, which embody a stark departure from classicality, often provide the main
resources towards quantum advantage [4]. Therefore the preparation of entangled states in multi-node
quantum networks presents a key challenge for realising quantum protocols on near term devices.

A successful approach towards state and resource generation consists of two steps: (a) engineer a suitable
time-dependent Hamiltonian with tunable parameters, as allowed by current experimental capabilities in a
given physical platform; (b) find and implement proper temporal dependencies (pulse shapes) for these
parameters by invoking optimal quantum control techniques [5, 6]. This results in tailor-made control
schemes pertinent to the specific platform at hand.

One platform at the forefront of engineering flexible multi-node quantum networks, to which
such approach has been successfully applied, is that of superconducting quantum circuits [7–10]. So far
superconducting architectures have been employed to realise two-qubit gates using
frequency-tunable [11–14] and microwave-driven [15, 16] artificial atoms. In addition, demonstration of the
coupling between artificial atoms and microwave resonators [17] opened the door for resonator mediated
two-qubit gates [18–21] and provided an alternative platform to study cavity quantum electrodynamics [22]
leading to the field of Circuit QED [23]. Whilst extremely flexible in their design, it has been shown however
that operating these superconducting systems with a reduced level control is not only desirable, but necessary
in some cases [24, 25]. Thus finding optimal control protocols that utilize a limited but effective level of
control is of practical interest.
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Optimal control of quantum systems has yielded a range of new methods inspired, in part, by the
development of modern machine learning methods. Specifically, neural-network-based reinforcement
learning methods [26, 27] have been recognised as useful tools to study quantum systems [28] in a variety of
contexts including state transfer [29–32], quantum thermodynamics [31], circuit architecture search [33],
control of dissipative systems [34] and Adaptive Quantum Enhanced Metrology [35]. Reinforcement
learning techniques have proven particularly suitable for control problems of increasing dimension when
compared to more standard techniques [36]. However, for the most part these techniques cannot be used as
closed-loop optimization schemes and therefore are of limited use for optimization on physical quantum
systems [37] and have relatively poor convergence guarantees which necessitate, often expensive, hyper
parameter tuning steps. This motivates one to consider whether these control problems can be tackled using
comparatively less sophisticated techniques that scale well but have greater ease of implementation. With this
in mind we consider evolutionary strategies, which have already been proposed as a scalable substitute to
reinforcement learning methods [38] and used as an alternative to gradient based parameter updates in both
deep reinforcement learning [39] and quantum reservoir computing [40]. In fact, natural evolution strategies
(NES) have already been proposed in the context of quantum control [35, 41] resulting in the realisation of
fast, high-fidelity single-shot three-qubit gates in frequency tunable superconducting systems [42, 43], while
extension to four qubit systems has also been tackled effectively using more standard global optimization
techniques [44]. More recently these NES techniques have been utilized to address optimal annealing
schedules in spin systems [45] and optimal transport of Majorana fermions in superconducting
nanowires [46]. The aim of this work is to investigate the potential of these techniques in the specific context
of direct state preparation in a driven-resonator mediated, reduced-control multi-qubit network.

Here we consider a register of qubits coupled via a common resonator and operated in a regime which
facilitates a reduced level of control, and employ a genetic algorithm to find optimal pulse sequences to drive
their dynamics. In order to illustrate our approach, we present efficient control schemes for preparing
entangled three- and four-qubit states, including GHZ, Dicke, and graph states, and assess performance
against relevant decoherence sources finding the thresholds that limit the quality of our results. The
generation of high-quality states, in short times compared to typical multi-qubit circuit timescales, is thus
demonstrated while identifying fully the sequence of driving pulses to use. Our approach contributes to the
growing argument that a hybrid take to quantum control—that mixes machine learning and optimal
control—is a viable route to the engineering of crucial resources for quantum information processing.

The remainder of the manuscript is organised as follows. In section 2 we present the specifics of the
system considered and formalise the Hamiltonian. In section 3, we present an overview of the continuous
genetic algorithm (CGA) employed then follow by formalising the algorithm for the problem of quantum
control in section 4. Section 5 focuses on the presentation of the resulting control schemes for the
preparation of three-qubit GHZ and Dicke states as well as a specific instance of a four-qubit graph states. In
section 5.3, the effect of decoherence is investigated. Section 6 offers our closing remarks and a forward look.

2. System

We consider a system composed of N identical and non-interacting qubits coupled via a common
single-mode driven resonator. We model such system with the Hamiltonian H=H0 +Hint +Hd, where

H0 = ωca
†a+

N∑
j=1

ωjσ
+
j σ

−
j , (1)

Hint =
N∑
j=1

gj(a
†σ−

j + aσ+
j ), (2)

Hd = ξ(aeiωdt + a†e−iωdt). (3)

In writing these Hamiltonians, we have assumed the rotating wave approximation and used units such that
ℏ= 1. Here a denotes the annihilation operator of the resonator mode, whereas σ+

j = |1⟩⟨0| and σ−
j = |0⟩⟨1|

are the raising and lowering operators of the jth qubit. Moreover, ωc denotes the resonator frequency, ωj the
transition frequency of the jth qubit and g j its coupling strength with the resonator. The driving amplitude
(assumed to be real) and the carrier frequency of the drive are indicated with ξ and ωd respectively.
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The use of a resonator to mediate two-qubit gate interactions is well studied. For example, in the context
of superconducting systems the resonator-induced phase gate [18–20] utilizes two qubits dispersively
coupled to a common microwave resonator. In such a dispersive regime, the coherent qubit-resonator
interaction term becomes negligible leading to an effective qubit–qubit interaction term. Whilst this can be
beneficial for protection against decoherence there are two main drawbacks: (a) The dispersive coupling
precludes real photon processes between the resonator and each qubit which necessitates the use of local
qubit drives in order to introduce energy into the system. This subsequently makes this regime adverse to
scaling to larger numbers of qubits. (b) The large detunings involved result in small effective qubit-qubit
coupling strengths at the expense of gate operation time. On the other end of the spectrum, resonant regimes
have been considered to selectively tune qubits in and out of coupling with a common resonator [47]. In
addition, external microwave drives are also commonly used such as with the cross-resonance gate [15, 16].
In contrast to such previous works, we assume in H a fully resonant regime which allows us to adapt a
limited control scheme, in that the local qubit drives can be replaced by a single resonator driving term where
the amplitude of this drive and the qubit-resonator couplings are tunable. This facilitates the possibility of
multi-qubit interactions that operate on timescales that are much shorter than typical multi-qubit gate times.

Taking the interaction picture with respect to the frequency of the harmonic mode and using

H̃= eiRtHe−iRt −R, where R= ωc

(
a†a+

∑N
j=1σ

+
j σ

−
j

)
, we get

H̃=
N∑
j=1

[
δjσ

+
j σ

−
j + gj

(
a†σ−

j + aσ+
j

)]
+ ξ(aeiδdt + a†e−iδdt), (4)

where δj = ωj −ωc and δd = ωd −ωc are the detunings between the jth qubit and the harmonic mode, and
between the drive frequency and the harmonic mode respectively. The utility of this transformation becomes
apparent when one assumes full resonance between the qubit transition frequencies, drive frequency and
resonator frequency—namely, ωc = ωd = ωj, ∀j= 1, . . .,N. The Hamiltonian thus takes the simpler form

H̃=
N∑
j=1

gj(t)
(
a†σ−

j + aσ+
j

)
+ ξ(t)(a+ a†), (5)

which comprises N + 1 terms embodying an equal number of controls, where we assume each of the
qubit-cavity couplings gj(t) and the drive amplitude ξ(t) to be time-dependent controllable parameters.

The above Hamiltonian governs the dynamics of the system via the time-dependent Schrödinger
equation. Thus if the system is initially in some state |ψ(t0)⟩, then the time-evolved state of the system at any
future time t> t0 is given by [48]

|ψ(t)⟩= T ei
´ t
t0
H̃(t ′)dt ′ |ψ(t0)⟩. (6)

The goal here is to find the optimal functional forms for gj(t) and ξ(t), such that the system is
dynamically steered in some desired way. Specifically, we are interested in state preparation within the qubit
subspace, so we first determine the reduced state of the qubit network

ρQ(t) = Trc
(
|ψ(t)⟩⟨ψ(t)|

)
=

∞∑
i=0

c⟨i|ψ(t)⟩⟨ψ(t)|i⟩c, (7)

and work to find gj(t) and ξ(t) such that the fidelity

F(ρQ,σ) = ⟨ψσ|ρQ|ψσ⟩ (8)

is maximized, where |ψσ⟩ is the target state of interest. It is worth stressing that our approach would work
equally –mutatis mutandis—with mixed target states.

3. The CGA

Evolutionary strategies are a class of direct search optimization techniques, drawing inspiration from
Darwinian evolution, that have recently been proposed as a viable substitute for gradient based parameter
optimization in Neural Networks [39] and quantum reservoirs [40], as well as a scalable alternative to
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Reinforcement learning techniques [38]. Of particular interest to continuous-control problems is the
so-called ‘CGA’ [49], which generalises the more traditional Discrete Genetic algorithm to allow for
continuous parameter values.

Consider an optimization problem withNvar parameter variables pi. We call a specific instance of these
parameters, C = [p1,p2, . . .,pNvar ], a Chromosome. This embodies one proposed solution to the optimization
problem. One then defines a Fitness function, f(C) = f(p1,p2, . . .,pNvar): RNvar → R. This function will be
determined by the optimization task under consideration and will assign a numerical score to each proposed
solution (chromosome) depending on its usefulness (fitness) with respect to the specified task at hand. In the
name of generality we assert that pi ∈ [−1,1], where the parameter values are suitably scaled within the
fitness function. We call each new iteration of the algorithm a Generation where the algorithm proposes
several chromosomes to make up a Population. The algorithm can be qualitatively summarised using the
following steps:

(a) Initialization. Define the fitness function (determined by the optimization task) and fix the
hyper-parameters for the genetic algorithm. One then generates an initial population withNpop

chromosomes, typically randomly, which acts as the zero-th generation of the algorithm.
(b) Natural Selection. The fitness of each chromosome is assessed with a call to the fitness function. The

population is then ranked based on these fitness values and theNsurvive highest scoring chromosomes
are chosen to survive, while the rest are discarded to be replaced by new offspring chromosomes in the
next generation.

(c) Pairing. From theNsurvive surviving chromosomes choseNparents pairs of parent chromosomes in order
to produce (Npop −Nsurvive) offspring to repopulate. Parent chromosomes are sampled probabilistically
based on their relative fitness, such that the fittest chromosomes reproduce more frequently, where
cloning (using the same chromosome for both parents) is disallowed.

(d) Mating.Here, each pair of parent chromosomes is combined in some manner to produce enough
offspring to replenish the population. In the simplest case, one can consider cutting the parent
chromosomes in half and producing two offspring, made up of the two possible combinations of these
halves. Alternatively, one could pick indices along the chromosomes at random, and generate two
offspring by first copying the parent chromosomes, then swapping the parameter values corresponding
to these indices between the two copies. This direct transfer of parameter values to generate offspring is
the simplest and most obvious way of mating two parent chromosomes. However this approach simply
provides offspring chromosomes made up entirely of parameter values that were already present in the
previous generation and, as such, introduces no new ‘genetic material’ in the form of novel parameter
values for a given parameter. To tackle this we can implement a combination of the form

pi, offspring = βpi, parent 1 +(1−β)pi, parent 2. (9)

This allows us to introduce an element of exploration by allowing not only parameter values present in
the previous generation but also any continuous value in between, modulated by random variable
β ∈ [0,1].

(e) Mutation. This final step introduces further exploration into the search by choosing, at random, a
number of elements within each chromosome to be replaced with a new random value. The rate of this
mutation is set by a parameter 0< α < 1, which determines the number of indices to be targeted
relative toNvar. This mutation step is applied to the entire population except for the single chromosome
with the highest fitness, which is known as Elitism. This is important to ensure theoretical guarantees of
convergence. Specifically it ensures that the maximum achieved fitness is always at least maintained in
new generations.

The algorithm repeats steps 2–5 until convergence or an acceptable level of fitness has been achieved. A
key point to note here is that the CGA is a stochastic optimization process so with finite time the convergence
to any absolute optimal strategy is never guaranteed, however on average one would expect an increase in
performance as the computational time grows. The aforementioned hyper-parameters associated with CGA
then are: population sizeNpop, number of survivorsNsurvive to keep in each iteration, number of parental
pairs to mateNparents and the mutation rate α. Also, as discussed above, we have some freedom in how we
implement the mating procedure.
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Figure 1. Schematic representation of how the variables within each chromosome (visually represented by the sequence of
connected squares) are assigned to which control pulse, depicted along the top of the diagram. Along the bottom shows sample
control pulses generated using random parameter values and the function construction method outlined in appendix A.

4. CGAs for optimal quantum control

In order to apply the CGA we first must formulate the optimal control problem in a suitable manner. As is
common practice, we discretize the evolution time into T time intervals of equal duration τ —which is
manually chosen—and assume the functional form for each control to be defined by its values at the T+ 1
times t= 0, τ,2τ, . . .,Tτ (connecting the latter with a simple tanh function, similar to the use of piecewise
error functions [42, 43]. See appendix A for specifics). Therefore, given that each control function is
completely defined by these T+ 1 values, and there are N + 1 controls in total as per equation (5), then the
total number of parameters that we have to optimize over isNvar = (N+ 1)(T+ 1) (which as said is the
length of the chromosomes). We then need to outline how we asses the fitness of each chromosome and in
doing so define the optimization task.

4.1. The fitness function
As said, each chromosome is a sequence ofNvar parameter values, and there are N + 1 control pulses.
Therefore we first break each chromosome up into N + 1 sequences where the first T+ 1 parameters
determine the first control pulse and so on, as in figure 1. Then the parameter values corresponding to each
control are scaled accordingly where each of the qubit-resonator couplings assume a common range
gj ∈ [−g0,g0], and the drive amplitude is in the range ξ ∈ [−ξ0, ξ0]. The scaled parameter values are then used
to build the control pulses as in appendix A, which fully define the time dependent Hamiltonian H̃(t) in
equation (5). After defining an initial state |ψ(t= 0)⟩ the system evolves unitarily according to H̃(t) (as in
equation (6)), where we keep track of the state of the system at every intermediate time between t= 0 and
t= τT. For each state in this history of states, we trace out the cavity system to obtain a state history for the
qubit subspace, ρQ(t). Next we calculate F(ρQ(t),σ), which is the time dependent fidelity induced by the
specific control pulses. In order to assign a numerical fitness value to the chromosome we simply take the
maximum fidelity achieved in the qubit subspace throughout the induced dynamics, i.e

Chromosome fitness=max
t

[F(ρQ(t),σ)] . (10)

In fact, the function actually used is a slight variation of that presented above necessitated by the specific
details of the simulation and the ability to ‘extract’ the state with the highest fidelity (see appendix C for
details).

5. Results

5.1. Analysis of performance: case studies
Below we outline the optimal control schemes found when applying the CGA approach to prepare genuinely
entangled three and four -qubit states from completely separable initial states. In doing so this acts as a proof
of principle—for both the Hamiltonian H̃, and the optimization method—with respect to entanglement
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Figure 2. Results for three-qubit GHZ state. We have the optimal control pulses [Top], the fidelity in the qubit subspace during
the dynamics [Middle] and the matrix histogram for the target state (left) and the state with the highest fidelity during the
dynamics (right) [Bottom]. Hyper-parameters τ = 1 ns and T= 10 are used here, with maximal fidelity achieved, and
maintained, within≈8 ns. On the fidelity plot, the horizontal green line is drawn at cn = 1/2 and all fidelities above this exhibit
GME (green region). The blue region cn = 3/4 on the other hand shows those fidelities that exhibit both GME and GHZ-class
entanglement in particular.

generation in general and state preparation specifically. Below we consider the physically reasonable
maximum coupling and driving g0, ξ0 = 2π 200 MHz, and total time-scales τT⩽ 10 ns (see appendix B for
full details). An important point to make is that such timescales are considerably shorter than the typical gate
times associated with two-qubit operations on superconducting platforms, which are commonly of the order
of 100 ns [8, 9]. This means that each of the following protocols operate on a much faster timescale than
their circuit counterparts which prepare the same state. We specifically consider three states: GHZ state,
three-qubit Dicke states with two excitation, and the four qubit ‘Box’ Cluster state.

5.1.1. GHZ state
GHZ states are relevant genuinely tripartite entangled states [50] defined by

|GHZ⟩= |000⟩+ |111⟩√
2

. (11)

We assume the system to initially be in the state |ψ0⟩= |010⟩Q|0⟩cav. We use |010⟩ as the initial state of the
qubit network in this specific instance, as opposed to simply the global vacuum, since the latter has non-zero
fidelity to the target GHZ state and thus starts the optimization in at undesirable local maxima. Such initial
preparation is not so restrictive given that single qubit rotations are easily implemented in many quantum
systems when compared with multi-qubit operations. We use values of τ = 1 ns for the duration of each time
interval and a total number of intervals afforded to the optimizing agent of T= 10. The results are shown in
figure 2 where a highest fidelity of F(ρQ,σ) = 0.9746 is achieved in≈8 ns.

5.1.2. Three-qubit dicke state
Dicke states embody another class of genuinely tripartite entangled states, inequivalent to GHZ states [50],
which have been experimentally realised, projected onto lower dimensional entangled states and employed in
open destination teleportation and telecloning [51, 52]. Specifically we consider the three-qubit
two-excitation Dicke state, sometimes referred to as a flipped W state, defined as
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Figure 3. Results for three-qubit Dicke state. We have the optimal control pulses [Top], the fidelity in the qubit subspace during
the dynamics [Middle] and the matrix histogram for the target state (left) and the state with the highest fidelity during the
dynamics (right) [Bottom]. The hyper-parameters τ = 0.5 ns and T= 20 have been used for these calculations. The
corresponding maximal fidelity was achieved within≈7 ns. The green region on the fidelity plot highlights fidelities for which
genuine multipartite entanglement (GME) is detected based on the fidelity based witness equation (15) with cn = 2/3. The inset
shows Tr(ρŴ) at each instant of time, and the grey region on both the inset plot and the fidelity plot show the temporal region
where GME is detected via the collective-spin witness in equation (16) with bs = 3.12 [53].

|D(2)
3 ⟩= (|011⟩+ |101⟩+ |110⟩)√

3
. (12)

We assume initial state preparation of |000⟩Q|0⟩cav, and allow more fine control this time with τ = 0.5 ns and
T= 20. The maximum fidelity achieved in this instance is F(ρQ,σ)max = 0.9896 within≈7 ns, as shown in
figure 3.

5.1.3. Box cluster state
Cluster states are a class of graph states useful for measurement based quantum computing [54–57]. Cluster
states are represented by graphs of interconnected vertices, where if one starts with each qubit in the ground
state, they are defined procedurally by applying a Hadamard gate to each qubit (represented by the vertices of
the graph) then applying conditional-phase gates between qubits whose vertices are connected by edges.
Here we consider a so-called Box cluster state which is defined by four vertices connected by four edges to
form a square. This can be written as,

|ψBox⟩= CZ41

(
Π3

j=1CZi,i+1

)(
Π4

j=1Hj

)
|0000⟩1234, (13)

where CZi,j is the controlled-Z gate between qubits i and j andHi is the Hadamard gate on qubit i. Explicitly,
the state reads:

|ψBox⟩=
∑

i,j,k,l=0,1

(−1)xi+xj+xk+xl |xixjxkxl⟩. (14)

As before, assuming τ = 0.5 ns and T= 20 and starting from the initial vacuum state a maximum fidelity of
F(ρQ,σ) = 0.9642 was achieved (cf figure 4), this time requiring the full 10 ns to achieve and maintain
maximal fidelity.

7
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Figure 4. Results for a four-qubit Box Cluster state. We have plotted the optimal control pulses [Top panel], the fidelity in the
qubit subspace during the dynamics [Middle panel] and the matrix histogram for both the target state (left-most figure) and the
state with the highest fidelity during the dynamics (right-most one) [Bottom panel]. We have used the hyper-parameters τ = 0.5
ns and T= 20 and the maximum fidelity was achieved within≈10 ns. The values of fidelity for which GME is detected via the
fidelity based witness equation (15) with cn = 1/2 [58] are shown in the green region.

5.2. Entanglement detection
A central question in any state-engineering scheme is the characterization of the features of the state that has
been synthesized. Within the context of our investigation, the core aspect to address is the quantification of
multipartite entanglement.

The task of accurately determining the amount of entanglement in a given quantum state, which is
challenging in general, is made even more difficult in multipartite settings due to the hierarchical structure of
entanglement in many-body systems [4, 59–62] and the need to construct convex-roof extensions of any
pure-state quantifier, when dealing with mixed states [63–65].

A significant tool in these endeavours is embodied by entanglement witnesses, which often offer
experimentally viable ways of detecting (or even quantifying [66]) entanglement [58, 67] that are suitable for
mixed states and have been used to detect genuine multipartite entanglement (GME) already for GHZ class,
W-class and graph states [53, 68, 69]. Whilst high fidelity with a maximally entangled state is a good
indicator that we have generated entanglement close to the right structure, it is useful to quantitatively check
for GME in the system. A natural approach is to use so-called fidelis. These are of the general form

ŴF = cn1− |ψ⟩⟨ψ|, (15)

where |ψ⟩ is the state of interest and cn is the maximal overlap between |ψ⟩ and all bi-separable states. Thus,
any state for which Tr(ρŴF)⩾ 0 is bi-separable and consequently Tr(ρŴF)< 0 indicates GME. The overlap
values cn have already been calculated for three-qubit GHZ and W states, and four-qubit linear cluster
states [53, 58], which up to local unitaries and swaps coincide exactly with the three cases considered above.
In light of the analysis reported in figures 2–4 these witnesses are readily implemented. Considering
Tr(ρŴF) = cnTr(ρ)−Tr(ρ|ψ⟩⟨ψ|)< 0, where of course Tr(ρ) = 1 and Tr(ρ|ψ⟩⟨ψ|) = ⟨ψ|ρ|ψ⟩ is the fidelity
between ρ and |ψ⟩. This is clearly fulfilled when F(ρ, |ψ⟩)> cn so we can simply highlight the threshold
value (cn) of fidelity above which GME can be detected. The region where this happens is highlighted in
green in each of the figures.

8
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Figure 5. A comparison between the fidelity achieved for the (Top) GHZ state preparation, (Middle) Dicke state preparation and
(Bottom) Box Cluster state preparation schemes in the presence of cavity decay and qubit dephasing only (Grey) and qubit decay
only (Red). Each plot shows the maximum achieved fidelity in the latter case. The horizontal blue line shows the maximum
fidelity achieved in the ideal, noiseless case.

One may also be interested in not only ensuring that the state has GME but also, in the GHZ case, if we
have generated GHZ-class entanglement [70]. In this case, cn will be the maximal overlap between |GHZ⟩
and all W-class entangled states. This region is highlighted in blue in figure 2.

Finally, other constructions of witnesses are useful for specific states; for example, witnesses based on
collective spin operators have been used to more efficiently detect GME in symmetric Dicke states as in [53].
Here the witness takes the form

Ŵ = bs1− (̂J2x + Ĵ2y), (16)

where Ĵk is the collective k= x,y spin operator [68]. It is not so straightforward here to place a delineation at
a given fidelity as with the fidelity based witnesses, so we first plot Tr(ρŴ) as an inset within figure 3 and
highlight the region for which Tr(ρŴ)< 0. This region is then shown as the grey hatched area on the larger
fidelity plot. It can be seen that both the fidelity based witness and the collective spin based witness detect
GME at strikingly similar times.

5.3. Decoherence
So far, we have exclusively considered closed system dynamics and as such the optimality of the control
schemes presented is limited to the noiseless case. It is of interest then to assess how these control schemes
perform in the presence of decoherence. Specifically we can write the following Lindblad master equation to
model the effect of decay and dephasing acting on each of the constituent subsystems [71, 72]

ρ̇=−i
[
H̃,ρ

]
+κD [a]ρ+

N∑
j

(
γjD

[
σ−
j

]
ρ+ 2γϕ,jD

[
σ+
j σ

−
j

]
ρ
)
, (17)

where κ is the cavity decay rate, γϕ,j and γ j are the dephasing and decay rate for the jth qubit, respectively, and
we have introduced the superoperators

D[Q]ρ= QρQ† − 1

2

{
Q†Q,ρ

}
(18)

for an arbitrary operator Q. If we adopt physically reasonable values for these rates we can obtain an estimate
of the performance of a physical system. For example, considering superconducting systems we set
κ= 2π× 5 kHz for the cavity damping and the typical values of 2π× 300 KHz and 2π× 5 MHz for the
dephasing and decay rate for each of the qubits [17, 23]. In these systems, the use of high-Q cavities and low
temperatures leads to a reduced cavity decay and dephasing rate. The qubit decay is thus the main source of
decoherence. In these conditions, the effects of noise is reported in figure 5. We can clearly see that the
control protocols are almost completely insensitive to cavity decay and qubit dephasing, whilst still
reasonably robust against qubit decay.
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6. Conclusions

We have investigated the use of evolutionary algorithms, which are well-established strategies for both
classical and quantum control, for direct quantum state engineering and multipartite entanglement
generation. Specifically, we considered the effective Hamiltonian of a network of non-interacting qubits
jointly addressed by a common driven bus and applied a genetic algorithm to identify the set of optimal
pulses to drive the evolution of the qubit register. This has allowed us to successfully put forward robust
protocols for the engineering of three- and four-qubit states that play a crucial role in quantum metrology
and computing, including Dicke and cluster states. The protocols, which offer significant robustness to the
most common and crucial sources of imperfection, provide further evidence of the benefit of a hybrid
approach to quantum control that puts together the insight provided by machine learning strategies to
well-established schemes for optimal control. The extension of these approaches to larger registers and
non-unitary dynamics will pave the way to quantum process engineering enhanced by machine learning and
optimised by quantum control methods.
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Appendix A. Functional form for controls

A common approach to optimal control problems is to break the dynamics up into T time intervals of equal
duration τ , then at each interval assign a constant value to each control parameter. This results in piece-wise
constant control ‘pulses’, u(t)→{ui}i=0,...T−1, where u is routinely used to denote a generic control
function. Such discretization is useful for application of Reinforcement Learning techniques as in [28–32].
Whilst useful, this type of functional form includes discontinuities, often in the form of instantaneous jumps
in the control, which is experimentally unfeasible and subsequently requires some method of smoothing
post-optimization often to the detriment of performance. Here we use a generalised form of this
discretisation, where instead of allowing the optimization to chose the T constant values corresponding to
the control value during each time interval, we allow it to chose the T+ 1 values corresponding to the
start(/end) of each interval, then connect each value with a smooth, time dependent function during the
interval. Namely, the functional time dependence of each control pulse is made to be a clipped tanh function
centred in the middle of the time interval. For example consider a simple tanh function, shown in figure 6. If
we clip the tanh function within windows of different widths centred around zero we can make a ‘step-like’
like function with varying severity. This is tantamount to scaling the tanh function along the y-axis and
clipping it at±1. So the time dependence within time interval i, ti ⩽ t⩽ ti+1 can be written as,

fi(t) =


0 if t< ti

(ui+1 − ui)
(

S tanh(Wt−(ti+ τ
2 ))+1

2

)
+ ui if ti ⩽ t< ti+1

0 if t⩾ ti+1

(A1)

where ui, ui+1 is the value of the control at times ti, ti+1 respectively,W determines the severity of the step,
and S is a scaling factor introduced to deal with the error ε, as in fig 6.

Therefore the complete functional for a general control, under this scheme, is given by

f(t) =
T∑

i=0

fi(t), (A2)

where, again, T is the number of time intervals. Full functional forms can be clearly seen in figures 2–4.
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Figure 6. Comparison of how the clipping window affects the shape of the interconnecting tanh functions used to construct the
control functions. In (a) the tanh function is shown with over-laid dashed lines representing different widths of this clipping
window. From (a) we can see how the clipping window width determines the severity of the time dependence. Namely, taking the
largest width (grey) leads to a more ‘step-like’ dependence, as evidenced in (b) where each of the clipped functions are scaled into
a time interval of equal duration τ and re-scaled to account for the error ε. (a) shows how the error ε increases as the clipping
window narrows, i.e the narrowest (yellow) window has the largest error thus requiring the most re-scaling.

Appendix B. Algorithm implementation details

In each case the population size for the algorithm wasNpop = 48 and was determined by the number of
CPUs available, since each chromosome in the population was evaluated in parallel to significantly speed up
computation time. The number of survivors was fixed atNpop/2= 24, from whichNpop/4= 12 pairs of
parents were selected according to a probability distribution determined by their relative fitness. Each pair of
parent chromosomes produced two offspring chromosomes to re-populate. The mating procedure involved
two steps. After making a one copy of each parent chromosomes: (a) Each separate section of T+ 1
elements—corresponding to the different control pulses—were completely swapped between the two copied
chromosomes with≈50% probability, otherwise they were left unchanged. (b) random indices were then
selected and the combination given by equation (9) was applied, where β was randomly sampled from [0,1]
for each separate index, in an inverse manner to the two copies. This results in two new offspring
chromosomes that are completely complementary to one and other. Mutation was then applied by selecting
chromosomes (apart from the fittest) at random and random indices within these chromosomes to replace
with completely random values. The rate α determined the total number of parameter values within the
entire generation that were flipped and generally assumed a value of α≈ 0.2.

11
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Appendix C. Simulation details

Simulations were carried out using the Numerical Schrödinger equation solver within the QuTiP package in
python [73]. Thus, for the simulations we had to approximate the harmonic mode by a d-dimensional
harmonic system, however care must be taken. Since the cavity is assumed to be resonantly driven, if we use a
low value of d and/or too strong a drive, then the d-dimensional harmonic system will quickly become
saturated, and in fact early optimizations used this fact to produce extremely good results with low
dimensional cavities. Of course when one then simulated these controls with higher levels in the cavity the
performance was destroyed and so the results were neither realistic nor practically useful. One can avoid this
in two ways: (a) By encoding enough redundancy in the cavity by using very high values of d, which increases
computational cost; or (b) Including a term in the numerical fitness function that punishes population of the
higher energy states of the cavity approximation. Here we apply both by chosing d ∈ [5,6] as well as including
the term

ϕ1 =− ν

τT

ˆ τT

0
⟨n|ρcav(t)|n⟩dt, (C1)

where |n⟩ is the highest excited state within the d-dimensional approximation and ρcav is the reduced state of
the cavity. ν determines the strength of punishment and was set at ν= 0.1. (Practically, since the dynamics is
solved numerically the integral was actually a summation).

Another issue one encounters with this type of simulation is that, if we assess fitness based on the
outright maximum value of the fidelity during the induced dynamics, then it is possible to observe successful
control schemes that induce sharp spikes in the fidelity landscape. If the control scheme induces such spikes
on a time scales shorter than that required to completely ‘switch off ’ all of the controls then it is impossible
to extract the state of maximum fidelity and the control sequences again cease to be practically useful. We can
combat this by including an additional term in the fitness function that rewards control schemes that briefly
maintain near maximal fidelity for a short time, allowing us to selectively uncouple the cavity whilst
maintaining the state of maximal fidelity in the qubit subspace. The term used was

ϕ2 =+
µ

mτ

ˆ tmax+mτ

tmax

F(ρQ(t),σ)dt, (C2)

wherem is the number of time intervals of length τ to include in the numerical bonus beyond which we no
longer care if the fidelity deteriorates. µ is again a variable that determines the relative importance of
maintaining fidelity after maximum and was set to µ= 0.5. Thus the actual reward function employed was

Chromosome fitness=[F(ρQ(tmax),σ)]+ϕ1 +ϕ2 (C3)

where tmax is the time at which maximum fidelity is achieved during the induced dynamics. This leads to
control schemes that maximise and briefly maintain fidelity allowing us to selective switch of the couplings,
whilst also only exclusively utilising lower lying levels of the harmonic mode. Thus in principle the resulting
controls could be practically implemented and yield identical performance. Clearly, these considerations are
necessitated by the use of simulation and the case is much simpler if one wishes to use the algorithm on a
physical system, however in this case the ability to parallelise the computational steps, one major advantage
of the Genetic Algorithm, is suppressed.
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