
 

AREA RICERCA E TRASFERIMENTO TECNOLOGICO 
SETTORE DOTTORATI E CONTRATTI PER LA RICERCA 
U. O. DOTTORATI DI RICERCA 
 

 
  

 

Dottorato in Scienze Molecolari e Biomolecolari 
Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) 

Settore Scientifico Disciplinare CHEM-07/A 
 

 
 
 

 

 
 

Targeting the SARS-CoV-2 MPRO through covalent and 
non-covalent inhibition: molecular modeling and synthetic 
procedures for the development of new antiviral molecules 

 
 

 
 
 
 
 
 
 DOTTORE COORDINATORE 
 ALESSIA BONO PROF.SSA GIOVANNA PITARRESI 
 
 
 
 
 
 TUTOR CO TUTOR 
 PROF. ANTONINO LAURIA PROF.SSA ANNAMARIA MARTORANA 
 
 
 
 
 
 
 
 
 
 
 

CICLO XXXVII 
ANNO CONSEGUIMENTO TITOLO 2024 



1 
 

Table of Contents 

Abstract ............................................................................................................................. 4 

1. Introduction ............................................................................................................... 7 

1.1. SARS-CoV-2: Origins and Structure ................................................................................. 8 

1.2. Key targets for antiviral therapy against SARS-CoV-2 ..................................................... 9 

1.3. SARS-CoV-2 MPRO: a druggable target ............................................................................ 12 

2. Aim of the work ....................................................................................................... 18 

3. Results and Discussion ............................................................................................. 19 

3.1. Targeting SARS-CoV-2 MPRO through Non-Covalent Inhibition ....................................... 20 
3.1.1. Non-covalent dual binding inhibition strategy for SARS-CoV-2 MPRO ........................................... 23 

3.1.1.1. In silico ligand-based approach: DRUDIT ............................................................................. 25 
3.1.1.2. ADME properties ................................................................................................................. 27 
3.1.1.3. In silico structure-based studies: Molecular Docking at the catalytic site of SARS-CoV-2 
MPRO 28 
3.1.1.4. Statistical Analysis: Principal Component Analysis ............................................................. 33 
3.1.1.5. In silico structure-based studies: Induced Fit Docking into the allosteric site of SARS-CoV-2 
MPRO 36 
3.1.1.6. Enzyme inhibition assay of SARS-CoV-2 MPRO ..................................................................... 39 

3.2. Targeting SARS-CoV-2 MPRO through Covalent Inhibition ............................................... 40 
3.2.1. Targeting Sars-Cov-2 Main Protease for the Treatment of COVID-19: Covalent inhibitors 
Structure-Activity Relationships insights and Evolution Perspectives ........................................................ 40 

3.2.1.1. Carbonyl warhead ............................................................................................................... 42 
3.2.1.1.1. Aldehyde warhead ......................................................................................................... 42 
3.2.1.1.2. Ketone warhead ............................................................................................................ 55 

3.2.1.2. α-ketoamide warhead ......................................................................................................... 58 
3.2.1.3. Michael Acceptor group as warhead .................................................................................. 63 
3.2.1.4. Nitrile warhead ................................................................................................................... 69 
3.2.1.5. Ester warhead ..................................................................................................................... 72 
3.2.1.6. Selenium/sulfur as electrophilic warhead: the case of ebselen/ebsulfur and analogues ... 76 
3.2.1.7. Electrophilic Warheads Reactivity ....................................................................................... 81 

3.2.2. Covalent inhibition strategy through non-peptidomimetic inhibitors: Synthesis and in vitro 
exploration .................................................................................................................................................. 83 

3.2.2.1. Database design and synthesis ........................................................................................... 83 
3.2.2.2. ADME properties ................................................................................................................. 84 
3.2.2.3. Enzyme inhibition assay of SARS-CoV-2 MPRO ..................................................................... 86 
3.2.2.4. Future Perspectives ............................................................................................................. 87 

3.2.3. Covalent inhibition strategy through peptidomimetic inhibitors: Computational Studies .......... 88 
3.2.3.1. In silico design of a new database of small molecules using CombiGlide® Schrödinger ...... 89 
3.2.3.2. Induced Fit Docking studies ................................................................................................ 94 
3.2.3.3. DRUDIT and Principal Component Analysis ........................................................................ 95 
3.1.3.4. Covalent Docking Studies .................................................................................................... 98 

4. Conclusions and Future Perspectives: Computational Approaches in SARS-CoV-2 MPRO 
Inhibitors Discovery ....................................................................................................... 104 

5. Materials and Methods .......................................................................................... 107 

5.1. In silico studies ........................................................................................................... 107 
5.1.1. Ligand-based studies .................................................................................................................. 107 



2 
 

5.1.1.1. MOLDESTO: a new software for molecular descriptors calculation ................................. 107 
5.1.1.2. Biotarget Predictor Tool .................................................................................................... 107 

5.1.2. Combiglide: Design of a combinatorial library ............................................................................ 108 
5.1.2.1. Reagent Preparation Panel ............................................................................................... 108 
5.1.2.2. Combinatorial Library Enumeration Panel ........................................................................ 108 

5.1.3. Structure-based studies .............................................................................................................. 108 
5.1.3.1. Ligand Preparation ............................................................................................................ 108 
5.1.3.2. Protein Preparation ........................................................................................................... 109 
5.1.3.3. Docking Validation ............................................................................................................ 109 
5.1.3.4. Induced Fit Docking ........................................................................................................... 110 
5.1.3.5. Covalent Docking ............................................................................................................... 110 

5.2. Multivariate Statistical Analysis .................................................................................. 111 

5.3. Chemistry ................................................................................................................... 112 
5.3.1. General Information ................................................................................................................... 112 
5.3.2. General procedure for the synthesis of 6-chloropyridin-2-yl benzoate (45a-m) ........................ 112 

5.3.2.1. Synthesis of 6-chloropyridin-2-yl 5-chloro-2-nitrobenzoate (45a) .................................... 113 
5.3.2.2. Synthesis of 6-chloropyridin-2-yl 2-amino-3,5-dichlorobenzoate (45b) ........................... 113 
5.3.2.3. Synthesis of 6-chloropyridin-2-yl 3,4,5-trimethoxybenzoate (45c) ................................... 114 
5.3.2.4. Synthesis of 6-chloropyridin-2-yl 4-methoxybenzoate (45d) ............................................ 114 
5.3.2.5. Synthesis of 6-chloropyridin-2-yl 4-(trifluoromethyl)benzoate (45e) ............................... 114 
5.3.2.6. Synthesis of 6-chloropyridin-2-yl 4-methylbenzoate (45f) ................................................ 114 
5.3.2.7. Synthesis of 6-chloropyridin-2-yl benzoate (45g) ............................................................. 115 
5.3.2.8. Synthesis of 6-chloropyridin-2-yl 4-(dimethylamino)benzoate (45h) ............................... 115 
5.3.2.9. Synthesis of 6-chloropyridin-2-yl 4-fluorobenzoate (45i) ................................................. 115 
5.3.2.10. Synthesis of 6-chloropyridin-2-yl 4-bromobenzoate (45j) ................................................ 115 
5.3.2.11. Synthesis of 6-chloropyridin-2-yl 2,3-dichlorobenzoate (45k) .......................................... 116 
5.3.2.12. Synthesis of 6-chloropyridin-2-yl 4-chlorobenzoate (45l) ................................................. 116 
5.3.2.13. Synthesis of 6-chloropyridin-2-yl 3-chloro-4-fluorobenzoate (45m) ................................ 116 

5.4. Biological Procedures ................................................................................................. 116 
5.4.1. Antiviral Assay ............................................................................................................................ 116 

6. Appendix: Visiting research period at the University of Buckingham, Oxford Drug 
Design (October 2023 – May 2024), Supervisor: Prof. Paul W. Finn ................................ 118 

6.1. Machine learning model for predicting molecular activity using Molecular Descriptors 
and ElectroShape Descriptors ................................................................................................. 119 

6.2. Introduction ............................................................................................................... 121 
6.2.1. The role of Machine Learning and Artificial Intelligence in Drug Discovery ............................... 121 
6.2.2. Molecular Features: Molecular Descriptors and ElectroShape Descriptors ............................... 122 
6.2.3. Useful Benchmarking sets .......................................................................................................... 123 

6.2.3.1. DUD and DUD-E datasets .................................................................................................. 124 
6.2.3.2. MUV dataset ..................................................................................................................... 125 
6.2.3.3. LIT-PCBA dataset ............................................................................................................... 127 

6.3. Aim of the project ....................................................................................................... 128 

6.4. Results and Discussion ................................................................................................ 130 
6.4.1. Molecular and ElectroShape Descriptors for MUV target sets ................................................... 130 
6.4.2. Machine Learning Model Development ..................................................................................... 131 
6.4.3. Preliminary Results on MUV set – I ROUND ............................................................................... 131 
6.4.4. Results on MUV set – II ROUND .................................................................................................. 136 
6.4.5. Top 25 Molecular Descriptors ..................................................................................................... 142 
6.4.6. 3-Fold Cross-Validation: Evaluating Model Performance with Top Descriptors ......................... 145 

6.4.6.1. Insights from 3-Fold Cross-Validation with Numeric Order Splitting ................................ 146 
6.4.6.2. Insights from 3-Fold Cross-Validation with Structural Identity Splitting ........................... 148 

6.4.7. Analysis of results across different Experimental scenarios ....................................................... 150 



3 
 

6.4.8. Model Performance examination on LIT-PCBA dataset .............................................................. 152 

6.5. Conclusions and Future Perspectives .......................................................................... 157 

6.6. Materials and Methods .............................................................................................. 158 
6.6.1. Benchmark Datasets ................................................................................................................... 158 
6.6.2. Molecular Representation .......................................................................................................... 158 
6.6.3. Features Selection ...................................................................................................................... 158 
6.6.4. Machine Learning Model Development ..................................................................................... 159 
6.6.5. Evaluation Metrics ...................................................................................................................... 159 
6.6.6. Structural Identity Splitting ......................................................................................................... 159 

6.6.6.1. Step 1: Linkage Matrix Generation .................................................................................... 159 
6.6.6.2. Step 2: Forming Flat Clusters ............................................................................................ 160 
6.6.6.3. Step 3: Limiting Cluster Formation .................................................................................... 160 

6.6.7. Reciprocal Rank .......................................................................................................................... 160 
6.6.8. Validation on the LIT-PCBA Dataset ............................................................................................ 160 

7. Bibliography ........................................................................................................... 161 

List of Abbreviations ...................................................................................................... 181 

Supplementary Material ................................................................................................ 184 

Supplementary Figures .................................................................................................. 184 

Acknowledgements ....................................................................................................... 208 

Biography and CV of Alessia Bono ................................................................................. 209 

List of peer reviewed publications .................................................................................. 209 

List of conference proceedings ....................................................................................... 211 
 
  



4 
 

Abstract 

Background and rationale: The COVID-19 pandemic has underscored the urgent need for 

specific pharmacological treatments beyond existing vaccines. One of the most attractive 

targets for antiviral therapies development is the SARS-CoV-2 Main Protease (MPRO), a key 

enzyme in viral life. The lack of MPRO human homologs and its conservation rate among 

coronaviruses make this enzyme strategically important. Considering its mechanism of action, 

MPRO inhibition could prevent the maturation of viral proteins and halt viral replication. X-ray 

crystallographic structures revealed that both catalytic and allosteric regions represent crucial 

sites for modulating its activity. The inhibition of the catalytic site of MPRO is one of the most 

direct and effective strategies. Its high conservation across coronaviruses suggests that 

inhibitors could potentially offer broad-spectrum antiviral activity. On the other hand, 

allosteric inhibition presents a promising alternative strategy, targeting non-catalytic sites 

that are nevertheless crucial for enzyme function. Inhibition at these sites can occur through 

either covalent or non-covalent interactions.  

In silico approaches are gaining increasing importance in drug development and clinical 

research. These techniques allow researchers to evaluate treatments qualitatively and 

quantitatively, leading to more practical and cost-effective experimentation. In the search for 

effective COVID-19 treatments, computational methods have become essential for 

discovering and developing SARS-CoV-2 MPRO inhibitors. Leveraging various computational 

methodologies accelerates the drug discovery process, reduces experimental costs, and 

enhances the precision of target identification and lead optimization. 

Results: This PhD Thesis focuses on developing innovative in silico and synthetic protocols for 

identifying diverse anti-SARS-CoV-2 agents targeting MPRO. To this purpose, three different 

inhibition strategies were explored: non-covalent inhibition, covalent inhibition through non 

peptidomimetic inhibitors, and covalent inhibition through peptidomimetic inhibitors. 

For non-covalent inhibitors, a series benzo[b]thiophene 2 and benzo[b]furan 3 compounds 

were identified using a hierarchical and hybrid virtual screening approach. We used the 

ligand-based Biotarget Predictor Tool (BPT), available in DRUDIT, to filter a large in-house 

structure database and identify small molecules with high affinity against the SARS-CoV-2 

MPRO catalytic site. ADME properties were investigated through the SwissADME tool and 

docking studies confirmed DRUDIT prediction. Moreover, aiming at evaluating the possibility 
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of a dual binding mechanism of action, the identified hits were further investigated by means 

of statistical analysis and dockings studies into the dimerization site. Compounds 2i-l also 

exhibited promising IC50 when in vitro evaluated as inhibitors of the catalytic site, among them 

2i (IC50 values of 70.4) and 2l (IC50 values of 45.9) are promising lead compounds for further 

development as antiviral agents with a dual binding activity.   

On the other hand, the covalent inhibition strategy has been extensively assessed through 

both peptidomimetic and non-peptidomimetic point of views. 

In the case of non-peptidomimetic inhibitors, we focused on the rational design and synthesis 

of ester derivatives 45a-m, with compound 45g showing the most promise with an IC50 value 

of 30 ± 6.6 µM. These esters offer the advantage of long-lasting inhibition, becoming a potent 

strategy for disrupting viral replication. 

Additionally, a combinatorial library of 450 peptidomimetic compounds with aldehydic 

warheads was generated, refined to 388 compounds through docking studies, and further 

evaluated for covalent binding capabilities, revealing that compounds 57-62, and 64 exhibited 

significantly higher affinities compared to known inhibitors, thus affirming the validity of the 

adopted design strategy.  

Conclusions: Our findings demonstrate that integrating advanced computational tools offers 

a strategic and promising avenue for identifying new antiviral drugs. My thesis took the 

advantages of our in-house ligand-based tool, the BPT, available in DRUDIT, which allowed us 

to screen enormous ligands libraries. This tool integrated with both structure-based 

techniques and, interestingly, multivariate statistical analysis, has been applied to evaluate 

potential new SARS-CoV-2 MPRO inhibitors. This research project plays the groundwork for 

future research and the design of selective antiviral agents aimed at combating COVID-19, 

and supports ongoing efforts to combat SARS-CoV-2 and related coronaviruses. 
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1. Introduction 

The Coronavirus Disease-19 (COVID-19) global pandemic has been etiologically caused by the 

highly infectious Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) [1,2].  SARS-

CoV-2 is a b-coronavirus (β-CoV) that infects both animals and humans, causing respiratory 

diseases [3]. The virus infiltrates human cells via Spike (S) glycoproteins on its surface, which 

bind to the Receptor Binding Domain (RBD) of the Angiotensin-Converting Enzyme 2 (ACE2). 

ACE2 receptors are widely expressed in various pulmonary and extrapulmonary tissues, 

including the kidneys, heart, endothelium, and small intestine. This widespread distribution 

of ACE2 receptors suggests that, during COVID-19 infection, the virus can invade and damage 

not only the lungs but also other organs, leading to cardiovascular [4], thrombotic [5], 

pulmonary [6], and neurological complications [7]. 

The susceptibility to COVID-19 and its clinical manifestations are closely correlated with age 

[8]. In general, elderly patients (over 60 years) with comorbidities are more likely to develop 

severe respiratory illness that may require hospitalization or even result in death. A potential 

correlation between increased catabolism of the Nicotinamide Adenine Dinucleotide (NADH) 

cofactor and greater susceptibility to SARS-CoV-2 infection hypothesizes that higher NADH 

levels in younger populations might play a protective role against SARS-CoV-2 infection [9]. 

Indeed, most young people and children experience only mild illness (mild pneumonia) or are 

asymptomatic [10,11]. As of today, the World Health Organization (WHO) has reported over 

775 million cases globally, with a mortality rate of approximately 1%. 

In response to the outbreak, the scientific community has recommended stringent social 

distancing measures and the rapid development of vaccines to contain the spread of the virus. 

Over 20 vaccines have successfully reached clinical trials, demonstrating their efficacy in 

preventing severe COVID-19 [12]. However, considering the high mutation rate characteristic 

of this virus family, the long-term efficacy and safety of these vaccines remain under debate. 

This highlights the urgent need for more specific pharmacological treatments to complement 

vaccines in both the prophylaxis and treatment of COVID-19 [13]. Moreover, there is the need 

to develop effective therapeutic strategies against SARS-CoV-2. Over the past four years, 

recombinant proteins, monoclonal antibodies, immunological treatments, and drug 

repurposing have emerged as effective approaches based on comparative studies among 

coronaviruses [14-43]. 
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1.1. SARS-CoV-2: Origins and Structure 
 
SARS-CoV-2 belongs to the family Orthocoronavirinae, a subfamily of viruses commonly 

known as coronaviruses, which are capable of causing a range of respiratory syndromes from 

mild to severe [3]. Among the viruses in the Coronavirus genus, those with the most significant 

impact on human health include SARS-CoV, Middle East Respiratory Syndrome CoV (MERS-

CoV), and SARS-CoV-2. SARS-CoV was first reported in Asia in February 2003, though it is now 

known to have been present as early as 2002. The outbreak was contained by 2004. MERS-

CoV emerged next, with its first identification in Saudi Arabia in 2012, followed by the 

emergence of SARS-CoV-2 in 2019 [44].  

Phylogenetic, virological, epidemiological, and clinical analyses of the COVID-19 outbreaks in 

Wuhan, compared with those of SARS-2002 and MERS-2012, show that SARS-CoV-2 is 

phylogenetically similar to SARS-CoV, sharing approximately 79% of its genetic material. 

Additionally, SARS-CoV-2 exhibits about 50% genetic similarity with MERS-CoV and it is closely 

related to SARS-related coronaviruses identified in bats (SARS-related Bat CoVs). 

Consequently, these viruses share the same taxonomic classification, being part of the same 

order, family, subfamily, and genus [44,45]. 

Like all β-CoVs, SARS-CoV-2 has a genome composed of a single-stranded RNA of positive 

polarity, ranging from 27 to 30 kilobases (ssRNA+) [46]. This RNA is encapsulated within a 

helical capsid and is further surrounded by an envelope composed of a cellular-derived lipid 

bilayer. The genome of β-CoVs encodes four structural proteins: S, Envelope (E), Membrane 

(M), and Nucleocapside (N). 

The virion, a spherical infectious viral particle (80-160 nm in diameter), features an outer 

phospholipid membrane (envelope) in which the S, M, and E proteins are embedded [47]. The 

genomic RNA is surrounded by phosphorylated N proteins within the lipid bilayer [48,49] 

(Figure 1). The SARS-CoV-2 genome comprises several components: a 5’ Untranslated Region 

(5'UTR);  an Open Reading Frame (ORF)1a/b encoding 16 non-structural proteins (NSPs); four 

genes coding for S, E, M, and N proteins; accessory genes coding for proteins ORF3a, ORF6, 

ORF7a, ORF7b, ORF8, and ORF10; a 3' Untranslated Region (3'UTR) [49]. 
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Figure 1. SARS-CoV-2 structure with focus on its key structural proteins (S, M, E, and N). 

 

1.2. Key targets for antiviral therapy against SARS-CoV-2 

SARS-CoV-2 encodes several essential, structural, and non-structural, proteins that play vital 

roles in its replication and interaction with host cells. These viral proteins, together with some 

host proteins, represent potential targets for antiviral therapies due to their crucial functions 

in the virus life cycle. Below are the most important viral proteins that have been explored as 

therapeutic targets: 

 

• S proteins are large glycoproteins that play a pivotal role in the virus ability to infect 

host cells. They are composed of two subunits, S1 and S2. The S1 subunit contains the 

RBD, which specifically binds to ACE2 [50]. The S2 subunit mediates membrane fusion 

between the viral and host cell membranes, allowing viral entry [51-53]. Due to their 

essential role in viral entry, S proteins are considering the primary target for 

neutralizing antibodies and are the basis for many COVID-19 vaccines, including mRNA 

and viral vector vaccines. For example, monoclonal antibodies like casirivimab and 

imdevimab neutralize the virus by binding to the RBD and blocking its interaction with 

ACE2 [54]. Furthermore, vaccines such as Pfizer-BioNTech and Moderna mRNA 

vaccines are designed to elicit an immune response specifically against the S protein. 

However, mutations in the S protein, especially in the RBD, can affect transmissibility 

and immune escape, making it a key focus of variant studies [49,55-57]. 

• M proteins are the most abundant structural protein in SARS-CoV-2 and are critical 

for shaping the viral envelope and facilitating the assembly of new virions. M proteins 

have a tripartite transmembrane domain that allows them to interact with other viral 
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proteins, including S and N proteins, during the viral assembly process. Although direct 

inhibitors of M proteins have not been developed yet, studies have shown that 

protease inhibitors, which block proteins involved in viral maturation, might indirectly 

influence M protein function [49,58]. 

• N proteins bind to the viral RNA genome, encapsulating it into a ribonucleoprotein 

complex, that is involved in several aspects of the viral replication cycle, including RNA 

transcription and replication. The N protein consists of two domains: an RNA-binding 

domain and a dimerization domain, which allow it to interact with viral RNA and other 

N proteins to efficiently package the genome. Beyond its structural role, the N protein 

is highly immunogenic, triggering strong immune responses in infected individuals. It 

is also implicated in modulating the host immune response, potentially aiding in viral 

immune evasion. Due to its conserved nature across coronaviruses, the N protein is 

often used as a target in diagnostic tests [49,59,60]. 

• E proteins are small but multifunctional proteins embedded in the viral envelope. 

They function as viroporins, forming ion channels that assist in the maturation and 

release of new viral particles. While no direct E protein inhibitors have been approved 

for clinical use, researchers have proposed that ion channel blockers, such as 

amantadine, might interfere with E protein function, though further studies are 

needed to confirm this approach [49,61]. 

• TransMembrane PRoteaSe, Serine 2 (TMPRSS2) is a host protease that plays a vital 

role in facilitating SARS-CoV-2 entry into host cells. TMPRSS2 cleaves and activates the 

S protein on the surface of the virus, specifically at the S1/S2 cleavage site, enabling 

the fusion of the viral and host cell membranes. This proteolytic activation is crucial 

for the virus to gain entry into cells, as it allows the S protein to undergo 

conformational changes necessary for membrane fusion. TMPRSS2 is expressed in 

various tissues, including the respiratory tract, making it a key factor in the viral 

infection of lung epithelial cells. Inhibitors of TMPRSS2, such as camostat mesylate and 

nafamostat, have been investigated for their potential to block viral entry and reduce 

the severity of COVID-19 by preventing the priming of the S protein [50]. 

• Papain-like protease (PLPRO) is a NSP3 encoded by SARS-CoV-2, essential for both viral 

replication and immune evasion. Its primary function is to cleave specific sites in the 
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viral polyprotein, releasing other NSPs needed for the formation of the Replication-

Transcription Complex (RTC), which is critical for viral RNA synthesis. In addition to its 

proteolytic role, PLPRO exhibits deubiquitinating and deISGylating activities. These 

functions allow the virus to counteract host immune responses by removing ubiquitin 

and Interferon-Stimulated Gene 15 (ISG15) from host proteins, thus impairing antiviral 

signaling pathways, including the type I interferon response. By modulating these 

pathways, PLPRO helps the virus evade immune detection. Given its dual role in both 

viral replication and immune modulation, PLPRO is considered a prime target for the 

development of antiviral drugs aimed at limiting viral spread and replication. Inhibitors 

like GRL-0617 have shown promising in blocking both the proteolytic and immune-

modulating activities of PLPRO, making them a valuable therapeutic strategy for limiting 

viral replication and immune evasion [62]. 

• Main Protease (MPRO), also known as 3C-like protease (3CLPRO), is another crucial 

enzyme in the SARS-CoV-2 replication cycle, primarily involved in processing the viral 

polyproteins pp1a and pp1ab. By cleaving these polyproteins into functional NSPs, 

MPRO enables the assembly of the RTC, which is essential for viral replication. Unlike 

PLPRO, which also modulates host immune pathways, MPRO role is strictly proteolytic, 

focusing on viral protein maturation. MPRO is highly conserved among coronaviruses 

and functions as a homodimer, with its active site being a key target for antiviral drug 

development. The absence of similar proteases in human cells makes MPRO an ideal 

therapeutic target. Inhibition of MPRO has been shown to be a highly effective strategy 

in preventing the spread of SARS-CoV-2 and represents a cornerstone in the ongoing 

search for broad-spectrum antiviral therapies [63]. 

 

Among all the viral proteins targeted for antiviral therapy, MPRO stands out as the most 

critical for several reasons. First, its function is indispensable for the viral life cycle, as it 

processes the viral polyproteins pp1a and pp1ab into essential NSPs needed for 

replication and transcription. Unlike other proteases such as PLPRO, MPRO activity is strictly 

proteolytic, focused solely on viral protein maturation, making it highly specific. Its 

conservation across coronaviruses further enhances its value as a broad-spectrum target. 

Moreover, MPRO does not have human homologs, reducing the likelihood of OFF-target 

effects and making it an exceptionally safe target for drug development. Given these 
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factors, MPRO inhibitors have proven to be some of the most effective antivirals in clinical 

use against SARS-CoV-2. The blockade of MPRO halts viral replication without interfering 

with human proteins, ensuring both efficacy and safety in antiviral therapy. Thus, MPRO 

remains the most strategically important target in the development of therapies for not 

only SARS-CoV-2 but potentially other coronaviruses as well [63]. 

 

1.3. SARS-CoV-2 MPRO: a druggable target 

Structurally, MPRO is a homodimer and each protomer consists of 306 amino acids divided into 

3 domains (I, II, and III): domain I (8-101) comprises 6 β-strands and an α-helix, while domain 

II (102-184) and domain III (201-303) include 6 β-strands and 5 α-helices respectively. All 

domains are connected by long loop regions (Figure 2) [64].  

 

 
Figure 2. X-Ray structure of dimeric SARS-CoV-2 MPRO [65]. 

 

Dimerization of the protein is a necessary step for the catalytic activity, because of in the 

monomeric state the active site pocket collapses and is not available for the binding with the 

substrate. Detailed structural analysis of MPRO has revealed the presence of a potential 

allosteric site between domains II and III at the dimerization interface, which plays a crucial 

role in protease dimerization [66-68]. In particular, the N-finger residues Ser1-Gly11, residue 

Asn214, the region around residues Glu288, Asp289, Glu290 in a tight contact with the N-finger, 

and the C-terminal last helix region around residues Arg298, Gln299 are involved in the 

hydrogen bond interactions between the two SARS-CoV-2 MPRO protomers (Arg4/Glu290, 

Gly11/Glu14, Ser1/Glu166, Ser301/Ser139, Thr304/Glu166, Ser123/Arg298, Ser139/Gln299, Arg4/Gln299) 

[69], Figure 3.  
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Upon dimerization, a conformational change in MPRO activates the catalytic site. This 

structural reorganization stabilizes the active site orientation, thereby facilitating substrate 

binding and improving the enzyme catalytic efficiency. This newly stabilized orientation 

reveals the binding pocket, a crucial region where substrate molecules interact with the 

enzyme.  

 

 
Figure 3. X-Ray structure of dimeric SARS-CoV-2 MPRO and focus on the dimerization site [65]. 

 

The binding pocket is organized into four subsites, S1’, S1, S2, and S3/S4. In the region S1’, 

between domains I and II, is located the catalytic site, characterized by the catalytic dyad 

(Cys145 and His41). During the hydrolysis of the peptide bond, His41 activates the nucleophilic -

SH of Cys145 by deprotonation, with subsequent stabilization of the adduct by the so-called 

“oxyanion hole”, formed by the Gly143 and Cys145 backbones. The S1 region, characterized by 

the side chains of Phe140, His163, His164, Glu166, and His172, is highly specific for the glutamine 

residue [70]. The S2 consists of hydrophobic amino acids, such as Met49, Tyr54, Met165, Pro168, 

Val186, and finally S3/S4, which are particularly exposed to the solvent, involve Gln189, Ala191, 

Gln192, Gly251 residues (Figure 4).  
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Figure 4. X-Ray structure of dimeric SARS-CoV-2 MPRO and focus on the catalytic site, with the four 
region S1, S1’, S2 and S3/S4 highlighted [65]. 
 

The MPRO mechanism of action involves particularly the S1’ region. The catalytic dyad 

(His41/Cys145) is pivotal for the enzyme as it drives the process of peptide bond cleavage in the 

viral polyprotein. In this context, the enzyme-substrate initial complex corresponds to the 

neutral His41/Cys145 dyad (E:S in Figure 5). From this stable state, the imidazole group of His41 

polarizes and acts as an activator by removing a proton from the thiol group (SH) of Cys145 to 

form a highly nucleophilic CysS−/HisH+ ion pair, that would react with the substrate (E(+/-):S in 

Figure 5) [71]. The concomitant nucleophilic attack of CysS- on the carbonyl carbon atom of 

the peptide bond leads to a pseudo-stable intermediate (E:S- in Figure 5). 

Then, the proton from the protonated HisH+ is transferred to the N atom of the scissile 

peptide bond, forming an acyl-enzyme covalent intermediate (E:S in Figure 5). 

After this acylation step, the recovery of the enzyme in the following deacylation stage is 

assisted by a water molecule activated by the His, which performs the hydrolysis of the 

thioester intermediate. This reaction results in the production of a smaller viral protein 

fragment with a new amino-terminal end and the regeneration of the enzyme for subsequent 

catalytic cycles.  

The events that lead to the acylation step take place in a concerted but asynchronous way. 

The Transition State (TS) found for this mechanism is associated with the proton transfer from 

His41 to the amide nitrogen atom of the peptide bond. The total free energy barrier associated 

with the acylation process, including the free energy cost of the ion pair formation, is 14.6 

kcal·mol–1, while the free energy barrier associated with this first TS is 17.5 kcal·mol–1. 

Regarding the deacylation step, the free energy barrier is 15.6 kcal·mol–1. The second TS 
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observed during the deacylation corresponds to the separation of the Sulfur atom, and its 

free energy barrier is very close to the first one, 15.8 kcal·mol–1. Afterward, the leaving 

cysteine is stabilized by means of a proton transfer from the C-terminal group to the Sulfur 

atom, regenerating the enzyme in its more stable protonation state (a neutral catalytic dyad) 

and yielding the peptide fragment with a terminal unprotonated carboxylate [72,73].  

 

 
Figure 5. SARS-CoV-2 MPRO mechanism of action processed by the catalytic dyad (Cys145 and His41, 
located in the S1’ subregion of the binding pocket). Cys145 is highlighted in purple, while His41 in aqua 
green. 
 

The strategic placement of His41 and Cys145 in the S1' region not only facilitates this reaction 

but also underscores the importance of this site in MPRO function. Disruptions in the S1' pocket 

could impede the enzyme ability to make timely and specific cuts in the polyprotein. 

According to the Schechter and Berger nomenclature, the peptide substrate residues 

recognized by MPRO are referred to, from N to C terminus, P3-P2-P1-P1ʹ-P2’-P3’, with the 

hydrolysis taking place at the scissile bond between P1 and P1. The multiple subsites S1’, S1, 

S2, and S3 are labeled as they can recognize residues in P1’, P1, P2, and P3, respectively. MPRO 

cleaves 11 of the 16 highly conserved recognition sites of the polyprotein pp1a/pp1ab, by 

specifically targeting the P1↓P1’ positions (where ↓ denotes the peptide bond cleavage 

location, Figure 6).  
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Figure 6. SARS-CoV-2 MPRO viral polyproteins. Sub-regions of the binding pocket (S1ʹ, S1, S2, and S3/S4) 
are labeled with S numbering complementary to the P fragments (P1ʹ, P1, P2, and P3) of the viral 
polyproteins. 
 

Naturally, MPRO recognizes diverse cleavage sequences but with a stringent requirement of 

glutamine at P1, which gets recognized by the S1 subsite in the active site of MPRO. S1 subsite 

residues form an intricate network of interactions with the peptide substrate to ensure 

glutamine specificity at P1 substrate position [74]. P2 tolerates more hydrophobic amino acid 

with a clear preference for leucine, and P1’ is a non-conserved prime recognition site (a small 

amino acid, such as serine, glycine, or alanine) [75,76]. Figure 7 shows the 2D structure of 

NSP4/NSP5 viral proteins and the P6-P5-P4-P3-P2-P1-P1ʹ-P2’-P3’-P4’-P5’-P6’ sequences for 

NSP4-NSP16. 

Since P4, P3, P2, P1, and P1’ residues interact with the substrate recognition sites (S3/S4–S1’), 

a recurrence in amino acids is appreciable in contrast with a higher variation rate for P2’, P3’, 

and P4’. In details, the analysis of amino acids in sequences highlights that residues as Ser and 

Ala are commonly found in P1’, confirming that small aliphatic residues are favored at this 

position. The recurrent glutamine residue in P1 strongly suggests that Gln is critical for 

substrate binding and cleavage; a mutation of Gln would abolishe the substrate activity 

completely. P2 position requires a large hydrophobic residue (mostly Leu, but also Phe and 

Val), indeed, hydrophobic interactions between the P2 residue and the S2 pocket of the 

enzyme are crucial for substrate recognition. As well as P2, P3 residues must be characterized 

by substituent groups capable of favorable hydrophobic interactions with the amino acids of 

S3/S4. The preferred amino acids in P3 are Val, Thr, Met, Lys, and Arg. 
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Figure 7. 2D structures of the viral NSP4 and NSP5 proteins are depicted alongside the P6-P5-P4-P3-
P2-P1-P1ʹ-P2ʹ-P3ʹ-P4ʹ-P5ʹ-P6ʹ cleavage sequences for NSP4 to NSP16. The image highlights the 
recurrent glutamine residues at the P1 position, a critical feature across these sequences. 
 

Since no human host-cell proteases are known with this substrate specificity, MPRO inhibition 

could drive to blockage of viral replication [49], making itself the most attractive target for 

COVID-19 antiviral treatment.   
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2. Aim of the work 

In response to the unprecedented global health crisis posed by the COVID-19 pandemic, 

researchers worldwide focused on the need of effective antiviral treatments, with the SARS-

CoV-2 MPRO emerging as a critical target for therapeutic intervention due to its essential role 

in the viral replication cycle. In this context, the aim of this PhD thesis is to develop and 

propose innovative in silico and synthetic protocols for the identification and optimization of 

diverse anti-SARS-CoV-2 agents specifically targeting MPRO. Specifically, the research focuses 

on three key approaches: 

1. Non-Covalent Inhibition: This approach focuses on the design of small molecules that 

can reversibly bind to the catalytic and allosteric sites of MPRO. Using hierarchical and 

hybrid virtual screening techniques, we aim to discover potent inhibitors that can 

effectively disrupt enzyme activity with a dual binding mechanism of action. 

2. Covalent Inhibition through Non-Peptidomimetic Inhibitors: In this strategy, we aim 

to rationally design non-peptidomimetic compounds, with an ester moiety capable of 

forming covalent adducts with the catalytic Cys145 of MPRO, thereby achieving long-

lasting inhibition. The development and optimization of these non-peptidomimetic 

inhibitors aim to enhance their potency and efficacy against the virus. 

3. Covalent Inhibition through Peptidomimetic Inhibitors: This strategy emphasizes the 

identification of peptidomimetic inhibitors, with an aldehydic electrophilic warhead, 

that mimic the natural substrates of MPRO, ensuring specific interactions that facilitate 

effective inhibition.  

Through in silico methodologies, synthetic strategies, and in vitro evaluations, this work 

aspires to contribute to the discovery and development of effective antiviral agents against 

COVID-19 and related coronaviruses.  
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3. Results and Discussion 

Given the essential role of MPRO in viral replication and the absence of a human homolog, this 

protease has emerged as a prime target for antiviral drug development. Inhibiting the 

catalytic site of MPRO is one of the most direct and effective strategies for halting viral 

replication.  Inhibitors that bind to this active site can effectively block the enzyme catalytic 

activity, thereby preventing the maturation of viral proteins and halting viral replication. The 

high conservation of the catalytic site across different coronaviruses suggests that targeting 

it not only provides a means to inhibit SARS-CoV-2 but also opens the possibility for broad-

spectrum antiviral activity against other coronaviruses. However, potential challenges such 

as the development of resistance and the specificity of inhibitors highlight the need for 

ongoing efforts in optimizing these catalytic site inhibitors. Continued research into the 

structure and dynamics of the catalytic site is crucial for refining these inhibitors and ensuring 

their long-term efficacy [13,49,63,70,76].  

In addition to catalytic site inhibition, allosteric inhibition presents a promising alternative 

strategy in antiviral drug development. This approach targets non-catalytic sites that are 

nevertheless crucial for enzyme function. In the case of SARS-CoV-2 MPRO, several allosteric 

pockets on its surface have been identified as essential for its catalytic activity. These sites are 

in areas distal to the main catalytic pocket, including at the dimerization interface [66,77,78]. 

Some of the most notable allosteric sites are the distal site and the dimerization site, located 

at the interface between domains II and III. The distal site is characterized by key contacts 

such as Arg131-Thr199, Arg131-Asp289, Pro132-Thr196, Asp197, Thr198-Asn238, and Tyr239-Leu287 [79], 

and is surrounded by residues forming β-sheets and α-helices; while the dimerization site is 

involved in the interactions between the two SARS-CoV-2 MPRO protomers, making it an 

attractive target for allosteric inhibitors [68]. Computational studies predict that targeting 

these allosteric sites could result in modulation of MPRO activity by inducing conformational 

changes or altering thermal fluctuations around a fixed, mean conformation [80]. Given the 

challenges associated with targeting the active site directly, focusing on distal and dimer 

allosteric sites could broaden our understanding of these regions as molecular targets, 

ultimately contributing to the development of novel broad-spectrum inhibitors of SARS-CoV-

2 MPRO [81]. 
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Inhibition at these sites can occur through either covalent or non-covalent interactions. 

Covalent inhibitors, which form long-lasting time bonds, can achieve sustained inhibition but 

may pose a risk of OFF-target effects and toxicity due to their permanent binding. On the 

other hand, non-covalent inhibitors bind reversibly, allowing for more controlled modulation 

of enzyme activity. This reversible nature can reduce the likelihood of adverse effects and 

offer greater flexibility in dosage. The strategic balance between efficacy and safety makes 

the choice between covalent and non-covalent inhibitors a critical consideration in the design 

of antiviral therapies [82]. 

 

3.1. Targeting SARS-CoV-2 MPRO through Non-Covalent Inhibition 

Non-covalent inhibition of SARS-CoV-2 MPRO represents a strategic approach in antiviral drug 

design, leveraging reversible interactions to modulate the protease activity. Examples of non-

covalent inhibitors targeting SARS-CoV-2 MPRO include those that bind either to the 

dimerization site or the catalytic site.  

Pelitinib (Figure 8), an anticancer drug developed as an Epidermal Growth Factor Receptor 

(EGFR) inhibitor, has been shown to form a complex with the SARS-CoV-2 MPRO dimerization 

site, with an EC50 = 1.25 μM, indicating its efficacy in disrupting the protease dimerization [83]. 

AT7519 (Figure 8), an inhibitor of Cyclin-Dependent Kinases (CDKs), binds at the MPRO dimer 

interface, specifically involving domains I and II [83,84]. Currently under investigation as an 

anticancer drug, AT7519 effectively interferes with protein dimerization, thereby inhibiting 

the catalytic function of MPRO. Additionally, apixaban (Figure 8), a Food and Drug 

Administration (FDA)-approved oral anticoagulant for treating thromboembolic disease, 

inhibits MPRO by binding to the allosteric site via a non-competitive inhibition mechanism [85]. 

Furthermore, agathisflavone (Figure 8), a bioflavonoid, has emerged as a potential non-

competitive MPRO inhibitor with an EC50 of 4.32 μM, highlighting its promising antiviral activity 

[86]. These findings underscore the potential of allosteric inhibition as a complementary 

strategy to traditional catalytic site targeting, broadening the scope for antiviral drug 

development against SARS-CoV-2. 
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Figure 8. Chemical structures of SARS-CoV-2 MPRO allosteric inhibitors. 

 

Figure 9 illustrates the 2D structures of several promising non-covalent MPRO inhibitors of the 

catalytic site. Ensitrelvir (Xocova, Figure 9), the first clinically approved non-peptide 

competitive inhibitor, targets the MPRO active site through non-covalent interactions [87,88]. 

With an IC50 value of 13 nM and an EC50 value of 0.37 μM in SARS-CoV-2 infected Vero E6 

cells, ensitrelvir received the Emergency Use Authorization (EUA) in the US and Japan 

following its success in phase 2/3 clinical trials (JPRN-jRCT2031210350) [89].  

Similarly, baricitinib (Figure 9), an FDA-approved oral tyrosine kinase inhibitor marketed as 

olumiant, acts as a competitive small molecule inhibitor of SARS-CoV-2 3CLPRO with an IC50 in 

the micromolar range. It has also been granted EUA by the FDA for hospitalized COVID-19 

patients [90,91]. 

Masitinib (Figure 9), another tyrosine kinase inhibitor, demonstrated an IC50 of 2.5 μM against 

SARS-CoV-2 MPRO and an EC50 of 3.2 μM in SARS-CoV-2 infected A549/ACE2 cells, confirming 

non-covalent binding to the catalytic pocket [92]. Currently in phase 3 clinical trials 

(ClinicalTrials.gov Identifier: NCT05441488) and a candidate for treating progressive forms of 

multiple sclerosis  [93], masitinib, in combination with isoquercetin (Figure 9), has shown 

effectiveness for the early treatment of COVID-19 (ClinicalTrials.gov Identifier: 

NCT04622865). 
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Compound 1 (Figure 9), synthesized through the one-pot Ugi-4CR method, exhibited an IC50 

value of 0.20 μM against SARS-CoV-2 MPRO and an EC50 value of 1.27 μM against SARS-CoV-2 

in Vero E6 cells.  

Additionally, CCF0058981 (Figure 9), derived from a SARS-CoV-1 inhibitor, has been identified 

as a non-covalent competitive inhibitor of SARS-CoV-2 3CLPRO, with an IC50 value of 68 nM and 

potent antiviral activity with EC50 values of 0.497 μM in SARS-CoV-2 infected Vero E6 cells  

[94,95]. 

 

 
Figure 9. Chemical structures of SARS-CoV-2 MPRO non-covalent inhibitors of the catalytic site. 

 

In addition to synthetic inhibitors, natural compounds represent another promising class of 

non-covalent competitive inhibitors of the 3CLPRO enzyme, with potential applications in 

treating viral infections and enhancing the host immune response [96-100]. 

Natural products like quercetin, resveratrol, and curcumin (Figure 10) have demonstrated 

notable therapeutic benefits in previous coronavirus outbreaks such as SARS-CoV and MERS-

CoV. Quercetin, one of the most potent competitive inhibitors of 3CLPRO, has an IC50 value of 

7.40 µM and is currently undergoing clinical trials (ClinicalTrials.gov Identifier: NCT04861298) 

for early-stage and mild-to-moderate symptomatic COVID-19 outpatients [101-103]. 
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Moreover, quercetin has received FDA Generally Recognized As Safe (GRAS) status for use as 

a dietary supplement  [102,103]. 

Resveratrol, a polyphenol known for its 3CLPRO inhibitory activity in vitro, has also shown 

effectiveness against SARS-CoV-2 in cell culture assays [99,104,105]. In a clinical trial 

(ClinicalTrials.gov Identifier: NCT04400890), resveratrol demonstrated a reduction in the 

incidence of COVID-19-related hospitalizations, emergency room visits, and pneumonia [106]. 

Recent dose-response studies have revealed that curcumin binds to the 3CLPRO active site with 

low micromolar IC50 values, highlighting its potential as a therapeutic agent against SARS-CoV-

2 [99,107]. The activity of these natural compounds underscores their potential role in both 

the prevention and treatment of COVID-19, complementing conventional antiviral therapies. 

 

 
Figure 10. Chemical structures of natural compounds. 

 
In conclusion, the non-covalent inhibition of SARS-CoV-2 MPRO, whether targeting the catalytic 

or allosteric sites, has proven to be a versatile approach, with several molecules effectively 

modulating enzymatic activity and disrupting the viral life cycle. In light of these findings, it 

would be particularly interesting to explore a dual-binding inhibition, aiming to discover 

molecules capable of inhibiting the protease both competitively at the active site and 

allosterically, offering a potentially more robust strategy for antiviral drug development. 

 
3.1.1. Non-covalent dual binding inhibition strategy for SARS-CoV-2 MPRO 

The search for effective antiviral candidates against SARS-CoV-2 has become a critical area of 

research, with virtual screening emerging as a reliable approach. Inhibition of either the 

catalytic site or the dimerization interface of MPRO, which has proven to be one of the most 

O

OHO

OH

OH

OH

OH

HO

OH

OH

O

O O

OH

O

HO

quercetin resveratrol

curcumin



24 
 

attractive viral targets, represents a promising approach to disrupting the viral life cycle. 

Targeting the dimerization of MPRO offers an alternative strategy by preventing the formation 

of the functional dimer, thereby impeding the protease ability to process viral polyproteins. 

Disrupting dimerization not only affects the enzyme activity but also offers a complementary 

approach to catalytic inhibition, potentially enhancing the overall antiviral efficacy. Together, 

these dual strategies—targeting both the catalytic site and the dimerization interface—

provide a multifaceted approach to inhibiting MPRO, with the potential to yield robust antiviral 

agents against SARS-CoV-2. 

We conducted an in silico analyses to investigate the inhibitory activity of small molecules 

against SARS-CoV-2 MPRO, aiming to identify new dual binding site modulators that could 

serve as promising non-covalent antiviral agents. The methodology employed is illustrated in 

Figure 11, which outlines the mixed ligand-structure virtual screening process used for the 

identification of potential SARS-CoV-2 MPRO inhibitors. 

 

 
Figure 11. In silico protocol workflow for the identification of new SARS-CoV-2 MPRO inhibitors as 
effective antiviral molecules in COVID-19 treatment. 
 

Our computational protocol was structured in a hierarchical manner, beginning with a ligand-

based filtering phase that utilized DRUDIT (DRUg DIscovery Tools, an open access web-service, 
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accessible at www.drudit.com) [108]. This initial step allowed us to filter small molecules 

based, leading to the selection of two clusters of compounds with known antitumor activity, 

characterized by benzothiophene or benzofuran scaffolds [108-110].  

Further refinement was achieved by assessing the Absorption, Distribution, Metabolism, and 

Excretion (ADME) properties using the SwissADME web tool, which supports the discovery of 

biocompatible drug candidates [111]. Subsequently, the in silico affinity of 24 selected 

compounds was evaluated through structure-based molecular docking studies at the catalytic 

binding site of SARS-CoV-2 MPRO. 

To enhance the robustness of the screening, we integrated the molecular descriptors of these 

24 compounds with those of the non-covalent allosteric inhibitor pelitinib, allowing for a 

comprehensive multivariate analysis. Ultimately, 13 benzothiophene and benzofuran 

derivatives were identified as potential inhibitors and further analyzed using structure-based 

docking protocols targeting the dimerization site of SARS-CoV-2 MPRO. 

 

3.1.1.1. In silico ligand-based approach: DRUDIT 

To perform the in silico ligand-based approach, we utilized the DRUDIT, a resource created by 

the research group to support drug discovery, which includes the developed Biotarget 

Predictor (BPT) and Antiproliferative Activity Predictor (APP) tools. The main features of 

DRUDIT are its ease of use and accessibility to researchers worldwide. 

The proposed tools are based on molecular descriptors, calculated through the MOLecular 

DEScriptor TOol (MOLDESTO), our proprietary software, capable of generating over 1,000 

molecular descriptors (3D, 2D, and 1D) for each input structure [108]. 

In the context of my PhD thesis, the BPT has been extensively used. It is designed to predict 

the binding affinity of given input structures against chosen biological targets, available in 

DRUDIT thanks to a preliminary template building phase. Specifically, sets of known biological 

target modulators are processed by MOLDESTO, and the full set of molecular descriptors is 

calculated for each modulator of a defined target. Next, from the output matrices 

(modulators versus molecular descriptors) mean and standard deviation values for each 

molecular descriptor are computed. The pairs of values define the biological target template. 

Independently, when the input structures are submitted to MOLDESTO, the same set of 

molecular descriptors is computed and matched to the template of the biological target. The 
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DRUDIT Affinity Score (DAS, which ranges from 0 to 1 indicating low to high affinity) of the 

input structures versus the biological targets is then computed according to three input 

parameters N, Z and G which, respectively, control the number of dynamically selected 

molecular descriptors (N), the maximum allowed percentage of unavailable values (zeros) per 

molecular descriptor (Z), and the Gaussian smoothing function (G).  

The DRUDIT BPT application involved constructing a template for the SARS-CoV-2 MPRO 

binding site, following the described method [9]. 

Subsequently, an in-house structure database comprising approximately 10,000 heterocyclic 

structures was uploaded to the DRUDIT PBT. Standard parameters (N=500, Z=50, G=a) were 

applied, and the output data were ranked according to the DAS, which reflects the compound 

ability to bind to the SARS-CoV-2 MPRO catalytic site. 

By applying a cut-off value of 0.8 to DAS, we identified ethyl 3-benzoylamino-5-[(1H-imidazol-

4-yl-methyl)-amino]-benzo[b]thiophene-2-carboxylate and ethyl 3-benzoylamino-5-[(1H-

imidazol-4-yl-methyl)-amino]-benzo[b]furan-2-carboxylate, designated as compounds 2 and 

3 [109,110] (Figure 12), as promising heterocyclic small molecules for the inhibition of SARS-

CoV-2 MPRO via modulation of the catalytic active site. Table 1 presents the DAS values of the 

24 selected molecules, all characterized by a central heterocyclic benzo[b]thiophene or 

benzo[b]furan core with two side moieties: the substituted 3-benzoylamino and the imidazole 

groups. 

 

 

Figure 12. General structure of ethyl 3-benzoylamino-5-[(1H-imidazol-4-yl-methyl)-amino]-
benzo[b]thiophene-2-carboxylates 2a-l and ethyl 3-benzoylamino-5-[(1H-imidazol-4-yl-methyl)-
amino]-benzo[b]furan-2-carboxylates 3a-l as new potential antiviral molecules [109,110]. 

 

Table 1. Biotarget DAS for benzo[b]thiophene and benzo[b]furan compounds 2a-l and 3a-l. 

X

NH
O

O

O

H
N

N
HN

R4

R1
R2

R3

2a R1=R2=R3=R4=H 
2b R1=R3=R4=H; R2=OCH3
2c R1=R3=R4=H; R2=CH3
2d R1=R2=R3=OCH3, R4=H
2e R1=R3=R4=H; R2=CF3
2f R1=Cl; R2=F; R3=R4=H
2g R1=R2=R3=H; R4=CH3
2h R1=R3=H; R2=OCH3; R4=CH3
2i R1=R3=H; R2=R4=CH3
2j R1=R2=R3=OCH3, R4=CH3
2k R1=R3=H; R2=CF3; R4=CH3
2l R1=Cl; R2=F; R3=H; R4=CH3

3a R1=R2=R3=R4=H 
3b R1=R3=R4=H; R2=OCH3 
3c R1=R3=R4=H; R2=CH3
3d R1=R2=R3=OCH3, R4=H
3e R1=R3=R4=H; R2=CF3;
3f R1=Cl; R2=F; R3=R4=H
3g R1=R2=R3=H; R4=CH3
3h R1=R3=H; R2=OCH3; R4=CH3
3i R1=R3=H; R2=R4=CH3
3j R1=R2=R3=OCH3, R4=CH3
3k R1=R3=H; R2=CF3; R4=CH3
3l R1=Cl; R2=F; R3=H; R4=CH3

X = S X = O
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Compound X R1 R2 R3 R4 DAS 
score 3b O H OCH3 H H 0.940 

3a O H H H H 0.922 
3c O H CH3 H H 0.922 
2b S H OCH3 H H 0.918 
3g O H H H CH3 0.916 
3f O Cl F H H 0.910 
3l O Cl F H CH3 0.910 
3i O H CH3 H CH3 0.904 
3h O H OCH3 H CH3 0.900 
2d S OCH3 OCH3 OCH3 H 0.900 
2c S H CH3 H H 0.898 
2f S Cl F H H 0.890 
2g S H H H CH3 0.888 
2i S H CH3 H CH3 0.882 
2j S OCH3 OCH3 OCH3 CH3 0.882 
2l S Cl F H CH3 0.880 
3d O OCH3 OCH3 OCH3 H 0.880 
2a S H H H H 0.880 
2h S H OCH3 H CH3 0.880 
3k O H CF3 H CH3 0.820 
2e S H CF3 H H 0.820 
3j O OCH3 OCH3 OCH3 CH3 0.862 
3e O H CF3 H H 0.836 
2k S H CF3 H CH3 0.800 

 

3.1.1.2. ADME properties 

The 24 selected molecules were submitted to the SwissADME web-tools 

(http://www.swissadme.ch) [111] considering a set of well consolidated parameters for 

searching bioactive compounds, such as PAINS filters [112], Lipinski’s rules [113], Veber [114], 

and Egan filters [115]. The analysis of the data, showed in Table 2, highlighted that the 

benzo[b]thiophene and benzo[b]furan compounds generally met the expectations in terms 

of bioactivity. Thirteen of the twenty-four structures have no violations, and all compounds 

have no PAINS. In light of these considerations, no compounds were excluded for the in silico 

structure-based analysis. 

 

Table 2. Drug-likeness parameters calculated for the selected 24 compounds. 

Compound Lipinski 
#violations 

Ghose  
#violations 

Veber  
#violations 

Egan  
#violations 

PAINS  
#alerts Total 

2a 0 0 0 0 0 0 
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2b 0 0 0 1 0 1 
2c 0 0 0 0 0 0 
2d 1 2 2 1 0 6 
2e 0 2 0 1 0 3 
2f 0 0 0 0 0 0 
2g 0 0 0 0 0 0 
2h 0 0 0 1 0 1 
2i 0 0 0 0 0 0 
2j 1 2 2 1 0 6 
2k 1 2 0 1 0 4 
2l 0 2 0 0 0 2 
3a 0 0 0 0 0 0 
3b 0 0 0 0 0 0 
3c 0 0 0 0 0 0 
3d 1 2 1 1 0 5 
3e 0 1 0 0 0 1 
3f 0 0 0 0 0 0 
3g 0 0 0 0 0 0 
3h 0 0 0 0 0 0 
3i 0 0 0 0 0 0 
3j 2 2 1 1 0 6 
3k 0 2 0 1 0 3 
3l 0 0 0 0 0 0 

 

All the parameters calculated through SwissADME are present in the Table S1, Supplementary 

Material S1. 

 

3.1.1.3. In silico structure-based studies: Molecular Docking at the 

catalytic site of SARS-CoV-2 MPRO 

Induced Fit Docking (IFD) studies were performed to validate the obtained ligand-based data 

and to gain insight into the structural features of ligand/SARS-CoV-2 MPRO (PDB code 7VH8 

[116]) complexes, analyzing the mutual conformational changes between ligands and proteins. 

We focused the docking grid on the SARS-CoV-2 MPRO binding pocket, including the four 

subsites S1’, S1, S2, S3/S4 as described in the Materials and Methods section. Figure 13b 

shows the 3D active binding site of SARS-CoV-2 MPRO in covalently bonding with nirmatrelvir 

(PF-07321332, 2D structure in Figure 13a), a second-generation orally available protease 
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inhibitor currently in phase 3 clinical trials in combination with ritonavir (PAXLOVID®, see 

ClinicalTrials.gov identifier: NCT04960202). 

 

Figure 13. (a) 2D structure of nirmatrelvir; (b) SARS-CoV-2 MPRO 3D binding site surface in complex with 
PF-07321332 (PDB code 7VH8) [116]. 

 

The IFD studies aim to confirm the DRUDIT prediction and the capability of ethyl 3-

benzoylamino-5-[(1H-imidazol-4-yl-methyl)-amino]-benzo[b]thiophene-2-carboxylates of 

type 2 and ethyl 3-benzoylamino-5-[(1H-imidazol-4-yl-methyl)-amino]-benzo[b]furan-2-

carboxylates of type 3 to effectively interact with the selected target binding site. Table 3 

shows the IFD and docking scores of the selected 24 structures 2a-l, 3a-l and the reference 

ligand nirmatrelvir (PF-07321332) [116]. 

Table 3. IFD and docking output results for 2a-l and 3a-l and the co-crystallized ligand nirmatrelvir 
(PDB code 7VH8) [116]. 

SARS-CoV-2 MPRO (PDB code 7VH8) 

Compound IFD Score Docking score 

2d -675.768 -8.979 
3l -675.108 -12.040 
2j -674.838 -7.595 
2f -674.292 -9.781 
2i -674.180 -9.222 
3i -674.046 -11.050 
3h -674.040 -10.969 
2l -674.037 -7.673 
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2a -673.969 -8.573 
2k -673.927 -10.744 
2c -673.740 -8.008 
2b -673.730 -8.314 

nirmatrelvir -673.142 -10.169 
3c -673.071 -10.733 
2h -673.014 -7.862 
3j -672.880 -9.567 
3a -672.879 -10.861 
2g -672.752 -8.145 
2e -672.547 -8.150 
3k -672.538 -10.328 
3g -672.284 -10.226 
3d -672.184 -9.634 
3b -671.756 -10.415 
3f -671.736 -10.352 
3e -671.460 -9.900 

 

The IFD analysis confirmed the biotarget affinity results and identified the 

benzo[b]thiophenes 2a-d, f, i-l and benzo[b]furans 3h, i, l as the most promising competitive 

inhibitors (IFD score range from -675.768 to -673.730) of the SARS-CoV-2 MPRO catalytic 

binding site, with higher IFD scores than nirmatrelvir (IFD score -673.142) (Table 3). 

Table 4 provides the overview of the amino acids involved in the binding with the 12 highest 

scoring compounds. The labelled residues were highlighted by the analysis of 2D and 3D 

ligand pose maps at a distance of 3 Å. 

Most of the benzo[b]thiophenes 2a-d, f, i-l and benzo[b]furans 3h, i, l interacts with amino 

acids Thr25, Thr26, Leu27, Met49, Phe140, Leu141, Asn142, Gly143, Cys145, His163, Met165, Glu166, 

Pro168, Arg188, Gln189, Thr190, Gln192 with the same reversible interactions observed for the 

reference compound nirmatrelvir. In addition, compounds 2a-d, f, i, k, l and 3h, i, l establish 

more interactions than nirmatrelvir with the conserved amino acids of the four SARS-CoV-2 

MPRO sub-regions S1, S1’, S2, and S3/S4, suggesting improved affinity of the 

benzo[b]thiophene and benzo[b]furan compounds for the catalytic binding site and resulting 

more stable ligand/protein complexes.  

 

Table 4. Overview of the amino acids involved in the binding of the selected 12 compounds with IFD 
scores higher than nirmatrelvir at the SARS-CoV-2 MPRO catalytic binding site in proximity of 3 Å. 

Title 2d 3l 2j 2f 2i 3i 3h 2l 2a 2k 2c 2b nirmatrelvir 
T25 X X X X X X X X X X X X   



31 
 

T26 X   X X X X X X X X X     
L27 X X X X X X X   X X X X   
H41 X X X X   X X     X X     
V42 X X   X                 X 
C145 X X X X X X X X X X X X X 
F140 X X   X X X X X X X X X   
L141 X X     X X X X X X X     
N142 X X X X X X X X X X X X X 
G143     X   X X X X X X X X X 
H163 X X   X X X   X X   X X X 
E166 XX X XX X X X X X X X X X X 
H172         X     X X   X X   
M49     X X X X X X X   X X X 

M165 X X X X X X X X X X X X X 
L167   X     X X X X   X     X 
P168   X     X X X X X X X X X 
V186   X     X X               
D187 X X X X                 X 
R188 X X X X X X X X X X X X X 
Q189 X X X X XX X X X X X X X X 
T190   X     X X X X X X X X X 
Q192   X     X X X X   X   X X 
TOT 16 19 14 16 21 20 18 18 17 17 18 17 15 

 
As shown in Figures 14b,d, the binding pocket exhibits suitable properties for ligands 2d and 

3l, which are the two highest IFD scoring compounds, (2D structures shown in Figures 14a,c). 

Both compounds interact with the SARS-CoV-2 MPRO binding site by extending all substituents 

into the four subsites S1’, S1, S2, S3/S4, and creating a network of key reversible hydrogen 

bonds with the amino acids: His41, Phe140, Asn142, Cys145, Glu166, Gln189, Thr190, Tyr54, Met165, 

Val186 and His41, Phe140, Asn142, Cys145, Glu166, Gln189Thr190, Tyr54, Met165, Val186 for 

benzo[b]thiophene 2d and benzo[b]furan 3l, respectively.  
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Figure 14. (a) 2D structure of benzo[b]thiophene 2d; (b) 3D complex of SARS-CoV-2 MPRO binding site 
(PDB code 7VH8) with benzo[b]thiophene 2d [116]; (c) 2D structure of benzo[b]furan 3l; (d) 3D 
complex of SARS-CoV-2 MPRO binding site (PDB code 7VH8) with benzo[b]furan 3l [116]. 
 

Among the ligands with higher IFD scores, the analysis of the binding poses of derivatives 2b, 

2c, 2l and 3l, Figure 15, highlights a remarkable overlap of poses, indicating a redundancy in 

the position of the key elements of the small molecules within the four sub-pockets, and 

forming many interactions. The imidazole moiety, charged at physiological pH, is capable to 

penetrate deeply into the S1 and S3/S4 sub-regions (Asn142, Gly143, His163, His164, Glu166) and 

stabilize itself by forming hydrogen interactions with the side chains and/or the backbone of 

residues, that are particularly exposed to the solvent in the S3/S4 site. Probably, this portion 

could mimic the Gln residue of the natural substrates, similarly to the five membered γ-

lactamic ring, which is the most recurrent fragment of selective inhibitors at the catalytic 

binding site, reported in the literature [76]. 
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Figure 15. 3D overlaps of compounds 2b, 2c, 2l and 3l at SARS-CoV-2 MPRO binding site (pdb code 
7VH8) [116]. 

 
The SARS-CoV-2 MPRO S2 cleft, comprised mainly of hydrophobic amino acids (Met49, Tyr54, 

Met165, Leu167, Pro168, Val186, Asp187, Arg188), appears to be very flexible, allowing it to bind 

both small and bulky aromatic/alkyl portions. The heterocyclic scaffold could represent a 

central pharmacophoric portion, thanks to its capability to stabilize the ligand/protein 

complex in favorable ligand positions. Additional p-p staking interactions are observed 

between the benzo[b]thiophene and benzo[b]furan ring systems and the imidazole 

substituent of His41.  

The carboxyethyl moiety is stabilized in the S1’ pocket, instead the carboxyamide moiety, 

simulating a peptide bond of natural substrate creates several interactions with the side 

chains of His41, Asn142 and Glu166, in both S1’ and S1 pockets. The substituted phenyl rings are 

arranged in the region adjacent to the S1 cleft. 

 

3.1.1.4. Statistical Analysis: Principal Component Analysis 

The structural features of the selected compounds of types 2 and 3 prompted us to evaluate 

them also as potential binders for the allosteric dimerization site of the SARS-CoV-2 MPRO, as 

non-competitive inhibitors. Like the known dimerization site inhibitor pelitinib, the 



34 
 

benzo[b]thiophene and benzo[b]furan compounds have a series of aromatic rings, linked by 

rotatable bonds. 

To investigate the potential inhibitory activity of the selected compounds at the dimerization 

site of SARS-CoV-2 MPRO, we performed a Principal Component Analysis (PCA), including the 

molecular descriptor matrix of the 24 compounds, obtained from DRUDIT ligand-based 

studies, and the molecular descriptors of the non-covalent allosteric inhibitor pelitinib. 

PCA is a technique used for data simplification in multivariate statistics, aimed at reducing the 

number of variables that describe a dataset while minimizing information loss. This reduction 

is achieved by transforming the original matrix into a new one, where the variables, called 

Principal Components (PCs), are orthogonal (uncorrelated) and arranged so that the first 

components, in descending order of importance, retain most of the variance contained in the 

original set of variables. The number of PCs can be equal to or fewer than the number of 

variables in the dataset. The first PC is defined as the one that contributes the most. The 

second PC is the best linear combination of variables that represents the maximum possible 

residual variance after removing the effect of the first component, and so on. 

In a 2D plot of PC1 vs. PC2, objects with similar properties can be clustered in specific areas 

of the Cartesian plane 

The application of PCA to the matrix of structures versus Molecular Descriptors 

(Supplementary Material S1, Matrix S1), showed a total variance of 50% expressed by the first 

two components. The bidimensional plot (PC1 versus PC2, Figure 16) shows the 2D 

arrangement of the molecules in the graph compared with the reference ligand pelitinib. 
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Figure 16. Principal Component Analysis (PC1 versus PC2) applied to the molecular descriptors matrix 
of the selected compounds and pelitinib. 

 

Based on the distribution of the compounds in this graph, the molecules in the proximity of 

pelitinib were identified as new inhibitors potentially capable of modulating the dimerization 

process. The distances of the molecules from the reference pelitinib were calculated and the 

data were listed in Table 5, which provides cartesian coordinates for the derivatives in the 

circle (Figure 16), (see Table S2, Supplementary Material S1, for all coordinates). 

Benzo[b]thiophenes 2b,c,g-i,l and Benzo[b]furans 3a-c,g-i,l were selected to be further 

investigated with structure-based studies, considering the dimerization region of SARS-CoV-

2 MPRO as allosteric binding site. 

Table 5. Distances calculated for each input molecules from pelitinib. 

Compound PC1 PC2 Distance 

pelitinib -0.62 4.23 -  

2h -1.70 3.92 1.15 

3g -0.98 2.56 1.76 

3i 0.70 2.91 1.90 
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3c -0.67 1.76 2.53 

2i -2.98 5.49 2.66 

2b -3.08 2.73 2.92 

2c -4.63 4.16 4.02 

3a -2.85 0.91 4.05 

3h 2.46 1.59 4.09 

2g -4.78 4.90 4.22 

2l -3.35 0.69 4.53 

3b 0.87 0.01 4.53 

3l -0.06 -1.55 5.86 

 

3.1.1.5. In silico structure-based studies: Induced Fit Docking into the 

allosteric site of SARS-CoV-2 MPRO 

Following to the statistical analysis, IFD simulations, fixing the docking grid on the SARS-CoV-

2 MPRO allosteric site on PDB code 7AXM [83] were performed. In Figure 17b, the 

crystallographic structure of SARS-CoV-2 MPRO complexed with non-covalent allosteric 

inhibitor pelitinib is shown (2D structure in Figure 17a). 

 

 

Figure 17. (a) 2D structure of pelitinib; (b) 3D complex of SARS-CoV-2 MPRO allosteric site with pelitinib 
(PDB code 7AXM) [83]. 

 

The analysis of the results shows compounds with higher affinity than pelitinib. In Table 6 the 

IFD and docking values of the selected derivatives and of the reference compound are 

reported. In particular, the benzo[b]thiophenes 2b, c, g, i, l and benzo[b]furans 3b, i, l exhibit 



37 
 

IFD scores in the range from -675.768 to -673.730 suggesting interesting allosteric affinity for 

the dimerization binding site of the SARS-CoV-2 MPRO. 

Table 6. IFD and docking output results (pdb code 7AXM) [83]. 

Compound IFD Score Docking Score 
2c -693.48 -7.005 
2b -692.66 -7.214 
3l -692.66 -6.327 
2l -692.59 -6.72 
3i -692.24 -7.522 
2g -692.05 -6.368 
2i -691.57 -5.981 
3b -691.36 -6.187 

pelitinib -691.09 -6.192 
3c -691.03 -6.675 
2h -690.98 -5.082 
3g -690.73 -5.954 
3h -690.62 -5.679 
3a -689.92 -6.238 

 

Considering the IFD results for both catalytic and dimerization sites, compounds 2b, c, i, l and 

3i, l were found to have interesting IFD scores, suggesting a dual binding site inhibitory activity 

of SARS-CoV-2 MPRO. 

Analysis of the amino acid maps (Table 7), in combination with the 2D and 3D poses 

examination of the ligands on the dimerization site uncovered promising expectations. Most 

benzo[b]thiophenes 2b, c, i, l and benzo[b]furans 3i, l interact with amino acids Thr154, Pro252, 

Gln256, Val297, Arg298, Cys300, Val303, Thr304, with similar reversible interactions observed with 

the reference compound pelitinib.  

 

Table 7. Overview of the amino acids involved in the binding with the selected 13 compounds at the 
SARS-CoV-2 MPRO allosteric site in proximity of 3 Å. 

Title 2c 2b 3l 2l 3i 2g 3h 2i 3b pelitinib 
S1  X         

G2  X         

D153 X   X  X     

Y154 X  X X  X X  X  

T209     X   X   

A210     X   X   
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I213  X   X   X X  

N214  X         

I249   X        

P252 X X X X X X   X X 
L253  X   X   X  X 
A255    X X    X  

Q256 X X X X X X  X X X 
F294   X   X X    

V296     X   X  X 
V297 X X X X X X X X X X 
R298 X  X X  X X  X  

C300 X XX  X X   X X X 
S301 X X XX  XX X X X X X 
G302   X  X  X X X  

V303 X X X X X X X X X X 
T304 X  X X X X X  X  

F305    X  X     

TOT 10 12 12 11 15 11 8 11 12 8 
 

The selected compounds establish hydrogen bonds with both the residues of the N-finger 

region and the region around residues Arg298, Cys300, Ser301. The allosteric ligand/protein 

complex in the pocket between the domains II and III could interfere with the necessary 

interactions between the two monomers and prevent the dimerization process with the 

consequent inactivation of the SARS-CoV-2 MPRO. 

In Figure 18 are shown compounds 2c and 2l, in a recurring position, fitting in the SARS-CoV-

2 MPRO allosteric site (dimerization domain), in which there are highly conserved and essential 

amino acids, such as N-finger residues (Ser1, Gly2, Phe3, Arg4, Lys5, Met6, Ala7), Pro293, Phe294, 

Asp295, Val296, Val297, Arg298, Gln299, Cys300, Ser301. 
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Figure 18. 3D overlaps of compounds 2c, and 2l at the SARS-CoV-2 MPRO allosteric site (PDB code 
7AXM) [83]. 

 

3.1.1.6. Enzyme inhibition assay of SARS-CoV-2 MPRO 

The activity of MPRO was assessed using the SensoLyte 520 SARS-CoV-2 3CLPRO Activity Assay 

Kit. Compounds were serially diluted from 5000 µM to 1 µM and tested for their ability to 

inhibit the protease activity. The assay results revealed that compound 2i-l exhibited IC50 

value lower of 100 µM when testing on the SARS-CoV-2 MPRO catalytic site. In details, IC50 

values for 2i-l are of 70.4 µM, 87.1 µM, 60.8 µM, and 45.9 µM, respectively. This, as suggested 

from our in silico analysis in section 3.1.1.3., resulted as agents with potential inhibitory effect.  

Moreover, among them, compounds 2i (IC50 values of 70.4) and 2l (IC50 values of 45.9) also 

showed favorable activity as dual binding inhibitors, positioning them as promising lead 

compounds for further development as antiviral agents.  

In conclusions, compounds 2b,c,i,l and 3i,l, with favorable ADME properties (drug-likeliness, 

lead-likeliness, no PAINS) and already known antitumoral activity [109,110], showed capability 

to strongly bind both to the catalytic and allosteric SARS-CoV-2 MPRO sites suggesting a 

potential dual activity. In general, considering the high amino acids conservation rate in both 

pockets, the potential drugs proposed here might even be effective against mutation variants 

and other coronaviruses. This analysis improves our knowledge of protein–ligand 

relationships in SARS-CoV-2 MPRO catalytic and allosteric sites and offer new molecular 

scaffolds for inhibitor design. 
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3.2. Targeting SARS-CoV-2 MPRO through Covalent Inhibition 

3.2.1. Targeting Sars-Cov-2 Main Protease for the Treatment of COVID-19: 

Covalent inhibitors Structure-Activity Relationships insights and 

Evolution Perspectives 

Covalent inhibition strategies have previously shown significant success against other viral 

proteases, including those for MERS and SARS-CoV-1 [117]. Unlike traditional non-covalent 

inhibitors, covalent agents often offer enhanced efficacy, greater potency, prolonged 

residence time in the binding site, sustained pharmacological action, and the potential to 

overcome resistance [118-120]. In the context of SARS-CoV-2 MPRO, the catalytic cysteine 

residue (Cys145) presents a prime target for covalent inhibition. Electrophilic warhead 

inhibitors, designed to react with this catalytic site, mimic the amide peptide bonds of the 

viral polyproteins, thereby facilitating their binding and subsequent inactivation of the 

enzyme. 

For covalent inhibition to be successful, inhibitors must meet basic structural requirements: 

a P1 portion, usually a cyclic glutamine analogue, capable of interacting with amino acids such 

as His163, Glu166, His172 via hydrogen bonds and hydrophobic interactions; P2 and P3 moieties, 

projected into hydrophobic pockets (S2 and S3/S4) and characterized by substituent groups 

capable of forming favorable hydrophobic interactions with the amino acids of these sites, 

(Figure 19a). 

In this perspective, the kinetic scheme of covalent inhibition deservers special attention. As 

illustrated in Figure 19b, kinetic inhibition involves two steps: firstly, the inhibitor (I) reversibly 

binds into the active site of the enzyme (E), forming a non-covalent enzyme-inhibitor complex 

(EI); then, following the nucleophilic attack by the catalytic Cys145, the non-covalent complex 

evolves in a stable complex (E—I). The first stage is governed by the equilibrium-binding 

constant Ki (Ki = k2/k1), while the second one by the inactivation constant for covalent bond 

formation k3 (Kinact) [121]. 
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Figure 19. (a) Covalent inhibition of the SARS-CoV-2 MPRO. The P1’-P1-P2-P3 labels reflect the chemical 
analogies with the viral substrate. The warheads P1ʹ in green, while the fragments P1−P3 are shown 
in red, purple, and blue, respectively. The sub-regions of the binding pocket are labeled with S 
numbering complementary to the fragments of the inhibitor; (b) kinetic scheme of covalent inhibition. 
E, I, EI and E—I, represent enzyme, Inhibitor, enzyme-inhibitor non-covalent complex and enzyme-
inhibitor covalent complex, respectively. 
 

Over the past four years, substantial efforts have been dedicated to developing new covalent 

inhibitors targeting SARS-CoV-2 MPRO [76]. Several small molecules have advanced to the more 

critical stages of drug development, reflecting their potential in treating COVID-19. These 

covalent inhibitors are categorized based on the nature of their electrophilic warheads into 

eight groups: aldehydes, ketones, α-ketoamides, Michael acceptors, α-haloacetamides, 

nitriles, esters, and molecules containing electrophilic selenium/sulfur atoms (Figure 20). 

Most covalent inhibitors exhibit a dipeptidomimetic or tripeptidomimetic structure. 

However, some non-peptidomimetic SARS-CoV-2 MPRO inhibitors are also reported in the 

literature, including activated ester derivatives, natural compounds, or ebsulfur/ebselen 

derivatives. 
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Figure 20. Electrophilic warheads characterizing covalent SARS-CoV-2 MPRO inhibitors. 

 

3.2.1.1. Carbonyl warhead 

Carbonyl groups, such as aldehydes and ketones, are considered the most promising 

warheads in the design of new covalent inhibitors of SARS-CoV-2 MPRO. From a mechanistic 

point of view, their capability to form a covalent bond depends on the electrophilicity of the 

carbonyl carbon, which is susceptible to the nucleophilic addition of the cysteine-SH, leading 

to the formation of a reversible hemithioacetal adduct. The high similarity between the latter 

and the intermediate formed by the natural substrate during the enzymatic catalytic cycle 

ensures high stability of the inhibitor-protein complex and longer residence time [72]. Figure 

21 shows the general mechanism of covalent inhibition for this class of compounds.  

 
Figure 21. General mechanism of action of covalent carbonyl inhibitors. 

 

3.2.1.1.1. Aldehyde warhead 

Compounds 4 and 5, in Figure 22a, are among the first peptidomimetic covalent inhibitors 

with an aldehyde group as a warhead. In vitro inhibition assays proved excellent inhibitory 
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activity against SARS-CoV-2 MPRO (IC50 of 0.053 ± 0.005 μM and 0.040 ± 0.002 μM, 

respectively), strong anti-SARS-CoV-2 infectivity (EC50 of 0.53 ± 0.01 μM and 0.72 ± 0.09 μM, 

respectively), low cytotoxicity and favorable pharmacokinetic, and toxicity properties in vivo. 

Interestingly, the X-ray structures of both compounds in complex with MPRO, resolved at 1.5 

Å, allowed a detailed analysis of the binding mode and mechanism of action of the proposed 

leads. In Figure 22b, c the SARS-CoV-2 MPRO in complex with 4 and 5 (PDB code: 6LZE and PDB 

code: 6M0K, respectively), is shown. To graphically illustrate the importance of each ligand 

moiety in stabilizing the complex, the four binding site cavities and the corresponding amino 

acids involved in the key interactions were highlighted. From the analysis, a similar binding 

mode of the two ligands was found: in both complexes, the formation of the covalent bond 

between the aldehyde group (P1’) and the Cys145-SH at S1’ is enhanced by the additional H-

bond between the hemithioacetal group -OH and the cysteinyl backbone; the (S)-γ-lactam 

group (P1) is deeply inserted into the S1 site and, mimicking the glutamine residue of the 

natural substrates, can form three H-bonds with three key amino acids of this cleft (one 

between His163 and the lactamic oxygen, two between Phe140 and Glu166 and the lactamic NH); 

the indole group (P3) is located at the surface (S3/S4 pocket) of the protein and interact with 

Glu166. The only observed difference in the binding mode is represented by the P2 fragments, 

that differ between the two compounds (cyclohexyl and 3-fluorophenyl groups, respectively). 

Indeed, the 3-fluorophenyl moiety is more down-rotated than the P2 in compound 4. 

However, despite this difference in orientation, both fragments are deeply inserted into the 

S2 cavity and form extensive hydrophobic interactions [122]. 

Furthermore, in the light of the interesting results, derivative 4 was chosen as a 

representative compound to gain insight into the mechanism of action of aldehyde inhibitors 

at atomistic level using QM/MM simulations: this type of molecular simulations permitted to 

elucidate the mechanism of covalent bond formation and to highlight the proton transfer 

processes, that take place within the catalytic dyad prior to the nucleophilic attack [123]. 

Furthermore, searching for new inhibitors of rhinovirus and enterovirus proteases, 

synthesised derivative 6 (Figure 22a), a peptidomimetic analogue of 5, without the 3-F 

substitution on the phenyl ring. Tested against SARS-CoV-2 MPRO, compound 6 exhibited 

interesting inhibitory activity with IC50 value of 0.034 μM and antiviral activity with an EC50 = 

0.29 μM. Structure-Activity Relationship (SAR) studies confirmed the importance of the γ-
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lactamic pentacyclic system and the indole ring: the substitution with other heterocycles, 

such as quinoline, showed a drastic decrease in activity [124]. 

 
Figure 22. (a) Chemical structures of peptidomimetic aldehyde derivatives 4-6; for derivative 4, as an 
example for the whole series, the four key moieties P1’, P1, P2, and P3 for the interaction with SARS-
CoV-2 MPRO are highlighted; (b) X-ray structure of SARS-CoV-2 MPRO in complex with compound 4 (PDB 
code: 6LZE); (c) X-ray structure of SARS-CoV-2 MPRO in complex with compound 5 (PDB code: 6M0K). 
In both crystal structures the amino acids involved in the interaction with the ligand and the four 
cavities of the binding pocket (S1’, S1, S2, S3/S4) are showed [122-124]. 
 

Other examples of promising SARS-CoV-2 MPRO covalent inhibitors with aldehyde warhead 

include GC-373 and the related prodrug GC-376, in which the aldehyde function is hidden as 

bisulphite group to increase the solubility, and which can be readily released under 

physiological conditions (Figure 23a). 
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These two compounds, initially investigated as veterinary drugs for their capability to inhibit 

of Feline CoronaVirus (FCoV) 3CL protease and proposed for the treatment of feline infectious 

peritonitis [125], were repurposed as new anti-COVID-19 agents, showing potent inhibitory 

activity on MPRO. Specifically, GC-373 exhibited an IC50 value against SARS-CoV-2 MPRO of 0.40 

± 0.05 μM, while the prodrug GC-376 produced slightly higher inhibition, with an IC50 of 0.19 

± 0.04 μM [126,127]. X-ray studies performed on both compounds in complex with the SARS-

CoV-2 MPRO showed an identical binding mode of the ligands (for GC-373 PDB code: 6WTK; 

for GC-376 PDB code: 6WTJ), confirming the ability of the bisulphite adduct of GC-376 to 

rapidly release the aldehydic function. To gain insight into the mechanism of inhibition and 

the binding mode of this class of compounds, the crystal structure of GC-376 in complex with 

the target protein is shown in Figure 23b, highlighting the key structural components 

responsible for the inhibition: the aldehydic warhead (P1’) forms a covalent hemithioacetal 

adduct with the cysteinyl -SH within the catalytic cleft in S1’; the leucine P2 inserts itself into 

the hydrophobic subregion S2 of the enzyme; the recurrent γ-lactam P1 of the substrate is 

located into the S1 site and forms multiple H-bonds with polar amino acids (e.g. His163 and 

Glu166); the benzyl group in P3 is projected into the superficial S3/S4 site of the protein, where 

it forms an H-bond with the Glu166 backbone [126]. 

Further in vitro studies were performed on a model of SARS-CoV-2 infection in Vero-E6 cells, 

and confirmed the high inhibitory activity of both GC-373 and GC-376, which exhibited an EC50 

of 1.5 μM and 0.92 μM, respectively, and low cytotoxicity even at high concentration [126,127]. 

The remarkable antiviral effect in the cellular assay (also measured in cells infected with delta 

and omicron SARS-CoV-2 variants) was associated with the dual-effect of inhibition of the 

host cysteinyl protease cathepsin L, which is involved in the infection process of SARS-CoV-2 

into the host cells along with other proteases such as calpains [128-130]. 

Inspired by the in vitro results and the previous positive outcomes in animals affected by 

FCoV, Caceres and co-workers examined GC-376 in vivo in the K18 hACE2/SARS-CoV-2 

transgenic mouse model, which expresses the human angiotensin-converting enzyme type 2 

and is affected by SARS-CoV-2. The analysis of the data showed modest benefit in terms of 

clinical symptoms and survival, but an interesting capability to reduce tissue lesions and 

inflammation in the tested animals [131]. 

With the aim of improving the in vitro inhibition effect of GC-376 against MPRO, a series of 

analogues have been designed. From the viewpoint of SAR, the structural modifications have 
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been directed mainly towards the P2 (leucine isopropyl) and the P3 (carboxy-benzyl) moieties; 

the P1 portion (γ-lactam) and the P1’ aldehyde warhead were retained in view of their pivotal 

role in the interaction with the target. The most representative compounds were the 

bisulphite prodrugs 7 and 8 (Figure 23a), which were modified at both P2 and P3 sites 

(cyclopropyl group and halogen-substituted phenyl, respectively). In vitro inhibition assay 

proved their better inhibitory activity against MPRO (IC50 of 0.07 and 0.08 μM, respectively) 

and their antiviral effects (EC50 of 0.57 and 0.7 μM, respectively) compared to both the lead 

compound GC-376 and the corresponding parent aldehydes. The interesting potency of 

compound 7 was confirmed by the analysis of the X-ray complex of MPRO with the desalted 

form of 7. As shown in Figure 23c (complex of derivative 7 with SARS CoV-2 MPRO, PDB code: 

7LCO), the introduction of the new structural features contributes to enhance the interaction 

with the target protein and achieve a better fit into the active site compared to GC-376. The 

more compact cyclopropyl group on the P2 unit of the ligand is able to penetrate deeper into 

the S2 pocket of the target; furthermore, the introduction of a halogen substituent on the Cbz 

group (P3 fragment of the ligand) permits to move this moiety closer to the S3/S4 cleft, while 

in the GC-373 (Figure 23b), the unsubstituted Cbz is mainly directed towards the surface of 

the protease exposed the solvent [132]. 
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Figure 23. (a) Chemical structures of GC-373 (electrophilic P1’ warheads in green, P1 in red, P2 in 
purple, P3, in blue), GC-376, analogues 7, 8, UAWJ247, and NK01-63 (coronastat) [125,132,133]; (b) 
X-ray structure of SARS-CoV-2 MPRO in complex with GC-373 (PDB code: 6WTJ [126]); (c) X-ray structure 
of SARS-CoV-2 MPRO in complex with 7 (PDB code: 7LCO [132]). 
 

To further, explore the structural determinants of GC-376 for more selective inhibition of 

SARS-CoV-2 MPRO, compound UAWJ247 (Figure 23a) was designed by replacing the isopropyl 
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moiety with a phenyl group. The in vitro inhibition assays registered IC50 value very close to 

that of the parent compound (0.045 μM), confirming a better fitting of the bulkier aromatic 

portion into the S2 site of the MPRO binding pocket (crystal structure complex with PDB code: 

6XBH) [133]. 

Recently, in search of new GC-376 analogues with improved inhibitory and drug-like 

properties, a series of compounds modified at the P2 and P3 sites was designed. Among them, 

the compound NK01-63 (coronastat), proved to be more active than the lead compound. It 

showed excellent inhibitory activity against SARS-CoV-2 (IC50 = 16 nM), potent antiviral effect 

in cell assay (EC50= 6 nM in Huh-7ACE2 infected cells), and high selectivity against other human 

proteases. Crystal structure of coronastat in complex with the target protein allowed a better 

understanding of the drastic improvement in potency compared to the lead GC-376 (PDB 

code: 7TIZ): the trifluoromethyl group on the benzyl moiety provides two additional H-bonds 

with Asn142, confirming the importance of the halogen substitution for the enhancing 

interactions of the ligand-protein complex. These encouraging results prompted the 

researchers to perform further in vivo tests (mouse models) to evaluate both the activity and 

pharmacokinetic profile: coronastat showed no significant toxicity, high metabolic stability 

and high concentration in plasma and lung after both oral and intraperitoneal administration 

[134]. 

Analysing the crystal structures of MPRO in complex with boceprevir and telaprevir, two drugs 

with an α-ketoamide group as warhead (see section 3.2.1.2.), led to observation that the 

bicyclic proline can be suitably accommodated into the S2 pocket of the target protein. The 

merging of the pharmacophore moieties of GC-376, boceprevir, and telaprevir led to the 

synthesis of a new series of small molecules with inhibition effect on SARS-CoV-2 MPRO (Figure 

24a). The new derivatives were characterized by: the aldehydic P1’ warhead; the γ-lactam as 

P1 (present in GC-376); (1R,2S,5S)-6,6-dimethyl-3-aza-bicyclo[3.1.0]hexane-2-formamide or 

(1S,3aR,6aS)-octahydrocyclopenta[c]-pyrrole-1-formamide as P2 (from boceprevir and 

telaprevir, respectively); and a hydrophobic aromatic group as P3. MI-09, MI-23 and MI-30 

(Figure 24a), tested in the MPRO biochemical inhibition assay, proved to be the most 

interesting compounds in the series, exhibiting IC50 values in the nanomolar range (15.2 nM, 

7.6 nM, and 17.2 nM, respectively). Using X-ray experiment, the most active inhibitor MI-23 

was selected to further investigate the binding mode of this class of compounds with SARS-

CoV-2 MPRO. Figure 24b shows the crystal structure of the complex MI-23/SARS-CoV-2 MPRO 
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(PDB code: 7D3I), with the relevant interactions highlighted: the aldehydic carbon interacts 

with the SH of the catalytic Cys145 at the S1’ site, as expected; the P1 is inserted in the S1 

region and forms several hydrogen bonds, as observed for the previous compounds; the 

conformational constraints of the bicyclic proline structure (P2) results in a restricted trans-

exo conformation of the system, which determines a deep insertion into the hydrophobic S2 

site of the target; the 1-ethyl-3,5-difluorobenzene moiety at P3 occupies the S3/S4 sub-

region. Further biological studies were conducted on MI-09 and MI-30. The analysis of 

biological data showed no cytotoxicity against normal cells; remarkable antiviral activity in 

Vero E6 infected cells (EC50 of 0.86 μM and 0.54 μM, respectively); acceptable PK properties 

and capability to prevent SARS-CoV-2 infection in vivo (transgenic mice expressing hACE2), 

and ability to ameliorate lung lesion and inflammation [135]. Moreover, starting from MI-09 

and MI-30, Luo and co-workers recently built a computational protocol based on QSAR 

combined with molecular docking, MD simulations, and free binding energy MM/PBSA to 

design new derivatives with higher inhibition activity on SARS-CoV-2 MPRO. The virtual 

screening highlighted the importance of a bicycle moiety with a three-membered ring, 

preferably  at P2,  and bulky electronegative substituents (ethyl, -CN, -F and Br) on the phenyl 

group at P3 [136]. 

Similarly, UAWJ9-36-1 and UAWJ9-36-3, in Figure 24a, possess both the aldehyde warhead 

and the bicyclic fragments. In vitro biological studies of UAWJ9-36 derivatives showed similar 

inhibitory activity to GC-376 against both SARS-CoV-2 MPRO (with IC50 values of 0.051 and 

0.054 μM for UAWJ9-36-1 and UAWJ9-36-3, respectively), and other known human 

coronaviruses MPRO. Antiviral cellular assays performed on Vero E6 and Caco2-ACE2 cell lines 

infected with SARS-CoV-2 demonstrated the enhanced antiviral activity of UAWJ9-36-3 with 

EC50 0.37 and 1.06 μM against the respective cell lines. Moreover, both UAWJ9-36 derivatives 

showed improved selectivity against host calpains/cathepsins compared to GC-376. X-ray 

crystal structures of the protein co-resolved with both compounds (PDB codes: 7LYH and 7LYI, 

for the complex with UAWJ9-36-1 and UAWJ9-36-3, respectively), confirmed the covalent 

bonding and the ability of the cyclopentyl-proline and dimethyl-cyclopropyl-proline moieties 

to insert in the S2 site [137]. 
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Figure 24. (a) Chemical structures of boceprevir, telaprevir, derivatives MI-09, MI-23, MI-30, and 
analogues UAWJ9-36-1, UAWJ9-36-3; (b) X-ray crystal structure of MI-23 in complex with SARS-CoV-2 
MPRO (PDB code: 7D3I) [135,137]. 
 

MPI3 and MPI8 (Figure 25), with the recurring 2-oxopyrrolidine side chain at the P1 site and 

a the Cbz group as N-terminal P3 cap, proved to be as most interesting compounds, with an 

IC50 against SARS-CoV-2 MPRO of 8.5 nM and 105 nM, respectively. Despite the higher 

inhibition by MPI3, its activity in reducing viral infection in in vitro cell models was lower than 

that of MPI8, which, instead, showed completely inhibition of SARS-CoV-2 infection in Vero 

E6 and A549/ACE2 cell lines at concentrations of 2.5 μM and 0.31 μM, respectively. This 

discrepancy is probably due to the poor stability towards extra/intracellular proteases, which 

recognize natural amino acids (valine and leucine, in this case of MPI3) as substrates [138]. 

Further biological studies on MPI8 link the high potency of the tripeptidyl derivative to a dual 

mechanism of action: inhibition of both SARS-CoV-2 MPRO (IC50 = 105 nM) and cathepsin L (IC50 

= 1.2 nM) [139]. 

Focusing on the interesting hypothesis of the dual target inhibitions of MPRO and cathepsin L, 

MGI-132 (Figure 25), a known proteasome inhibitor, similar to MPI3 and MPI8, showed an 

IC50 of 7.4 μM against the MPRO and 0.15 nM against cathepsin L and a potent antiviral effect 

on Vero-E6 cells infected with SARS-CoV-2 [140,141]. 
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Figure 25. Structures of tripeptidyl inhibitors of SARS-CoV-2 MPRO: MPI3, MPI8, and MGI-132 
[138,140,141]. 

 

Similarly, through a comprehensive in vitro screening of investigational/approved inhibitors 

of the cysteinyl protease, calpain/cathepsin L covalent inhibitors I-II (Figure 26) were 

repurposed as potential SARS-CoV-2 MPRO inhibitors. In detail, the tripeptidyl compounds 

halted the enzymatic activity of SARS-CoV-2 MPRO in vitro at IC50 values of 0.97 ± 0.27 μM and 

8.6 ± 1.46 μM, respectively. Calpain inhibitor II, was able to block viral progression in the cell 

infection model (EC50 = 2.07 ± 0.76 μM in the primary CPE assay; EC50 = 3.70 ± 0.69 μM in the 

secondary viral yield reduction assay), with no cytotoxicity to normal cells. The analysis of the 

crystal structure complex of calpain inhibitor II with SARS-CoV-2 MPRO (PDB code: 6XA4) 

confirmed the covalent mechanism of inhibition with the formation of a hemithioacetal 

adduct. The methionine side chain, deeply inserted into the P1 pocket, could be the starting 

point for the development of new inhibitors with a dual mechanism of action (MPRO and 

cathepsins inhibition) [127,128,133]. 
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Figure 26. Chemical structures of the repurposed calpain inhibitors I-II as new SARS-CoV-2 MPRO 

modulators [127,128,133]. 
 

Table 8 highlights the overall structural analysis of covalent SARS-CoV-2 MPRO inhibitors 

containing an aldehydic warhead, focusing on the recurrence and significance of P1, P2, and 

P3 portions. It is evident that the P1 portion, typically characterized by a γ-lactam group, plays 

a crucial role by forming multiple hydrogen bonds with polar residues in the S1 site, such as 

Phe140, His163, His164, and Glu166. This pattern is consistently observed across all the 

compounds listed, reinforcing the importance of maintaining this structural unit for effective 

interaction with the target protein.  

Regarding the P2 portion, a variety of hydrophobic substituents have been explored, including 

cycloalkyl groups (cyclohexyl for 4, and cyclopropyl for 7 and 8), isoleucine groups (compound 

GC-376, NK01-63, MPI3), aromatic rings (5, 6, and UAWJ247), all capable of deeply inserting 

into the S2 pocket. The presence of bulky bicyclic hydrophobic groups in P2, as seen in 

compounds MI-09, MI-23, MI-30, UAWJ9-36-1, and UAWJ9-36-3, has been shown to enhance 

IC50 values.  

The P3 portion is particularly intriguing due to its positioning in the more exposed S3/S4 

pocket, which interacts with the surface of the protease. Most of the inhibitors incorporate 

aromatic groups at P3, such as benzyl or phenyl substituents. Additionally, the introduction 

of halogen-substituted phenyl groups, as in 7, 8, MI-23, and MI-30, or trifluoromethyl bulky 

modifications, like in NK01-63, brings the P3 fragment closer to the S3/S4 cleft, enhancing 

hydrophobic and electrostatic interactions. 

These recurring structural elements thus represent key points for the design of more potent 

covalent inhibitors. 
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Table 8. Analysis of structural fragments and inhibition data of the most active covalent SARS-CoV-2 
MPRO inhibitors with an aldehydic warhead, by following the Schechter-Berger notation. 

Cpd P1’ P1 P2 P3 
Inhibition of 

SARS-CoV-2 MPRO 
(μM) 

Ref. 

4 
  

 
 

IC50 = 0.053 μM [122] 

5 
    

IC50 = 0.040 μM [122] 

6 
    

IC50 = 0.034 μM [124] 

GC-376 
    

IC50 = 0.19 μM [126] 

7 

  
  

IC50 = 0.07 μM [132] 

8 

  
  

IC50 = 0.08 μM [132] 

UAWJ247 

    

IC50 = 0.045 μM [133] 

NK01-63 

   
 

IC50 = 0.016 μM [134] 

MI-09 
   

 
IC50 = 0.015 μM [135] 

MI-23 
    

IC50 = 0.0076 μM [135] 
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MI-30 
   

 
IC50 = 0.017 μM [135] 

UAWJ9-
36-1 

   
 

IC50 = 0.051 μM [137] 

UAWJ9-
36-3 

   
 

IC50 = 0.054 μM [137] 

MPI3 
  

  
IC50 = 0.0085 μM [138] 

 

3.2.1.1.2. Ketone warhead 

The ketone warhead has also been extensively explored in the design of SARS CoV-2 MPRO 

inhibitors. Among the first efforts in this direction, the α-acyloxymethyl ketone 9 and the 

hydroxymethylketone (HMK) PF-00835231 (Figure 27), have been designed and synthesized 

as new MPRO SARS-CoV-2 covalent inhibitors [142]. Compound PF-00835231 exhibited an 

interesting Ki of 0.27 nM and an outstanding IC50 of 6.9 nM against the target protein. To gain 

insight into the binding mode and mechanism of action, PF-00835231 was co-crystallized in a 

covalent complex with SARS CoV-2 MPRO (Figure 27b, PDB code: 6XHM), highlighting the key 

contacts with the target: the carbonyl group of the HMK warhead (P1’) is covalently bounded 

to the Cys145 of the S1’ site of the binding pocket, forming a tetrahedral carbinol complex, 

which together with the primary -OH of the HMK group reinforces the covalent interaction by 

additional H-bonds within the S1 cleft (His41, Gly143); the lactam P1 is positioned into the S1 

pocket (as described earlier); the lipophilic leucine side chain at P2 site of the ligand is inserted 

into the S2 region, surrounded by hydrophobic amino acids; the indole moiety makes the 

complex more stable through Van der Waals interactions with the backbones of the 189-191 

amino acid residues [142]. Recently, the mechanism of covalent inhibition of SARS CoV-2 MPRO 

was investigated by classical and QM/MM simulations, underling the importance of the 

hydroxymethyl group both in binding free energy increase and in the formation of the 
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hemithioacetal adduct. Analysis of in silico data showed a significant inhibition effective of PF-

00835231 against MPRO mutant forms. 

Given the encouraging results, PF-00835231 was selected for in vitro/vivo biological 

evaluation, demonstrating: appropriate physicochemical and pharmacokinetic properties for 

intravenous continuous infusion; similar/higher potency compared with other peptido-

mimetic SARS CoV-2 MPRO inhibitors (as GC-376) or other anti-SARS CoV-2 agents (remdesivir); 

low cytotoxicity and elevated tolerability in in vitro model of human airway epithelium (HAEC) 

[142,143]. In further studies PF-00835231 evolved into the phosphate pro-drug PF-07304814 

(Figure 11), which exhibited comparable antiviral and MPRO inhibitory activity but better 

solubility and pharmacokinetic in in vivo animal models; these more favourable features 

supported the progression of PF-07304814 in clinical trials (ClinicalTrials.gov Identifiers: 

NCT04627532 and NCT04535167) [144]. 

In order to explore the range of substitution tolerated to maintain MPRO inhibitory activity, a 

new series of the α-acycloxymethyl ketones has been obtained by replacing the pentacyclic 

glutamine mimic lactam with a six-membered one and by inserting a heteroaromatic portion 

as an acyloxy group. The most interesting compound, 10 (Figure 27a), with a pyridyl moiety, 

showed a notable inhibition of MPRO (IC50 = 19 nM), excellent SARS-CoV-2 replication inhibition 

and remarkable plasma and metabolic stability. The capability of 10 to covalently block the 

target has been confirmed by co-crystallization experiment (PDB code: 7MBI) [145]. 

With a unique P1’-benzothiazolyl ketone moiety, YH-53 (Figure 27a), previously developed as 

a SARS-CoV-1 MPRO blocker, also proved capable of reversibly inhibiting SARS-CoV-2 MPRO, 

with a Ki of 34 nM and to halt SARS-CoV-2 infection in vitro (EC50 = 4.2 ± 0.7 μM), with high 

safety index and low cytotoxicity. X-ray experiments performed with the complex YH-53-

SARS-CoV-2 MPRO (PDB code: 7E18) confirmed the formation of the covalent adduct and the 

ability of the heteroatoms of the benzothiazolyl fragment at P1’ to form additional 

interactions within the catalytic binding site.       

In vivo Pharmacokinetic studies in animal models highlighted that the introduction of the 

lipophilic benzothiazole group particularly affected the cLogP value (2.37), suggesting high 

cell penetration in the GI tract and excellent permeability. In contrast to the almost complete 

absorption, the recorded bioavailability was very low (3.6%); this issue has been ascribed to 

the pseudopeptide structure, responsible for high first-pass metabolism in the intestine and 

liver after oral administration [146,147]. 
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Figure 27. (a) Chemical structures of a series of acyloxymethyl ketone derivatives with SARS-CoV-2 
MPRO inhibitory activity; (b) PF-00835231 in complex with SARS-CoV-2 MPRO (PDB code: 6XHM) 
[142,144-147]. 
 

Table 9 lists the SARS-CoV-2 MPRO inhibitory activity and the main structural moieties (P 

fragments) of the described compounds, containing a ketone as electrophilic warhead. Here, 

the recurrence of a γ-lactam group is highlighted, with the exception for compound 10. 
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Regarding the P2 and P3 moieties, the cyclopropyl group and the indole ring, respectively, 

appear to be unique for the three analyzed compounds. 

 
Table 9. Analysis of structural fragments and inhibition data of the most active covalent SARS-CoV-2 
MPRO inhibitors with a keton warhead, by following the Schechter-Berger notation. 

Cpd P1’ P1 P2 P3 
Inhibition of 

SARS-CoV-2 MPRO 
(μM) 

Ref. 

PF-
00835231 

   
 

IC50 = 0.0069 μM [142] 

10 
 

 
 

 

IC50 = 0.019 μM [145] 

YH-53 

    

Ki = 0.034 μM [146] 

 

3.2.1.2. α-ketoamide warhead  

Among the α-ketoamide inhibitors, the carbonyl moiety is also crucial for the formation of a 

reversible covalent bond with the key cysteine residue of SARS-CoV-2 MPRO. In addition to the 

covalent adduct with the catalytic Cys145, the α-ketoamide moiety forms additional non-

covalent H-bonds with the amino acids of the active site via the carbonyl oxygen and the -OH 

of the hemithioacetal [148]. In detail, the nucleophilic attack by the cysteinyl -SH on the α-

carbonyl leads to the formation of a hemithioacetal adduct. The hydroxy group of the 

hemithioacetal gives a hydrogen bond to His41, while the oxygen of the carboxamide moiety 

accepts hydrogen bonds from the main-chain amides of Gly143, Cys145 and Ser144 (Figure 28) 

[65,149,150]. 
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Figure 28. General mechanism of action of SARS-CoV-2 MPRO α-ketoamide inhibitors. 

 

In accordance with the potential covalent inhibitory effect, the α-ketoamide warhead has 

been extensively used to develop new SARS-CoV-2 MPRO inhibitors. 

A new promising series of compounds with a broad-spectrum antiviral activity consists of: an 

α-ketoamide moiety as a warhead; a 5-membered γ-lactam ring at the P1 site (also described 

for aldehyde and ketone warheads); a hydrophobic/alkylic group at the P2 site, such as 

cyclopropyl or cyclohexyl. Studies on viral protease inhibition and antiviral activity have 

shown that compound 11 (Figure 29a), a previously developed SARS-CoV-1 MPRO inhibitor 

(IC50=0.71 ± 0.36 μM), can also effectively inhibit the SARS-CoV-2 MPRO (IC50 = and 0.18 ± 0.02 

μM) [65,148]. 

Starting from the α-ketoamide 11, as a lead compound, a lead optimization process led to the 

SARS-CoV-2 MPRO selective inhibitor 12 (Figure 29a). Aiming to improve the pharmacokinetic 

parameters, a pyridone ring has been inserted and the cinnamoyl and the cyclohexyl moieties 

have been replaced with a hydrophobic tert-butyloxycarbonyl and a smaller cyclopropyl 

groups, respectively [65]. In vitro biochemical assays showed that compound 12 selectively 

inhibited SARS-CoV-2 MPRO with IC50= 0.67 ± 0.18 μM and blocked SARS-CoV-2 viral infection 

in human Calu-3 cells with remarkable EC50 values in the range of 4-5 μM. Moreover, in vivo 

studies conducted in CD-1 mice highlighted favorable pharmacokinetic properties and 

positive tropism of the compound in the lung, the primary target of COVID-19 [65]. 

Further in silico studies (molecular docking and molecular dynamics simulations) showed that 

12 is able to bind efficiently to the catalytic site of the protease. In Figure 29b (crystal structure 

of SARS-CoV-2 MPRO in complex with compound 12, PDB code: 6Y2F), the X-ray experiment 

confirms the formation of the covalent adduct: the α-ketoamide group enhances the 
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interaction in the S1’ cleft thanks to the H-bonds with His41, Gly143, Ser144, Cys145; the S1 site 

accommodates the glutamine surrogate γ-lactam ring, the key fragment amidopyridone 

interacts with the Glu166 via two H-bonds, and the tert-butyl moiety is inserted into the S2 

pocket [65,151,152]. 

 
Figure 29. (a) Chemical structure of α-ketoamide derivatives 11 and 12; (b) X-ray structure of SARS-
CoV-2 MPRO in complex with compound 12 (PDB code: 6Y2F) [65]. 
 

In addition, an in silico structural optimization study starting from derivative 11 led to 

compounds 13-15, replacing the lactam moiety with an hydantoin one in P1, which is 

responsible for increased predicted binding affinity with SARS-CoV-2 MPRO, due to the 

additional H-donor/acceptor bonds (Figure 30) [153]. 
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Figure 30. Chemical structures of hydantoin derivatives 13-15 [153]. 

 

Furthermore, starting with GC-376 as lead compound, two α-ketoamide analogues: UAWJ246 

and UAWJ248 (Figure 31) were investigated to examine the effects of the aldehyde warhead 

replacement on binding affinity with SARS-CoV-2 MPRO. Biological in vitro screening showed 

comparable inhibitory activity against MPRO with the parent compound (IC50 value of 0.045 

μM for UAWJ246) [133]. 

 

 
Figure 31. Chemical structures of GC-376 α-ketoamide analogues UAWJ246 and UAWJ248 [133]. 

 

Compared to calpain inhibitors I-II, calpain inhibitor XII, in Figure 32, showed higher antiviral 

activity in cellular model (EC50 = 0.49 ± 0.18 μM in the primary CPE assay and EC50 = 0.78 ± 

0.37 μM in the secondary viral yield reduction assay) and interesting SARS-CoV-2 MPRO 

inhibitory activity in the submicromolar range (IC50 = 0.45 μM) [127,133,137]. 
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Figure 32. Chemical structure of calpain inhibitor XII [127,133,137]. 

 

On the other hand, boceprevir and telaprevir (Figure 33), with α-ketoamide warhead, proved 

to be interesting as antiviral compounds. Both X-ray experiments (PDB code: 6ZRU and 6ZRT) 

and docking studies confirmed the ability of the two drugs to form covalent adducts with 

Cys145 [154-156]. In vitro biochemical assays showed significant activity of boceprevir, against 

SARS-CoV-2 MPRO with an IC50 of 1.59 μM [154].  

 
Figure 33. FDA-approved α-ketoamide drugs: boceprevir and telaprevir. 

 

Table 10 shows the most active compounds of this class, focusing on the recurrence and 

significance of P1, P2, and P3 portions. As previously mentioned, the P1 moiety, which plays 

a key role in stabilizing the S1 site is almost always characterized by a γ-lactam group.  

For the P2 portion, a variety of hydrophobic alkyl and/or cycloalkyl substituents are common 

(cyclohexyl for 11, cyclopropyl for 12, and isoleucine for UAWJ246 and UAWJ248). 

Finally, most inhibitors incorporate aromatic groups at P3, except for compound 12, which 

presents a tert-butyloxycarbonyl group. This difference may explain its higher IC50 value. 
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Table 10. Analysis of structural fragments and inhibition data of the most active covalent SARS-CoV-2 
MPRO inhibitors with an α-ketoamide warhead, by following the Schechter-Berger notation. 

Cpd P1’ P1 P2 P3 
Inhibition of 

SARS-CoV-2 MPRO 
(μM) 

Ref. 

11 
  

  
IC50 = 0.18 μM [65] 

12 
  

  
IC50 = 0.67 μM [65] 

UAWJ246 

  
  

IC50 = 0.045 μM [133] 

UAWJ248 
  

  

Ki = 13.20 nM [133] 

 

3.2.1.3. Michael Acceptor group as warhead 
 
Similar to other warheads, the Michael acceptor groups inhibit the enzymes via conjugate 

addition of the nucleophilic cysteinyl-SH to the electrophilic Cβ of the unsaturated system, 

producing a nearly irreversible and longer-lasting adduct. Figure 34 shows the scheme of 

covalent inhibition by an α,β-unsaturated carbonyl warhead. 

 

Figure 34. General mechanism of inhibition conjugate systems (α,β-unsaturated carbonyl warhead is 
reported as an example). 
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N3, a compound previously evaluated for the activity against SARS-CoV-1 and MERS-CoV MPRO 

(Figure 35a), is one of the first peptidomimetic covalent inhibitors of SARS-CoV-2 MPRO with 

an α,β-unsaturated Michael acceptor group as a warhead. Kinetics and X-ray studies 

explained the ability of the compound to irreversibly bind the thiol group of Cys145 in the MPRO 

catalytic site, reacting via a conjugate addition mechanism (PDB code: 6LU7).[70] To better 

understand the irreversible inhibition of N3 at the atomic level, hybrid QM/MM free energy 

methods were also performed. In detail, the mechanism of action of N3 consists of two steps: 

formation of the high-energy ion pair Cys145-/His41+ dyad and subsequent establishment of 

covalent bonds [157].  

The N3 analogue 16 (Figure 35a) was identified by in vitro screening of previously described 

SARS-CoV-1 MPRO inhibitors, with promising SARS-CoV-2 MPRO inhibitory activity (IC50 of 151 ± 

15 nM), ability to block viral infection in Vero-E6 cells (EC50 = 2.88 ± 0.23 μM), and covalent 

inhibition of the target protein. As illustrated by the X-ray image of the complex 16/MPRO 

(Figure 35b, PDB code: 7JT7), the Sulphur atom of Cys145 forms a covalent bond with the Cβ 

atom of the vinyl group (Michael addition to the α,β-unsaturated system), while the other 

portions: the γ-lactam ring, the isoleucine and the phenyl are inserted into protein regions S1, 

S2 and S4, respectively [158]. 

 

 
Figure 35. (a) Chemical structures of N3 and analogues [70,71,158,159]; (b) X-ray crystal structure of 
16 in complex with SARS-CoV-2 MPRO [158]. 
 

Table 11 summarizes P1, P2, and P3 moieties for compounds N3 and 16 as Michael Acceptor 

inihibitor with a peptidomimetic scaffold.  
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Table 11. Analysis of structural fragments and inhibition data for compounds N3 and 16, by following 
the Schechter-Berger notation. 

Cpd P1’ P1 P2 P3 
Inhibition of 

SARS-CoV-2 MPRO 
(μM) 

Ref. 

N3 
  

 
 

N.A.° [71,157] 

16 
 

 
  

IC50 = 151 nM [158] 

 

Recently, however, many non-peptido-mimetic compounds have also been proposed as 

SARS-CoV-2 MPRO inhibitors, leading to new ideas for exploring new chemical spaces and 

nuclei. An in vitro pilot screening of a highly focused compound library allows to identify new 

non-peptido-mimetic scaffolds for covalent inhibition of MPRO. The derivative SIMR-2418 

proved to be one of the most active inhibitors (Figure 36), with an IC50 of 20.7 μM against 

SARS-CoV-2 MPRO and the most favorable ADME properties. Molecular docking and dynamics 

analyses showed that the unexplored core, based on the fusion between a 

benzo[b][1,4]oxazin-6(5H)-one and an imidazo[2,1-b]thiazole system, is crucial to achieve the 

desired orientation in the active site of the target protein. The presence of a 

cyclohexenedione fragment is essential for the covalent inhibition, while the t-butyl group fits 

deeply into a hydrophobic cleft[160]. 

 
Figure 36. SIMR-2418, a promising non-peptidomimetic SARS-CoV-2 MPRO inhibitor [160]. 

 

O

O

NH
O

O
N

O

O

O NH
O

O

O

O

N

O

N

S

NH

O

O

H

H

SIMR-2418

CF3SO3
-



66 
 

Interestingly, a new covalent SARS CoV-2 MPRO inhibitor with a Michael acceptor group has 

been discovered by using a recently developed automated pipeline, called covalentizer. This 

innovative computational protocol allowed to design a series of irreversible acrylamide 

agents, starting from the reversible non-peptido-mimetic SARS CoV-1/2 MPRO inhibitor 

ML188. The most interesting compound, 17 (S-enantiomer, Figure 37), showed a significant 

IC50 of 2.86 μM (the R-enantiomer was nearly inactive, with an IC50 of 86.32 μM). The X-ray 

crystal structure (PDB code: 7NW2) provided important details about the binding mode of 17 

in the catalytic pocket of SARS CoV-2 MPRO: the conjugate acrylamide moiety, which replaces 

the furan one, is reactive to the nucleophilic conjugate addition of the SH; the p-tert-

butylphenyl moiety is projected deeply into the hydrophobic S2 pocket; the 3-F-

phenetylamide fragment, absent in the lead ML-118, is essential to establish key contacts 

with the S4 cleft [161]. 

Similarly, starting from the analysis of a previously developed non-covalent SARS CoV-2 MPRO 

inhibitor X77, in Figure 37, the replacement of its imidazole moiety, located near the catalytic 

Cys145 (PDB code: 6W63), with several conjugated warheads has been investigated. One of 

the most interesting compounds, 18 (Figure 37), with an unusual vinyl sulfone moiety, showed 

an IC50 of 0.42 ± 0.11 μM against SARS CoV-2 MPRO, an order of magnitude stronger than X77 

(IC50 = 4.1 μM). The covalent inhibition mechanism was confirmed by both kinetic (ITC, 

isothermal titration calorimetry) and crystallographic analyses (PDB code: 7MLG). Further SAR 

studies performed with the designed lead compounds allowed the optimization of the 

interaction with the target; in particular, it was found that the substitution of the cyclohexyl 

portion with longer chains led to compounds with higher potency compared to 18  

(compound 19  showed an IC50 of 0.17 ± 0.07 μM, Figure 37)[162]. 
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Figure 37. Examples of non-peptidomimetic SARS-CoV-2 MPRO inhibitors with a covalent mechanism 
of action [161,162]. 
 

In addition to the above examples, several non-peptidomimetic natural products, such as the 

conjugated flavonoid systems, have also emerged as interesting lead compounds for the 

development of novel covalent SARS CoV-2 MPRO inhibitors in extensive in silico/in vitro 

screening campaigns. Myricetin, with its novel hidden electrophilic pyrogallic portion (Figure 

38a) is one of the best characterized [163]. The enzymatic inhibition assay confirmed its great 

potency with an IC50 of 0.2-0.6 μM against MPRO. The solved X-ray crystal structure in complex 

with SARS-CoV-2 MPRO showed that the C6’ of the myricetin is covalently linked to the catalytic 

Cys145 (Figure 38b, PDB code: 7B3E) [141,164]. 

Considering the structure of myricetin, the irreversible inhibition could be unexplained. 

However, a preliminary in vivo oxidative step was proposed to explain the biological activity 

(Figure 38c): after the oxidation, the pyrogallol fragment is converted to an o-quinone, which 

could function as an α,β-unsaturated carbonyl group (as in the p-quinone group of vitamin 

K3, see above). The sulfur atom of Cys145 can attack o-quinone and the resulting prototropic 

equilibrium could lead to the formation of the covalent adduct [164]. 
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Figure 38. (a) Chemical structure of the flavonoid compound myricetin; (b) X-ray crystal structure of 
the covalent complex between myricetin and SARS-CoV-2 MPRO (PDB code: 7B3E); (c) hypothetical 
mechanism of action of myricetin in inhibiting SARS-CoV-2 MPRO [141,164]. 
 

Further in vitro cellular assays highlighted the capability of myricetin to block SARS-CoV-2 

infection in Vero E6 cells with an EC50 value of 8 μM [164]. Moreover, in an in vivo model of 

lung injury in mice it was shown to inhibit the infiltration of inflammatory cells and the 

production of pro-inflammatory cytokines (e.g. IL-6, TNF- α), thereby alleviating the overall 

inflammation [165]. These findings prompted the scientific community to develop new 

inhibitors based on the myricetin scaffold. 

Indeed, by inserting a p-OCH3 at the C7 of myricetin core, derivates 20 and 21 (Figure 39) were 

obtained with improved potency compared with the parent compound (IC50 = 0.30 and 0.26 

μM, respectively). In addition, the insertion of a phosphonate group to the 7-OH of myricetin 

led to compound 22 (Figure 39), which exhibited the highest inhibitory activity against SARS-

CoV-2 MPRO, demonstrating the consistency of the prodrug strategy for further development 

[164]. 
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Figure 39. Chemical structures of promising myricetin analogues as covalent SARS-CoV-2 MPRO 
inhibitors [164]. 
 

3.2.1.4. Nitrile warhead 

Interestingly, the nitrile group has also been proposed as remarkable warhead for the 

development of SARS-CoV-2 MPRO covalent inhibitors. Due to the difference in 

electronegativity with the nitrogen atom, the carbon of nitrile is susceptible to nucleophilic 

addition by the catalytic cysteine of the protease, with subsequent formation of the reversible 

thioimidate covalent adduct, as shown in Figure 40. 

 
Figure 40. General mechanism of SARS-CoV-2 MPRO inhibition with the nitrile warhead. 
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In this light, Pfizer has undertaken a comprehensive drug discovery campaign to develop new 

SARS-CoV-2 MPRO inhibitors for oral administration. Starting with the previously developed 

carbonyl compound PF-00835231, which exhibited potent MPRO inhibition and anti-SARS-CoV-

2 activity but no intestinal absorption, Pfizer researchers developed the first orally 

bioavailable anti-SARS-CoV-2 compound PF-07321332 (nirmatrelvir) (Figure 41a), with a 

nitrile group as reactive warhead. In preliminary biological assays, nirmatrelvir showed potent 

SARS-CoV-2 MPRO inhibitory activity (Ki = 3 nM and IC50 = 19.2 nM) and anti-SARS-CoV-2 

activity in cell-based assays (EC50 = 75 nM). Its less peptidomimetic structure (fewer H-bond 

donors and lower polarity compared to the parent compound) and the insertion of a 

trifluoroacetamide moiety guaranteed  excellent intestinal barrier permeation and excellent 

oral bioavailability since the first in vivo evaluations [166,167]. 

 
Figure 41. (a) Chemical structure of the orally bioavailable compound PF-07321332; (b) X-ray crystal 
structure of PF-07321332 in complex with SARS-CoV-2 MPRO (PDB code: 7VH8) [116]. 
 

Thanks to its remarkable results obtained in the preclinical evaluation, it is currently under 

phase 3 of clinical trials in combination with ritonavir (PAXLOVID®, see ClinicalTrials.gov 

Identifier: NCT04960202), an already approved anti-HIV agent insert in the formulation as 

pharmacokinetic enhancer (it increases the systemic exposure and the half-life of nirmatrelvir 

thanks to its inhibitory activity on the cytochrome metabolizing enzymes). The good results 

already obtained prompted the European Medicines Agency (EMA) and the corresponding 
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authorities of United States and United Kingdom to grant a conditional marketing 

authorization for the treatment of COVID-19 [168-170]. 

From a medicinal chemistry point of view, the crystal structure of SARS-CoV-2 MPRO in complex 

with PF-07321332 (PDB code: 7VH8 and 7VLQ) has been resolved to clarify the mechanism of 

action of this compound. As shown in Figure 41b, the nitrile warhead can form a reversible 

covalent thioimidate adduct with the sulfur atom of the Cys145 at S1’; furthermore, the formed 

imine nitrogen enhances the reversible adduct by interacting with the Gly143 and Cys145 

residues of the oxyanion hole. The usual γ-lactamic ring fits into the S1 pocket and interacts 

with His163 and Glu166, while the dimethyl-bicycloproline group is collocated into the 

hydrophobic S2 pocket and is surrounded by the side chains of His41, Met49, Tyr54, Met165 and 

Gln189, resulting in extensive Van der Waals interactions. The trifluoromethyl group, instead, 

is important to anchor the inhibitor at the S4 sub-pocket, by forming stabilizing contact with 

Gln192 and two ordered small molecules positioned in this site [116,171]. 

Furthermore, giving the importance of PF-07321332 as the first SARS-CoV-2 MPRO inhibitor 

approved for clinical use, a lot of advanced computational studies, such as steered molecular 

dynamics and classical-hybrid QM/MM simulations, have been conducted with the aim to 

clarify the mechanism of binding/inhibition and, thus, to guide the design of new analogues. 

It has been demonstrated as the P1 (γ-lactamic ring) and the P2 (dimethyl-cyclopropylproline 

group) results essential in the ligand-binding process, contributing positively to the total 

binding free energy (substitution with other groups determined a drastic reduction of binding 

affinity). On the other hand, it has been evidenced as the P3 and P4 groups (isobutyl and 

trifluoromethyl) made favorable but small contribution to the binding free energy, suggesting 

the possibility of modification on these sites to increase the binding strength [172,173]. 

In addition, given the widespread distribution of SARS-CoV-2 variants of concern (beta, delta, 

and the rapidly spreading omicron variant), several studies are currently being conducted to 

investigate the efficacy of PF-07321332 providing very encouraging results. Indeed, 

nirmatrelvir showed capability to inhibit the most prevalent MPRO variants expressed by the 

most diffused SARS-CoV-2 mutant lineages in vitro [174], and capability to potently block the 

infection of beta, delta, and omicron SARS-CoV-2 variants both in vitro and in vivo animal 

models [175-179]. 

Starting from the carbonyl derivatives GC-376 or PF-07304814, analogues with nitrile 

warhead were designed to explore the impact of this one on the inhibition activity. Among 
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all, compound 23 (Figure 42) was the most active in the inhibition assay, with an IC50 of 9.1 

nM against the target protein and an EC50 of 2.2 μM in plaque reduction assay conducted in 

Vero E6 infected cells. In general, by analyzing the results for the whole series, it appeared as 

the substitution of the carbonyl warhead with a nitrile one affect positively the activity, 

leading to more active and selective compounds [180]. 

 
Figure 42. Chemical structure of the nitrile derivative 23 [180]. 

 

3.2.1.5. Ester warhead 

Figure 43 shows the general mechanism of action of the class of inhibitor molecules with an 

ester warhead, which involves a nucleophilic attack of the Cys145 on the electrophilic carbonyl 

of the ester group, followed by cleavage of the alkoxy group (-OLv) and irreversible acylation 

of the enzyme. 

 
Figure 43. Mechanism of acylation of SARS-CoV-2 MPRO mediated by ester derivatives. 

 

The class of indole/indoline chloropyridinyl esters is one of the most frequently described in 

the literature as SARS CoV-2 MPRO inhibitors [147,181-183]. Three indole/indoline-

chloropyridinyl-ester derivatives (GRL-0820, GRL-0920, and GRL-1720 in Figure 44), which 
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have already been evaluated against SARS-CoV-1, showed as promising lead compounds for 

the design of new SARS-CoV-2 MPRO inhibitors. All compounds showed potent inhibitory 

activity against SARS-CoV-2 MPRO (IC50 values of 0.073 μM, 0.25 μM, and 0.32 μM, 

respectively) and anti-SARS-CoV-2 activity in Vero E6 infected cells, with EC50 values of 15 μM, 

2.8 μM and 15 μM, respectively [147,181,182]. 

 

 
Figure 44. Chemical structures of chloropyridinyl ester GRL-0820, GRL-0920, and GRL-1720 
repurposed as SARS-CoV-2 MPRO inhibitors [147,181,182]. 
 

In silico docking analyses and kinetic studies proved that all three derivatives are able to 

covalently bind the catalytic Cys145 through an acyl substitution (as described in the general 

mechanism of action in Figure 43) [181,182]. 

Considering that the chloro-substituted pyridinyl group is a common pharmacophoric moiety, 

a new series of indole esters has been investigated (Figure 45). In details, compounds 24 and 

25 proved to be the most potent inhibitors with IC50 values of 0.055 μM and 0.0342 μM, 

respectively. Further biological assays showed that both compounds could inhibit MPRO in HEK 

and A549 human lung epithelial cell lysate [183]. 
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Figure 45. Chemical structures of indole derivatives 24 and 25 [183]. 

 

Interestingly, through a comprehensive in vitro screening of previously developed SARS-CoV-

1 MPRO inhibitors, the chloropyridinyl ester MAC-5576 (Figure 46a), which exhibited an 

interesting IC50 of 81 nM against SARS-CoV-2 MPRO, was identified. However, in the cytopathic 

reduction assay performed in Vero-E6 cells, it did not show the desired inhibition of viral 

infection. Nevertheless, the X-ray crystal structure of MAC-5576 in complex with the target 

protein has been resolved, to highlight the importance of this new non-peptidomimetic 

scaffold for the design of new covalent inhibitors: as shown in Figure 46b (PDB code: 7JT0), 

the compound is able to acylate the protease [158]. 

 

 
Figure 46. (a) Chemical structure of MAC-5576, a chloropyridinyl ester SARS-CoV-2 MPRO inhibitor; (b) 
Crystal structure of the covalent complex SARS-CoV-2 MPRO with MAC-5576 (PDB code: 7JT0) [158]. 
 

The design of a series of new 5-chloropyridinyl esters of non-steroidal anti-inflammatory 

drugs (NSAIDs, as salicylic acid, ibuprofen, naproxen, indomethacin) led to interesting 

compounds. Among all of them, (R)-naproxen derivative 26 (Figure 47) with an IC50 value of 

0.16 μM was the most interesting compound. In addition, compound 27 (Figure 47), which 
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proved less efficacy in the inhibition assay (IC50= 4.9 μM), exhibited a potent antiviral activity 

in cellular assays (EC50 = 24 µM in VeroE6 cells). MALDI-TOF analysis was used to demonstrate 

the ability of the two compounds to covalently bind the SARS-CoV-2 MPRO, leading to the 

irreversible acylation of the enzyme [184]. 

 

 
Figure 47. Chemical structures of 5-chloropyridinyl ester derivatives of nonsteroidal anti-inflammatory 
agents 26 and 27 [184]. 
 

In Summary, the presence of the chloro-substituted pyridinyl group is observed in all the 

analyzed compounds and represents an essential pharmacophoric moiety; furthermore, 

maintaining the chloro-pyridinil portion, the class of indole esters has been extensively 

examined in literature as SARS CoV-2 MPRO inhibitors, Table 12.  

 

Table 12. Analysis of structural fragments and inhibition data of the most active ester SARS-CoV-2 
MPRO inhibitors. 

Cpd Alcoholic portion Carboxylic 
portion 

Inhibition of SARS-
CoV-2 MPRO (μM) Ref. 

GRL-0820 

  

IC50 = 0.073 μM 
[147,181,1

82] 

GRL-0920 

  
IC50 = 0.25 μM 

[147,181,1

82] 

GRL-1720 

  
IC50 = 0.32 μM 

[147,181,1

82] 
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24 

  
IC50 = 0.055 μM [183] 

25 

  
IC50 = 0.0342 μM [183] 

 

3.2.1.6. Selenium/sulfur as electrophilic warhead: the case of 

ebselen/ebsulfur and analogues  

The possibility of using drugs approved in therapy (well-known substances with proved 

efficacy and safety in humans) in the treatment of COVID-19 allows to reduce the time and 

costs associated with the development of a new molecule.  

Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one, in Figure 48a), a heterocyclic structure 

with a selenium atom that has been studied as an antioxidant/anti-inflammatory agent 

[185,186], was one of the most interesting examples of repurposing of investigational drugs 

against SARS-CoV-2. 

Thank to in silico and in vitro studies, ebselen demonstrated potent antiviral activity (IC50=0.67 

μM against SARS-CoV-2 MPRO) and capability to covalently bind the catalytic Cys145 of SARS-

CoV-2 MPRO [70,187]. 

To further explore the mechanism of covalent inhibition of this compound, a combined 

Docking and Density Functional Theory (DFT) approach was used, demonstrating that ebselen 

is able to form a covalent adduct with Cys145 by the formation of a selenyl sulfide bond [188]. 

In the Figure 48b it is shown the mechanism of action of ebselen: the first step is the activation 

of the thiol group of Cys145 through deprotonation mediated by His41; subsequently, the 

activated thiolate performs the nucleophilic attack on the electrophilic selenium atom, 

determining the opening of the 5-membered ring and the formation of selenyl sulfide bond, 

responsible for the covalent inhibition of the target. The process is mediated by a molecule 

of water that acts as a proton transporter [189]. A mass spectrometry study suggested an 

additional rearrangement of the covalent adduct (Figure 48c), consisting in the hydrolysis of 

the ebselen-SARS-CoV-2 MPRO adduct (28), by a conserved molecule of water, forming an 

intermediate state (adduct 29), with subsequently selenylation of the cysteine and release of 

a secondary phenolic product 30. The proposed mechanism of action was confirmed by the 
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X-ray structure shown in Figure 48d (PDB code: 7BAK), where the selenium atom is covalently 

bonded to the cysteinyl sulfur [190]. 

 
Figure 48. (a) Chemical structure of ebselen; (b) proposed mechanism of action of ebselen with SARS-
CoV-2 MPRO; (c) proposed mechanism for the selenylation of the catalytic site of SARS-CoV-2 MPRO; (d) 
crystal structure of the selenylated cysteine145 in the SARS-CoV-2 MPRO binding site (PDB code: 7BAK) 
[188-190]. 
 

Moreover, ebselen was found to bind an allosteric site, between the I and II domains of MPRO 

(which is essential for the dimerization process) [190,191]. 
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In view of the aforementioned data, ebselen and its analogues could represent promising lead 

compounds for the future development of new and more effective covalent inhibitors. In this 

light, many efforts have been made to analyze the SAR of the substituted N-phenyl ring. 

Indeed, a collection of ebselen-related compounds has been extensively studied. Among 

them, 31 and 32 (4-nitro and 5-chloro-2-fluoro derivatives, respectively; Figure 49), displayed 

inhibitory activity superior to that of ebselen, with IC50 values of 27.95 ± 5.10 nM and 15.24 ± 

4.58 nM, respectively  [192]. According to SAR analysis, the authors demonstrated that the 

insertion of one or two substituents on the phenyl ring can improve inhibition activity against 

SARS-CoV-2 MPRO [192]. 

 

 
Figure 49. Ebselen derivatives 31 and 32 [192]. 

 

Similarly, four ebselen-based compounds (33-36, see Table 13) exhibited greater 

effectiveness than ebselen both against MPRO (IC50 in the sub-micromolar range) as well as in 

the viral cell model of SARS-CoV-2 replication  [190].  

 

Table 13. Chemical structures, SARS-CoV-2 MPRO inhibitory activity and inhibition of viral replication 
data of ebselen derivatives 33-36 [190]. 

Compound 

SARS-CoV 2 

MPRO inhibition 

(IC50) 

Viral replication 

in Vero E6 cells 

(EC50) 

 
Ebselen 

0.670 μΜ 4.67 μΜ 
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33 

0.363 μΜ 4.50 μΜ 

 
34 

0.345 μΜ 3.74 μΜ 

 
35 

0.467 μΜ 3.17 μΜ 

 
36 

0.824 μΜ 1.78 μΜ 

 

Compounds 37-41 (Figure 50) exhibited sub-micromolar IC50 values against SARS-COV-2 MPRO 

(in the range 0.38-2.77 μM), suggesting that the substitution is favorable in meta position. As 

for derivative 40, the most potent compound, the presence of a cyano group in meta improve 

the interaction network with additional favorable hydrogen bond. Nevertheless, biological 

assays conducted in an in vitro cellular model of SARS-CoV-2 replication (Vero E6 infected 

cells), showed that, compound 41, which was the least active in the enzymatic inhibition 

assay, was surprisingly the most effective in blocking viral progression (EC50 = 0.8 μM). For this 

reason it was selected for further studies in lung organoids, which confirmed the lack of 

toxicity and its ability to block viral replication [193]. 
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Figure 50.  Chemical structures of phenyl substituted ebselen derivatives 37-41 [193]. 

 

From a different point of view, the isosteric analogue of ebselen, ebsulfur (the selenium atom 

is replaced by a sulphur atom; Figure 51) has been investigated. Docking studies have shown 

that ebsulfur, in the same way as ebselen, can form an S-S covalent bond with the cysteinyl -

SH of the SARS-CoV-2 MPRO. From this assumption, they designed and biologically evaluated 

different ebselen/ebsulfur analogues as SARS-CoV-2 MPRO inhibitors, and, among all, 42 and 

43 were the most interesting, with IC50 values of 0.074 and 0.11 μM, respectively (Figure 51). 

Docking studies proved that the furan group is essential to form additional hydrophobic 

interactions with Met165, Arg188, Asp187, and Met49. From this study it emerged that ebsulfur, 

as well as ebselen, could be a potential lead compound for the development of novel, broad 

spectrum anti coronaviral drugs [194]. 
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Figure 51. Chemical structures of ebsulfur and ebselen/ebsulfur analogues 42 and 43 [194]. 

 

More recently, the structure-activity relationship of ebsulfur focused on three components: 

the phenyl ring, the linker and the benzoisothiazolone core. Compound 44 (Figure 52) as the 

best covalent inhibitor of SARS-CoV-2 MPRO. The phenyl and the benzo-isothiazolone rings 

were retained in view of their importance in the interaction with the target protein; instead, 

the introduction of an acetamide group in the linker had a positive effect on the activity, which 

was confirmed by the remarkable IC50 value of 116 nM against SARS-CoV-2 MPRO  [195].  

 

 
Figure 52. Chemical structure of ebsulfur analogue 44 [195]. 

 
3.2.1.7. Electrophilic Warheads Reactivity 

Binding affinity between the inhibitor and enzyme is crucial for understanding the formation 

of the enzyme-inhibitor covalent complex. Assessing the binding characteristics of a 
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compound is essential for predicting and evaluating potential drug interactions. Moreover, 

an important factor to consider when developing a therapeutic protease inhibitor is the 

reversibility of compound binding. Irreversible protease inhibitors can produce long-lasting 

effects by permanently blocking proteases and covalently modifying proteins, which can be 

beneficial in therapeutic contexts. This understanding aids in the design of effective inhibitors 

that can selectively target proteases involved in viral replication. 

a-ketoamide and carbonyl groups can act either reversible or irreversible derivatives. For 

example, enzymatic kinetic studies have shown that compounds UAWJ246 and UAWJ247 

bind to MPRO reversibly, with inhibition constant ki values of 0.036 ± 0.007 μM and 0.035 ± 

0.008 μM, respectively. In contrast, compounds UAWJ248 and GC-376 exhibit an initial 

reversible binding following by irreversible inactivation, with Kinact/Ki values of 9.04 x 104 M-

1s-1 and 2.84 x 104 M-1s-1, respectively, suggesting greater potency for UAWJ248 [133]. 

Michael acceptor derivatives are recognized as irreversible SARS-CoV-2 MPRO inhibitors. 

Kinetics characterization of compounds N3 and myricetin demonstrated an irreversible two-

step inhibition of the enzyme [13,70,157,164]. On the other hand, indole core esters serve as 

irreversible inhibitors of MPRO, with compounds GRL-1720 and GRL-0820 showing ki values of 

2.15 μM and 0.073 μM, respectively, exhibiting strong MPRO inhibitory activity. Their second-

order rate constants of inactivation demonstrated a time-dependent inhibition, indicating 

that these compounds act through acylation of the active-site cysteine [147,183,196].  

Finally, ebselen and ebsulfur derivatives exhibited a concentration- and time-dependent 

inhibition pattern against MPRO, with a biphasic character, indicating the rate of inactivation 

follows pseudo-first-order rate kinetics, which implied that irreversibly covalent inhibition 

[194].  

Following the thorough analysis of the findings presented here, it has become increasingly 

clear that both non-peptidomimetic and peptidomimetic compounds play a crucial role in 

enhancing therapeutic properties through their unique chemical characteristics. Building 

upon this understanding, my research focused on the computational identification and 

synthesis of compounds possessing a highly reactive electrophilic warhead. 

Specifically, in this stage of my research, I focused my attention on the evaluation of various 

ester compounds as non-peptidomimetic inhibitors, alongside aldehyde compounds as 

peptidomimetic inhibitors. 
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3.2.2. Covalent inhibition strategy through non-peptidomimetic inhibitors: 

Synthesis and in vitro exploration 

Ester-based covalent inhibitors hold significant promise as starting points for Fragment-Based 

Drug Discovery (FBDD). FBDD focuses on identifying small, simple molecular fragments that, 

despite their low molecular weight and initial affinity, can specifically bind to biological 

targets. Once such a fragment is identified, it can be optimized using techniques like fragment 

growth or linking to create compounds with improved affinity and specificity [197-199]. The 

initial small size of ester-based inhibitors makes them particularly suitable as starting 

fragments in FBDD, facilitating the exploration of diverse chemical spaces and the 

development of potent antiviral agents against challenging targets like SARS-CoV-2 MPRO [200]. 

In this section, we synthesized a series of 6-chloropyridinyl ester compounds, specifically 

designed as ester-based covalent inhibitors targeting the SARS-CoV-2 MPRO. These inhibitors 

exploit the electrophilic nature of the 6-chloropyridinyl ester warhead to form a covalent 

bond with the catalytic cysteine residue (Cys145) within the active site of MPRO. This covalent 

interaction is crucial for the irreversible enzyme inhibition, which is essential for halting viral 

replication. Enzymatic inhibition assays confirmed the ability of these synthesized compounds 

to effectively interact with SARS-CoV-2 MPRO. Although these 6-chloropyridinyl esters have 

demonstrated promising inhibitory potency, they also offer a valuable starting point for 

further optimization through FBDD. 

 

3.2.2.1. Database design and synthesis 

The set of 6-chloropyridinyl ester fragments 45a-m was synthetized following the two one-

pot procedures reported in Scheme 1. In detail, following Method A, the activated ester 

moiety was readily afforded through the condensation between 2-chloro-6-hydroxypyridine 

46 and variously substituted commercial benzoyl chlorides 47, which provide a highly reactive 

fragment even towards the mild nucleophilic phenol group of 48. The use of pyridine as basic 

catalyst and of anhydrous DCM as solvent provided ideal esterification conditions, allowing 

to afford the title products in a relatively short reaction time and at RT. 

According to the second procedure (Method B in Scheme 1), the combination of carboxyl 

activating/dehydrating reagent dicyclohexylcarbodiimide (DCC) and of 4-

dimethylaminopyridine (DMAP, basic catalyst) provided a useful method for in situ activation 
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of variously commercial benzoic acids for reaction with the 2-chloro-6-hydroxypyridine 46. 

The use of strictly anhydrous conditions and of a nitrogen atmosphere were required to afford 

the desired products at RT.  

For both methods, the resulting esters were purified by silica gel chromatography using a 

mixture 10:1 petroleum ether/EtOAc in gradient as eluant, providing sufficiently air/moisture-

stable ester derivatives in good to excellent yields (70-95%). 

    

  
Scheme 1. Synthesis of 6-chloropyridinyl ester derivatives 45a-m. Reagents and conditions: (i): 2-
Chloro-6-Hydroxy-pyridine (1 eq.), appropriate benzoyl chloride (1.2 eq.), pyridine (1.2 eq.), anhydrous 
DCM, rt 12-24h; (ii): 2-Chloro-6-Hydroxy-pyridine (2 eq.), appropriate carboxylic acid (2 eq.), DCC (3 
eq.), DMAP (1 eq.), N2, anhydrous DCM, rt 12-24 h. 
 

3.2.2.2. ADME properties 

In drug discovery, the preliminary estimation of ADME (Absorption, Distribution, Metabolism, 

and Excretion) and drug-likeness parameters using in silico techniques is an invaluable aid to 

save both time and resources, increase the success rate, and consequently reduce the risks 

of failure in the preclinical and clinical phases [201].  

To gain insight into the drug-likeness of our compounds, we decided to use the SwissADME 

tool (http://www.swissadme.ch) [111], considering a set of well consolidated parameters for 

searching bioactive compounds, such as PAINS filters [112], Lipinski’s rules [113], Veber [114], 

and Egan filters [115]. The analysis of the data highlighted that the ester derivatives, as small 

molecules with low molecular weight (<350), met the expectations in terms of bioactivity. 

Indeed, all compounds have no violations and PAINS. 

In addition, a bioavailability radar plot was created for each compound, allowing a rapid and 

graphical appraisal of drug-likeness, Figure 53. The hexagonal graph shows six axes 
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representing six important properties for oral bioavailability: lipophilicity, size, polarity, 

solubility, fraction of saturated bonds, and flexibility. The range of optimal values for each 

parameter defines the pink area in the plot, and the radar plot for a molecule should fall 

almost entirely within this colored area (for further details about the parameters considered, 

see reference [111]). Except for the parameters fraction of saturated bonds and flexibility, 

which are lower than the standard data, the values of the lipophilicity, size, polarity, solubility 

parameters are in the optimal range, Figure 53.  See Supplementary Material S1, Matrix S2 

for the complete output matrix from SwissADME.  

 

 
Figure 53. Bioavailability radar plot produced using the SwissADME tool calculations for compounds 
45a-m. 
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All compounds were predicted to be highly or completely absorbed in the gastrointestinal 

tract through a passive mechanism. Furthermore, esters exihibited an optimal balance 

between lipophilicity and hydrophilicity. Derivatives 45a-m do not appear to be substrates of 

P-gp, one of the best characterized efflux pumps that frequently contributes to suboptimal 

bioavailability and drug resistance in cancer cells (active efflux mechanisms). LogP, water 

solubility, and P-gp parameters are listed in the Supplementary Material S1, Matrix S2. 

 

3.2.2.3. Enzyme inhibition assay of SARS-CoV-2 MPRO 

The activity of MPRO was assessed using the SensoLyte 520 SARS-CoV-2 3CLPRO Activity Assay 

Kit. Compounds were serially diluted from 5000 µM to 1 µM and tested for their ability to 

inhibit the protease activity. The assay results revealed that compound 45g exhibited the 

lowest IC50 value of 30 ± 6.6 µM, indicating a significant inhibitory effect and positioning it as 

a promising candidate for further development as an antiviral agent. Conversely, the IC50 

values for compounds 45c, 45d, 45e, 45h, and 45j could not be calculated, as these 

compounds demonstrated minimal inhibition, with percentages close to zero even at the 

highest tested concentration of 500 µM. This suggests that these compounds may lack 

sufficient affinity for the 3CLPRO target or may require structural optimization to enhance their 

inhibitory efficacy. The identification of 45g as a potent inhibitor underscores the potential of 

targeting the MPRO enzyme in the development of novel therapeutic strategies against COVID-

19. The results, including all IC50 values, are detailed in Table 14, highlighting the need for 

continued research into the structure-activity relationships of these compounds to refine 

their pharmacological properties and enhance their effectiveness in viral inhibition. 

 
Table 14. IC50 Values of Compounds Tested for Inhibition of SARS-CoV-2 MPRO. 

Compound IC50 (µM) 

45a 195,8±65 

45b >500 

45c >500 

45d >500 

45e >500 

45f 115,9±40 

45g 30±6,6 
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45h >500 

45i 73,4±20 

45j >500 

45k >500 

45l >500 

45m >500 

 
 

3.2.2.4. Future Perspectives 

The synthesized compounds, particularly the most promising candidate, 45g, will undergo 

comprehensive further analysis. This process will begin with an assessment of their ability to 

form covalent bonds, starting with glutathione, a key biomolecule involved in cellular redox 

balance and detoxification. This initial evaluation aims both the reactivity of the compounds 

and their capacity to engage in covalent interactions, which is essential for their potential as 

irreversible inhibitors. Following this, we will investigate the compounds capacity to form a 

covalent adduct directly with a cysteine residue, mimicking the catalytic Cys145 of SARS-CoV-

2 MPRO. This step is critical, as it will provide insight into the selectivity and stability of the 

covalent bond, which directly influences the effectiveness of the inhibitors. Confirming these 

interactions will establish a solid foundation for the compound’s development as therapeutic 

agents. Once the covalent interactions are validated, the compounds will proceed to a 

rigorous Lead Optimization process, leveraging their profiles as starting fragments for FBDD. 

This stage will involve detailed in silico evaluations, including molecular docking studies to 

predict binding affinities and orientations, such as IFD to account for conformational changes 

upon binding, and Covalent Docking (CovDock) to specifically model the formation of covalent 

adducts.  Additionally, Molecular Dynamics Simulations will be utilized to assess the stability 

of the inhibitor-enzyme complexes over time, allowing for a deeper understanding of the 

dynamic behavior of the compounds within the active site of MPRO. Ultimately, these efforts 

aim to advance the development of novel therapeutics capable of effectively combating SARS-

CoV-2 and other related viral infections.  
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3.2.3. Covalent inhibition strategy through peptidomimetic inhibitors: 

Computational Studies 

In response to the growing interest in more potent and effective covalent inhibitors, this step 

of my research project proposes a rational design of peptidomimetic compounds, with 

aldehydic warhead, as promising SARS-CoV-2 MPRO covalent inhibitors. 

Our approach involved a systematic workflow, as shown in Figure 54, structured in key phases 

to identify potential inhibitors. Initially, we identified the most recurrent and crucial 

fragments for each portion of the inhibitor (P1, P2, P3), as outlined in section 3.2.1 [76]. Using 

a combinatorial approach (CombiGlide) integrated into the Maestro software suite, we 

constructed a database of 450 molecules, each designed with an aldehydic warhead at the 

P1' position to facilitate potential covalent interaction with the active site cysteine of MPRO. 

Subsequently, IFD studies were performed on these molecules within the MPRO binding site. 

Out of the 450 molecules, 388 were successfully docked, while 62 were excluded due to size 

incompatibility with the binding site. For the docked structures and a reference set of known 

MPRO inhibitors with established IC50 values, we used DRUDIT and MOLDESTO to calculate 

molecular descriptors. Based on these descriptors, we developed a PCA model, which 

produced a 2D plot where inhibitors with IC50 values below 0.1 μM and those above 0.1 μM 

formed two distinct clusters. We then analyzed the distribution of the 388 molecules within 

the PCA plot to assess their positioning relative to the two clusters, providing insights into 

their potential inhibitory efficacy. 

Based on their favorable positioning in the PCA plot and alignment with the identified 

structural requirements, we selected 14 molecules for detailed CovDock studies. 
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Figure 54. Virtual Screening workflow, including database building, and the three key steps (IFD, PCA, 
and CovDock), for the identification of potential peptidomimetic covalent inhibitors with aldehydic 
warhead. 
 

Through this structured and methodical approach, we successfully identified promising new 

covalent peptidomimetic inhibitors featuring aldehydic warheads that demonstrate strong 

potential as SARS-CoV-2 MPRO inhibitors. These findings represent a significant contribution to 

the ongoing global effort in antiviral drug development and offer a robust framework for the 

future design of selective covalent inhibitors. 

 

3.2.3.1. In silico design of a new database of small molecules using 

CombiGlide® Schrödinger 

The initial phase of the research project focused on constructing a comprehensive database 

of peptidomimetic structures, each containing a reactive electrophilic aldehyde warhead. This 

was accomplished using CombiGlide®, a tool within the Maestro software suite. The database 

construction process consisted of three sequential steps: designing a retrosynthetic scheme, 

preparing the reagents, and constructing the combinatorial library. 

To efficiently plan the computational synthesis of aldehyde-based peptidomimetic derivatives 

49, a well-structured retrosynthetic scheme was developed. As outlined in Scheme 2, the 

synthesis of these derivatives follows a pathway designed solely for computational purposes; 
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therefore, specific reaction conditions and experimental details are not included in this 

analysis. The computational scheme is developed to virtually generate the molecular files 

corresponding to derivatives 49. Initially, the target molecules are formed via a nucleophilic 

acyl substitution reaction between synthons 50 and 51, establishing the crucial acyl linkage 

that characterizes the peptidomimetic structure. Prior to this, synthon 51 is synthesized 

through a peptide coupling reaction between synthons 52 and 53, assembling the necessary 

peptidic backbone. This retrosynthetic strategy ensures a systematic and coherent approach 

to the construction of the desired peptidomimetic derivatives, integrating all essential 

structural features to achieve the targeted biological activity. 

 

 
 

Scheme 2. Retrosynthetic scheme of aldehyde-based peptidomimetic derivatives 49. The electrophilic 
warhead in P1' is shown in green, while the P1−P3 fragments are depicted in red, purple, and blue, 
respectively. 
 

Following the retrosynthetic analysis, the second step involves the utilization of the Reagent 

Preparation Panel (Figure 55). This crucial step ensures that the input files for the synthons 

(or reagents) are adequately prepared for use in the subsequent combinatorial library 

enumeration process. The Reagent Preparation Panel is designed to convert 2D molecular 

structures into optimized 3D structures, embedding all necessary information required to 

construct molecules for virtual screening. 

The preparation begins with the conversion of 2D chemical structures into their 

corresponding 3D forms, performed by the Ligand Preparation task (LigPrep), which not only 

generates 3D conformers but also performs energy minimization to ensure that the structures 
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are in a low-energy, physically realistic state. This step is vital as it reduces the likelihood of 

artifacts in the modeling process and ensures that the reagents are ready for subsequent 

computational operations.  

The main task of the Reagent Preparation Panel is the selection of specific reagent types 

based on functional groups. For each reagent, the panel identifies the functional group within 

the molecule and pinpoints the specific bond that will be replaced or modified when the 

reagent is added to the core structure during the library enumeration process. This targeted 

approach ensures that the chemical transformations modeled in silico are both realistic and 

aligned with the intended synthetic strategy. 

 

 
Figure 55. Reagent Preparation Panel (Maestro Schrödinger). 

 

The output of the Reagent Preparation Panel consists of prepared reagent files, ready for 

integration into the combinatorial library. These files contain 3D structures of the reagents, 

along with information about the reactive sites. Notably, the process may yield multiple 

output structures for a single input reagent, reflecting the different energetically favorable 

conformations that the molecule can adopt. This conformational diversity is crucial for 
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exploring a wide chemical space during virtual screening, as different conformers might 

interact differently with potential target sites.  

This preparation process must be repeated for each type of reagent intended for use in the 

combinatorial library enumeration. By carefully preparing each reagent, the method ensures 

that all components of the combinatorial library are structurally sound and ready for 

subsequent steps in the computational database design workflow, ultimately enhancing the 

reliability and success of the virtual screening efforts. 

Table 15 lists all the building blocks used in the combinatorial process. Specifically, three types 

of reagents were prepared: amino acids 54a-m for including P1 and P2 fragments, acyl 

chlorides 55a-j, and carbonyl chlorides 56a-e. 

 

Table 15. List of building blocks used in the combinatorial synthesis process. This includes amino acids 
(54a-m) used for P1 and P2 fragments, acyl chlorides (55a-j), and carbonyl chlorides (56a-e) employed 
for P3 fragments. 

P1 P2 P3 P3 
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56a 

 
54b  

54e 

 
55b  

56b 

 
54c 

 
54f 

 
55c 

 
56c 

 

 
54g 

 
55d  

56d 

H2N

O

OH

NH
O

H2N

O

OH

Cl

O

N
H

ClO

O

H2N

O

OH

H
NO

H2N

O

OH

F

O

O

Cl

O

ClO

O

F

H2N

O

OH

N
H

NH
O

O
H2N

O

OH

Cl

O

F

F

ClO

O

Cl

H2N

O

OH

O
Cl

O

Cl Cl

Cl

O

O



93 
 

 

 
54h 

 
55e 

 
56e 

 
 

54i 
 

55f 

 

 

 
54j 

 
55g 

 

 

 
54k 

 
55h 

 

 

 
54l 

 
55i 

 

 

54m 
 

55j 

 

 

Additionally, a core structure was prepared as an example molecule for the combinatorial 

process. 

Once all the reagents were prepared, the third and final step in the library design was carried 

out using the Combinatorial Library Enumeration Panel to construct a library of compounds 

for subsequent virtual screening. This panel provides tools to develop a ligand library starting 

from a core structure to which molecular fragments are added at user-specified positions 

called “attachments”. Specifically, combinatorial library enumeration is performed by 

substituting fragments in the attachments of the core structure with building blocks from the 
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reagent structures. Both the core and the reagents must have designated bonds to break 

(example in Figure 56). Reagent fragments are then attached to the core at the site of the 

broken bond in a process referred to as "growing" and the bond being replaced is known as 

the "grow bond". These bonds are not necessarily the bonds broken and formed in the actual 

chemical reaction but serve to vary the substituents on a central structure. 

 
Figure 56. Example of structure central core with the definition of the 3 attachments required for the 
process. The electrophilic warhead presents in P1ʹ is represented in green, while the fragments P1−P3 
are shown in red, purple, and blue, respectively. 
 

At the end of this process, we obtained a database of 450 molecules with an aldehyde 

warhead for virtual screening. Supplementary Material S1, Tables S3 and S4 provide the 

SMILES representations for the fragments and the final obtained compounds. 

 

3.2.3.2. Induced Fit Docking studies 

Following the construction of a database comprising 450 peptidomimetic small molecules 

with an aldehyde warhead, IFD studies were conducted as the first step of virtual screening 

to assess their potential compatibility with the active site of the SARS-CoV-2 MPRO. 

To perform this analysis, the crystallographic structure of the SARS-CoV-2 MPRO with PDB code 

7VH8 [116] was selected. This X-ray structure was chosen for its high resolution and its co-

crystallized inhibitor with a peptidomimetic core (nirmatrelvir, see Figure 13), making it 

particularly relevant for the evaluation of similar compounds.  



95 
 

The IFD studies led to the selection of 388 molecules from the initial 450, all of which exhibited 

IFD scores superior to that of the co-crystallized ligand. Supplementary Material S1, Table S5 

shows IFD and docking scores for the selected 388 small molecules and nirmatrelvir. 

The excluded 62 molecules were not docked by Maestro, because of structural incompatibility 

with the binding site of SARS-CoV-2 MPRO. These molecules, likely due to their larger size or 

more rigid structural features, could not be successfully docked, suggesting that their steric 

or conformational properties rendered them unsuitable for fitting within the active site of 

MPRO. This structural incompatibility highlights the importance of molecular size, shape, and 

flexibility when evaluating compounds for binding potential within a given target site. 

Consequently, these 62 molecules were excluded from further analysis, allowing the focus to 

shift to the remaining 388 compounds that exhibited favorable docking results and superior 

IFD scores compared to the co-crystallized ligand, nirmatrelvir. 

 

3.2.3.3. DRUDIT and Principal Component Analysis  

To further evaluate the 388 molecules selected through IFD, PCA was performed. This analysis 

involved calculating a set of molecular descriptors for a group of covalent inhibitors, which 

were previously identified through literature research and for which enzymatic inhibition 

assays against SARS-CoV-2 MPRO had been conducted. Specifically, the calculation of 

molecular descriptors was performed using MOLDESTO, from DRUDIT (see section 3.1.1.1.) 

[108]. Supplementary Material S1, Table S6 shows SMILES and IC50 for structures utilized for 

the PCA model building.  

The application of PCA to the structure versus Molecular Descriptors matrix (Supplementary 

Material S1, Matrix S3) revealed a total variance of 64.5% explained by the first two principal 

components. The 2D plot (PC1 vs. PC2, Figure 57) highlighted the clustering of the compounds 

based on their IC50 values. Specifically, all molecules with an IC50 < 0.1 µM are represented in 

green, while all molecules with an IC50 > 0.1 µM are represented in red.  
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Figure 57. Principal Component Analysis (PC1 versus PC2) applied to the molecular descriptors matrix 
of the selected known SARS-CoV-2 MPRO inhibitors. 
 

With the PCA model established, we then assessed the position of each of the 388 molecules 

in the plot relative to the red or green clusters. This evaluation involved determining whether 

each molecule fell into the cluster associated with IC50 < 0.1 µM (green) or the cluster with 

IC50 > 0.1 µM (red). By analyzing these distributions, we aimed to understand how the 

molecular descriptors influenced the molecules inhibitory activity against SARS-CoV-2 MPRO. 

In details, the selected small molecules were treated as described in the multi-step process 

below. 

1. Calculation of Molecular Descriptors: for each of the 388 molecules, we recalculated 

the same set of molecular descriptors that were used to build the PCA model matrix 

(Supplementary Material S1, Matrix S4). This ensured that each molecule was 

represented consistently in terms of its chemical properties as well as molecules in 

the known inhibitors set; 

2. Centroid Calculation: the centroids, or the central points, of the two clusters identified 

in the PCA plot (corresponding to the IC50 < 0.1 µM and IC50 > 0.1 µM groups) were 

calculated (Supplementary Material S1, Table S7). These centroids serve as reference 

points to evaluate the proximity of each molecule to the clusters; 
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3. Distance Calculation: for each molecule, we computed the distances from its position 

in the PCA plot to both centroids (Supplementary Material S1, Table S8).  This allowed 

us to quantify how close each molecule was to the centers of the respective clusters; 

4. Distance Ratio: the ratio between the distance from each molecule to the green 

centroid and the distance to the red centroid was computed (Supplementary Material 

S1, Table S9).  This ratio provides insight into the relative proximity of each molecule 

to the two clusters: a smaller ratio indicates that the molecule is closer to the green 

cluster and farther from the red cluster; 

5. Cutoff Value: a cutoff value of 0.3 was established for the ratio. Molecules with a ratio 

less than 0.3 are considered to be closer to the green cluster, indicating they are more 

similar to the high-potency inhibitors (IC50 < 0.1 µM) and relatively farther from the 

lower-potency inhibitors (IC50 > 0.1 µM). 

By following these steps, we were able to systematically evaluate the distribution of each 

molecule in relation to the defined clusters and assess their potential classification based on 

their molecular descriptors and PCA positioning. This analysis enabled us to select 14 

molecules (derivatives 57-70 in Figure 58) for subsequent Covalent Docking studies. 
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Figure 58. 2D chemical structures of compounds 57-70, screened through multivariate statistical 
analysis. 
 

3.1.3.4. Covalent Docking Studies 

Computational insights into covalent docking are becoming increasingly crucial in addressing 

the challenges of selectivity and potency in covalent inhibitors. These inhibitors function 

through a dual mechanism: covalent bond formation between the ligand and the target 

protein, as well as stabilizing non-covalent interactions within the binding pocket. The 

CovDock protocol aids in identifying optimal covalent complexes using the well-validated 

Prime energy model, and calculates an apparent affinity score, which incorporates key 

elements of an effective covalent docking process. 

For successful covalent docking, two critical conditions must be met: the pre-reactive form of 

the ligand must reside in the binding pocket long enough to facilitate the reaction between 

the ligand warhead and the protein reactive residue, and the docking process must avoid 

unfavorable steric clashes and poor electrostatic interactions as the reaction progresses. 

The CovDock protocol initiates by employing Glide docking on a receptor, temporarily 

replacing the reactive residue with alanine. Following this, the reactive residue is reinstated 
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and sampled to form a covalent bond with the ligand, generating multiple binding poses. 

These covalent complexes are then minimized using the Prime energy model, selecting the 

top-scoring complexes. Furthermore, an apparent affinity score, derived from the Glide 

scores of both pre-reactive and post-reactive ligand conformations, is computed to estimate 

binding energies, providing an effective tool for virtual screening to assess potential inhibitors 

[202,203]. 

Compounds 57-70 were submitted to CovDock analysis to evaluate their capacity to 

covalently bind to the reactive Cys145 within the SARS-CoV-2 MPRO binding site. With this aim, 

we choose a protein with GC-373, see Figure 23, as co-crystalized compound (PDB code 6WTK 

[126]). In addition to generating the grid, the reaction type was specified by selecting the 

"Nucleophilic Addition to a Double Bond" option. Furthermore, the covalent bond between 

GC-373 and Cys145 was broken to restore the thiol group (SH) of the cysteine residue, allowing 

the system to simulate the unbound reactive state of Cys145 before evaluating the binding 

potential of the tested compounds. 

Figure 59a illustrates the covalent MPRO/GC-373 complex, while Figure 59b displays the 

broken covalent bond between Cys145 and GC-373, highlighting the restoration of the 

cysteinyl -SH group. 

 

 
Figure 59. (a) Representation of the covalent complex between SARS-CoV-2 MPRO and GC-373, 
highlighting the covalent bond between the Cys145 residue and the ligand; (b) cleavage of the covalent 
bond between Cys145 and GC-373, with the restoration of the thiol group (-SH) of the cysteine residue, 
simulating the unbound reactive state of Cys145.  
 

It is important to note that compounds 66 and 70 were excluded during the CovDock 

calculations performed by Maestro. This exclusion could be attributed to various factors, such 

as the inability of these compounds to adopt a suitable geometry for covalent bond formation 

with Cys145, or the failure to establish stable non-covalent interactions within the binding 
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pocket. Additionally, steric clashes or unfavorable electrostatic interactions might have 

contributed to the software decision to reject these compounds as potential covalent binders. 

Meanwhile, the docking scores and CovDock affinity values revealed that compound 59 

exhibited the highest affinity (-9.609) and the lowest docking score (-10.213), indicating 

strong potential for covalent binding. Other compounds, such as 62 (-9.431), 61 (-9.230), and 

64 (-8.858) also demonstrated notable affinity. In contrast, the reference compound GC-373 

showed a significantly lower affinity (-6.916) and a docking score of -6.335, suggesting that 

several of the identified compounds may outperform GC-373 in binding to the target site. 

These results provide valuable insights into the potential of compounds 57-65 and 67-69 as 

effective covalent inhibitors. Docking score and CovDock affinity values for compounds 57-65 

and 67-69 and the reference GC-373 are shown in Table 16.  

 

Table 16. CovDock affinity and docking score values for compounds 57-65, 67-69, and GC-373. 

Compound CovDock Affinity Docking Score 

59 -9.609 -10.213 

62 -9.431 -9.531 

61 -9.230 -8.970 

64 -8.858 -9.746 

60 -8.849 -9.770 

58 -8.608 -9.566 

57 -8.520 -9.333 

69 -8.454 -8.727 

68 -8.156 -8.016 

67 -7.933 -7.905 

GC-373 -6.916 -6.335 

65 -6.211 -6.879 
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63 -6.167 -6.892 

 

The analysis of 2D ligand interactions for derivatives 59, 61, 62, and 64, Figure 60, revealed 

important details about their binding properties and interaction patterns with the SARS-CoV-

2 MPRO. 

Once the covalent bond between the aldehydic warhead and the Cys145 in the S1’ pocket was 

established, the positioning of the P1, P2, and P3 moieties was examined. 

The hydantoin moiety, which is recurrent in P1 of the top-ranking compounds, is capable of 

stabilizing hydrogen bonds with several amino acids in the S1 pocket, including Phe140, His163, 

His164, Glu166, His172. Specifically, two crucial interactions were noted: the carboxylic backbone 

group of Phe140 forms a hydrogen bond with the NH group of the hydantoin moiety (Phe140-

C=O---H-N-hydantoin), and the imidazole NH group of His163 interacts with the Oxygen atom 

of the hydantoin moiety (His163-N-H---O=C-hydantoin). These interactions suggest that the 

hydantoin moiety could mimic the Gln residue of natural substrates, providing a potential 

alternative to the extensively studied γ-lactam ring. 

In the S2 pocket, which is mainly composed of hydrophobic amino acids such as Met49, Tyr54, 

Met165, Leu167, Pro168, Val186, Asp187, Arg188, there is considerable flexibility allowing for the 

binding of both small and bulky aromatic/alkyl groups. In compounds 59, 61, 62, and 64, 

cyclopropyl, isoleucine, and phenyl moieties are well-stabilized in the S2 subregion through 

hydrophobic interactions. 

For interactions with the S3 subregion, compounds 61, 62, and 64 feature aromatic moieties 

in P3, while 59 a morpholine group, that interact with amino acids like Gln189, Leu167, Pro168, 

Gly251, and Asp187. Overall, the identified compounds exhibit about 5 to 7 interactions with 

key residues in the binding pockets, in contrast to the reference compound GC-373, which 

shows only 2 interactions involving Glu166 and Gly143. This suggests that the new derivatives 

have a more extensive interaction profile, which may contribute to their enhanced binding 

efficacy. 
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Figure 60. 2D ligand interaction maps for compounds 64, 66, 67, 69, and the reference GC-373. 

 

The same trend is observed for compounds 57, 58, and 65, as shown in the 2D ligand 

interaction maps reported in Figure S1 of the Supplementary Material, while compounds 63, 
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65, 67-69 demonstrated a lower number of interactions within the SARS-CoV-2 MPRO binding 

site. 

Moreover, the analysis of the 3D binding poses for derivatives 57-62, and 64, as illustrated in 

Figure 61, reveals a significant overlap among the poses. This overlap indicates a redundancy 

in the positioning of the key elements of these small molecules within the four sub-pockets 

of the binding site. The consistent positioning of these elements results in the formation of 

multiple interactions across the sub-pockets, suggesting a potentially similar binding 

mechanism or interaction pattern among these derivatives. 

 

 
Figure 61. 3D overlaps of compounds 57-62, and 64 at the SARS-CoV-2 MPRO binding site. 
 

Through a powerful blend of ligand- and structure-based approaches, supported by rigorous 

statistical analysis, this protocol has successfully identified new covalent peptidomimetic 

inhibitors with aldehydic warheads, demonstrating significant potential as SARS-CoV-2 MPRO 

inhibitors.  
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4. Conclusions and Future Perspectives: Computational Approaches in 

SARS-CoV-2 MPRO Inhibitors Discovery 

In silico simulations of complex systems are becoming increasingly popular in drug 

development and clinical research. Computational models and simulations offer significant 

advantages over traditional human-based clinical trials in both operational efficacy and 

therapeutic outcomes. They provide tools for qualitatively and quantitatively evaluating 

various treatments for specific diseases, leading to more practical and economical 

experiments. In the search for effective COVID-19 treatments, computational approaches 

have become essential in discovering and developing SARS-CoV-2 MPRO inhibitors. These in 

silico techniques allow researchers to model and predict interactions between potential 

inhibitors and the MPRO enzyme, facilitating the identification of promising drug candidates 

and optimizing their efficacy and selectivity. By employing various computational 

methodologies, scientists can accelerate the drug discovery process, reduce experimental 

costs, and enhance the precision of target identification and lead optimization.  

Based on these premises, this PhD Thesis is aimed at developing and proposing new in silico 

protocols for the identification of diverse anti-SARS-CoV-2 agents targeted to MPRO. To this 

end, three different inhibition strategies were explored: non-covalent inhibition, covalent 

inhibition through non peptidomimetic inhibitors, and covalent inhibition through 

peptidomimetic inhibitors. 

• Non-covalent inhibition strategy: this strategy focused on the design and identification 

of inhibitors capable of binding the catalytic site and/or allosteric sites of MPRO. In my 

research project, we identified a set of ethyl 3-benzoylamino-5-[(1H-imidazol-4-yl-

methyl)-amino]-benzo[b]thiophene-2-carboxylates 2 and ethyl 3-benzoylamino-5-

[(1H-imidazol-4-yl-methyl)-amino]-benzo[b]furan-2-carboxylates 3 as potential SARS-

CoV-2 MPRO inhibitors, through a hierarchical and hybrid virtual screening. In details, 

the BPT, available in DRUDIT allows to filter a large in-house structure database, 

identifying the set of small molecules with high affinity against the SARS-CoV-2 MPRO 

catalytic binding site. ADME properties of the selected compounds were investigated 

through the SwissADME tool and IFD studies were performed on the catalytic site to 

confirm DRUDIT prediction. Moreover, aiming at evaluating the possibility of a dual 

binding mechanism of action, the identified hits were further investigated by means 
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of PCA, and IFD into the dimerization site. Compounds 2i-l also exhibited promising 

IC50 when in vitro evaluated as inhibitors of the catalytic site, among them 2i (IC50 

values of 70.4) and 2l (IC50 values of 45.9) are promising lead compounds for further 

development as antiviral agents with a dual binding activity.   

• Covalent inhibition strategy through non-peptidomimetic inhibitors: in this approach, 

we focused on the rational design and synthesis of compound with non 

peptidomimetic scaffold, capable of covalently blocking the catalytic cysteine residue 

(Cys145) of MPRO, thus permanently inactivating the enzyme. In details we synthetized 

compounds 45a-m and identified derivative 45g as the most promising of the series, 

with IC50 value of 30 ± 6.6 µM. These esters offer the advantage of long-lasting 

inhibition, becoming a potent strategy for disrupting viral replication. 

Future analysis, such as covalent adducts formation and Lead Optimization process, 

will be performed, especially starting from compound 45g.  

• Covalent inhibition strategy through peptidomimetic inhibitors: peptidomimetic 

inhibitors are developed to closely mimic the structure of the natural viral 

polyproteins that are substrates of MPRO, ensuring highly specific interactions. Utilizing 

the advanced CombiGlide Tool within the Maestro suite, a highly focused 

combinatorial library of 450 rationally designed peptidomimetic compounds with 

aldehydic warheads was generated. IFD studies targeted at the catalytic site of MPRO 

enabled the first refinement, narrowing the field to 388 compounds for subsequent 

multivariate statistical analysis. Of these, 14 standout compounds, identified through 

PCA, were meticulously evaluated using CovDock studies to assess their covalent 

binding capabilities. The results, especially for compounds 57-62, and 64, reveal 

significantly higher affinity compared to known inhibitors, affirming the validity of the 

adopted design strategy. The crucial interactions between the P1, P2, and P3 moieties 

of the selected compounds and the MPRO active site indicate effective molecular 

mimicry of natural substrates, suggesting the potential for developing highly selective 

and potent inhibitors.  

Our findings demonstrate that the combination of in silico methods and advanced 

computational tools represents a strategic and highly promising path for the identification of 

new antiviral drugs. My thesis took the advantages of our in-house ligand based BPT which 

allowed us to screen an enormous ligands library in negligible computational time and with 
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no need for particularly high-performance hardware. This tool integrated with both structure-

based techniques and, interestingly, multivariate statistical analysis, has been applied to 

evaluate potential new SARS-CoV-2 MPRO inhibitors. This research project provides a 

foundation for future research and design of selective antiviral agents to combat COVID-19.   
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5. Materials and Methods 

5.1. In silico studies 

5.1.1. Ligand-based studies 

The DRUDIT web-service operates through four servers, each of which can perform more than 

ten jobs simultaneously, and several software modules implemented in C and JAVA running 

on MacOS Mojave.  

 

5.1.1.1. MOLDESTO: a new software for molecular descriptors calculation 

MOLDESTO, as we described in a previous work [108], is a software tool implemented in 

DRUDIT that represents the evolution of the expertise of the research group in the 

calculation/ manipulation of molecular descriptors [158]. It is currently able to calculate more 

than 1000 1D, 2D, and 3D molecular descriptors for each input structure. The input structures 

can be drawn directly in the web interface or uploaded as commonly used molecule file 

formats as external files (e.g. SMILES, SDF, Inchi, Mdl, Mol2). The software is provided with a 

caching system to boost the calculation speed of previously submitted structures. 

 

5.1.1.2. Biotarget Predictor Tool  

The Biotarget Finder Module provides prediction of the binding affinity between candidate 

molecules and the specified biological target. 

The tool was used to screen small molecule drug candidates as SARS-CoV-2 MPRO inhibitors 

[108]. The template of SARS-CoV-2 MPRO was created using a set of well-known drugs to 

perform molecular docking studies at catalytic site of SARS-CoV-2 MPRO. It was uploaded in 

DRUDIT, and the default DRUDIT parameters (N=500, Z=50, G=a) were used [9,108]. In 

accordance with the first phase of the in silico workflow in section 3.1.1.1, the in-house 

database was uploaded in DRUDIT and submitted to the BPT. The output results were 

obtained as DAS for each structure, reflecting, the binding affinity of compounds against the 

SARS-CoV-2 MPRO catalytic site. 
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5.1.2. Combiglide: Design of a combinatorial library 

The combinatorial ligand library, section 3.2.3.1., was generated using CombiGlide to explore 

potential chemical space efficiently. After the design of a retrosynthetic scheme, the following 

steps were involved in the library construction: 

5.1.2.1. Reagent Preparation Panel 

In this panel it is possible to prepare reagent files for use in combinatorial library 

enumeration. Reagent preparation ensures that the input structures are all-atom, 3D 

structures, and that that have the appropriate information stored with them to construct the 

molecules that are used in screening or are added to the library. Additionally, the main task 

in this panel is to select a reagent type (a functional group) and to identify the bond in the 

functional group that is replaced when the reagent is added to the core. A reagent 

preparation job for each reagent type was run. 

5.1.2.2. Combinatorial Library Enumeration Panel 

In this tab, the core-containing molecule was set up by importing a core-containing molecule 

and defining its attachment bonds. 

 

5.1.3. Structure-based studies 

The preparation process of ligands and protein-ligand complexes used for in silico studies has 

been performed as detailed below:  

 

5.1.3.1. Ligand Preparation 

The ligands for docking were prepared through the LigPrep tool, available in the Maestro 

Suite, Schrödinger software [204]. For each ligand, all possible tautomers and stereoisomers 

were generated for a pH of 7.0 ± 0.4, using default setting, through the Epik ionization method 

[205]. Consequently, the integrated Optimized Potentials for Liquid Simulations (OPLS) 2005 

force field was used to minimize the energy status of the ligands [206]. 
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5.1.3.2. Protein Preparation  

The crystal structures of SARS-CoV-2 MPRO (PDB codes 7VH8 [116], 7AXM [83], and 6WTK [126]) 

were downloaded from the Protein Data Bank [207,208]. As regard PDB codes 7VH8 and 6WTK 

a first breakup of the covalent bound between the cocrystal ligands and the Cys145 was carried 

out. Successively, the proteins were prepared using the Protein Preparation Wizard, in the 

Schrödinger software, with the default setting [209]. In detail, bond orders were assigned, 

including Het group, hydrogen atoms were added, all water molecules were delated, and 

protonation of the heteroatom states were carried out using the Epik-tool (with the pH set at 

biologically relevant values, i.e., at 7.0 ± 0.4). The H-bond network was then optimized. The 

structure was finally subjected to a restrained energy minimization step (RMSD of the atom 

displacement for terminating the minimization was 0.3 Å), using the OPLS 2005 force field 

[206]. 

 

5.1.3.3. Docking Validation 

Molecular Docking studies were executed and scored by using the Glide module, available in 

the Schrödinger Suite program package. The receptor grids were obtained through 

assignment the original ligands (nirmatrelvir, pelitinib, and GC-373 for PDB codes 7VH8 [116], 

7AXM [83], and 6WTK [126], respectively) as the centroid of the grid boxes. Extra Precision (XP) 

mode, as scoring function, was used to dock the generated 3D conformers into the receptor 

model. The post-docking minimization step was performed with a total of 5 poses for each 

ligand conformer, and a maximum of 2 docking poses were generated per ligand conformer. 

The proposed docking procedure was able to re-dock the original ligands within the receptor-

binding pockets with RMSD< 0.51 Å. Table 17 shows all the parameters combinations used 

for RMDS value optimization for the proteins. In detail, Radii Van der Waals Scaling allows to 

temporarily remove active-site residue side chains. By default, the scaling factor is 0.50 for 

the receptor and 0.50 for the ligand, with a partial charge threshold of 0.15. Removing side 

chains from active site residues provides more room for ligand docking, so the receptor does 

not need to be quite as soft. The side chains are restored after docking. The Side chain 

optimization make possible to reduce the distance from the ligand that defines residues for 

refinement. In general, the optimal value for this parameter is default set 5.0 Å, ensuring that 

optimize side chains is selected. 
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The Energy Minimization parameters controls the minimization protocol through the distance 

-dependent dielectric constant (the optimum is to set the protein/ligand dielectric constants 

to values of 1-2, default setting at 2) and the maximum number of minimization steps (by 

default fixed to 100) [206].  

Table 17. Parameters Docking Combinations for RMDS value optimization. 

Radii Van der Waals Scaling Side chain 
optimization Energy Minimization RMSD 

Receptor 
Van der 
Waals 
Scaling 

Ligand 
Van der 
Waals 
Scaling 

Partial 
charge  
cut-off 

Residue 
 Refinement 

Distance -
dependent 
dielectric 
constant 

Maximum 
number of 

minimization 
steps 

7VH8 7AXM 6WTK 

1.50 1.50 0.75 3 Å 0.5 20 0.87 Å 0.86 Å 0.88 Å 
1.25 1.25 0.50 3.5 Å 0.75 40 0.73 Å 0.75 Å 0.75 Å 
1.00 1.00 0.35 4 Å 1.00 60 0.66 Å 0.68 Å 0.66 Å 
0.75 0.75 0.25 4.5 Å 1.50 80 0.59 Å 0.57 Å 0.57 Å 
0.50 0.50 0.15 5 Å 2.0 100 0.51 Å 0.51 Å 0.51 Å 

 

 

5.1.3.4. Induced Fit Docking 

Induced Fit Docking simulation was performed using the IFD application, an accurate and 

robust Schrödinger technology that accounts for both ligand and receptor flexibility [210,211]. 

Schrödinger Induced Fit Docking validated protocol was applied by using SARS-CoV-2 MPRO 

protein from the PDB (PDB codes 7VH8 [116] and 7AXM [83]), previously refined by the Protein 

Preparation module. The IFD score (IFD score = 1.0 Glide Gscore + 0.05 Prime Energy), which 

includes protein–ligand interaction energy and system total energy, was calculated and used 

to rank the IFD poses. The more positive in modulus was the IFD score, the more favorable 

was the binding. 

 

5.1.3.5. Covalent Docking 

Covalent Docking was carried out to dock a set of peptidomimetic ligands within the SARS-

CoV-2 MPRO binding site (PDB code 6WTK [126]). Unlike classical docking, where interactions 

are mainly non-covalent, covalent docking requires specific modeling of the chemical reaction 

process occurring between a functional group of the ligand and a reactive residue on the 

protein. The covalent docking process was performed using Maestro Schrödinger, which 
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incorporates an algorithm capable of handling both the pre-covalent phase (geometric 

alignment and orientation of the ligand in the active site) and the post-covalent phase 

(simulating the formation of the chemical bond). 

The workflow adopted includes the following main steps: 

• Identification of the reactive residue: the binding site and the reactive residue (Cys145) 

were identified in the SARS-CoV-2 MPRO binding site (PDB code 6WTK [126]). 

• Reaction Type selection: the reaction type for the formation of covalent bond between 

ligand and receptor was selected. The reaction type defines the functional group on 

the ligand and the operations that must be performed on the structures to create the 

covalent bond (Nucleophilic Addition to a Double Bond). 

• Pre-covalent docking: a preliminary docking was performed to optimally position the 

ligand in the binding site before covalent bond formation. The interaction energy was 

evaluated using an algorithm based on a scoring function that considers non-covalent 

interactions. 

• Covalent bond formation: a chemical model was applied to simulate the formation of 

the covalent bond between the nucleophilic group of the reactive residue and the 

ligand. 

• Evaluation of the protein-ligand complex: the stability of the covalent protein-ligand 

complex was assessed through a scoring function specific to covalent docking, 

accounting for both covalent bond energy and residual non-covalent interactions. 

Additionally, a short molecular dynamics simulation was performed to further validate 

and optimize the geometry of the final complex. 

 

5.2. Multivariate Statistical Analysis 

PCA, one of the most-widely used multivariate exploratory techniques, enables a drastic 

dimensionality reduction of an original raw data, transforming the original matrix to a new 

one, whose set of variables, termed as Principal Components (PCs), appear to be ordered with 

descending importance in terms of variance. Principal Components Analysis can be highly 

useful for data classification and pattern recognition. In this work DRUDIT was used to obtain 

the original matrix of objects versus variables (Supplementary Material S1, Matrices S1, S3, 
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and S4), and free version TIBCO Statistica® software was used to perform Principal 

Component Analysis.  

As regard section 3.1.1.4. Grubb’s test, also known as ESD method (Extreme Studentized 

Seviate), was performed. In details, the outliers were determined by evaluating singularly 

those compounds outside the red circle (Figure 16) in comparison with the cluster of 

molecules closest to pelitinib. The identified outliers were not included in the step after. 

 

5.3. Chemistry 

5.3.1. General Information 

Unless otherwise indicated, all reagents and solvents were purchased from commercial 

sources and used without further purification. All melting points (°C) were determined on a 

Büchi Tottoli capillary apparatus and are uncorrected; IR spectra were determined in 

bromoform with a Jasco FT/IR 5300 spectrophotometer. 1H NMR, 13C NMR spectra were 

recorded, at 400 and 100 MHz respectively, in CDCl3 or DMSO-d6 solution, using a Bruker AC-

E series 200 MHz spectrometer. Chemical shifts values are given in ppm and referred as the 

internal standard to tetramethylsilane (TMS). The following abbreviations are used: br s = 

broad signal, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, rt = room 

temperature. The NMR of compounds are reported in the Supplementary Figures S2-S27. The 

purity of all compounds screened in biological assays was determined to be >95% by HPLC/MS 

analysis. Mass spectra were performed using a GC and MS Shimadzu QP5050 with EI (75 ev). 

Microanalyses agreed with theoretical values ±0.4%. Thin layer chromatography was 

performed on precoated (0.25 mm) silica gel GF254 plates, compounds were detected with 

254 nm UV lamp. Column chromatography was performed with Merck silica gel ASTM (230 

and 400 mesh), or with a Biotage FLASH40i chromatography module (prepacked cartridge 

system). 2-Chloro-6-Hydroxy-pyridine (46), benzoyl chlorides 47 and benzoic acids 48 are 

commercially available. Final products were obtained by two different synthesis routes. 

 

5.3.2. General procedure for the synthesis of 6-chloropyridin-2-yl benzoate 

(45a-m) 

Method A: To a stirring solution of 2-chloro-6-hydroxy-pyridine 46 (1 eq.) in pyridine (1.2 eq.) 

cooled at 0°C, a solution of the appropriate benzoyl chloride in DCM (47, 1.2 eq.) was added. 
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The reaction mixture was allowed to stir at RT (25 °C) for 12-24 h. Then the solvent was 

evaporated under vacuum and the obtained crude was poured onto stirred water/ice, 

extracted with DCM and washed with a solution of 1M HCl. The organic phase was dried over 

Na2SO4 and evaporated under vacuum. The obtained crude was purified through silica gel 

chromatography using a mixture 10:1 petroleum ether/EtOAc in gradient as eluant to afford 

the title compound as white powder. 

Method B: To a stirring solution of 2-chloro-6-hydroxy-pyridine 46 (1 eq.) in anhydrous DCM, 

the corresponding carboxylic acid (48 1 eq.) and DCC (1.5 eq.) were added under inert 

atmosphere (N2). To the resulting mixture cooled at 0°C, a catalytic amount of 4-

dimethylaminopyride (DMAP, 0.5 eq.) was carefully added, and the reaction was then allowed 

to stir at RT for 12-24 h. The solvent was evaporated under vacuum and the obtained crude 

was poured onto stirred water/ice, extracted with DCM. The organic phase was dried over 

Na2SO4 and evaporated under vacuum. The obtained crude was purified through silica gel 

chromatography using a mixture 10:1 petroleum ether/EtOAc in gradient as eluant to afford 

the title compound as white powder. 

 

5.3.2.1. Synthesis of 6-chloropyridin-2-yl 5-chloro-2-nitrobenzoate (45a) 

Yield 85-95%. Mp 60-65 °C. 1H NMR (DMSO-d6) δ: 7.46 (dd, 1H, J = 8.0, 0.6 Hz, H-3), 7.63 (dd,1 

H, J = 7.8, 0.6 Hz, H-5), 8.03 (dd, 1H, J = 8.8, 2.3 Hz, H-4’), 8.14 (t, 1H, J = 7.9 Hz, H-4), 8.26 (d, 

1H, J = 8.8 Hz, H-3’), 8.29 (d, 1H, J = 2.3 Hz, H-6). 13C NMR (DMSO-d6) δ: 115.9, 124.3, 127.1, 

127.3, 130.6, 133.9, 139.4, 144.2, 146.3, 148.7, 156.2, 162.0. HRMS-ESI [(M+H)+]: m/z 

calculated for C12H6Cl2N2O4: 312.9777; found: 312.9778. 

 

5.3.2.2. Synthesis of 6-chloropyridin-2-yl 2-amino-3,5-dichlorobenzoate 

(45b) 

Yield 85-95%. 1H NMR (DMSO-d6) δ: 6.95 (br s, 2H, NH2), 7.43 (dd, 1H, J = 8.0, 0.7 Hz, H-3), 

7.58 (dd, 1H, J = 7.8, 0.6 Hz, H-5), 7.80 (d, 1H, J = 2.5 Hz, H-4’), 7.93 (d, 1H, J = 2.5 Hz, H-6’), 
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8.09 (t, 1H, J = 7.9 Hz, H-4). 13C NMR (DMSO-d6) δ: 109.7, 116.6 (CH), 118.5, 121.0, 123.6 (CH), 

125.9, 129.7 (CH), 135.0 (CH), 143.8 (CH), 147.3, 148.5, 164.4. HRMS-ESI [(M+H)+]: m/z 

calculated for C12H7Cl3N2O2: 316.9646; found: 316.9647. 

 

5.3.2.3. Synthesis of 6-chloropyridin-2-yl 3,4,5-trimethoxybenzoate (45c) 

Yield 85-95%. Mp 140-145°C. 1H NMR (DMSO-d6) δ: 3.79 (s, 3H, OCH3), 3.87 (s, 6H, 2 x OCH3), 

7.38 – 7.44 (m, 3H, H-3, H-2’, H-6’), 7.57 (d, 1H, J = 7.7 Hz, H-5), 8.08 (t, 1H, J = 7.9 Hz, H-4). 
13C NMR (DMSO-d6) δ: 56.7 (CH3), 60.8 (CH3), 107.8 (CH), 116.5 (CH), 123.3, 123.5 (CH), 143.3, 

143.8 (CH), 148.6, 153.4, 157.4, 164.1. HRMS-ESI [(M+H)+]: m/z calculated for C15H14ClNO5: 

324.0633; found: 324.0635. 

 

5.3.2.4. Synthesis of 6-chloropyridin-2-yl 4-methoxybenzoate (45d) 

Yield 85-95%. Mp 88°C. 1H NMR (DMSO-d6) δ: 3.88 (s, 3H, OCH3), 7.14 (d, 2H, J = 9.0 Hz, H-3’, 

H-5’), 7.40 (dd, 1H, J = 8.0, 0.6 Hz, H-3), 7.55 (dd, 1H, J = 7.8, 0.6 Hz, H-5), 8.02 – 8.13 (m, 3H, 

H-4, H-2’, H-6’). 13C NMR (DMSO-d6) δ: 56.2 (CH3), 114.9 (CH), 116.5 (CH), 120.5, 123.3 (CH), 

132.7 (CH), 143.7 (CH), 148.5, 157.6, 164.1, 164.7. HRMS-ESI [(M+H)+]: m/z calculated for 

C13H10ClNO3: 264.0422; found: 264.0420. 

 

5.3.2.5. Synthesis of 6-chloropyridin-2-yl 4-(trifluoromethyl)benzoate 

(45e) 

Yield 85-95%. Mp 58-60 °C. 1H NMR (DMSO-d6) δ: 7.49 (dd, 1H, J = 7.9, 0.6 Hz, H-3), 7.60 (dd, 

1H, J = 7.8, 0.6 Hz, H-5), 8.01 (d, 2H, J = 8.3 Hz, H-3’, H-5’), 8.11 (t, 1H, J = 7.9 Hz, H-4), 8.33 (d, 

2H, J = 8.1 Hz, H-2’, H-6’). 13C NMR (DMSO-d6) δ: 116.4 (CH), 123.8 (CH), 124.1, 126.6 (CH), 

131.3 (CH), 132.4, 134.3, 143.9 (CH), 148.6, 157.1, 163.4. HRMS-ESI [(M+H)+]: m/z calculated 

for C13H7ClF3NO2: 302.0190; found: 302.0190. 

 

5.3.2.6. Synthesis of 6-chloropyridin-2-yl 4-methylbenzoate (45f) 

Yield 85-95%. Mp 45-50 °C. 1H NMR (DMSO-d6) δ: 2.43 (s, 3H, CH3), 7.39-7.47 (m, 3H, H-3, H-

3’, H-5’), 7.56 (d, 1H, J = 7.8 Hz, H-5), 8.02 (d, 2H, J = 8.2 Hz, H-2’, H-6’), 8.07 (t, 1H, J = 7.9 Hz, 

H-4). 13C NMR (DMSO-d6) δ: 21.8 (CH3), 116.5 (CH), 123.4 (CH), 125.7, 130.2 (CH), 130.5 (CH), 
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143.8 (CH), 145.7, 148.6, 157.5, 164.4. HRMS-ESI [(M+H)+]: m/z calculated for C13H10ClNO2: 

248.0473; found: 248.0475. 

 

5.3.2.7. Synthesis of 6-chloropyridin-2-yl benzoate (45g) 

Yield 85-95%. Mp 48-50 °C. 1H NMR (DMSO-d6) δ: 7.44 (dd, 1H, J = 8.0, 0.6 Hz, H-3), 7.58 (dd, 

1H, J = 7.8, 0.6 Hz, H-5), 7.60 – 7.66 (m, 2H, H-3’, H-5’), 7.75 – 7.82 (m, 1H, H-4’), 8.09 (t, 1H, J 

= 7.9 Hz, H-4), 8.12 – 8.16 (m, 2H, H-2’, H-6’). 13C NMR (DMSO-d6) δ: 116.5 (CH), 123.5 (CH), 

128.5, 129.6 (CH), 130.4 (CH), 135.0 (CH), 143.8 (CH), 148.6, 157.4, 164.5. HRMS-ESI [(M+H)+]: 

m/z calculated for C12H8ClNO2: 234.0316; found: 234.0314. 

 

5.3.2.8. Synthesis of 6-chloropyridin-2-yl 4-(dimethylamino)benzoate 

(45h) 

Yield 85-95%. Mp 105-120 °C. 1H NMR (DMSO-d6) δ: 3.05 (s, 6H, 2 x CH3), 6.80 (d, 2H, J = 9.1 

Hz, H-3’, H-5’), 7.34 (dd, 1H, J = 8.0, 0.6 Hz, H-3), 7.51 (dd, 1H, J = 7.8, 0.6 Hz, H-5), 7.91 (d, 2H, 

J = 9.0 Hz, H-2’, H-6’), 8.03 (t, 1H, J = 7.9 Hz, H-4). 13C NMR (DMSO-d6) δ: 40.1 (CH3), 111.5 

(CH), 113.8, 116.6 (CH), 122.8 (CH), 132.3 (CH), 143.4 (CH), 148.5, 154.5, 158.0, 164.4. HRMS-

ESI [(M+H)+]: m/z calculated for C14H13ClN2O2: 277.0738; found: 277.0740. 

 

5.3.2.9. Synthesis of 6-chloropyridin-2-yl 4-fluorobenzoate (45i) 

Yield 85-95%. Mp 67-72 °C. 1H NMR (DMSO-d6) δ: 7.41 – 7.50 (m, 3H, H-3, H-3’, H-5’), 7.58 (d, 

1H, J = 7.8 Hz, H-5), 8.09 (t, 1H, J = 7.9 Hz, H-4), 8.17 – 8.25 (m, 2H, H-2’, H-6’). 13C NMR (DMSO-

d6) δ: 116.5 (CH), 116.8 (d, JC-F = 22.3 Hz, CH), 123.5 (CH), 125.1, 133.5 (d, JC-F = 9.8 Hz, CH), 

143.8 (CH), 148.6, 157.3, 163.5, 166.3 (d, J = 253.8 Hz). HRMS-ESI [(M+H)+]: m/z calculated for 

C12H7ClFNO2: 252.0222; found: 252.0220. 

 

5.3.2.10. Synthesis of 6-chloropyridin-2-yl 4-bromobenzoate (45j) 

Yield 85-95%. Mp 129-133 °C. 1H NMR (DMSO-d6) δ: 7.45 (dd, 1H, J = 8.0, 0.6 Hz, H-3), 7.58 

(dd, 1H, J = 7.8, 0.6 Hz, H-5), 7.84 (d, 2H, J = 8.6 Hz, H-3’, H-5’), 8.05 (d, 2H, J = 8.6 Hz, H-2’, H-

6’), 8.09 (t, 1H, J = 7.9 Hz, H-4). 13C NMR (DMSO-d6) δ: 116.5 (CH), 123.6 (CH), 127.8, 129.3, 
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132.3 (CH), 132.8 (CH), 143.9 (CH), 148.6, 157.2, 163.8. HRMS-ESI [(M+H)+]: m/z calculated for 

C12H7BrClNO2 : 311.9421; found: 311.9420. 

 

5.3.2.11. Synthesis of 6-chloropyridin-2-yl 2,3-dichlorobenzoate (45k) 

Yield 85-95%. Mp 98-100 °C. 1H NMR (DMSO-d6) δ: 7.49 (dd, 1H, J = 8.0, 0.6 Hz, H-3), 7.55 – 

7.64 (m, 2H, H-5, H-5’), 7.98 (dd, 1H, J = 8.1, 1.5 Hz, H-6’), 8.08 (dd, 1H, J = 7.8, 1.6 Hz, H-4’), 

8.12 (t, 1H, J = 7.9 Hz, H-4). 13C NMR (DMSO-d6) δ: 116.3 (CH), 123.9 (CH), 129.2 (CH), 130.8, 

130.9 (CH), 131.2, 134.1, 135.2 (CH), 144.0 (CH), 148.7, 156.8, 162.6. HRMS-ESI [(M+H)+]: m/z 

calculated for C12H6Cl3NO2: 301.9537; found: 301.9535. 

 

5.3.2.12. Synthesis of 6-chloropyridin-2-yl 4-chlorobenzoate (45l) 

Yield 85-95%. Mp 115-120 °C. 1H NMR (DMSO-d6) δ: 7.45 (dd, 1H, J = 8.0, 0.7 Hz, H-3), 7.58 

(dd, 1H, J = 7.8, 0.6 Hz, H-5), 7.70 (d, 2H, J = 8.7 Hz, H-3’, H-5’), 8.09 (t, 1H, J = 7.9 Hz, H-4), 

8.13 (d, 2H, J = 8.7 Hz, H-2’, H-6’). 13C NMR (DMSO-d6) δ: 116.5 (CH), 123.6 (CH), 127.4, 129.8 

(CH), 132.3 (CH), 140.1, 143.9 (CH), 148.6, 157.2, 163.6. HRMS-ESI [(M+H)+]: m/z calculated 

for C12H7Cl2NO2: 267.9927; found: 267.9927. 

 

5.3.2.13. Synthesis of 6-chloropyridin-2-yl 3-chloro-4-fluorobenzoate 

(45m) 

Yield 85-95%. 1H NMR (DMSO-d6) δ: 7.45 (dd, 1H, J = 8.0, 0.6 Hz, H-3), 7.59 (dd, 1H, J = 7.8, 

0.6 Hz, H-5), 7.68 (t, 1H, J = 8.9 Hz, H-5’), 8.10 (t, 1H, J = 7.9 Hz, H-4), 8.16 (ddd, 1H, J = 8.7, 

4.7, 2.2 Hz, H-6’), 8.29 (dd, 1H, J = 7.1, 2.2 Hz, H-2’). 13C NMR (DMSO-d6) δ: 116.4 (CH), 118.3 

(d, JC-F = 22.1 Hz, CH), 121.2 (d, JC-F = 18.4 Hz), 123.7 (CH), 126.4 (d, JC-F = 3.3 Hz), 131.9 (d, JC-F 

= 9.0 Hz, CH), 132.9 (CH), 143.9 (CH), 148.6, 157.0, 161.4 (d, JC-F = 256 Hz), 162.5. HRMS-ESI 

[(M+H)+]: m/z calculated for C12H6Cl2FNO2: 285.9832; found: 285.9830. 

 

5.4. Biological Procedures 

5.4.1. Antiviral Assay 

The MPRO activity was assayed fluorometrically with the kit SensoLyte 520 SARS-CoV-2 3CL 

Protease Activity Assay Kit (Anaspec, DBA Italy), essentially as described by the manufacturer. 
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Briefly, serially diluted drugs (10µL), ranging from 5000µM to 1µM, were added in a black 

walled flat microplate to the 3CL enzyme provided (40µL), then 50µL of the substrate (HiLyte™ 

Fluor 488/QXL® 520) was added and the plate incubated at 37°C for 1 hour. Then fluorescence 

was measured at Ex490nm and Em520 on a CLARIOStar multimode plate reader (BMG 

Labtech, Milan, Italy). Control wells with no inhibitors have been set, background 

fluorescence (substrate only) have been subtracted from all the wells, and a positive control 

(GC376 10nM) has been set. Results have been expressed as percentage of control wells set 

as 100% with formula (Flsample/Flcontrol)/100. IC50 were calculated using Prism 6 following the 

Hill equation (GraphPad software, CA, USA).   
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6.1. Machine learning model for predicting molecular activity using 

Molecular Descriptors and ElectroShape Descriptors 

In the final section of this PhD thesis, a dedicated chapter presents the results of the research 

conducted during a visiting research period at the University of Buckingham, supervised by 

Prof. Paul W. Finn, CEO at Oxford Drug Design (Oxford, October 2023 - April 2024). The focus 

of this project was the development of a Machine Learning (ML) model aimed at 

discriminating between active and inactive compounds for specific biological targets. 

ML algorithms have been employed to analyze large datasets of molecular structures and 

bioactivity data, enabling the rapid identification of potential inhibitors for various proteins 

[212-219]. By training these models on known inhibitors, researchers can predict the binding 

affinity and inhibitory potential of novel compounds with high accuracy. These ML-driven 

approaches not only accelerate the drug discovery process but also enable the exploration of 

chemical space beyond the capability of traditional High-Throughput Screening (HTS) 

methods.  

Our approach utilized Molecular Descriptors (MD), computed via MOLDESTO [108], alongside 

4-Dimensional ElectroShape Descriptors (4DES) [220] to represent small molecules in the 

Maximum Unbiased Validation (MUV) dataset [221]. MD capture various physicochemical 

properties of small molecules, while 4DES are more advanced descriptors that incorporate 

three-dimensional spatial and electronic properties, offering a richer representation for 

detecting subtle molecular differences. The MUV dataset, which includes assay data for 17 

targets, is designed to minimize analogue bias and artificial enrichment. 

We developed a Support Vector Machine (SVM) model and applied 5-fold cross-validation to 

assess its performance using metrics such as Area Under the Curve (AUC) and the 1% 

Enrichment Factor (1%EF). Initial results showed that models using only MD achieved an AUC 

of 0.759 ± 0.099, while those using 4DES alone achieved 0.635 ± 0.113. Combining MD and 

4DES slightly improved performance, reaching an AUC of 0.763 ± 0.099. Further refinement, 

employing SHapley Additive exPlanations (SHAP) for feature selection, enhanced the model’s 

performance, increasing the AUC to 0.810 ± 0.082 for MD alone and 0.811 ± 0.084 for the 

combined descriptors. These findings underscore the importance of feature selection in 

improving model accuracy. Additionally, we conducted a 3-fold cross-validation by splitting 

the MUV dataset into three groups based on target numerical codes and FASTA sequence 
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identity. This demonstrated the model’s robustness to discriminate between actives and 

inactives across different test scenarios. Finally, we evaluated the model on the LIT-PCBA 

dataset [222], achieving promising performance. These findings highlight the effectiveness of 

our approach and its potential for advancing virtual screening in drug discovery. Figure 62 

illustrates the overall computational workflow employed in the research project. 

 

 
Figure 62. Computational Workflow for predicting molecular activity using MD and 4DES. 
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6.2. Introduction 

6.2.1. The role of Machine Learning and Artificial Intelligence in Drug 

Discovery 

In recent decades, the field of pharmaceutical chemistry has undergone a significant 

transformation, driven by the vast amount of chemical, biological, and experimental data 

available for analysis. The integration of high-performance computing, automated 

techniques, and advanced data processing methods has enabled a new era in drug discovery, 

where the design and identification of new drug candidates are supported by computational 

approaches. Among the most impactful developments in this field is the application of ML, a 

branch of Artificial Intelligence (AI) that focuses on enabling computers to autonomously 

learn from data [223].  

ML techniques have proven particularly valuable in medicinal chemistry, where they facilitate 

the connection between molecular features and bioactivity levels, including target affinity 

and pharmacokinetic properties. By processing available data through suitable ML algorithms, 

researchers can uncover patterns and insights that traditional methods might overlook. This 

allows for the prediction of biological activity and other critical pharmacological outcomes, 

streamlining the drug discovery process, increasing hit rates for promising compounds, and 

enabling exploration of novel chemical spaces too complex for manual investigation. 

ML encompasses four fundamental types: supervised learning utilizes labeled data for specific 

tasks, unsupervised learning identifies patterns in unlabeled data, semi-supervised learning 

integrates a small set of labeled data with a larger unlabeled dataset, and reinforcement 

learning enables an agent to learn through interactions and rewards in an environment. 

Additionally, various algorithms such as Random Forest (RF), SVM, Neural Networks (NN), and 

Gradient Boosting (GB) can be applied. RF builds multiple decision trees during training to 

improve accuracy and robustness. SVM finds a hyperplane in an N-dimensional space to 

classify data points, NN mimics the brain neural structure to discern complex patterns, and 

GB builds models sequentially by addressing previous model errors. These methods are 

selected based on the problem and data type, often combined for optimal performance 

[223,224]. 

Today, ML is a cornerstone in drug discovery protocols, accelerating the identification of new 

therapeutic candidates with greater precision and efficiency. Its integration into 
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computational chemistry workflows provides unprecedented opportunities to explore and 

exploit the vast chemical and biological datasets generated in modern research, significantly 

contributing to the future of medicinal chemistry [225]. 

However, to develop robust and accurate ML models, access to large quantities of high-

quality data and appropriate data representation are essential, ensuring that ML models can 

process and interpret the data effectively, leading to better predictions of molecular activity 

and drug potential. The combination of comprehensive datasets and sophisticated molecular 

representations is thus fundamental to driving further advancements in ML-driven drug 

discovery. 

 

6.2.2. Molecular Features: Molecular Descriptors and ElectroShape 

Descriptors 

Molecular representation is a crucial aspect of applying computational approaches in 

pharmaceutical chemistry, as it provides a numerical encoding of the structural and chemical 

characteristics of molecules. Two key approaches to molecular representation are MD and 

ElectroShape (ES) Descriptors, each offering unique advantages for modeling the interactions 

between small molecules and biological targets. 

MD are numerical values that summarize various properties of a molecule, transforming its 

structure into a set of features that can be processed by ML algorithms. These descriptors can 

be divided into several categories, including topological, geometrical, electronic, and 

thermodynamic descriptors. For example, MD may quantify properties like molecular weight, 

hydrogen bond donors/acceptors, surface area, and lipophilicity (e.g., LogP). These features 

provide a foundational understanding of how molecules might interact with biological 

environments, and they are essential in establishing Quantitative Structure-Activity 

Relationships (QSAR). MD have been widely used in cheminformatics and virtual screening, 

offering a computationally efficient way to represent large libraries of chemical compounds 

and assess their drug-like properties. 

ES Descriptors are an advanced method that integrate shape, chirality, and electrostatics into 

a unified framework. They build on the Ultrafast Shape Recognition (USR) approach, which 

computes shape descriptors, by adding partial charge information as a fourth dimension in 

the case of 4DES, and LogP as a fifth dimension in the case of 5-Dimensional ElectroShape 
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Descriptors (5DES). This enhancement allows for the integration of electrostatic properties 

alongside molecular shape, as well as the inclusion of lipophilicity (LogP), providing a more 

comprehensive and multidimensional representation of molecular similarity. 

Additionally, the method incorporates Chiral Shape Recognition (CSR) to differentiate 

between enantiomers, enhancing the ability to distinguish compounds with similar shapes 

but different chiral configurations. Specifically, 4DES describe each atom in a molecule using 

four numbers: three spatial coordinates (x, y, z) and the partial charge (q), while 5DES utilize 

three spatial coordinates (x, y, z), the partial charge (q), and the LogP (p), situating the 

molecule in a four-dimensional space (R4) and five-dimensional space (R5), respectively. The 

similarity between molecules is then calculated by comparing these descriptors, enabling 

faster and more precise identification of molecules with similar binding properties.  

In practice, both MD and ES Descriptors play a complementary role. MD provide a 

computationally efficient method for representing a broad range of chemical properties, 

whether in 2D, 3D, or 4D form. Meanwhile, ES offers deeper insights into the electronic and 

spatial attributes of molecules, critical for predicting specific interactions with biological 

targets. This combination of approaches allows ML models to capture both general chemical 

diversity and detailed bioactivity information, leading to more accurate predictions and 

better-informed decisions in the drug discovery pipeline. 

 
6.2.3. Useful Benchmarking sets  

The quality and type of data used are critical factors when developing ML models. Utilizing 

established datasets for training and validation, rather than synthetic or augmented data, 

ensures that the training set is representative, exhaustive, and diverse.  

The performance of various ML models is typically evaluated through ligand enrichment using 

benchmarking sets, measuring the ability to rank true ligands highly in a list of potential 

candidates against a large pool of decoys, which are assumed inactive and unlikely to bind to 

the target. This combination of true ligands and their associated decoys constitutes the 

benchmarking set [226-235]. 

Benchmarking sets can be classified into two major types according to their initial designing 

purposes, the Structure Based Virtual Screening (SBVS) specific and the Ligand Based Virtual 

Screening (LBVS) specific. Datasets such as Directory of Useful Decoys (DUD) [236] and its 

recent DUD-Enhanced (DUD-E) [237], Virtual Decoy Sets (VDS) [238], G Protein-Coupled 



124 
 

Receptors (GPCRs) Ligand Library (GLL) and GPCRs Decoy Database (GDD) [239], Demanding 

Evaluation Kits for Objective in Silico Screening (DEKOIS) [240] and DEKOIS 2.0 [241], Nuclear 

Receptors Ligands and Structures Benchmarking DataBase (NRLiSt BDB) belong to SBVS-

specific benchmarking sets. By contrast, DUD LIB VS 1.0 [242], database 

of reproducible virtual screens (REPROVIS-DB) [243], Maximum Unbiased Validation (MUV) 

database [221], and LIT-PubChemBioActivity (LIT-PCBA) database [222] are specifically 

designed for the purpose of LBVS. To date, DUD and DUD-E have been intensively employed 

as gold standard data sets among the community [212,213,218,244-248], while much fewer 

citations of MUV [213,215,218,219] have been reported. 

 

6.2.3.1. DUD and DUD-E datasets 

The DUD dataset [236] was created to address the issue of artificial enrichment in SBVS by 

ensuring that decoys have similar physicochemical properties but distinct 2D topology 

compared to ligands. DUD contains 95,316 decoys and 2,950 ligands, targeting 40 proteins 

across six categories: nuclear hormone receptors, kinases, serine proteases, metalloenzymes, 

folate enzymes, and other enzymes. The decoys were sourced from ZINC’s "drug-like" subset, 

using a method based on the Tanimoto coefficient (Tc) and 32 calculated physicochemical 

properties, with a focus on five key properties—molecular weight (MW), hydrogen bond 

acceptors (HBAs), hydrogen bond donors (HBDs), rotatable bonds (RBs), and LogP—relevant 

to drug-likeness based on Lipinski’s rule of five. For each ligand, 36 compounds with the most 

similar physicochemical properties were selected as decoys. DUD decoys accurately match 

ligands in their physical property distributions, thus reducing artificial enrichment bias. 

Publicly available at http://dud.docking.org/, DUD became the first bias-corrected, SBVS-

specific benchmarking set and quickly became a standard for structural model validation and 

software evaluation [249-251]. 

However, to mitigate “analogue bias” [252], lead-like and reduced-graph filters were applied 

to DUD, resulting in the "DUD Clustering" dataset, which encourages chemical diversity and 

improves scaffold hopping evaluations. This refined set is available at 

http://dud.docking.org/clusters/ and is recommended to be used in conjunction with the 

original DUD decoys for ligand enrichment studies. 
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The enhanced version of DUD, known as DUD-E https://dude.docking.org/ [237], was released 

to further address the limitations of the original set. DUD-E includes 22,886 active compounds 

across 102 diverse protein targets and provides approximately 50 decoys for each active 

compound. The decoys are similarly selected to share physicochemical properties with the 

active compounds while maintaining dissimilar 2D topologies, drawn from ZINC’s database. 

DUD-E is primarily used in classification tasks to benchmark the performance of molecular 

docking programs, particularly in terms of their ability to rank active compounds higher than 

decoys. Due to its larger scale and improved design, DUD-E is considered a more 

comprehensive and reliable benchmarking set for modern virtual screening studies. 

 

6.2.3.2. MUV dataset 

The MUV set is a carefully designed dataset aimed at providing unbiased validation for virtual 

screening methods, particularly LBVS. Its ligands and decoys are sourced from Primary and 

Confirmatory BioAssays (PCBioAssay) in PubChem [253]. Specifically, inactive compounds from 

primary bioassays against a target were used to build the “Potential Decoys” data set, while 

compounds that were confirmed active through both primary and confirmatory bioassays 

formed the “Potential Actives” dataset. To further enhance reliability and minimize false 

positive, the “Potential Actives” dataset was refined using an assay artifacts filter, which 

includes the “Hill slope filter”, the “frequency of hits filter”, and the “autofluorescence and 

luciferase inhibition filter”. A major strength of the MUV set is its exclusive use of 

experimentally confirmed inactives as decoys, a significant advantage over other 

benchmarking datasets. Each target’s final benchmark comprises 30 active compounds and 

15,000 decoys. Through the analysis of 17 MUV benchmarking sets (MUV codes per each 

target are shown in Table 18), it was demonstrated that this approach effectively reduces 

both artificial enrichment and analogue bias. The datasets [221], along with a tool for 

generating MUV decoys, are publicly available at http://www.pharmchem.tu-

bs.de/lehre/baumann/MUV.html. 

 

Table 18. Details of the MUV datasets, including the MUV ID, target name, and type of interaction 
associated with each target. 

MUV ID Target name Interaction 

466 S1P1 receptor* Agonists 
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548 PKA* Inhibitors 

600 SF1* Inhibitors 

644 Rho Kinase2 Inhibitors 

652 HIV RT-RNase* Inhibitors 

689 Eph rec. A4* Inhibitors 

692 SF1* Agonists 

712 HSP90* Inhibitors 

713 ER-ɑ-coact. bind.* Inhibitors 

733 ER-β-coact. bind.* Inhibitors 

737 ER-ɑ-coact. bind.* Potentiators 

810 FAK* Inhibitors 

832 Cathepsin G Inhibitors 

846 FXIa* Inhibitors 

852 FXIIa* Inhibitors 

858 D1 receptor* Allosteric modulators 

859 M1 receptor* Allosteric inhibitors 

*Abbreviations: Sphingosine-1-Phosphate receptor 1 (S1P1 receptor); Protein Kinase A (PKA); nuclear receptor Steroidogenic 
Factor 1 (SF1); Human Immunodeficieny Virus Reverse Transcriptase RNase (HIV RT-RNase); Eph receptor A4 (Eph rec. A4); 
Heat Shock Protein 90 (HSP90); Estrogen Receptor-ɑ-coactivator binding (ER-ɑ-coact. bind); Estrogen Receptor-β-coactivator 
binding (ER-β-coact. bind); Focal Adhesion Kinase (FAK); Coagulation Factor XIa (FXIa); Coagulation Factor XIIa (FXIIa); M1 
muscarinic receptor (M1 receptor); D1 dopamin receptor (D1 receptor). 
 

When compared to the MUV dataset, DUD exhibits significant biases. Many DUD data sets 

show "clumping" in descriptor space, making the retrieval of active compounds relatively 

easy, even with simple descriptors, indicating a substantial benchmark bias. Additionally, DUD 

suffers from high analogue bias, with the average number of compounds per scaffold class 

being 4.56, compared to 1.16 in MUV. While this is less problematic for docking methods, it 

critically impacts LBVS. Furthermore, despite its design to minimize separation between 

actives and decoys, considerable separation is still observed, likely due to the strict Tanimoto 

dissimilarity criterion, leading to poor embedding of actives within decoys. In some cases, up 

to 60% of actives are not well surrounded by decoys. In contrast, MUV avoids these issues by 

using experimentally confirmed inactive decoys, eliminating the need for dissimilarity criteria 

and providing a more rigorous and unbiased validation set for LBVS, making it superior to DUD 

in this context. 
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6.2.3.3. LIT-PCBA dataset 

The LIT-PCBA dataset [222] represents a novel generation of virtual screening benchmarking 

datasets, specifically aimed at advancing ML applications in the prediction of bioactivity.  

Constructed from dose-response bioassays available in PubChem, it features unambiguously 

defined active and inactive compounds. A meticulous examination of the metadata allowed 

for the removal of assay artifacts, frequent hitters, and false positives, resulting in a high-

quality dataset. LIT-PCBA encompasses 15 target sets, covering a diverse array of ligands and 

target proteins. Preliminary virtual screening attempts utilizing state-of-the-art methods such 

as 2D similarity, 3D shape matching, and docking have revealed the dataset's challenging 

nature, particularly due to the absence of potency distribution biases among labeled active 

compounds. Furthermore, a recently described unbiasing procedure was applied to optimize 

the distribution of training and validation compounds for ML applications. This unique 

challenge is expected to enhance the evaluation of modern artificial intelligence methods in 

structure-based virtual screening scenarios. The LIT-PCBA dataset is freely accessible at 

https://drugdesign.unistra.fr/LIT-PCBA/. 
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6.3. Aim of the project 

ML has emerged as a transformative technology in various fields, including pharmaceuticals 

and biomedical research, by enabling the analysis of large datasets to make predictions and 

uncover insights that were previously unattainable. As traditional methods of drug discovery 

become increasingly time-consuming and resource-intensive, ML offers innovative solutions 

to enhance the efficiency and effectiveness of virtual screening processes. This project aims 

to develop a robust ML model that effectively discriminates between active and inactive 

compounds toward specific biological targets, thereby streamlining the drug discovery 

process.  

A critical challenge in applying ML to drug discovery is learning useful molecular 

representations. In our approach, we utilize a combination of MD and 4DES to represent small 

molecules effectively. MD are computed using the MOLDESTO software, capturing various 

physicochemical properties vital for understanding molecular behavior. In contrast, 4DES 

provide an advanced representation that incorporates not only the three-dimensional spatial 

arrangement of molecules but also their electronic characteristics. This multifaceted 

descriptor framework is expected to yield a richer and more nuanced understanding of 

molecular differences, which is essential for accurately distinguishing between bioactive and 

non-bioactive compounds.  

Our project primarily focuses on the MUV dataset, which is known for minimizing analogue 

bias and artificial enrichment, thus providing a reliable foundation for training, and validating 

our ML models. The MUV dataset includes assay data for 17 diverse biological targets, 

enabling us to develop a more generalized model capable of performing well across various 

contexts. To assess the performance of our ML model, SVM approach is implemented, 

leveraging 5-fold cross-validation as a means of evaluation. Performance metrics such as AUC 

and the 1%EF are employed to quantify the model’s effectiveness in classifying compounds. 

Additionally, a 3-fold cross-validation is performed by stratifying the MUV dataset based on 

target numerical codes and FASTA sequence identity. This methodology aims to test the 

model's robustness and its ability to generalize across different biological contexts. We 

further evaluate the model's performance using the LIT-PCBA dataset, which presents its own 

set of challenges and opportunities for enhancing predictive accuracy. 
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In conclusion, this project aims to contribute to the growing field of computational drug 

discovery by developing an ML model that not only demonstrates high performance in 

predicting molecular activity but also provides insights into the underlying features that 

influence bioactivity. By leveraging advanced descriptor methodologies and rigorous 

validation techniques, we hope to establish a framework that enhances virtual screening 

capabilities, ultimately aiding in the identification of promising therapeutic candidates. 
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6.4. Results and Discussion 

6.4.1. Molecular and ElectroShape Descriptors for MUV target sets   

As the first step of the work, the calculation of MD and ES Descriptors was performed for the 

17 biological targets in the MUV dataset. The goal was to represent each molecule's structural 

and electronic properties comprehensively, which would serve as input features for the 

subsequent ML model to classify compounds as active or inactive (binary classification: 1 for 

active, 0 for inactive). 

The MD were generated using MOLDESTO [108], an in-house software developed by the 

research group at the University of Palermo. MOLDESTO is designed to compute a broad 

range of molecular properties, calculating approximately 1,000 descriptors spanning 1D, 2D, 

and 3D molecular features for each molecule (detailed in List S1 of the Supplementary 

Material; see Materials and Methods section, paragraph 4.1.1.1). 

In parallel, ES descriptors were calculated using EShape, Oxford Drug Design’s proprietary 

software for ES descriptor calculation [220]. Since the lipophilic properties (e.g., LogP) are 

already included in the MD set, we opted not to calculate 5DES and instead used 4DES. This 

approach still allows for a sophisticated representation of a molecule's spatial configuration 

and electrostatic properties. The 4DES methodology also accounts for chirality and 

differentiates between enantiomers, providing valuable insights into subtle differences that 

may influence molecular interactions with target proteins. 

Together, these two sets of descriptors provide complementary representation of input 

molecules. While the MD are computationally efficient in capturing a broad range of 

molecular features, the 4DES descriptors offer a more detailed insight into 3D shape and 

electrostatic complementarity of the molecules, which are critical for predicting biological 

activity. 

Each molecule from the MUV dataset was thus characterized by these descriptors, setting up 

the dataset for the ML classification task, where compounds labeled as active (Class 1) or 

inactive (Class 0) based on their biological assay results. This dataset forms the foundation for 

training and evaluating the ML models developed in this study. 
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6.4.2. Machine Learning Model Development 

In this section, we describe the development of the ML model aimed at classifying molecular 

compounds as active or inactive based on MD and 4DES descriptors. 

The SVM model was employed due to its efficiency in high-dimensional datasets and its ability 

to handle binary classification problems. To evaluate the performance of the ML model, we 

implemented a stratified 5-fold cross-validation scheme. Stratification ensures that each fold 

maintains a balanced proportion of active (Class 1) and inactive (Class 0) compounds, 

preventing bias in the model evaluation. The model is trained on 80% of the data and tested 

on the remaining 20%, repeated across five different data splits to obtain reliable 

performance metrics.  

The parameters utilized for the ML model performance evaluation are Receiver Operating 

Characteristic - Area Under the Curve (ROC-AUC), and the EF. The ROC curve plots the True 

Positive Rate (TPR) against the False Positive Rate (FPR), while the AUC provides a summary 

of the model's classification capability, with higher values indicating better performance. In 

addition, the EF is a crucial metric in virtual screening applications, as it evaluates the model's 

ability to prioritize active compounds in the top-ranked subset. EF is computed as follows: 

𝐸𝐹a =
NTBa

NTBtotal ∗ a	 

where NTBa is the Number of True Binders among top a percentile of ranked candidates (1%, 

5%, 10%) based on predicted binding scores and NTBtotal is the total Number of True Binders 

in the database. Here, EF was computed for the top 1% of predictions (1%EF), which gives 

insight into the model's effectiveness at retrieving actives. 

SHAP method is used to assess the contribution of each feature to the final predictions.  

 

6.4.3. Preliminary Results on MUV set – I ROUND 

Once the MD and 4DES descriptors for MUV dataset were computed and the SVM model was 

developed, the molecules from the MUV dataset were submitted to the ML model for 

preliminary testing. This initial round aimed to evaluate the model's ability to discriminate 

between active and inactive compounds. The performance of the ML model in terms of AUC 

and 1%EF was evaluated across 17 MUV targets using three different methods: MD, 4DES, 

and the combined approach of MD+4DES. 
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In this first round, the model yielded an average AUC of 0.763 ± 0.099 when using the 

combined MD and 4DES representations. When using MD alone, the model achieved an 

average AUC of 0.759 ± 0.099, while using 4DES alone resulted in a lower average AUC (0.635 

± 0.113). MD generally performed well across the targets, with AUC values mostly (14/17 

targets) above 0.7, indicating good model performance. The highest performance was 

observed for MUV_852 target, where the MD method achieved an AUC of 0.923 ± 0.025. This 

suggests that MD descriptors are particularly effective in capturing the relevant chemical 

information for this target. However, for certain targets like MUV_600 (AUC: 0.590 ± 0.075) 

and MUV_692 (AUC: 0.550 ± 0.098), MD underperformed, suggesting that molecular 

descriptors alone may not provide sufficient discriminatory power for these targets. 

Across all targets, the combined MD+4DES approach yields AUC values comparable to, or 

slightly better than, those obtained using either MD or 4DES individually. However, the 

difference between MD and MD+4DES is not statistically significant for most, if not all, targets 

Table 19 provides a detailed comparison of the AUC values for each MUV target when using 

MD, 4DES, and the combined (MD+4DES) approach.  

 

Table 19.  Summary of the AUC values for all 17 MUV targets, comparing the performance of models 
built using MD, 4DES, and the combined MD+4DES descriptor sets. 

MUV ID Target name MD 4DES MD+4DES 

MUV_466 S1P1 receptor* 0.747 ± 0.053 0.597 ± 0.105 0.749 ± 0 .050 

MUV_548 PKA* 0.814 ± 0.085 0.756 ± 0.102 0.814 ± 0.086 

MUV_600 SF1* 0.590 ± 0.075 0.617 ± 0.076 0.588 ± 0.079 

MUV_644 Rho Kinase2  0.712 ± 0.127  0.778 ± 0.045  0.714 ± 0.119 

MUV_652 HIV RT-RNase* 0.819 ± 0.080  0.668 ± 0.103 0.813 ± 0.083 

MUV_689 Eph rec. A4*  0.716 ± 0.024  0.496 ± 0.113  0.724 ± 0.022 

MUV_692 SF1* 0.550 ± 0.098  0.565 ± 0.037 0.548 ± 0.105 

MUV_712 HSP90* 0.841 ± 0.065 0.392 ± 0.105  0.842 ± 0.063 

MUV_713 ER-ɑ-coact. bind.* 0.728 ± 0.070  0.649 ± 0.124 0.736 ± 0.065 

MUV_733 ER-β-coact. bind.* 0.765 ± 0.162  0.533 ± 0.048 0.756 ± 0.163 

MUV_737 ER-ɑ-coact. bind.* 0.774 ± 0.088  0.710 ± 0.081 0.774 ± 0.090 

MUV_810 FAK* 0.727 ± 0.108  0.571 ± 0.129 0.721 ± 0.112 

MUV_832 Cathepsin G 0.869 ± 0.060  0.778 ± 0.124 0.872 ± 0.052 
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MUV_846 FXIa* 0.885 ± 0.057 0.776 ± 0.066 0.891 ± 0.056 

MUV_852 FXIIa* 0.923 ±  0.025 0.767 ± 0.066 0.921 ±  0.029 

MUV_858 D1 receptor* 0.813 ±  0.050 0.645 ± 0.148 0.810 ±  0.057 

MUV_859 M1 receptor* 0.630 ± 0.069 0.501 ± 0.072 0.633 ± 0.072 

AVERAGE  0.759 ± 0.099 0.635 ± 0.113 0.763 ± 0.099 
*Abbreviations: Sphingosine-1-Phosphate receptor 1 (S1P1 receptor); Protein Kinase A (PKA); nuclear receptor Steroidogenic 
Factor 1 (SF1); Human Immunodeficieny Virus Reverse Transcriptase RNase (HIV RT-RNase); Eph receptor A4 (Eph rec. A4); 
Heat Shock Protein 90 (HSP90); Estrogen Receptor-ɑ-coactivator binding (ER-ɑ-coact. bind); Estrogen Receptor-β-coactivator 
binding (ER-β-coact. bind); Focal Adhesion Kinase (FAK); Coagulation Factor XIa (FXIa); Coagulation Factor XIIa (FXIIa); M1 
muscarinic receptor (M1 receptor); D1 dopamin receptor (D1 receptor). 
 

This result, that strongly emphasizes the importance of combining features for targets, are 

graphically represented in Figure 63, where the histogram illustrates the variation in AUC 

values across the 17 MUV targets for the three descriptor methods: MD (blue), 4DES (yellow), 

and the combination of MD+4DES (green). The color-coding allows for a clear visual 

comparison of how each method influences model performance across different target. 

 

 
Figure 63. AUC values for each of the 17 MUV targets across the three descriptor methods: MD (blue), 
4DES (yellow), and MD+4DES (green). The histogram illustrates the variation in model performance 
for each target. 
 

ROC-AUC for the best-performing targets is shown in Figure 64 (for the other targets, see 

Figures S28-S32 of the Supplementary Material). Specifically, this figure illustrates the ROC-

AUC curves for MUV_832, MUV_846, and MUV_852, comparing the performance across the 

MD, 4DES, and combined MD+4DES descriptor sets. 
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Figure 64. (a) ROC-AUC for target MUV_832 when using the MD approach; (b) ROC-AUC for target 
MUV_832 when using the 4DES approach; (c) ROC-AUC for target MUV_832 when using the MD+4DES 
combined approach; (d) ROC-AUC for target MUV_846 when using the MD approach; (e) ROC-AUC for 
target MUV_846 when using 4DES approach; (f) ROC-AUC for target MUV_846 when the using the 
MD+4DES combined approach; (g) ROC-AUC for target MUV_852 when using the MD approach; (h) 
ROC-AUC for target MUV_852 when using the 4DES approach; (i) ROC-AUC for target MUV_852 when 
using the MD+4DES combined approach. 
 

The EF analysis, shown in Table 20, complements the AUC evaluation by providing insight into 

the model's ability to prioritize active compounds in the top-ranking predictions. While AUC 

reflects the overall discriminative power of the models, EF focuses on the early retrieval of 

active compounds, a critical metric in virtual screening scenarios. Across the 17 MUV targets, 

MD, and the MD+4DES combination consistently outperform the 4DES descriptors alone in 

most cases, highlighting the added value of incorporating molecular descriptors into the 

model. Notably, targets such as MUV_832, MUV_846, and MUV_852 exhibit the highest EF 

values, particularly using the MD and MD+4DES models. For example, MUV_846 reaches an 

impressive EF value of 51.72 ± 15.84 with both the MD and the combined methods, making it 

the highest-performing target in the study. Similarly, MUV_832 shows an EF of 45.25 ± 12.09 
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using the same approaches. The combination of MD and 4DES descriptors demonstrates 

strong results, with some targets benefiting from the integration of both descriptor sets. In 

particular, for targets such as MUV_548 and MUV_737, the combined approach outperforms 

individual descriptor methods. 

Conversely, the 4DES method alone often struggles to achieve competitive EF values, 

particularly for targets like MUV_466, MUV_712, and MUV_713, MUV_733, MUV_737, 

MUV_858, and MUV_859, where zero EF values are observed. This suggests that the 4DES 

descriptors, when used in isolation, are less effective in identifying MUV-active compounds. 

However, MD alone also yielded zero EF values for two targets (MUV_692 and MUV_859). 

Overall, the combined MD+4DES method consistently perform well, maintaining higher EF 

values across most targets. This demonstrates that relying on either MD or 4DES alone 

increases the risk of suboptimal performance, whereas their combination enhances model 

effectiveness. 

 

Table 20. Summary of the 1%EF values for all 17 MUV targets, comparing the performance of models 
built using MD, 4DES, and the combined MD+4DES descriptor sets. 

MUV ID Target name MD 4DES MD+4DES 

MUV_466 S1P1 receptor* 16.16 ± 10.22 0 16.16 ± 10.22 

MUV_548 PKA* 16.16 ± 10.22 9.70 ± 12.93 19.39 ± 15.84 

MUV_600 SF1* 12.93 ± 6.47 9.70 ± 7.92 12.93 ± 6.47 

MUV_644 Rho Kinase2  25.86 ± 12.93  6.47 ± 12.93  25.86 ± 12.93 

MUV_652 HIV RT-RNase* 19.391 ±  6.47  6.47 ± 7.92 19.39 ±  6.47 

MUV_689 Eph rec. A4*  19.39 ± 12.09  6.47 ± 7.92  19.39 ± 12.09 

MUV_692 SF1* 0 3.23 ± 6.46  0 

MUV_712 HSP90* 25.85 ± 16.48 0 25.85 ± 16.48 

MUV_713 ER-ɑ-coact. bind.* 22.63 ± 7.92 0 22.63 ± 7.92 

MUV_733 ER-β-coact. bind.* 9.70 ± 12.93 0 9.70 ± 12.93 

MUV_737 ER-ɑ-coact. bind.* 9.70 ± 7.92 0 12.93 ± 6.47 

MUV_810 FAK* 3.23 ± 6.47  6.47 ± 7.92 3.23 ± 6.47 

MUV_832 Cathepsin G 45.25 ± 12.09  19.39 ± 12.09 45.25 ± 12.09 

MUV_846 FXIa* 51.72 ± 15.84 9.70 ± 7.92 51.72 ± 15.84 

MUV_852 FXIIa* 32.32 ± 10.22 3.23 ± 6.47 32.32 ± 10.22 
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MUV_858 D1 receptor* 9.70 ± 12.93 0 9.70 ± 12.93 

MUV_859 M1 receptor* 0 0 0 
*Abbreviations: Sphingosine-1-Phosphate receptor 1 (S1P1 receptor); Protein Kinase A (PKA); nuclear receptor Steroidogenic 
Factor 1 (SF1); Human Immunodeficieny Virus Reverse Transcriptase RNase (HIV RT-RNase); Eph receptor A4 (Eph rec. A4); 
Heat Shock Protein 90 (HSP90); Estrogen Receptor-ɑ-coactivator binding (ER-ɑ-coact. bind); Estrogen Receptor-β-coactivator 
binding (ER-β-coact. bind); Focal Adhesion Kinase (FAK); Coagulation Factor XIa (FXIa); Coagulation Factor XIIa (FXIIa); M1 
muscarinic receptor (M1 receptor); D1 dopamin receptor (D1 receptor). 
 

After analyzing the model performance through AUC and 1%EF for the 17 targets of the MUV 

dataset, it is essential to further refine our models. Since MD computes about 1,000 

descriptors per molecule, which is a high dimensional representation for molecules, we 

employed the SHAP method [254] to reduce the dimensionality and identify the 50 most 

significant descriptors for each target in the MD runs. 

This approach not only enhances our understanding of the importance of each descriptor in 

the model's decision-making process but also facilitates dimensionality reduction, thereby 

improving the interpretability and effectiveness of our predictive models when testing large 

dataset of compounds in virtual screening projects. By leveraging the insights provided by 

SHAP, we can focus on a more relevant set of descriptors, ultimately optimizing the overall 

performance of our models. 

Notably, SHAP was not applied to the 4DES descriptors, as the number of ES descriptors is 

already small (15).  

Consequently, we obtained new matrices for each target with a reduced set of descriptors, 

consisting of 50 MD and 15 4DES. We utilized these new matrices to rerun our model in a 

second round, allowing us to assess the impact of the selected descriptors on model 

performance more effectively. The Top50 descriptors list for each target is reported in 

Supplementary Material S1, Table S10 

 

6.4.4. Results on MUV set – II ROUND 

In this section, we present the results of the second round of testing, where the MUV dataset 

was re-evaluated using the ML model after selecting the top 50 descriptors based on SHAP 

analysis of the MD and MD+4DES runs from the first round (for top50 descriptors list for each 

target see Supplementary Material S1, Table S10). This approach aims to enhance model 

performance by focusing on the most relevant features for each target. In the second round 

of analysis, the AUC values reveal that the selection of the top 50 MDs has led to better results 
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across the 17 MUV targets. Table 21 makes it possible to appreciate the difference between 

AUC values across rounds I and II, highlighting the overall improvement in predictive accuracy 

as a result of the refined feature selection process. 

 

Table 21. Comparison of AUC values for MD, MD+4DES, and 4DES methods across rounds I and II. The 
second round uses a refined feature selection process based on the top 50 MD determined by SHAP 
analysis, showing overall improvement in average AUC scores compared to the first round, with 
minimal difference between the MD-only and MD+4DES methods. 
MUV 

ID 

MD 

(I ROUND) 

MD 

(II ROUND) 

MD+4DES 

(I ROUND) 

MD+4DES 

(II ROUND) 

4DES (I and II 

ROUND) 

MUV_466 0.747 ± 0.053 0.810 ± 0.071 0.749 ± 0 .050 0.805 ± 0.071 0.597 ± 0.105 

MUV_548 0.814 ± 0.085 0.867 ± 0.080 0.814 ± 0.086 0.892 ± 0.054 0.756 ± 0.102 

MUV_600 0.590 ± 0.075 0.797 ± 0.083 0.588 ± 0.079 0.773 ± 0.055 0.617 ± 0.076 

MUV_644 0.712 ± 0.127 0.769 ± 0.111 0.714 ± 0.119 0.835 ± 0.062 0.778 ± 0.045 

MUV_652 0.819 ± 0.080 0.799 ± 0.092 0.813 ± 0.083 0.755 ± 0.082 0.668 ± 0.103 

MUV_689 0.716 ± 0.024 0.818 ± 0.056 0.724 ± 0.022 0.804 ± 0.027 0.496 ± 0.113 

MUV_692 0.550 ± 0.098 0.613 ± 0.138 0.548 ± 0.105 0.608 ± 0.134 0.565 ± 0.037 

MUV_712 0.841 ± 0.065 0.866 ± 0.065 0.842 ± 0.063 0.865 ± 0.047 0.392 ± 0.105 

MUV_713 0.728 ± 0.070 0.797 ± 0.039 0.736 ± 0.065 0.819 ± 0.041 0.649 ± 0.124 

MUV_733 0.765 ± 0.162 0.769 ± 0.126 0.756 ± 0.163 0.757 ± 0.120 0.533 ± 0.048 

MUV_737 0.774 ± 0.088 0.870 ± 0.048 0.774 ± 0.090 0.850 ± 0.069 0.710 ± 0.081 

MUV_810 0.727 ± 0.108 0.737 ± 0.089 0.721 ± 0.112 0.741 ± 0.116 0.571 ± 0.129 

MUV_832 0.869 ± 0.060 0.953 ± 0.028 0.872 ± 0.052 0.958 ± 0.032 0.778 ± 0.124 

MUV_846 0.885 ± 0.057 0.910 ± 0.052 0.891 ± 0.056 0.910 ± 0.044 0.776 ± 0.066 

MUV_852 0.923 ±  0.025 0.913 ±  0.045 0.921 ±  0.029 0.911 ±  0.057 0.767 ± 0.066 

MUV_858 0.813 ±  0.050 0.798 ± 0.056 0.810 ±  0.057 0.814 ± 0.065 0.645 ± 0.148 

MUV_859 0.630 ± 0.069 0.687 ± 0.102 0.633 ± 0.072 0.692 ± 0.098 0.501 ± 0.072 

AVERAGE 0.759 ± 0.099 0.810 ± 0.082 0.763 ± 0.099 0.811 ± 0.084 0.635 ± 0.113 
 
The comparison of AUC scores between the first and second rounds reveals significant 

improvements in overall model performance. In the first round, the average AUC for the 

model using MD descriptors alone was 0.759, which increased to 0.810. Similarly, the 

MD+4DES method showed a rise from 0.763 to 0.811, indicating that selecting the top 50 MD 

descriptors effectively captured more relevant molecular features, thereby enhancing 
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predictive capability. Target-specific analysis further underscores these advancements, with 

notable improvements across various MUV targets. For instance, MUV_466 demonstrated a 

significant increase from 0.747 to 0.810 (MD) and from 0.749 to 0.805 (MD+4DES), while 

MUV_548 rose from 0.814 to 0.867 (MD) and from 0.814 to 0.892 (MD+4DES), indicating 

improved predictive performance. Targets such as MUV_832 and MUV_846 also showcased 

substantial gains, with AUCs increasing from 0.869 to 0.953 and from 0.885 to 0.910 for MD, 

respectively, and from 0.872 to 0.958 and from 0.891 to 0.910 for MD+4DES, respectively. 

Conversely, some targets exhibited mixed results; MUV_600 improved dramatically from 

0.590 to 0.797 (MD) and from 0.588 to 0.773 (MD+4DES), as well as MUV_644, MUV_689, 

MUV_692, MUV_713, and MUV_859. Notably, MUV_737 showed significant improvement, 

achieving AUC values of 0.870 (MD) and 0.850 (MD+4DES), from 0.774 in both cases. 

Meanwhile, MUV_712, MUV_733, MUV_810 exhibited slight enhancements, whereas 

MUV_652, MUV_852, and MUV_858 represent the only instances of decreased performance 

in the study, albeit with minimal decline. 

The accompanying histograms, in Figure 65, visually illustrate these results, highlighting the 

gaps in AUC scores for each target and effectively demonstrating the improvements made 

from the first to the second round. While Figure 66 illustrates the variation in AUC values 

across the 17 MUV targets for the three descriptor methods within the II Round. 

 

 
Figure 65. (a) Histograms showing the AUC values for MD and MD+4DES across both rounds of 
analysis; MD and MD+4DES in the first round are represented in blue and green, respectively, while 
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MD and MD+4DES in the second round in light blue and light green, respectively; (b) table highlighting 
the gaps in performance between the two rounds for MD and MD+4DES. 

 

 
Figure 66. AUC values for each of the 17 MUV targets across the three descriptor methods: MD (blue), 
4DES (yellow, where values are identical to the first round), and MD+4DES (green). The histogram 
illustrates the variation in model performance for each target. 
 

ROC-AUC for the best-performing targets are shown in Figure 67 (for the other targets, see 

Figures S33-S37 of the Supplementary Material). Specifically, this figure illustrates the ROC-

AUC for MUV_548, MUV_644, and MUV_832, comparing the performance across the MD, 

4DES, and combined MD+4DES descriptor sets. 
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Figure 67. (a) ROC-AUC for target MUV_548 when using the MD approach; (b) ROC-AUC for target 
MUV_548 when using the 4DES approach; (c) ROC-AUC curve for target MUV_548 when using the 
MD+4DES combined approach; (d) ROC-AUC curve for target MUV_644 when using the MD approach; 
(e) ROC-AUC curve for target MUV_644 when using 4DES approach; (f) ROC-AUC curve for target 
MUV_644 when using the MD+4DES combined approach; (g) ROC-AUC curve for target MUV_832 
when using the MD approach; (h) ROC-AUC curve for target MUV_832 when using the 4DES approach; 
(i) ROC-AUC curve for target MUV_832 when using the MD+4DES combined approach. 
 

Finally, Table 22 complements the AUC evaluation by providing the 1%EF analysis for each 

target within the MUV dataset across the Rounds I and II. 

 

Table 22. Comparison of 1%EF values for MD, MD+4DES and 4DES methods across Rounds I and II. 
MUV 

ID 

MD 

(I ROUND) 

MD 

(II ROUND) 

MD+4DES 

(I ROUND) 

MD+4DES 

(II ROUND) 

4DES (I and II 

ROUND) 

MUV_466 16.16 ± 10.22 19.39 ± 12.09 16.16 ± 10.22 12.93 ± 12.09 0 

MUV_548 16.16 ± 10.22 35.56 ± 18.85 19.39 ± 15.84 38.79 ± 16.48 9.70 ± 12.93 

MUV_600 12.93 ± 6.47 16.16 ± 10.22 12.93 ± 6.47 16.16 ± 10.22 9.70 ± 7.92 

MUV_644 25.86 ± 12.93 22.63 ± 16.48 25.86 ± 12.93 19.39 ± 12.09 6.47 ± 12.93 

MUV_652 19.391 ±  6.47 12.93 ± 12.09 19.39 ±  6.47 16.16 ± 10.22 6.47 ± 7.92 
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MUV_689 19.39 ± 12.09 12.93 ± 12.09 19.39 ± 12.09 12.93 ± 6.47 6.47 ± 7.92 

MUV_692 0 0 0 0 3.23 ± 6.46 

MUV_712 25.85 ± 16.48 16.16 ± 14.45 25.85 ± 16.48 22.62 ± 28.17 0 

MUV_713 22.63 ± 7.92 16.16 ± 0 22.63 ± 7.92 16.16 ± 10.22 0 

MUV_733 9.70 ± 12.93 9.70 ± 7.92 9.70 ± 12.93 12.93 ± 12.09 0 

MUV_737 9.70 ± 7.92 16.16 ± 14.46 12.93 ± 6.47 12.93 ± 12.09 0 

MUV_810 3.23 ± 6.47 16.16 ± 17.70 3.23 ± 6.47 19.39 ± 15.84 6.47 ± 7.92 

MUV_832 45.25 ± 12.09 58.18 ± 7.91 45.25 ± 12.09 61.41 ± 6.46 19.39 ± 12.09 

MUV_846 51.72 ± 15.84 54.95 ± 7.92 51.72 ± 15.84 54.95 ± 7.92 9.70 ± 7.92 

MUV_852 32.32 ± 10.22 45.25 ± 18.85 32.32 ± 10.22 45.25 ± 18.85 3.23 ± 6.47 

MUV_858 9.70 ± 12.93 12.93 ± 12.09 9.70 ± 12.93 16.16 ± 10.22 0 

MUV_859 0 6.47 ± 7.92 0 9.70 ± 7.92 0 
 

The results indicate several changes compared to the earlier data in Round I. Significant 

improvements in EF values can be observed for certain targets. 

For example, MUV_548 showed a notable increase in EF value, rising from 16.16 to 35.56 in 

MD alone, and from 19.39 to 38.79 for the combined MD+4DES model, highlighting a 

substantial enhancement in the model's ability to identify active compounds in the top-

ranked predictions. Similarly, MUV_832 exhibited an increase from 45.25 to 58.18 and 61.41 

± 6.46, for MD alone and MD+4DES, respectively, indicating improved performance during 

the second round of experiments. Overall, the combined MD+4DES model continues to 

outperform individual descriptor models across multiple targets, though some exceptions 

indicate variability in its effectiveness depending on the specific target.  

From AUC and 1%EF analyses, we can observe overall better performance in Round II, with 

improvements achieved for 14 out of 17 targets in the MD method (excluding MUV_652, 

MUV_852, and MUV_858) and for 15 out of 17 targets in the MD+4DES method (excluding 

MUV_652 and MUV_852). 

After these analyses, we further employed the SHAP method to identify the 25 most 

significant descriptors for each target. This additional dimensionality reduction was pursued 

for two reasons: first, to identify more redundant features, making the representation as 

compact as possible, and second, to improve the performance by increasing ROC-AUC and EF 
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values. A smaller descriptor set is particularly useful when working with very large virtual 

screening datasets.  

This process resulted in new matrices for each target, each consisting of 25 MD. We then 

utilized these matrices to rerun our model, evaluating it using a 3-fold cross-validation 

approach. This evaluation was conducted by splitting the MUV targets in two different ways: 

by numeric order and by structural identity. The lists of the top 25 descriptors for each target, 

derived from both the MD alone and the combined MD+4DES approaches, are reported in 

Supplementary Material S1, Table S11. 

 

6.4.5. Top 25 Molecular Descriptors 
 
The MD that appeared most frequently in the top 25 across various targets are listed in Table 

23. These descriptors play a crucial role in characterizing the physicochemical properties of 

the molecules and in enhancing the predictive capabilities of the model. Among the most 

significant descriptors are those related to the Spatial, Electrostatic, Spectral, and Topological 

properties of the molecules, all of which greatly contribute to classifying molecules as either 

active or inactive.  

 
Table 23. List of most frequent MD the top 25 across various targets, categorized by their type 
(topological, electrostatic, spatial, and spectral). 

MD Class MD code MD name 
TOPOLOGICAL 
DESCRIPTOR 58000000 Average Information content (order 1) 

TOPOLOGICAL 
DESCRIPTOR 128000000 nhigh lowest atom weighted BCUTS 

TOPOLOGICAL 
DESCRIPTOR 130000000 nhigh lowest partial charge weighted BCUTS 

TOPOLOGICAL 
DESCRIPTOR 137000000 CarbonType-C1SP2 

TOPOLOGICAL 
DESCRIPTOR 139000000 CarbonType-C3SP2 

ELECTROSTATIC 
DESCCRIPTOR 167000000 RNCS Relative negative charged SA 

(SAMNEG*RNCG) (Zefirov PC) 
ELECTROSTATIC 
DESCCRIPTOR 174000000 Min partial charge (Zefirov) for atoms for atom H 

ELECTROSTATIC 
DESCCRIPTOR 177000000 Min partial charge (Zefirov) for all atom types 

ELECTROSTATIC 
DESCCRIPTOR 605000000 eccentricConnectivityIndex 
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TOPOLOGICAL 
DESCRIPTOR 1365000000 [CD2H](=*)-* 

TOPOLOGICAL 
DESCRIPTOR 1368000000 [CD3H0](=*)(-*)-* 

TOPOLOGICAL 
DESCRIPTOR 633000000 [ND2H](-*)-* 

TOPOLOGICAL 
DESCRIPTOR 1372000000 [ND2H0](=*)-* 

TOPOLOGICAL 
DESCRIPTOR 639000000 [ND3H0](-*)(-*)-* 

TOPOLOGICAL 
DESCRIPTOR 641000000 [N,nD3H0](:*)(:*)-,:* 

TOPOLOGICAL 
DESCRIPTOR 645000000 [OD2H0](-*)-* 

TOPOLOGICAL 
DESCRIPTOR 646000000 [O,oD2H0](:*):* 

TOPOLOGICAL 
DESCRIPTOR 1375000000 [SD1H0]=* 

TOPOLOGICAL 
DESCRIPTOR 690000000 LargestPISystem 

TOPOLOGICAL 
DESCRIPTOR 693000000 longestAliphaticChain 

TOPOLOGICAL 
DESCRIPTOR 716000000 PetitJeanShapeGeometrical 

TOPOLOGICAL 
DESCRIPTOR 723000000 NAromaticRings 

SPATIAL 
DESCRIPTOR 884000000 Average Broto-Moreau autocorrelation  lag  4  

weighted by mass 
SPATIAL 

DESCRIPTOR 902000000 Average Broto-Moreau autocorrelation  lag  4  
weighted by Sanderson electronegativities 

SPATIAL 
DESCRIPTOR 928000000 Average Broto-Moreau autocorrelation  lag  3  

weighted by I-state 
SPATIAL 

DESCRIPTOR 945000000 Centered Broto-Moreau autocorrelation  lag  2  
weighted by mass 

SPATIAL 
DESCRIPTOR 987000000 Centered Broto-Moreau autocorrelation  lag  8  

weighted by first ionization potential 

SPATIAL 
DESCRIPTOR 1040000000 Average centered Broto-Moreau autocorrelation  

lag  7  weighted by polarizabilities 
SPATIAL 

DESCRIPTOR 1113000000 Moran autocorrelation  lag  6  weighted by I-state 

SPATIAL 
DESCRIPTOR 1119000000 Geary autocorrelation  lag  4  weighted by charges 

SPATIAL 
DESCRIPTOR 1165000000 Geary autocorrelation  lag  2  weighted by I-state 
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SPECTRAL 
DESCRIPTOR 1182000000 Smallest absolute eigenvalue of Burden modified 

matrix - n 3  weighted by relative mass 

SPECTRAL 
DESCRIPTOR 1185000000 Smallest absolute eigenvalue of Burden modified 

matrix - n 6  weighted by relative mass 

SPECTRAL 
DESCRIPTOR 1234000000 Smallest absolute eigenvalue of Burden modified 

matrix - n 7  weighted by relative polarizabilities 

SPECTRAL 
DESCRIPTOR 1253000000 Largest absolute eigenvalue of Burden modified 

matrix - n 2  weighted by relative I-state 

SPECTRAL 
DESCRIPTOR 1256000000 Largest absolute eigenvalue of Burden modified 

matrix - n 5  weighted by relative I-state 

SPECTRAL 
DESCRIPTOR 1261000000 Smallest absolute eigenvalue of Burden modified 

matrix - n 2  weighted by relative I-state 
 

Topological Descriptors focus on the molecular structure and capture connectivity within the 

molecules without considering the spatial arrangement. The Average Information Content 

(order 1) evaluates atomic diversity based on connectivity, reflecting molecular complexity. 

BCUT descriptors, such as nhigh lowest atom weighted and nhigh lowest partial charge 

weighted, highlight key features like atomic and charge distributions. CarbonType descriptors 

classify carbon atoms based on hybridization, while specific substructures indicated as SMART 

represent distinct atomic groups. Other relevant descriptors, such as LargestPISystem and 

NAromaticRings, focus on the presence and extent of conjugated or aromatic systems, 

whereas longestAliphaticChain measures the length of unbranched carbon chains. 

Additionally, PetitJeanShapeGeometrical evaluates molecular shape and symmetry, providing 

essential insights into molecular architecture. 

Spatial Descriptors, including Broto-Moreau, Moran, and Geary descriptors, evaluate how 

specific molecular properties (e.g., mass, charge, electronegativity) are distributed and 

correlated throughout the molecule. Broto-Moreau Autocorrelation Descriptors measure the 

correlation of molecular properties (such as mass, electronegativity, polarizability, ionization 

potential) between atoms separated by a specific number of bonds (lag). Depending on the 

weighting property, they can capture how these properties vary locally (short lag) or over 

longer molecular distances (larger lag), providing insights into structural and electronic effects 

within the molecule. 

Moran Autocorrelation Descriptors are statistical measures that quantify the autocorrelation 

of molecular properties at different points within the molecular graph. Weighted by 
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properties like I-state (intrinsic state), they reflect how a specific property is distributed 

throughout the molecule, focusing on whether similar values are clustered or spread apart. 

Geary Autocorrelation Descriptors also spatial correlation measures but focus more on the 

dissimilarity between neighboring atoms’ properties. Like Moran descriptors, they are 

weighted by specific molecular properties (e.g., charges or I-state) but emphasize local 

variations and differences between atoms, offering a complementary view to Moran’s more 

global correlation. 

Spectral descriptors are derived from the eigenvalues of the Burden modified matrix, which 

represents the electronic and structural properties of a molecule. The matrix is constructed 

using atomic properties (such as mass, polarizability, or intrinsic valence state) and bond 

orders between atoms. These descriptors capture important molecular characteristics by 

analyzing both the smallest and largest eigenvalues of this matrix. 

The Smallest Absolute Eigenvalue of Burden Modified Matrix descriptors reflect the lower-

energy electronic interactions within the molecule, while the Largest Absolute Eigenvalue of 

Burden Modified Matrix descriptors represent the higher-energy interactions within the 

molecule.  

Electrostatic descriptors also play a crucial role in understanding molecular interactions. For 

example, the electrostatic descriptor Relative Negative Charged Surface Area quantifies the 

surface area of negatively charged atoms, influencing chemical reactivity and physical 

properties. The minimum partial charges for hydrogen and all atom types, as defined by 

Zefirov, provide insight into charge distribution, and help identify reactive sites within the 

molecule.  

 

6.4.6. 3-Fold Cross-Validation: Evaluating Model Performance with Top 

Descriptors 

In order to thoroughly evaluate the performance of the model built using the top 25 molecular 

descriptors, we employed two distinct methods for splitting the MUV targets during the 3-

fold cross-validation process. This approach allows for a more comprehensive assessment of 

the models' predictive capabilities under varying data distributions. The first method utilized 

numeric order (according to the target’s MUV ID) for target splitting, while the second method 

was based on structural identity (according to FASTA sequences). Each method provides 
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unique insights into how the selected descriptors influence model performance, which will be 

discussed in the following subsections. The aim of these splitting strategies is to understand 

whether reducing the features and utilizing those involved in a specific subset of targets 

(training set) can affect performance when the model is subsequently evaluated on a different 

subset of targets (test set). 

 

6.4.6.1. Insights from 3-Fold Cross-Validation with Numeric Order Splitting 

To evaluate the model performance using the numeric order splitting method, the MUV 

targets were divided into three distinct groups based on their MUV IDs. The first group 

comprised of 6 targets: MUV_466, MUV_548, MUV_600, MUV_644, MUV_652, and 

MUV_689 (indicated in yellow in Figure 68). The second group included 6 targets which were 

MUV_692, MUV_712, MUV_713, MUV_733, MUV_737, and MUV_810 (indicated in green in 

Figure 68). Lastly, the third group consisted of the remaining 5 MUV targets: MUV_832, 

MUV_846, MUV_852, MUV_858, and MUV_859 (indicated in red in Figure 68). This partition 

allowed us to create different scenarios for training and test sets for the 3-fold cross-

validation process. 

The training and testing scenarios were as follows: 

1. Training Set: Group 1 + Group 2 - Test Set: Group 3  

2. Training Set: Group 1 + Group 3 - Test Set: Group 2 

3. Training Set: Group 2 + Group 3 - Test Set: Group 1 
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Figure 68. Overview of the MUV target division into three groups based on MUV IDs and the 
corresponding combinations used for training and test sets during the 3-fold cross-validation. Group 
1 is highlighted in yellow, while groups 2 and 3 in green and red, respectively. 
 

For each of the 17 MUV targets, we generated two distinct lists of 25 descriptors using the 

SHAP method based on the top 50 descriptors from the previous step. The first list was 

derived solely from MD, capturing the most relevant features identified through the MD-

based analysis. The second list was obtained by combining MD with the 15 4DES descriptors, 

leading to a refined selection of features that integrate both MD and 4DES information (lists 

reported in Supplementary Material S1, Table S11). We computed the Reciprocal Rank (RR) 

for both descriptor lists across each training set. RR is a metric used to evaluate the position 

of an item within a ranked list. It is calculated as the inverse of the item's rank position. The 

idea is to give more weight to descriptors that appear higher (i.e., have lower rank numbers) 

in the list. This is particularly useful when aggregating rankings from multiple lists and identify 

descriptors that consistently perform well across different models or methods. 

This calculation not only allowed us to assess the consistency and rank correlation between 

the descriptors identified by the MD and MD+4DES methods, but also helped to identify which 

descriptors appeared most frequently across the lists. This led to two diverse ranking for each 

training set (Calculations are available at Supplementary Material S2). 

With these descriptor lists in hand, we proceeded to evaluate the model performance on the 

TEST sets across different experimental scenarios. In the first set of experiments, EXPERIMENT 

1 (MD list), we calculated the AUC values for the TEST sets by using the descriptors from the 

MD list. For EXPERIMENT 2 (MD list ⋃ MD+4DES list), we employed a different strategy by 

utilizing all the descriptors from both lists, ensuring that no descriptor was counted more than 

once. This meant that we included all unique descriptors as well as those that were shared 

between the MD and MD+4DES lists, but we avoided duplicating any descriptor that appeared 

in both lists. This approach allowed us to assess the overall model performance on the test 

sets based on a comprehensive set of descriptors, incorporating both common and unique 

features without redundancy. In EXPERIMENT 3 (MD+4DES list) we utilized descriptors from 

the MD+4DES list, while for EXPERIMENT 4 (MD list ⋂ MD+4DES list), just descriptors in 

common between MD list and MD+4DES list  

In each experiment we used the descriptors in two ways, once alone e once combined with 

4DES. Results for each Experiment are provided in Supplementary Material S3 



148 
 

 

6.4.6.2. Insights from 3-Fold Cross-Validation with Structural Identity 

Splitting 

To evaluate the model performance using the structural identity splitting method, the MUV 

targets were divided into three distinct groups based on their FASTA sequence. 

This process was carried out in multiple steps. Step 1 involved generating a linkage 

matrix using the “average” method, also known as UPGMA (Unweighted Pair Group Method 

with Arithmetic mean). The linkage matrix was constructed by calculating pairwise distances 

between all targets based on their FASTA sequences, which were then averaged to determine 

the distances between clusters. This step is critical in hierarchical clustering, as it provides a 

numerical representation of the identity between sequences, which is used to progressively 

merge clusters of targets. Percentage identity values, calculated using MOE (Molecular 

Operating Environment), are presented in the identity matrix shown in the Figure 69. Each 

value represents the degree of identity between two targets, with higher values (ranging up 

to 100) indicating a stronger structural identity, while lower values indicate more distinct 

sequences. 

 

 
Figure 69. Identity matrix illustrating the pairwise similarity values between MUV targets based on 
their FASTA sequences. 
 

Step 2 involved forming flat clusters starting from the linkage matrix. 

Using the Scipy hierarchical clustering function known as “fcluster function” with the criterion 

set to 'distance' and a threshold value of 0.1, the dendrogram generated in Step 1 was cut to 
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create distinct clusters. The distance criterion d=0.1 was chosen to ensure that clusters 

formed include targets that have an identity level above this threshold, effectively grouping 

highly similar targets together. This allows for the formation of three main clusters, where 

each cluster contains targets that are similar based on this distance cutoff. 

Step 3 involved forming flat clusters from the linkage matrix with the goal of limiting the total 

number of clusters. In this step, the fcluster function was used again, but with the criterion 

set to “maxclust” and the threshold value set to 5. This ensured that no more than five 

clusters were formed. The aim was to create a broader categorization of the targets, providing 

an additional layer of grouping that can be useful for comparing model performance across 

different levels of clustering resolution. 

These two methods led to divide the 17 targets into three main clusters, with the goal of 

evaluating how the model performs across different levels of structural identity. This 

structural identity splitting allows for an unbiased validation process, ensuring that targets 

with high similarity are grouped together, which facilitates a more rigorous assessment of the 

model's predictive capabilities across structurally similar and dissimilar targets. Essentially, 

this step can be seen as a generalizability assessment to see how MD perform when reducing 

the similarity between training and testing compounds. 

The first group comprised of targets MUV_548, MUV_600, MUV_644, MUV_689, MUV_692, 

and MUV_810 (indicated in purple in Figure 70). The second group included targets 

MUV_466, MUV_652, MUV_712, MUV_858, and MUV_859 (indicated in orange in Figure 70). 

Lastly, the third group consisted of targets MUV_713, MUV_733, MUV_737, MUV_832, 

MUV_846 and MUV_852 (indicated in blue in Figure 70). This partition allowed us to create 

different protocols of training and test sets for the 3-fold cross-validation process. 

The combinations were as follows: 

1. Training Set: Group 1 + Group 2 - Test Set: Group 3  

2. Training Set: Group 1 + Group 3 - Test Set: Group 2 

3. Training Set: Group 2 + Group 3 - Test Set: Group 1 

 



150 
 

 
Figure 70. Overview of the MUV target division into three groups based on FASTA sequences and the 
corresponding combinations used for training and test sets during the 3-fold cross-validation. Group 
1 is highlighted in purple, while groups 2 and 3 in orange and blue, respectively. 
 

As described in section 6.4.5.1., we computed the reciprocal rank for both descriptor lists 

(Supplementary Material S1, Table S11) across each training set, resulting in six rankings (two 

per target), as detailed in Supplementary Material S4. Using these descriptor lists, we 

evaluated the model performance on the TEST sets under identical experimental scenarios 

described earlier. In each experiment, descriptors were applied both independently and in 

combination with 4DES, allowing for a comprehensive performance assessment across 

different experimental protocols. Detailed results are provided in Supplementary Material S5, 

ut the next section contains a summary of the important results. 

 

6.4.7. Analysis of results across different Experimental scenarios 

To analyze the results of the experiments conducted using the two splitting methods (numeric 

order splitting and structural identity splitting), we can compare the average model 

performance in terms of AUC across the different experimental scenarios, which is depicted 

in Table 24. 

 
Table 24. Average AUC values for model performance across different experimental scenarios, 
comparing numeric order splitting and structural identity-based splitting methods. Results are shown 
for each experiment, including the use of different descriptor lists (MD, MD+4DES, their union, and 
their intersection).  
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EXPERIMENTS 
Structural Identity 

Splitting 

Numeric Order 

Splitting 

Experiment 1 MEAN VALUES MEAN VALUES 

(MD list) 0.703 ± 0.130 0.695 ± 0.108 

MD list + 4DES 0.715 ± 0.125 0.707 ± 0.113 

Experiment 2 MEAN VALUES MEAN VALUES 

(MD list ⋃ MD+4DES list) 0.750 ± 0.112 0.724 ± 0.112 

(MD list ⋃ MD+4DES list) + 4DES 0.750 ± 0.120 0.730 ± 0.107 

Experiment 3 MEAN VALUES MEAN VALUES 

(MD+4DES list) 0.742 ± 0.118 0.695 ± 0.147 

(MD+4DES list) + 4DES 0.749 ± 0.116 0.725 ± 0.110 

Experiment 4 MEAN VALUES MEAN VALUES 

(MD list ⋂ MD+4DES list) 0.664 ± 0.123 0.652 ± 0.123 

(MD list ⋂ MD+4DES list) + 4DES 0.723 ± 0.100 0.697 ± 0.114 

 
Observing the mean values obtained, we note that the structural identity-based splitting 

tends to yield slightly better results compared to numeric order splitting in all experiments. 

This suggests that splitting based on structural identity is more suitable for capturing the 

relationships between targets, thereby improving the predictive ability of the model. 

Experiment 1 (MD list) shows very similar results between the two approaches, with an 

average AUC value of 0.703 ± 0.130 for structural identity and 0.695 ± 0.108 for numeric 

order. This indicates that using MD descriptors alone is not significantly affected by the 

splitting method. However, the inclusion of 4DES descriptors (MD list + 4DES) slightly 

improves the performance for both approaches, with a greater advantage seen in the 

structural identity-based splitting. In Experiment 2, where all descriptors from the MD and 

MD+4DES lists were combined, we observe that the structural identity-based approach 

achieved a mean value of 0.750 ± 0.112, higher than 0.724 ± 0.112 obtained with numeric 

order splitting. Including the 4DES descriptors further improved performance in both cases, 

suggesting that including 4D shape based molecular descriptors lead to better model 

discriminative ability between targets. In Experiment 3, where descriptors from the MD+4DES 
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list were used, structural identity-based splitting continued to show an advantage over 

numeric order splitting, with a mean value of 0.742 ± 0.118 compared to 0.695 ± 0.147. Again, 

using 4DES descriptors improved performance, resulting in 0.749 ± 0.116 for structural 

identity versus 0.725 ± 0.110 for numeric order. Finally, Experiment 4, which uses the 

intersection of the two descriptor lists, showed a mean value of 0.664 ± 0.123 versus 0.652 ± 

0.123. Including the 4DES descriptors improved both approaches.  

The structural identity-based splitting introduces greater complexity to the model, as it 

involves training on certain groups of structures and testing on entirely different ones. This 

requires the model to generalize across different structural identities, which is a more 

challenging scenario compared to numeric order splitting. Despite this added complexity, the 

structural identity-based approach consistently outperforms the numeric order splitting, 

demonstrating superior predictive performance in all experimental scenarios and indicating 

the power of our descriptors when combined with SVM model.  

Additionally, among all experiments, Experiment 2 consistently achieves the best results, 

indicating that the combination of all descriptors from the MD and MD+4DES lists provides 

the most comprehensive and informative feature set for model prediction. 

 

6.4.8. Model Performance examination on LIT-PCBA dataset 

To further assess the robustness and generalizability of the model developed using the top 

molecular descriptors, we conducted an evaluation on the LIT-PCBA dataset. This dataset 

comprises a diverse array of biological targets and serves as an excellent benchmark for 

evaluating predictive models in the context of drug discovery and molecular interactions 

interactions as it contains less bias in comparison with MUV and other datasets like DUD-E. 

We employed the same experimental framework, as outlined in previous sections, and tested 

the model on descriptors used during Experiment 2 on a subset of LIT-PCBA. In details we 

decided to utilize a target from LIT-PCBA (MAPK1) for which experimental and comparable 

data were already available in literature, and other two targets (PPARG and TP53) for 

evaluating performance. The number of active and inactive compounds within Validation and 

Training sets for each MAPK1, PPARG, and TP53 are provided in Table 25. 

 

Table 25. LIT-PCBA Subset of 3 targets utilized in the final evaluation of the model. 
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TARGET ID TARGET NAME 

ACTIVES INACTIVES 

Validation 

set 

Training 

set 

Validation 

set 

Training 

set 

PPARG 
Peroxisome proliferator-

activated receptor γ 
6 21 1,302 3,909 

TP53 
Cellular tumor 

antigen p53 
19 60 1,042 3,126 

MAPK1 
Mitogen-activated 

protein kinase 1 
77 231 15,657 46,972 

 

Unlike previous experiments where a 5-fold cross-validation was employed, the evaluation 

on the LIT-PCBA dataset did not require such an approach. This is because the LIT-PCBA 

dataset already provides a predefined split into training and validation sets, which we used 

for the model assessment. This modification to our script allowed us to directly use the 

provided partitioning, ensuring consistency with the standard practices for this dataset. 

AUC and 1%EF values for the LIT-PCBA subset, when using MD alone, 4DES alone and the 

combined MD+4DES approach, are shown in Table 26. 

 

Table 26. Performance of the model on the LIT-PCBA dataset for three targets (MAPK1, PPARG, TP53), 
showing AUC and 1%EF values for three descriptor approaches: MD, 4DES and MD+4DES combined. 

TARGET ID MD 4DES MD+4DES 

 AUC 1%EF AUC 1%EF AUC 1%EF 

PPARG 0.762 16.654 0.658 0 0.754 16.654 

TP53 0.700 5.072 0.402 0 0.700 5.072 

MAPK1 0.740 73.595 0.626 6.456 0.727 72.304 

 

For MAPK1, the model achieved an AUC of 0.740 with the MD approach, 0.626 with 4DES, 

and 0.727 with the combined MD+4DES method. These results demonstrate the model’s 

robustness, particularly with the MD descriptor, which yielded the best predictive 

performance. Additionally, the model showed impressive values for 1%EF with 73.595 for MD 

and 72.304 for MD+4DES. This indicates a strong ability to enrich active compounds early in 

the ranking process, which is crucial in virtual screening.  These results align well with the 
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literature, where top-performing models like EGT+TGT-At-DP [255] shows an AUC comparable 

of 0.743 (similar to ours), while other models, such as GLAM [256], TransformerCPI [257], and 

DGraphDTA [258] are underperforming with AUC values of 0.730, 0.683, and 0.665, 

respectively. It should be noted that our approach only utilized SVM with default parameters, 

unlike the results reported in [256-258] where they used sophisticated deep learning methods. 

Hence, we hypothesize that a more sophisticated ML classifier would help in boosting the 

results reported here. 

For PPARG, the model achieved an AUC of 0.762 with MD, with a high 1%EF of 16.654. This is 

a strong result, indicating that the model successfully enriched the most active compounds 

early in the ranking. The combined MD+4DES approach produced a very similar AUC (0.754) 

and the same 1%EF value, implying that both methods were effective. These values show a 

solid ability to identify active compounds for PPARG, though the performance could still be 

benchmarked against the top models in literature.  

For TP53, the model achieved an AUC of 0.700 with MD, which is fairly strong, and a moderate 

1%EF of 5.072 for both MD alone and MD+4DES combined.  ROC-AUC for PPARG, TP53 and 

MAPK1 are shown in Figure 71. 
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Figure 71. (a) ROC-AUC for target PPARG when using the MD approach; (b) ROC-AUC for target PPARG 
when using the 4DES approach; (c) ROC-AUC for target PPARG when using the MD+4DES combined 
approach; (d) ROC-AUC for target TP53 when using the MD approach; (e) ROC-AUC for target TP53 
when using 4DES approach; (f) ROC-AUC for target TP53 when the using the MD+4DES combined 
approach; (g) ROC-AUC for target MAPK1 when using the MD approach; (h) ROC-AUC for target 
MAPK1 when using the 4DES approach; (i) ROC-AUC target MAPK1 when using the MD+4DES 
combined approach. 
 

In summary, the model demonstrated a good performance for MAPK1 and PPARG, yielding 

competitive, if not better than literature, AUC and 1%EF values. This suggests a high capacity 

for accurate early enrichment of active compounds, which is crucial in virtual screening 

efforts. TP53, on the other hand, showed a solid yet less impressive performance compared 

to the other two targets. This could be attributed to the inherent complexity of this protein, 

which is known for its challenging ligand-binding properties. 

The MD approach consistently performed the best, particularly for MAPK1, where it achieved 

the highest AUC and 1%EF scores, closely aligned with top-performing models from the 

literature. The MD+4DES combination offered slight improvements for some targets but was 

generally not as robust as MD. 4DES alone performs poorly when used for LIT-PCBA, 
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reinforcing the superiority of molecular descriptors (MD) in capturing relevant features for 

predicting active compounds across these targets.  
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6.5. Conclusions and Future Perspectives 

ML has become a powerful tool in drug discovery, enabling the analysis of large datasets to 

predict molecular activity and identify promising therapeutic candidates. A crucial aspect of 

applying ML in this field is the accurate representation of molecular structures, as this directly 

impacts the model's predictive performance. 

Results reported in this section has demonstrated the effectiveness of combining MD and 

4DES for predicting molecular activity against specific biological targets. The results show that 

integrating molecular descriptors with electrostatic and spatial descriptors improves the 

predictive capabilities of ML models, increasing both the AUC and the EF compared to using 

individual methods. The performance analysis of the proposed approach, through a series of 

experiments on benchmark datasets (such as MUV and LIT-PCBA), highlighted the importance 

of feature selection. Indeed, the most significant finding is the impact of feature reduction on 

model performance. The use of SHAP significantly enhanced model AUC and 1%EF values, 

confirming that eliminating redundant or non-informative descriptors can increase the 

model's discriminative power. By reducing the feature set to only the most relevant 

descriptors, the model not only became more efficient but also exhibited marked 

improvements in predictive accuracy. 

The analysis conducted on different three-fold cross-validation scenarios (based on numerical 

order and structural identity) suggest that the structure-based splitting approach is more 

effective in achieving high generalizability of our proposed ML approach. Finally, the 

application of the model on the LIT-PCBA dataset showed promising results, highlighting the 

effectiveness of the proposed framework for advancing virtual screening in drug discovery. 

There are several promising research avenues for future exploration. In this vein, future work 

includes experimenting with additional targets from the LIT-PCBA dataset, as well as other 

datasets, to validate and expand the applicability of the proposed MD descriptor and ML 

model. Moreover, other ML frameworks beyond SVM could be developed to assess their 

performance against the current model. Furthermore, there is potential for identifying new 

molecular descriptors that could be integrated with the existing ES descriptors, enriching the 

feature space, and potentially leading to even more robust predictive models.  
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6.6. Materials and Methods 

6.6.1. Benchmark Datasets 

In this study, two benchmark datasets were used: the MUV dataset [221] and the LIT-PCBA 

dataset [222]. The MUV dataset includes assay data for 17 biological targets designed to 

minimize analogue bias and artificial enrichment, thus providing a reliable foundation for 

training, and validating the ML models. The LIT-PCBA dataset was used for evaluating the 

generalizability of the model, as it presents challenges related to diverse biological targets 

and minimized potency distribution biases among active compounds. 

 
6.6.2. Molecular Representation 

Two sets of descriptors were employed to represent the molecular structures in the ML 

models: MD and 4DES. MD were calculated using the MOLDESTO software [108], capturing 

approximately 1,000 physicochemical properties, such as topological, geometric, electronic, 

and thermodynamic features. 4DES, on the other hand, were generated using EShape [220]. 

These descriptors provide complementary data that help improve the classification of active 

and inactive compounds. 

 
6.6.3. Features Selection 

To optimize the performance of the ML models, feature selection was carried out using SHAP 

[254]. This approach identified the most important descriptors for each target, reducing the 

dimensionality of the feature set and enhancing interpretability. Roughly speaking, SHAP 

works by calculating the contribution of each feature to a model's prediction using concepts 

from game theory. It assigns each feature an importance value that represents how much 

that feature changes the utilized ML model’s output when included, averaged over all possible 

combinations of other features. We direct interested readers to see [254] for a detailed 

mathematical description on how SHAP works. We used SHAP in two rounds of analysis, 

selecting 50 and then 25 top most contributing descriptors based on their importance, to 

refine and improve model’s performance. 
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6.6.4. Machine Learning Model Development 

A SVM model was developed to classify compounds as active or inactive against specific 

biological targets. The SVM model was chosen for its efficiency in handling high-dimensional 

datasets and binary classification tasks. The performance of the model was evaluated using 

5-fold cross-validation on the MUV dataset. Stratified cross-validation ensured that each fold 

contained a balanced distribution of active and inactive compounds. The model was further 

refined using the selected top descriptors, and a 3-fold cross-validation approach was 

employed to test the robustness and generalizability of the model under different 

experimental conditions. 

6.6.5. Evaluation Metrics 

The ROC curve, the AUC, and the 1%EF were used to evaluate the performance of the model. 

The AUC provides an indication of the model's overall discriminative ability, while the 1%EF is 

a critical metric in virtual screening, assessing the model's capability to prioritize active 

compounds among the top-ranked predictions. The enrichment factor was calculated for the 

top 1% of predictions, giving insights into the effectiveness of the model in early retrieval of 

active compounds. 

6.6.6. Structural Identity Splitting 

The structural identity splitting was executed in multiple steps to ensure effective clustering 

of similar sequences, as follows below: 

6.6.6.1. Step 1: Linkage Matrix Generation 

The linkage matrix was built by utilizing the "average" method, also known as the UPGMA. 

This involved calculating pairwise distances between all MUV targets based on their FASTA 

sequences. The average distance between clusters was determined, providing a numerical 

representation of the identity between sequences. Higher percentage identity values, 

calculated using MOE, indicate greater structural similarity, while lower values reflect more 

distinct sequences.  
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6.6.6.2. Step 2: Forming Flat Clusters 

Next, the fcluster function, from the SciPy library in python, was used to form flat clusters 

based on the linkage matrix generated in Step 1. The criterion was set to “distance”, with a 

threshold value of 0.1. This threshold was chosen to ensure that only targets with an identity 

level above this cutoff were grouped together. This method facilitated the formation of three 

main clusters. 

6.6.6.3. Step 3: Limiting Cluster Formation 

To further refine the clustering approach, the fcluster function was employed again, this time 

setting the criterion to "maxclust" with a maximum threshold of 5 clusters. This adjustment 

aimed to limit the total number of clusters formed, providing a broader categorization of the 

targets while still enabling effective comparisons of model performance across different 

levels of structural identity. 

6.6.7. Reciprocal Rank 

For each of the 17 MUV targets, we calculated the RR for two distinct lists of 25 descriptors 

derived from the SHAP method. The RR for each descriptor was computed as the inverse of 

its rank position in the list. This approach allowed us to emphasize the importance of higher-

ranked descriptors and assess their consistency across different ranking methods. We then 

aggregated the RR values for each descriptor across both lists to identify those that appeared 

most frequently at the top of the rankings, facilitating a comprehensive evaluation of their 

predictive significance. 

6.6.8. Validation on the LIT-PCBA Dataset 

The model developed using the MUV dataset was validated on the LIT-PCBA dataset to assess 

its ability to generalize to unseen targets. The LIT-PCBA dataset provided predefined training 

and validation sets, which allowed for consistent evaluation of the model without the need 

for cross-validation. Performance was evaluated for specific targets, including MAPK1, 

PPARG, and TP53, which offered insights into the robustness and effectiveness of the 

developed model in addressing complex virtual screening challenges.  
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Supplementary Figures 

 
Supplementary Figure S1. 2D ligand interaction maps for compounds 57, 58, and 60. 
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Supplementary Figure S2. 1HNMR of compound 45a (DMSO-d6). 
 

Supplementary Figure S3. 13CNMR of compound 45a (DMSO-d6). 
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Supplementary Figure S4: 1HNMR compound 45b (DMSO-d6). 

 

 
Supplementary Figure S5: 13CNMR compound 45b (DMSO-d6). 
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Supplementary Figure S6: 1HNMR compound 45c (DMSO-d6). 

 

 
Supplementary Figure S7: 13CNMR compound 45c (DMSO-d6). 
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Supplementary Figure S8: 1HNMR compound 45d (DMSO-d6). 

 

 
Supplementary Figure S9: 13CNMR compound 45d (DMSO-d6). 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0
f1	(ppm)

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

2800000

3000000

3200000

3400000

S351.1.1.1r	—	S351	1H	dmso

2
.9
0

2
.0
7

0
.8
8

0
.7
7

3
.2
4

-0
.0
1

2
.4
9
	D
M
S
O

2
.4
9
	D
M
S
O

2
.4
9
	D
M
S
O

2
.5
0
	D
M
S
O

2
.5
0
	D
M
S
O

3
.3
1
	H
2
O

3
.8
8

7
.1
3

7
.1
3

7
.1
4

7
.1
5

7
.1
5

7
.1
6

7
.3
9

7
.4
1

7
.5
4

7
.5
6

8
.0
5

8
.0
5

8
.0
7

8
.0
7

8
.0
8

8
.0
8

8
.0
9

8
.1
0

8
.1
0

-20-100102030405060708090100110120130140150160170180190200210220
f1	(ppm)

-100000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

S351.3.1.1r	—	S351	carbonio	disaccoppiato

3
9
.3
9
	D
M
S
O

3
9
.6
0
	D
M
S
O

3
9
.8
1
	D
M
S
O

4
0
.0
2
	D
M
S
O

4
0
.2
3
	D
M
S
O

4
0
.4
4
	D
M
S
O

4
0
.6
5
	D
M
S
O

5
6
.1
7

1
1
4
.9
4

1
1
6
.5
3

1
2
0
.4
8

1
2
3
.2
6

1
3
2
.7
4

1
4
3
.6
7

1
4
8
.5
4

1
5
7
.5
8

1
6
4
.0
6

1
6
4
.6
5



189 
 

 
Supplementary Figure S10: 1HNMR compound 45e (DMSO-d6). 

 

 
Supplementary Figure S11: 13CNMR compound 45e (DMSO-d6). 
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Supplementary Figure S12: 1HNMR compound 45f (DMSO-d6). 

 

 
Supplementary Figure S13: 13CNMR compound 45f (DMSO-d6). 
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Supplementary Figure S14: 1HNMR compound 45g (DMSO-d6). 

 

 
Supplementary Figure S15: 13CNMR compound 45g (DMSO-d6). 
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Supplementary Figure S16: 1HNMR compound 45h (DMSO-d6). 

 

 
Supplementary Figure S17: 13CNMR compound 45h (DMSO-d6). 
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Supplementary Figure S18: 1HNMR compound 45i (DMSO-d6). 

 

 
Supplementary Figure S19: 13CNMR compound 45i (DMSO-d6). 
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Supplementary Figure S20: 1HNMR compound 45j (DMSO-d6). 

 

 
Supplementary Figure S21: 13CNMR compound 45j (DMSO-d6). 
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Supplementary Figure S22: 1HNMR compound 45k (DMSO-d6). 

 

 
Supplementary Figure S23: 13CNMR compound 45k (DMSO-d6). 
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Supplementary Figure S24: 1HNMR compound 45l (DMSO-d6). 

 

 
Supplementary Figure S25: 13CNMR compound 45l (DMSO-d6). 
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Supplementary Figure S26: 1HNMR compound 45m (DMSO-d6). 

 

 
Supplementary Figure S27: 13CNMR compound 45m (DMSO-d6). 

 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1	(ppm)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

S364.1.1.1r	—	S364	1H	dmso

0
.8
7

0
.9
1

0
.9
3

1
.0
0

1
.1
6

0
.7
3

-0
.0
1

2
.4
9
	D
M
S
O

2
.4
9
	D
M
S
O

2
.4
9
	D
M
S
O

2
.5
0
	D
M
S
O

2
.5
0
	D
M
S
O

3
.3
2
	H
2
O

7
.4
4

7
.4
6

7
.5
8

7
.6
0

7
.6
5

7
.6
8

7
.7
0

8
.0
8

8
.1
0

8
.1
2

8
.1
4

8
.1
4

8
.1
5

8
.1
6

8
.1
6

8
.1
7

8
.2
8

8
.2
9

8
.3
0

8
.3
0

0102030405060708090100110120130140150160170
f1	(ppm)

-100000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

S364.3.1.1r	—	S364	carbonio	disaccoppiato

3
9
.4
0
	D
M
S
O

3
9
.6
1
	D
M
S
O

3
9
.8
1
	D
M
S
O

4
0
.0
2
	D
M
S
O

4
0
.2
3
	D
M
S
O

4
0
.4
4
	D
M
S
O

4
0
.6
5
	D
M
S
O

1
1
6
.3
8

1
1
8
.2
3

1
1
8
.4
5

1
2
1
.0
6

1
2
1
.2
5

1
2
3
.7
0

1
2
6
.4
2

1
3
1
.8
6

1
3
1
.9
5

1
3
2
.9
3

1
4
3
.9
0

1
4
8
.5
8

1
5
7
.0
3

1
6
0
.1
2

1
6
2
.5
4



198 
 

 
Supplementary Figure S28. (a) ROC-AUC for target MUV_466 when using the MD approach; (b) ROC-
AUC for target MUV_466 when using the 4DES approach; (c) ROC-AUC for target MUV_466 when using 
the MD+4DES combined approach; (d) ROC-AUC for target MUV_548 when using the MD approach; 
(e) ROC-AUC for target MUV_548 when using 4DES approach; (f) ROC-AUC for target MUV_548 when 
the using the MD+4DES combined approach; (g) ROC-AUC for target MUV_600 when using the MD 
approach; (h) ROC-AUC for target MUV_600 when using the 4DES approach; (i) ROC-AUC for target 
MUV_600 when using the MD+4DES combined approach. 
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Supplementary Figure S29. (a) ROC-AUC for target MUV_644 when using the MD approach; (b) ROC-
AUC for target MUV_644 when using the 4DES approach; (c) ROC-AUC for target MUV_644 when using 
the MD+4DES combined approach; (d) ROC-AUC for target MUV_652 when using the MD approach; 
(e) ROC-AUC for target MUV_652 when using 4DES approach; (f) ROC-AUC for target MUV_652 when 
the using the MD+4DES combined approach; (g) ROC-AUC for target MUV_689 when using the MD 
approach; (h) ROC-AUC for target MUV_689 when using the 4DES approach; (i) ROC-AUC for target 
MUV_689 when using the MD+4DES combined approach. 
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Supplementary Figure S30. (a) ROC-AUC for target MUV_692 when using the MD approach; (b) ROC-
AUC for target MUV_692 when using the 4DES approach; (c) ROC-AUC for target MUV_692 when using 
the MD+4DES combined approach; (d) ROC-AUC for target MUV_712 when using the MD approach; 
(e) ROC-AUC for target MUV_712 when using 4DES approach; (f) ROC-AUC for target MUV_712 when 
the using the MD+4DES combined approach; (g) ROC-AUC for target MUV_713 when using the MD 
approach; (h) ROC-AUC for target MUV_713 when using the 4DES approach; (i) ROC-AUC for target 
MUV_713 when using the MD+4DES combined approach. 
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Supplementary Figure S31. (a) ROC-AUC for target MUV_733 when using the MD approach; (b) ROC-
AUC for target MUV_733 when using the 4DES approach; (c) ROC-AUC for target MUV_733 when using 
the MD+4DES combined approach; (d) ROC-AUC for target MUV_737 when using the MD approach; 
(e) ROC-AUC for target MUV_737 when using 4DES approach; (f) ROC-AUC for target MUV_737 when 
the using the MD+4DES combined approach; (g) ROC-AUC for target MUV_810 when using the MD 
approach; (h) ROC-AUC for target MUV_810 when using the 4DES approach; (i) ROC-AUC for target 
MUV_810 when using the MD+4DES combined approach. 
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Supplementary Figure S32. (a) ROC-AUC for target MUV_858 when using the MD approach; (b) ROC-
AUC for target MUV_858 when using the 4DES approach; (c) ROC-AUC for target MUV_858 when using 
the MD+4DES combined approach; (d) ROC-AUC for target MUV_859 when using the MD approach; 
(e) ROC-AUC for target MUV_859 when using 4DES approach; (f) ROC-AUC for target MUV_859 when 
the using the MD+4DES combined approach. 
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Supplementary Figure S33. (a) ROC-AUC for target MUV_466 when using the MD approach; (b) ROC-
AUC for target MUV_466 when using the 4DES approach; (c) ROC-AUC for target MUV_466 when using 
the MD+4DES combined approach; (d) ROC-AUC for target MUV_600 when using the MD approach; 
(e) ROC-AUC for target MUV_600 when using 4DES approach; (f) ROC-AUC for target MUV_600 when 
the using the MD+4DES combined approach; (g) ROC-AUC for target MUV_652 when using the MD 
approach; (h) ROC-AUC for target MUV_652 when using the 4DES approach; (i) ROC-AUC for target 
MUV_652 when using the MD+4DES combined approach. 
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Supplementary Figure S34. (a) ROC-AUC for target MUV_689 when using the MD approach; (b) ROC-
AUC for target MUV_689 when using the 4DES approach; (c) ROC-AUC for target MUV_689 when using 
the MD+4DES combined approach; (d) ROC-AUC for target MUV_692 when using the MD approach; 
(e) ROC-AUC for target MUV_692 when using 4DES approach; (f) ROC-AUC for target MUV_692 when 
the using the MD+4DES combined approach; (g) ROC-AUC for target MUV_712 when using the MD 
approach; (h) ROC-AUC for target MUV_712 when using the 4DES approach; (i) ROC-AUC for target 
MUV_712 when using the MD+4DES combined approach. 
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Supplementary Figure S35. (a) ROC-AUC for target MUV_713 when using the MD approach; (b) ROC-
AUC for target MUV_713 when using the 4DES approach; (c) ROC-AUC for target MUV_713 when using 
the MD+4DES combined approach; (d) ROC-AUC for target MUV_733 when using the MD approach; 
(e) ROC-AUC for target MUV_733 when using 4DES approach; (f) ROC-AUC for target MUV_733 when 
the using the MD+4DES combined approach; (g) ROC-AUC for target MUV_737 when using the MD 
approach; (h) ROC-AUC for target MUV_737 when using the 4DES approach; (i) ROC-AUC for target 
MUV_737 when using the MD+4DES combined approach. 
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Supplementary Figure S36. (a) ROC-AUC for target MUV_810 when using the MD approach; (b) ROC-
AUC ve for target MUV_810 when using the 4DES approach; (c) ROC-AUC for target MUV_810 when 
using the MD+4DES combined approach; (d) ROC-AUC for target MUV_846 when using the MD 
approach; (e) ROC-AUC for target MUV_846 when using 4DES approach; (f) ROC-AUC for target 
MUV_846 when the using the MD+4DES combined approach; (g) ROC-AUC for target MUV_852 when 
using the MD approach; (h) ROC-AUC for target MUV_852 when using the 4DES approach; (i) ROC-
AUC for target MUV_852 when using the MD+4DES combined approach. 
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Supplementary Figure S37. (a) ROC-AUC for target MUV_858 when using the MD approach; (b) ROC-
AUC for target MUV_858 when using the 4DES approach; (c) ROC-AUC for target MUV_858 when using 
the MD+4DES combined approach; (d) ROC-AUC for target MUV_859 when using the MD approach; 
(e) ROC-AUC for target MUV_859 when using 4DES approach; (f) ROC-AUC for target MUV_859 when 
the using the MD+4DES combined approach. 
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