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A B S T R A C T

In viticulture, the rapid and accurate acquisition of canopy spectral information through ultra-high spatial res-
olution imagery is increasingly demanded for decision support. The prevalent practice involves creating vigor
maps using spectral data obtained from pure vine canopy pixels. Object-Based Image Analysis (OBIA) among
conventional methods exhibits a reasonable efficiency in canopy classification due to its feature extraction ca-
pabilities. In recent years, deep learning (DL) techniques have demonstrated significant potential in orchard
monitoring, leveraging their ability to automatically learn image features. This study assessed the performance of
different methodologies, including Mask R-CNN, U-Net, OBIA and unsupervised methods, in identifying pure
canopy pixels. The effectiveness of shadow and background detection methods and the impact of misclassified
pixels on NDVI were compared. Results were compared with agronomic surveys conducted during the 2021 and
2022 growing seasons, focusing on two distinct phenological stages (BBCH65-BBCH85). Mask R-CNN and U-Net
exhibited superior performance in terms of Overall Accuracy (OA), F1-score, and Intersection Over Union (IoU).
Among OBIA methods, the Gaussian Mixture Model (GMM) proved to be the most effective classifier for canopy
segmentation, and Support Vector Machine (SVM) also demonstrated reasonable stability. Conversely, Random
Forest (RF) and K-Means yielded lower accuracy and higher error rates. As a result of the limited accuracy, it is
noted for vineyard rows with low vigor canopies that NDVI was overestimated, while for high vigor canopies
NDVI was underestimated.

Significantly improved determination coefficients were observed for the comparison between Total Leaf Area
(TLA) and NDVI data derived from Mask R-CNN and U-Net. Positive correlations were also found with NDVI data
from GMM and SVM algorithms. Regarding leaf chlorophyll (Chl) and NDVI correlations, Mask R-CNN and U-Net
methods showed superior performance. Additionally, the relationship between TLA and projected canopy area
(PCA) was significantly better represented by U-Net and Mask R-CNN, while PCA was not recommended for
estimating chlorophyll content. This investigation establishes that improved vine canopy delimitation contrib-
utes to improved vineyard vigour monitoring, providing winegrowers with more accurate and reliable agronomic
information for management decisions.

1. Introduction

Viticulture is increasingly focusing on technologies and strategies to
enhance vineyard management efficiency, improving yield and grape
quality, while also sustaining sustainability and resilience.

Digital technologies and Information and Communication Technol-
ogy (ICT) applications involve sensor data collection on soil, climate,
and plant conditions, enabling subsequent data processing and decision
support. Among these technologies, unmanned aerial vehicles (UAV)

operating at low altitude acquire high-resolution images (HRI), both in
RGB format and in multispectral/hyperspectral or thermal infrared
format. These capabilities enhance vineyard monitoring and provide
detailed information on vegetation phenotypic traits (Sozzi et al., 2020).
Recently, the study of image processing techniques are expanding the
application of vineyard monitoring using UAV, enabling the creation of
detailed vigor maps that assess the spatial variability of agronomic pa-
rameters using vegetation indices (VIs) (Ferro et al., 2023; Moghimi
et al., 2020). VIs are computed by considering spectral values of solely
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vineyard canopy pixels. Currently, research is focused on finding new
methods of UAV image analysis for vineyards trained with vertical trellis
systems (VSP), aiming to isolate vineyard row pixels from the back-
ground. The reflectance of the soil is influenced by features such as
colour, moisture and roughness (Bannari et al., 1995). The authors
affirm that if the soil is very bright, the reflectance in red band of the
spectrum increase; consequently, VIs can be affected, especially those
based on the red band (e.g. NDVI). Conversely, an increase in soil
moisture leads to a general decrease in reflectance. Shadow depends on
the density of the vegetation and the geometric characteristics of the
canopy, as well as the rows orientation in relation to the sun. In VSP
vineyards, shading has a significant effect on canopy NDVI and is
dependent on both solar elevation and the horizontal angle of incidence
relative to the row orientation (relative azimuth)(Towers and Poblete-
Echeverría, 2021). The intensity of shadow is influenced by the intensity
of the light source and the amount of blocked light. Several studies have
examined how shaded ground pixels and partially shaded canopy pixels
can influence pure pixel information due to lower reflectance (Ferreira
et al., 2018). This effect is mainly reflected in the digital number (DN)
values, where shaded pixels have significantly lower values than sunlit
pixels. The image analysis process consists of several steps and can be
performed with different methodologies, of which a central process in-
volves canopy segmentation and classification. Vineyard row segmen-
tation methods can be carried out by pixel-based or object-based
methods. Within the pixel-based category, threshold-based methods can
be used to segment crops by setting a certain threshold value that ex-
ploits colour intensity or by considering the reflectance value for pixel
(Ferreira et al., 2018; Pádua et al., 2018). This category includes unsu-
pervised clustering algorithms such as K-Means that do not consider the
spatial relationships between pixels but provides for assigning them to a
cluster based on similarity (Cinat et al., 2019). In a study conducted in a
vineyard, it was observed that clustering methods sometimes exhibit
inferior performance compared to other machine learning (ML) methods
widely employed for object-based image analysis (OBIA) (Poblete-
Echeverría et al., 2017). These methods have provided satisfactory re-
sults in analysing images from vineyard cultivated using VSP. Abouta-
lebi et al., (2019) demonstrated that supervised classification
outperformed unsupervised methods and highlighted how the presence
of shadows significantly influences the calculation of NDVI in a vine
canopy.

These mentioned methods are considered to be effective for canopy
segmentation, mainly when the edges between regions are clearly
delineated; however, they can be sensitive to noise in images, and
moreover, it is difficult to choose an appropriate threshold value (Ferro
and Catania, 2023). OBIA include several supervised classification al-
gorithms such as Random Forest (RF) and Support vector machines
(SVM) that exploit an iterative approach to determine canopies (Modica
et al., 2021). Pádua et al., (2022) applied a segmentation approach
(OBIA) and achieved accurate classification results for soil, canopies,
and shadow pixels. Among the supervised type algorithms, the Gaussian
Mixture Model (GMM) provided accurate classification of high-
dimensional remote sensing images, using low computation time
(Lagrange et al., 2017). This algorithm was used for vegetation classi-
fication by improving the accuracy of the model, demonstrating that
GMM can effectively group together pixels with similar spectral features
(Zhu et al., 2022).

OBIA methods are more complicated than pixel-based methods, but
they can generate an improved segmentation result by leveraging
different ML classifiers for extraction of spectral and textural features
(Jiménez-Brenes et al., 2019). In addition to the methods described
above, there are recent applications of classification by deep learning
(DL) for UAV images based on semantic and instance segmentation
(Osco et al., 2021; Ye et al., 2023). In the first case, object identification
and classification are performed by assigning pixels to a predetermined
semantic class, conversely, instance segmentation identifies and sepa-
rates objects in the image based on their identity. Semantic

segmentation can identify categories but not individual objects within
the same category, constraining canopy image analysis, especially with
complex images and specific details. These methods employ the archi-
tecture of a convolutional neural network (CNN) trained to perform
feature extraction using band combination for canopy segmentation.
This process is applied by the Mask R-CNNmethod, which identifies and
delineates the boundary of objects in an image at the pixel level (He
et al., 2017). This method has been widely used in remote sensing by
UAV, for example, in the context of horticulture, Lucena et al., (2022)
applied it to identify and to delineate the canopies of high-density or-
ange tree rows, exploiting canopy height model and RGB images data as
input, with optimal overall accuracy. Hao et al., (2021) used different
spectral band combinations of UAV images and detect tree crowns and
classify trees according to height, with significant positive Intersection
over Union (IoU) results. Safonova et al., (2021) have explored the
application of Mask R-CNN for the segmenting of olive tree canopies
from shadows, aiming to accurately estimate the volume of individual
trees. In the context of semantic segmentation, Osco et al., (2021)
applied the U-Net neural network in orchard row segmentation studies
using multispectral UAV images, obtaining an F1 score of 0.94. Sahin
et al., (2023) trained U-Net to perform multi-class segmentation,
reporting IoU values for soil, crop, and weed classes of 0.99, 0.90, and
0.75, respectively. U-Net is recognized for its effectiveness in managing
class imbalances within the training dataset. In images acquired via
UAV, it is common for the canopy class to be under-represented. This is a
consequence of the constrained and limited size of the canopy, partic-
ularly in vines trained with the VSP system. However, owing to its
downsampling and upsampling architecture, U-Net can overcome this
issue and achieve significant accuracy. The model was also tested on
orthomosaic images for automatic detection and localization of orchard
tree canopy under various growing conditions, different growing sea-
sons, and various weed cover levels, obtaining reasonably good analysis
accuracy (Anagnostis et al., 2021). Barros et al., (2022) have conducted
an interesting study about the application of semantic segmentation
methods in vineyard, comparing the variation in performance of DL
networks when the input images used change, and define that using
RGB+NIR images improve segmentation performance. Similar results
were also obtained for OBIA segmentation methods in which higher
performance is obtained when using both sensor features (Pádua et al.,
2022).

Recent studies have demonstrated that utilizing high-resolution im-
ages obtained through UAV enables a more precise evaluation of chlo-
rophyll content (Chl) in vineyards compared to lower-resolution images
(Caruso et al., 2023). The more accurate representation of vine physi-
ological activity is achieved by considering the average VIs of solely
canopy pixels. Hence, the occurrence of noise factors due to soil
reflectance or shaded pixels could affect the accuracy of physiological
parameters estimation. Therefore, identifying detection methods that
enhance the exclusive segmentation of canopy pixels reduces interfer-
ence and optimizes the estimation of biochemical parameters (Campos
et al., 2021). Zhang et al., (2024) quantitatively evaluated the impact of
orchard canopy shading, finding that the removal of canopy shadows
significantly improved the accuracy of LAI and leaf chlorophyll content
estimation.

Limited research exists on assessing shadows and background com-
ponents’ impact on canopy spectral response, while DL methods’ po-
tential in agriculture requires further exploration for vineyard canopy
segmentation. Specifically, there has been limited investigation into
evaluating the benefits and drawbacks of DL methods compared to
traditional OBIA approaches for canopy segmentation and classification
process.

In recent years, the use of multispectral cameras by UAVs has been
widely applied for vineyard surveys, and in order to provide insight into
different methods of high-resolution image segmentation, a comparison
of computer vision (CV) methods is proposed. The objective of this study
was to compare the efficiency and accuracy of OBIA, K-means and DL
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segmentation techniques applied to grapevine canopy at different
phenological stages. The effects of segmentation methods on canopy
NDVI were evaluated by comparing them with Projected Canopy Area
(PCA) and leaf chlorophyll (Chl) parameters, aiming to enhance the
estimation of vine biometric parameters.

2. Materials and methods

2.1. Study site

This study was conducted in a vineyard in Mediterranean area
(Fig. 1), in the region of Sicily (Italy). The experiment was carried out
between 2021 and 2022, in a vineyard established in 2008 with Vitis
vinifera L. cv. Catarratto. The vineyard has a total area of 8.2 ha and a
perimeter of 1162 m. Following the methodology of an on-farm exper-
iment (37◦55′12″N; 13◦04′27″E), the site was selected as situated within
the Bianco Alcamo Protected Designation of Origin (PDO) zone, given
that this area is very suitable for the cultivation of grapevine. Vineyard
planting layout is 2.4 m between rows and 1.0 m within rows (4,170
plants ha−1). The rows are oriented in the NE-SW direction and the
vineyard is located at an average altitude of 350m above sea level and in
an area with a hill-type orography. The elevation variability within the
vineyard ranges from amaximum elevation of 367m a.s.l. to a minimum
elevation of 335 m a.s.l., with an average slope value of 9.8 %.

For the shaping of the canopy, the vines are trained through a
vertically positioned shoot system (VSP). The pruning system is a double
spurred cordon with two buds per spur. The vineyard trellis has an
overall height of 1.70 m in which the first supporting wire for the plants
is positioned 0.70 m above ground level and the remaining two are
positioned with 0.50 m between them. These wires are maintained by
galvanized bearing poles placed at 6 m apart from each other.

Vineyard management was conducted through standard agronomic
practices applied uniformly across the field. Traditionally, the vineyard
was subjected to surface tillage sessions during each year to control
weeds and mitigate water evaporation.

2.2. UAV image acquisition

The UAV DJITM Phantom 4multispectral (P4, SZ DJI Technology Co.,
Ltd., Shenzhen, Guangdong, China), equipped with one RGB sensor for
imaging on visible light and five monochrome sensors for multispectral
image acquisition was used.

Two field survey campaigns were executed from June until the end of
August, for two consecutive years, from bloom to harvest, covering the
most important phenological stages (Table 1).

In the year 2021, the first flight was performed on June 18 (F1_21)
and this timing corresponds to the flowering phenological stage of
vineyard (BBCH65), and the second flight was performed on August 26
(F2_21) and this timing corresponds to the berry softening phenological
stage (BBCH 85). At the same phenological stages, flights were per-
formed and replicated for the year 2022, the first flight was performed
on June 21 (F1_22) and the second flight was performed on August 28
(F2_22). The specific flight parameters are shown in Table 2.

Camera acquired the photos automatically, at an interval of 1 s, and
the images were stored in TIFF format. Images with a resolution of 1600
* 1300pixels were captured through this camera. The UAV was pro-
grammed to traverse the field following a predetermined path using DJI
GO Pro software, with the aim of capturing images of the entire on-farm
plot. A total of 258 images were captured per spectral band, for a total of
1290 captures. The UAV images were acquired at a specific time of day,
i.e., between 12:00 noon and 1:00p.m., in sunny or non-cloudy weather,
considering solar noon for each survey. The flight height was set at 70 m
relative to the take-off point to balance the sharpness of the field of view
with the total flight duration, which was 19 min for each survey session.
Ground conditions during data collection were characterized by the
absence of weeds. Furthermore, a reflectance calibration panel (LAB-
SPHERE INC., North Sutton, US) was employed. Using this technique,
regulation of the sensors was performed to provide accurate measure-
ments of the crops’ reflectance and surrounding surface. This is feasible
because the reflectance characteristics of the panel are pre-determined.
During UAV flights, the use of calibration panels allows balancing
environmental variations such as illumination, ensuring accurate data
reflecting surface conditions and enabling instrument stability verifi-
cation over time.

Fig. 1. Location of the experimental vineyard plot in the Mediterranean area.

Table 1
UAV surveys and corresponding phenological stages.
Flight Phenological stages
F1_21 Full flowering (BBCH65)
F2_21 Softening of berries (BBCH 85)
F1_22 Full flowering (BBCH65)
F2_22 Softening of berries (BBCH 85)
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2.3. UAV image pre-processing

Agisoft Metashape Professional Edition software (Agisoft LLC, St.
Petersburg, Russia) version 1.7.2 was used for image pre-processing,
where the first step was to apply radiometric corrections for the im-
ages, removing any problems such as vignetting, dark pixel offsets, and
especially to convert the raw images to radiance and then to reflectance
space. Through the software, the point cloud was generated and then the
vineyard images were converted into a Digital Orthophoto Map (DOM)
(Fig. 2). To increase the accuracy of the DOM, pre-measured ground
control points (GCPs) were imported via a GNSS receiver. As the reso-
lution of the DOM is too large, the images were cropped to satisfy the
appropriate size for running DL segmentation methods. Using QGis 3.20
software, it was possible to split the DOM into smaller subimages with a
standard size of 240 x 240 pixels such dimensions reduce the compu-
tational overhead by contributing to improved performance of the seg-
mentation networks. For each survey, the image dataset was divided by
a random assignment process into three specific subsets and then a
training set (80 %), a validation set (10 %) and a test set (10 %) were
generated. For example, through the DOM splitting process, for the
survey conducted in F1_21, 835 sub-images were obtained, which were
split into: 668 images used for training, 84 for validation and 83 for
testing. The annotation was carried out using an open source software
Labelme 3.6 (Torralba et al., 2010), which allows for manual image
annotation. Class annotation tools were employed, and polygons
encompassing the vine canopy, soil, and shadow were generated. At the
end of the process, these annotations were saved in a JSON (JavaScript
Object Notation) format file.

2.4. Image analysis techniques

This section explains the models employed for canopy image seg-
mentation. In this study, supervised image segmentation techniques
such as the OBIA method, unsupervised techniques such as K-means and
two DL models were applied.

2.4.1Object-based image analysis.
The OBIA methodology segmented the images into several non-

overlapping regions, where each region is called an object; these cate-
gories are distinguished as being composed of a group of pixels with
homogeneous features. For each object, the relevant features (radio-
metric, contour, and shape) were extracted. This method consists of
three distinct steps involving image segmentation, feature extraction,
and classification. The trained models were used to classify the entire
vineyard into three distinct classes, such as soil, shadow, and vine
canopy. In the dataset of this paper, the vineyard canopy despite having
an irregular geometry has a definite shape, and this differs mainly in size
from that of the soil and shadow. For spectral features, the average value
of each spectral band is calculated. The training set is used to train the
model, the testing set is used to evaluate the accuracy of the model on
new data, and the validation set is used to adjust the model parameters.
The next step was to constitute 390 samples to the training model,
divided into 130 samples per each class. An additional 90 samples,
divided into 30 for soil, 30 for canopy and 30 for shadow, respectively,
were applied for the testing image set and likewise for the 90 samples for
the validation images. The number and size of polygons were chosen to
maintain balance between classes and to cover a greater diversity of
cases. To classify the vineyard objects in the images obtained from DOM
subdivision, i.e., subimages that have a spatial resolution of at least 0.37
m per pixel, a segmentation process based on the large-scale mean-shift
(LSMS) algorithm developed by (Michel et al., 2014). This algorithm is
applied using the OTB library (orfeo toolbox) that provides a set of tools
for image analysis, the first step of operations performed by the LSMS
algorithm is to apply the LSMS-Smoothing function, in which in a first
operation consists of removing noise and then applying a normalization
procedure (Grizonnet et al., 2017). Subsequently, a bottom-up approach
is adopted, in which objects to be classified are gradually created by
aggregating similar pixels, this aggregation is done by exploiting the
spatial proximity or spectral similarity of them. The smoothing phase
aims to improve the shape and consistency of the objects. The second

Table 2
Flight parameter settings.
Parameter Value/Method
Flight altitude 70 m
Flight speed 6,5 m/s
Shooting mode Timed shooting
Pitch gimbal −90◦
Side overlap rate 60 %
Forward overlap rate 60 %
Ground sampling distance 0.37 m
Flight duration 19 min

Fig. 2. Process flow involved with the proposed methodology for supervised and unsupervised segmentation methods of UAV images.
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step (LSMS-segmentation) is done by setting appropriate parameters,
including the range, defined as the minimum Euclidean distance be-
tween the spectral signature values of pixels and expressed in radio-
metric units (De Luca et al., 2019). In this study, the parameter
concerning the range radius was set to 25. Conversely, by setting a
spatial radius of 15, the distance within which pixels are considered
similar was determined. These parameters were selected after con-
ducting multiple tests with different values of range and spatial radius,
ultimately yielding the best segmentation (visually assessed). This
parameter selection could affect the size of objects and the accuracy of
segmentation, potentially resulting in the inclusion of non-targeted ob-
jects. The supervised classification models used in this study were cho-
sen according to the reference literature concerning the segmentation of
orchards and in general canopies by UAV imaging. In this context,
Support Vector Machines (SVM) and Random Forests (RF) machine
learning algorithms were selected as having good operational stability
and being less affected when applied successively to the operations
performed by the OTB library (Modica et al., 2021). Another machine
learning algorithm applied for image classification is the Gaussian
Mixture Model (GMM), which has provided excellent results in the past
for analysis of pixel distribution in agricultural scene images. One of the
supervised classifiers that was used is Support Vector Machines, and this
is a nonparametric method because it does not assume the distribution of
the data, as this algorithm uses an optimization function that tries to find
the hyperplane that maximizes the distance between data classes. In the
specific case was used SVM type using a linear hyperplane in an ultra-
dimensional space, where the SVM classifier determines to which class
the pixels nearest to the hyperplane belong in a manner consistent with
the training samples (Vapnik, 2006). In this study, a specific linear type
of Kernel function with a C-type model that has a cost parameter set to
one and gamma to 0.02 were used for the application of the algorithm.
The LIBSVM library was used to perform this algorithm; it allows the
selection of several parameters to be specified during training, including
the kernel type and the C parameter that controls the penalty for clas-
sification errors.

The Random Forest algorithm is a supervised machine learning
method; it is called ensemble, implying that it combines the predictions
of multiple models to produce a final prediction. Specifically, the RF
algorithm combines predictions from a set of decision trees, this via
bootstrap aggregation. For each decision tree, the RF algorithm selects a
random subset of features from the training data. The predictions from
each decision tree are then combined to produce a final prediction. The
number of bootstraps was set to 150 so that different decision trees could
be developed and thus increase the robustness of the algorithm, but still
was not too high as to affect the accuracy of the classification (Belgiu
and Drăguţ, 2016). However, to set some parameters of the algorithm,
an estimation was carried out through the out-of-bag (OOB) process to
calculate the generalization error, which was set equal to 0.001; these
estimates are carried out using the training data that were not used to
construct the decision trees. Therefore, the maximum number of deci-
sion trees was set as 200, with five maximum tree depths.

The unsupervised Gaussian mixture model (GMM) classification al-
gorithm is a statistical model that assumes the data are generated from a
combination of Gaussian distributions. Thus, considering the image in
terms of a matrix in which each element represents a pixel, considered a
random variable and denoted by the variable x assuming the values of
the bands that constitute the image. The classification probability of the
elements in the image is represented by the function 1, where represents
a weighted sum of Gaussian distributions through:

f(x) =
∑

k

i=1
wiN

(X|μi, σ
2
i
) (1)

where k represents the total number of areas while the set {w1,w2,….…,
wk} defines weights that satisfy the condition∑k

i=1wi = 1.
In this study, the parameter k in equation (1) was tuned to 3,

estimated using the Bayesian Information Criterion (BIC). The number
of EM iterations was set to a value of 100, which proved to be sufficient
for the convergence of the EM algorithm.

The expression N(X⃒⃒μi, σ
2i ) represents the Gaussian distribution of the

i-th region with the mean µi and the standard deviation σi respectively,
as indicated by function 2:

N(X|μi, σ
2
i
)

= 1
σ
̅̅̅̅̅̅2π

√ exp
(

−(x− μi)2
2σ2

i

)

(2)

the GMM algorithm tries to find the parameters μ, σ and α that maximize
this condition and exploits the likelihood function (maximum-likeli-
hood), which represents a system of nonlinear equations. To solve the
maximum-likelihood equation in the operations performed by the GMM
classifier, an expectation maximization (EM) algorithm is computed,
which is an iterative algorithm that updates the parameters μ, σ e α.
Therefore, the EM algorithm was terminated when the difference be-
tween two consecutive log-likelihood scores was less than 10-3.This al-
gorithm was applied using scikit-learn library (Scikit-Learn, 2022), and
then after importing the training images, the number of model compo-
nents was set. This parameter determines the number of classes into
which the data will be clustered; several components that is too low can
lead to under-approximation, while a number of components that is too
high can lead to an over-approximated model; in this specific case, the
number of components were 3. In this study, the GMM classifier was
applied through the OTB library, in which Lagrange et al., (2017)
developed an efficient implementation.

2.4.1. K-means
In this paper, we chose to use one of the most widely used clustering

algorithms for automatic classification of remote sensing images namely
K-Means. This learning model is not provided with special labels for the
training data, as observed for previous methods, so the method has to
learn relationships completely on its own. The K-means algorithm iter-
atively clusters data points based on their distance, with closer points
indicating greater similarity (Sinaga and Yang, 2020). Pixel clustering is
performed by calculating the sum of the squared Euclidean distances of
the pixel values, compared with the centroids of the clusters. In the case
under study, three clustering centers corresponding to the categories of
soil, vineyard canopy and shadow were selected. After clustering, the
images of the experimental vineyard, are binarized and contain only the
three specific categories.

2.4.2. Deep learning image analysis
This paper investigated the neural networks which apply supervised

semantic segmentation via U-Net method and a convolutional neural
network using the Mask R-CNN method. The architecture of Mask R-
CNN performs two separate operations, a first module identifies regions
where objects are located, another module performs pixel-level seg-
mentation to delimit object boundaries, this last module is implemented
based on the Faster R-CNN structure (Ren et al., 2015). The hyper-
parameters of the Mask R-CNN model used during the training are
shown in Table 3. Mask R-CNN consists of a core network layer (Back-
bone) comprising the ResNet101 architecture, used in this study. Input
images pass through this backbone layer, which performs a set of con-
volutional and pooling operations. ResNet101 produces an attribute
map for each object in the image based on the training information.
ResNet101 uses Global Average Pooling at the end of the network, this
operation reduces the spatial dimension of the feature maps to a single
value for each channel, creating a compact feature representation. In the
model structure is the Region Proposed Network (RPN) layer, which is
responsible for generating proposals of regions that might contain the
image objects, this operation creates positive and negative samples. For
each identified region in which the objects are present, Regions of In-
terest (RoI) are developed, these have different sizes and proportions to
each other. Next, using the RoI Align layer, which plays a key role in
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aligning the features extracted from the map to the corresponding (RoI).
Another step is the MaskHead, which is responsible for generating the
masks associated with the detected objects. These masks indicate which
pixels belong to the detected object and are used to perform segmen-
tation. RoIs having the same dimensions are used as input first in the
process that indentifies the class and respective probability of each
identified object, this process is performed through the Fully Connected
Network (FCN). Then the softmax classifier is applied to these RoIs to
assign a class label to the object. Generally defined, the output of the
model application provides a class label indicating the name of the ob-
ject class, a bounding box delimiting the object (bounding box), and a
mask delimiting the pixels of the object to be detected. This is a binary
mask (with the values 0 and 2) in which the value 0 indicates pixels that
do not belong to the vine canopy and instead can be traced back to the
soil, the value 1 refers to the vine canopy pixels, and finally the value 2
refers to the shadow projected by the canopy. Stochastic Gradient
Descent (SGD) optimization algorithm was applied with the purpose of
updating the model parameters based on a random subset of data
(minibatches), so during each epoch the entire dataset was divided into
random mini batches of predetermined dimensions. The experimental
process used in this study involved setting a learning rate of 0.001 and a
momentum of 0.9, batch size was set to 16 and a weight decay of 0.0005.
The neural network was trained with 50 epochs for each spectral band.

U-Net is a model for image segmentation that was first introduced by
(Ronneberger et al., 2015). The U-Net architecture consists of two main
parts, namely an encoder part and a decoder part. The encoder part is
responsible for feature extraction from the input image, while the
decoder part is responsible for reconstructing the segmented image. The
encoder part of U-Net is a deep convolutional neural network that uses a
series of pooling and max pooling layers that both enable feature
extraction from the input image. The hyperparameters of the U-Net
model used during the training are shown in Table 4. A batch size of 16
with an initial learning rate of 0.001 was used during model training.
The encoder stage starts with the definition of a feature map of fixed
size, in this study having used training subimages of size 240x240x3.

These passing through a series of convolution layers (3 × 3 unpadded)
(Long et al., 2015), a batch normalization layer (BatchNorm)(Ioffe and
Szegedy, 2015) and pooling layers and to these are added max pooling
layers of type 2× 2 that are used to reduce the image size and number of
parameters creating a feature map of size 120x120x16. Each convolu-
tion layer then applies a filter to the feature map and progressively
produces smaller feature maps until the size is 15x15x64, at which point
the feature map is output to the decoder architecture layer. The decoder
part of U-Net is an inverted convolutional neural network that starts by
applying a series of convolution layers to the feature map defined as
upsampling and concatenation to reconstruct the segmented image. The
size of the feature map is doubled with each convolution layer providing
as output a segmented image of size 240x240x3. The concatenation
layers in the decoder part of U-Net combine the features extracted from
the encoder part with the features extracted from the decoder part. All
convolutional and deconvolutional layers are followed by an activation
function ReLU defined Rectified Linear Unit, except for the 1 × 1 con-
volutional layer at the last, which predicts class probability. In this
study, categorical cross entropy was used as a loss function for training
the model. This function measures the difference between the predicted
probability distribution and the true labels for each pixel. The Softmax
function was used to transform the final feature map into probabilities,
which allows obtaining a probability distribution over all classes for
each pixel.

The investigation were performed using a workstation running
laptop with Windows 11 Pro. The DL model were based on PyTorch
1.9.0, while the computing architecture was CUDA 11.1 is used to
accelerate the training process, in addition, pakages such as TensorFlow
1.3, Keras 2.0.8 were considered for the application of convolutional
network. The deployment of the Mask R-CNN model was carried out
following a procedure allowing for processing the TIFF format images
that are characterized by more than three bands per image. Specific
environment configuration were used as a central processing unit CPU
Intel(R) Core(TM)i7-12700 K (4.9 GHz), 32.0 GB and a graphics processor
unit (GPU) NVIDIA GeForce RTX™ 4090 16 GB GDDR6 with processor
CUDA cores.

2.5. Evaluation metrics

In this study, two main performance measures, i.e. overall accuracy
(OA) (4), F1-score (5), were used based on a specific confusion matrix
with four main factors, such as false negative (FN), false positive (FP),
true negative (TN) and true positive (TP), to evaluate the performance of
the model for extracting features of soil, canopy and shadow classes
from high-resolution UAV images. The OA is specified as the sum of
correctly identified pixels divided by the totality of pixels. F1 score, on
the other hand, represents the combination of recall and precision
metrics. Recall is specified as the percentage of correctly identified
pixels among all pixels that were depicted for that class. Precision is
calculated as the percentage of pixels identified exactly among the pixels
identified in a specific class. An additional parameter calculated to
measuring the accuracy of segmentation algorithms was the intersection
over union (IoU), also referred to as the Jaccard Index. In Expression (3),
this parameter is defined as the ratio of the intersection area, the area
identified by the algorithm and the ground truth manually identified by
the operator. These are divided with the intersection area between the
area observed by the segmentation method and the ground truth.

IoU = areaofoverlap
areaofunion = S ∩ Si

S ∪ Si (3)

where S represents the area identified by the segmentation algorithm;
instead, the term Si represents the actual area computed manually by
segmenting the edges of the category of objects to be identified. Thus,
the numerator of the equation indicates the area shared by S and Si. The
denominator represents the total area of S and Si. A value of IoU greater

Table 3
Values of Mask R-CNN hyperparameters.
Hyperparameters Mask R-CNN Input
NUM classes 3
Backbone ResNet101
Pooling layer Global Average Pooling
Model Structure RPN − MaskHead
Optimization Algorithm SGD
Batch size 16
Number of Epochs 50
Learning rate 0.001
Momentum 0.9
Weight decay 0.0005
Image resize mode Square (240x240)
Image channel count 4 (RGB+NIR)
Train ROIs per image 390

Table 4
Values of U-Net hyperparameters.
Hyperparameters U-Net Input
NUM classes 3
Encoder filter size 3x3 (unpadded)
Activation function ReLU
Decoder upsampling Deconvolution layers
Loss function Categorical cross entropy
Final activation function Softmax
Number of Epochs 50
Batch Size 16
Learning rate 0.001
Weight decay 0.0001
Image resize mode Square (240x240)
Image channel count 4 (RGB+NIR)
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than 0.70 generally indicates good agreement between the two com-
ponents S and Si.

2.6. Vegetation index

After obtaining the pure vegetation pixels by the segmentation and
classification techniques described above, the normalized difference
vegetation index was calculated (NDVI) (Rouse et al., 1974). This is one
of the most widely considered indices for assessing crop growth and is
calculated by considering the near-infrared (NIR) and red spectrum
bands.

2.7. Canopy data measurements

Ground sampling was performed to assess two agronomic parame-
ters of the vineyard such as total leaf area (TLA) and leaf chlorophyll
(Chl). The ground sampling performed in the on-farm vineyard was
carried out in specific areas that were characterized by different growth
vigor. In fact, agronomic surveys designed to classify vigor levels for
2021 and 2022 identified two distinct vigor levels. Using field surveys,
fourteen sampling blocks were identified divided into areas with low
vigor vines (LV) and areas with high vigor vines (HV) (Fig. 3). Each
individual sampling block has a length of 6 m and consists of six plants;
thus, a total of 84 plants were monitored. Survey activities were pre-
ceded by the identification of the 14 ground control points (GCPs), with
known coordinates, useful for georeferencing all survey points to a
common reference system (WGS84; UTM 32 N).

Evaluation of (TLA) was performed by applying the empirical model
for non-destructive estimation of leaf area for primary and lateral shoots
as formulated by Lopes and Pinto, (2005). This method includes sam-
pling vine shoots collected randomly within the canopy. Each individual
shoot generally consists of a primary shoot axis and secondary shoots
that originate from it during the growing season. These shoots were
collected from plants placed in the rows in front of the row that was
selected as the sampling block in total 60 shoots (one shoot per vine)
were collected for each survey session. These shoots were labelled ac-
cording to the vigor level to which the plants belonged. From each shoot
the primary and lateral shoot leaves were separated, on these shoots the
number of nodes and the overall length measured from the base to the
node where the last leaf counted was inserted were also evaluated. Leaf
area was determined in the laboratory with a leaf area meter (LI-3100C
area meter Li-COR Biosciences, Lincoln, NE, USA). These surveys were
conducted for two years, at the phenological stages of vine flowering
(BBCH65) and berry softening (BBCH85). For each primary and lateral
shoot, the following variables were measured: sum of primary leaf area
and sum of lateral leaf area; these two parameters together constitute

the average leaf area (LA) of the shoot. Based on these biometric mea-
surements conducted in the field, it was possible to determine (TLA) on
each labelled vine by multiplying the average LA by the total number of
shoots per plant. Leaf area assessment method adopted in this study has
been applied by several authors because it provides an estimate of vine
leaf area regardless of cultivar, year and phenological stage, represent-
ing a low-cost, simple and accurate method, however, being a manual
sampling method, it is time-consuming and labour intensive for
operators.

The evaluation of chlorophyll content (Chl) (µg cm−2), done during
the growing season in two phenological stages, was measured by prox-
imal sensor, a portable leaf fluorimeter Dualex® Force-A (Orsay, Cedex,
Francia). This instrument performs non-destructive, simple and rapid
measurements by taking an absorbance measurement of the leaf
epidermis, exploiting the mechanism of fluorescence emitted by the
chlorophyll pigment (Cerovic et al., 2012). Measurements were per-
formed on the sampling blocks by selecting three leaves per plant.
Leaves sampled during the BBCH65 phenological stage were positioned
on the 5/6 node of the primary shoot, for BBCH85 phenological survey
the sampled leaves were positioned in the 8/10 node of the shoot, this
methodology allows for standardization of measurements and sampling
of even-aged leaves.

2.8. Statistical analysis

To evaluate the overall performance of canopy segmentation and
classification methods, statistical analyses were carried out on the
sampling blocks described. In these sampling blocks, the geometric in-
formation of the canopy was extracted by evaluating the Projected
Canopy Area (m2) (PCA) parameter, and spectral information derived
from NDVI, which represent key parameters needed to properly assess
TLA and Chl. This information was obtained using the QGIS plugin
(Zonal Statistics), which allows information such as the count, mean,
standard deviation, minimum and maximum value of each raster to be
extracted. ANOVA test was used after dividing the dataset of sampling
blocks into LV and HV to test the equality of the averages of both PCA
and NDVI. Comparisons between the averages were performed with
Tukey’s test (p≤ 0.05). In addition to calculating the basic statistic, Gini
heterogeneity index was evaluated to appreciate the variability of the
dataset (Gini, 1921). This index is a measure of the inequality of a dis-
tribution and is a number between 0 and 1. A value of 0 indicates that
the frequency distribution is homogeneous, whereas a higher value
means that the sample is more heterogeneous. Pearson’s correlation
coefficient was used to compare the similarity of vineyard rows geo-
metric data (PCA) and NDVI with canopy biometric traits such as TLA,
shoot length and chlorophyll content.

3. Experimental results

The on-farm vineyard shows a high degree of vegetative and repro-
duction variability, and it was observed that one of the factors deter-
mining high variability in vine vigour growth was vineyard topography.
Field areas show distinct soil profiles based on slope values identified
through the Digital Elevation Model (DEM). Fig. 4 illustrates the
elevation variation within the plot, showing significant elevation het-
erogeneity, with elevation values ranging from 365 m at the highest
areas to 335 m at the lowest areas of the vineyard. A flat area extends to
the highest elevation with elevation values ranging from 362 m a.s.l. at
the lowest point to 365 m a.s.l. at the highest point, with an average
slope value of 3.55 %. Another section of the DEM corresponds to the
slope area, with elevation values ranging from 361 m a.s.l. at the highest
point to 338 m a.s.l. at the lowest point, with an average slope value of
14.77 %.

As a result, topographical variability of this specific vineyard, sam-
pling points were identified in correspondence with flat areas and
sloping areas that showed different vine canopy growth.

Fig. 3. On-farm vineyard with red blocks placed on the map indicate ground
sampling points.
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The accuracy indices F1 Score, OA and IoU were calculated both for
each phenological stages and for segmentation methods: OBIA, DL and
K-means, (Tab. 5). Supervised algorithms relying on the Large-scale
mean-shift segmentation (LSMS) method used in OBIA, performed
lower than DL methods but still significantly better than the K-means
clustering method in two survey epochs. The best results in evaluating
the accuracy of segmentation and object detection can be observed
through the value of OA, it is evident that U-Net and Mask R-CNN were
the most efficient in segmenting and detecting object classes, with ac-
curacy values above 0.85 for both BBCH65 and BBCH85. Nonetheless, it
is evident that among the supervised ML methods, the GMM showed the
best OA values, showing comparable values to the DL methods.

Specifically, these results indicate that among the supervised clas-
sifiers used after the segmentation process, the GMM had the best F1
score performance for the identified classes. Indeed, for the surveys
conducted in BBCH65, canopy identification was done with an accuracy
index of 0.80 and 0.74 for the surveys conducted at BBCH85. The
classifiers RF and SVM obtained lower F1-score values, in fact SVM
detects the vineyard canopy with an accuracy of 0.72 and 0.68 for
BBCH65 and BBCH85, respectively. RF, on the other hand, obtained the

lowest accuracy values among the supervised methods; in fact, the F1
score value for canopy detection was 0.67 and 0.57 for the two pheno-
logical periods considered, respectively. The K-Means clustering seg-
mentation method, instead, was the least accurate in identifying the
canopy, with an F1 score index of 0.63 and 0.58. A different reasoning
can be made if the F1 score data traced back to the U-Net and Mask R-
CNN methods are observed, where the identification of the vineyard
canopy has an accuracy index of 0.92 and 0.87 for Mask R-CNN and 0.89
and 0.85 for U-Net. The other F1 score values for the remaining classes
identified in the images show similar performance, in fact, the U-Net
method shows an F1 score value for soil of 0.91 and 0.87 indicating a
low level of error, as also found for Mask R-CNN. Among the supervised
methods, on the other hand, GMM is the most promising, with values of
0.84 for the first survey epoch and 0.75 for the second. K-means clus-
tering, meanwhile, proves to have low OA values, with a high degree of
error, easily inferred from the values of 0.68 and 0.63. Evaluation of the
F1 score values when it comes to the shadow highlights that among the
supervised methods RF is the least accurate, with values of 0.60 and 0.58
for the two survey periods, respectively. Similarly, K-means clustering
exhibits similar F1 score values. The other two supervised methods,
instead, while reporting OA values that are not specifically high, still
prove to be better than the two previous cases, especially the GMM
method, which showed a value of 0.74 for BBCH65 stage. DL methods
show higher F1 score values than the previous methods and prove to be
more accurate in detecting this category.

Table 5 shows the geometric accuracy ratings of the segmentation
and classification methods employed. As can be seen between the two
survey periods there are general differences in terms of the accuracy of
the segmentation algorithms, it is noticeable that for the surveys per-
formed at BBCH65 both the IoU and accuracy values are better, this
indicates a better shape overlap of the surveyed objects. This result
could be related to the smaller size of the canopies, and consequently
less shadow projected on the ground, which is a disturbance factor in the
process of delineating canopy edges. Among the results to be considered,
it is noticeable that the K-Means clustering method and the RF super-
vised classification method show less overlap, especially for IoU results
that refer to shadow, both algorithms show values of about 0.50.
Instead, among the supervised methods SVM and especially GMM show
the best performance, the DL segmentation models show results about

Fig. 4. Representation of Digital Elevation Model (DEM) of the studied on-
farm vineyard.

Table 5
F1 score, IoU and OA indices of the segmentation models applied to the object classes Soil, Canopy and Shadow in the two different phenological stages of the vine
(BBCH 65 and BBCH 85).

BBCH 65 BBCH 85
Method Index Soil Canopy Shadow Soil Canopy Shadow
OBIA (GMM) IoU 0.77 0.79 0.68 0.74 0.60 0.65

F1 score 0.84 0.80 0.74 0.75 0.74 0.67
Tot IoU 0.76 0.72
OA 0.85 0.78

OBIA (RF) IoU 0.58 0.62 0.47 0.62 0.55 0.51
F1 score 0.71 0.67 0.60 0.64 0.57 0.58
Tot IoU 0.58 0.55
OA 0.72 0.68

OBIA (SVM) IoU 0.72 0.71 0.64 0.69 0.65 0.55
F1 score 0.76 0.72 0.66 0.69 0.68 0.63
Tot IoU 0.70 0.63
OA 0.77 0.71

K-Means IoU 0.64 0.48 0.50 0.60 0.51 0.47
F1 score 0.68 0.63 0.56 0.63 0.58 0.54
Tot IoU 0.55 0.53
OA 0.64 0.55

DL (Mask R-CNN) IoU 0.85 0.84 0.79 0.82 0.80 0.78
F1 score 0.94 0.92 0.90 0.89 0.87 0.85
Tot IoU 0.84 0.80
OA 0.92 0.89

DL (U-NET) IoU 0.84 0.82 0.76 0.80 0.79 0.75
F1 score 0.91 0.89 0.87 0.87 0.85 0.83
Tot IoU 0.82 0.78
OA 0.91 0.88
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30 % higher than the clustering algorithm as well as RF and achieved a
10 % increase in accuracy over GMM on all classes considered. These
values agree with the results observed for F1 score and OA and further
clarify how the U-Net, Mask R-CNN and models were more proficient in
classifying image pixels as belonging to the three classes under
investigation.

The results for the accuracy indices can be verified with the graphical
representations of the images in Fig. 5. This figure shows the masks
obtained after applying the segmentation and classification methods. In
addition, for each segmentation method, masks referring to two
different conditions of canopy growth are represented. It shows a case of

areas where vineyards have a larger and more highly developed canopy,
attributable to an area of HV, while another case refers to areas of LV,
where vineyard canopies are sparser and less developed.

Fig. 6a refers to the phenological period BBCH65 in which the sur-
face area is more covered by soil and the incidence of shadow is lower. In
contrast, in the phenological period BBCH85 depicted in Fig. 6b, both
the surface area covered by canopy is greater and the surface area
covered by shadow is also larger than in the previous period. Among the
methods, K-Means was the one that identified the lowest area covered by
canopy. The latter and RF were the methods that overestimated the area
occupied by the shadow, with values of 22.5 % and 25.8 %, respectively,

Fig. 5. Graphical representations obtained after the application of the methods to the vineyard sub-images derived from the DOM splitting, and the segmentation
masks subsequently obtained. Detailed images of two vineyard vigour conditions and their respective masks are also shown.
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Fig. 5. (continued).

Fig. 6. Distribution of the surface area covered by the three classes composing the DOM images; Figure a refers to phenological stage BBCH65; Figure b refers to
phenological stage BBCH85.
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referring to the BBCH85 phenological stage (Fig. 6b). This effect of
shadow overestimation is mainly attributable to misclassification errors
of canopy pixels that are classified as shadow, which is found for can-
opies of LV growth. DL methods and the GMM methods reported com-
parable percentage values with reference to the surface area covered by
soil, these values differing significantly from the values reported by RF
and K-Means, which instead identified an area of approximately 40 %.

3.1. Assessment of vine canopy delimitation

In order to obtain a more detailed assessment of the impact of the
vineyard canopy segmentation methods, the sampling blocks were
divided by the vigor level with the aim of identifying differences in the
blocks lying in LV zones and those lying in the HV zones. It was observed
that on average, the PCA among the different models applied is 4 (m2).
However, some classifiers have underestimated this area, e.g. RF iden-
tifies 3.62 (m2) and even the K-Means reports an average PCA value of
3.51 (m2). The GMMmethod reports an average PCA value of 4.21 (m2),
which is comparable to Mask R-CNN and UNet that are 4.12 and 4.07,
respectively (m2).

Through analysis of variance, it was observed that both the vigor
levels and image analysis methods applied in this study affect the
response of PCA values (p-value = 0.008). Boxplots showing how the
average PCA figure varied between HV and LV are shown in Fig. 7.
Boxplot 7a shows the results of the analysis carried out by Tukey’s test
related to LV zones, showing how the U-Net and Mask R-CNN methods
are statistically different from the K-Means classification model; instead,
RF shows a statistically intermediate result between the groups. The
graph in Fig. 7b, meanwhile, shows the results of PCA for HV zones.
Tukey test did not find differences between GMM, Mask R-CNN and.

U-Net models. This group reported average PCA for the HV canopies
with smaller size than the average PCA derived from the SVM and the RF
as well as K-Means. The SVM reported the value of PCA in the HV
vineyard areas similar to RF, these methods and also the K-Means
overestimated this parameter, the latter exhibiting the highest value of
canopy overestimation, being statistically different from all other
methods.

In the same manner as performed for PCA, the analysis of variance
between factors such as vigor levels and segmentation methods has
found a significant and positive interaction with the NDVI variable.

The boxplots in Fig. 8 represent the distribution of NDVI

corresponding to the canopy segmentation masks in the two vineyard
vigor conditions. The boxplot 8a refers to the sampling blocks located in
LV zones, it is observed that the classification methods that under-
estimated the size of the PCA (Fig. 7a), such as RF and K-Means, report
higher NDVI than the other methods. In fact, the GMM,Mask R-CNN and
U-Net show lower NDVI for LV areas, this is confirmed by the Tukey test.
In contrast, Tukey test computed in ANOVA analysis for the RF and SVM
indicates that the NDVI are intermediate to the previous groups.
Observing the boxplots shows an interesting result about the distribu-
tion of NDVI among the models under investigation. Models that tend to
overestimate the NDVI of LV canopies are characterised by a narrow
boxplot, indicating a narrow dispersion of values within the population
and thus less heterogeneity in the data. The boxplot in Fig. 8b refers to
NDVI of HV zones, in this case the analysis of Tukey test shows statis-
tically significant differences between DL methods and K-Means, the
latter underestimates the NDVI of the HV canopies.

The larger boxplot of K-means represents greater dispersion of the
data within the sample and thus a higher data heterogeneity.

Table 6 shows the values for the Gini index, these results allow
explaining the observed variability between LV and HV canopies among
the image analysis methods. With reference to PCA parameter for
vineyard blocks located in LV areas, it is seen that the U-Net andMask R-
CNN methods reported low Gini values. An opposite result was obtained
for the RF and K-Means methods, in which the index was 21.44 % and
25.85 %, respectively, which were significantly higher.

On the other hand, observing the distribution of the Gini index for
the NDVI, it is noted that this is lower for the K-Means and RF methods
and instead is higher for the other methods. Referring to the NDVI, it is
noted that the lowest values of the Gini index are reported by the DL
methods. Among OBIA methods, GMM and SVM show low Gini values,
unlike those reported by K-Means and RF, which exhibit greater
heterogeneity.

This performance is determined by the variability of the pixels of the
high vigor canopies as a result and where the segmentation method was
unable to separate the canopy pixels with those of the shadow and soil.

Fig. 9 shows how segmentation methods that tend to underestimate
canopy size exclude edge pixels characterized by lower values than the
middle pixels. This phenomenon tends to increase the average NDVI
canopies. For HV canopies, segmentation methods that were unable to
accurately identify canopy pixels (K-Means; RF), tend to underestimate
the NDVI. This underestimation is due to the greater heterogeneity of the

Fig. 7. Boxplot representation of Projected Canopy Area (m2) values divided among the methods; boxplot a pertains to the sampling blocks of low-vigor (LV)
canopies, while boxplot b pertains to the blocks of high-vigor (HV) canopies.
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pixels that characterise the canopy. In particular, the values of shaded
pixels that have been misclassified as a canopy, having a lower NDVI,
influence the average value of the resulting canopy.

Figs. 9 and 10 show a visual comparison of the results obtained
through the different image analysis methods for two vegetative canopy
growth conditions. It can be seen clearly through these visual results,
which further confirm the analyses of quantitative comparisons per-
formed through the accuracy indices. Fig. 9 refers to LV canopies, in
which after removing complex background features such as soil and
shadows, only the canopy masks are obtained. Through this visual-
isation, a comparison can be made between the methods for delineating
the canopy edges. Fig. 9 (a), (b) and (d) show the output results of the
supervised ML methods, focusing particularly on Fig. 9 (d) it is evident
that the RF method is the one that generates the least accurate canopy
boundary shape. The K-Means method in Fig. 9 (c) is the worst, with
many false detections, this is shown by observing the details on the
canopy edges that are completely different from the actual edges. In
contrast, in Fig. 9 (e) and (f) canopy segmentation masks are observed to
be completely superimposed on the real conditions of LV canopies; in
fact, these have the greatest details on the canopy edges. Thus, the
classification and segmentation methods that obtained the worst results
in LV areas, detect a lower number of pixels and these are mainly the
middle pixels of the canopy, and these methods cannot identify the
vegetation pixels located at the edges.

Fig. 10, on the other hand, shows the results obtained by the methods
for HV canopy, areas of the vineyard where the row vegetation has a

larger size. It is noticeable that among the OBIA supervised ML models,
GMM (Fig. 10a) was the one that was able to delineate the canopy edges
better, compared to the SVM and RF methods, which were instead more
affected by shaded pixels. Especially observing Fig. 10 (c) for the K-
Means method, the canopy mask does not delineate by vegetation pixels,
but rather includes shaded pixels. DL networks were comprehensively
better than the other methods for detecting vineyard canopies in HV
zones and show greater detail on the canopy edges, which explains their
higher accuracy values.

Fig. 11 shows an example of overlapping of two classification masks
referring to the methods that accurately classified the canopies, and in
this example the U-Net method is mentioned. Furthermore, viewing at
the edges of the yellow mask, it can be observed that for the LV vines
(Fig. 11a), the canopy pixels are identified, whereas the K-Means (red
line) only identifies a part of the canopy. Fig. 11 (c) further clarifies this
direct effect on canopy NDVI, as the U-Net also identifies pixels at
canopy edges, which usually have a lower value than the middle canopy
pixels alone. Consequently, NDVI of the LV canopies identified by DL
methods is lower in absolute value and with greater heterogeneity in the
dataset. In Fig. 11 (b), meanwhile, it is observed that in HV zones,
classifiers such as K-Means (red line), which cannot identify canopies
clearly from shaded pixels, report lower NDVI than methods that iden-
tify canopies accurately and with acceptable overlap. In Fig. 11 (d), it is
observed that in this case the shaded pixels cause an evident interference
with the vegetation pixels, and thus a lower NDVI.

The histograms shown in Fig. 12 illustrate the difference in NDVI
distribution depending on which method was used to classify the can-
opies. Histogram 12 (a) refers to LV canopies and three methods are
represented, with reference to the U-Net and GMM classifiers, it is noted
that both have a broader distribution range compared to K-Means dis-
tribution. With reference to this histogram, the relative frequency per-
centage of NDVI pixel observations with values below 0.60 is
significantly higher for U-Net and GMM. For NDVI class of 0.55, the
relative frequency percentage of U-Net and GMM is 10 % compared to K-
Means, which is 2 %. The histogram in Fig. 12 (b), however, refers to the
canopies of the HV zones, and in this case the distribution range of NDVI
for the canopy pixels identified by K-Means is greater, in view of the
shadowed pixels. For example, for the NDVI value class of 0.70, the
relative percentage frequency is 10 % for K-Means and on the other hand
is approximately 3 % for NDVI detected by U-Net and GMM methods.

Fig. 8. Boxplot representation of NDVI divided among the classification models; boxplot a relates to the sampling blocks of low-vigor zones, while boxplot b relates
to the blocks of high-vigor zones.

Table 6
Gini heterogeneity index (G%) representing the range of variation for the vari-
ables Projected Canopy Area (PCA) and NDVI calculated for the LV and HV
sampling blocks and the whole dataset.
Method Low vigor High vigor All data set

G%
(NDVI)

G%
(PCA)

G%
(NDVI)

G%
(PCA)

G%
(NDVI)

G%
(PCA)

(OBIA)
GMM

6.86 16.07 3.10 6.68 12.57 17.44

K-Means 2.60 25.85 7.87 8.33 9.12 26.45
Mask R-
CNN

6.88 15.80 2.13 8.85 11.73 16.38

(OBIA) RF 3.01 21.44 6.73 6.87 8.59 25.70
(OBIA)
SVM

4.34 19.72 4.15 6.34 10.04 20.20

U-Net 6.25 12.66 2.74 7.76 11.88 16.84
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3.2. Correlation analysis

The results of the spectral and canopy area information obtained
through the different segmentation methods were used for correlation
analyses combining the vineyard agronomic parameters and evaluated
for the two phenological stages (Fig. 13). Observing both correlation
matrices, positive Pearson correlation values are noted between the
NDVI and the agronomic variables TLA and Chl. In addition, the coef-
ficient values are better for surveys performed during the phenological
stage BBCH65. With reference to this phenological stage, the correlation
results are shown in Fig. 13 a, considering the canopy NDVI, the highest
correlations with the TLA parameter were obtained by U-Net and Mask
R-CNN and are respectively 0.89 and 0.87. Among the supervised
methods, instead, the correlation between TLA and SVM and GMM is
slightly lower than DL networks, in contrast, the correlation between
TLA and NDVI values identified by RF classifier is 0.77 and thus lower, a
similar value is reported by the correlation between TLA and K-Means
and is the worst correlation result (r = 0.76). In Fig. 13 b, similar results
to those reported for BBCH85 are observed, however, the correlation for
DL methods is still higher (r = 0.78), compared to methods such as RF
and K-Means, which instead report r values of 0.69 and 0.68, respec-
tively. When considering the agronomic parameter Chl conversely, the
NDVI values derived by Mask R-CNN and U-Net have the highest cor-
relation coefficients (r= 0.86), during the phenological period BBCH65,

this value decreases to BBCH85 (r = 0.80), remaining the highest result.
Thus, the correlation coefficient with leaf Chl increased by 0.10
compared to the NDVI obtained with the RF and K-Means methods. The
agronomic parameter S.l was the one that reported lower correlation
values and in generally less than 0.50, however even in this case it is
observed that DL networks and supervised ML methods report better
correlation values. These correlations were also carried out considering
the PCA data, and the results obtained are quite remarkable, as shown by
the correlation in Fig. 13 a, where TLA and PCA are better represented
by U-Net and Mask R-CNN with values of r = 0.80 and 0.81, respec-
tively, than the values of the K-Means and RF methods, which are lower
(r = 0.77). As shown by the correlation coefficients between Chl and
PCA, it can be stated that PCA is not a recommended variable for the
estimation of Chl content. Correlation coefficients between PCA and Chl
were better for phenological stage BBCH65. Referring to the correlation
coefficients between the NDVI values of U-Net and Mask R-CNN, are the
highest for both phenological periods, in fact with values above 0.95, the
clear correspondence between the two methods is evident. Furthermore,
DL methods also show a correlation with NDVI of the canopies detected
by GMM, further demonstrating their correspondence. Among the re-
sults observed in the correlation matrix, it is noteworthy that the lowest
correlation values were obtained in the comparison between the U-Net
and Mask R-CNN methods with the K-Means method, reporting average
values of 0.75 for the BBCH65 and 0.81 for the BBCH85 stage.

Fig. 9. Results of different vineyard canopy detection methods in low vigor growth conditions. (a) GMM; (b) SVM; (c) K-Means; (d) RF; (e) Mask R-CNN; (f) U-Net.

M.V. Ferro et al. Computers and Electronics in Agriculture 225 (2024) 109277 

13 



Additionally, K-Means shows good correlation values when compared to
the RF method, both for NDVI and PCA data. Finally, DL methods
demonstrate the highest correlation values between NDVI and PCA,
compared to the K-Means method, where the correlation between NDVI
and PCA is lower, with r values for BBCH65 and BBCH85 of 0.75 and
0.85, respectively.

4. Discussion

4.1. Quantitative comparison of the different methods

The studied vineyard shows a high level of vegetative and repro-
ductive variability, which has been studied in previous investigations at
experimental vineyards (Ferro et al., 2023). High variability is found in
the heterogeneous canopy growth, which can be attributed to a different
canopy thickness due to the variation in shoot number, shoot length and
consequently number of leaves. Moreover, this heterogeneity also af-
fects grape yield and quality parameters, which differ significantly be-
tween the LV and HV zones. The terrain topography contributes
significantly to an uneven change in vineyard vigour. The effects of this
phenomenon show that flat areas have higher NDVI values, indicating a
higher vegetative density of the canopy. Earlier studies show that in
sloping areas there is a decrease in grape yield, together with a lower
vegetation density and consequently a low grapevine NDVI is observed
(Novara et al., 2018).

This study has considered a complex context, characterized by a
vineyard with a wide variability in vine growth, leading to different
canopy densities. This parameter is considered one of the main con-
straints for canopy delimitation (Sarabia et al., 2020). The results of
vineyard segmentation and classification vary for different image

components and in terms of the size of the obtained segments. However,
this was expected since six different pixel-wise methods with varying
structural complexity and architecture were employed. In this compar-
ative study between DL networks and classical supervised machine
learning methods (GMM; SVM; RF), as well as unsupervised K-Means,
the analysis was conducted using a dataset comprising both NIR and
RGB bands. This operational mode was adopted because it is known
from the literature that the NIR band provides high segmentation per-
formance (Zheng et al., 2020). However, combining NIR with the RGB
bands, which are widely used for image segmentation studies, enhances
the overall performance (Cinat et al., 2019; Pádua et al., 2022). The
image analyses were performed by segmenting each sub-image sepa-
rately rather than the entire orthomosaic. Accurate detection of vine
canopy is crucial for obtaining precise information about vegetation,
especially in the presence of elements that can negatively influence
canopy spectral response, such as soil, shadows, or weeds. Compared to
other traditional machine learning methods, both semantic segmenta-
tion and instance segmentation models demonstrated a significant
improvement in classification accuracy, with higher (OA) and F1-score.
Some other classification methods (e.g., RF; K-Means) misclassified the
vine canopy as soil background or erroneously identified shadows as
vine canopy. These findings align well with conclusions from other
studies that leverage spectral combinations and assess various ap-
proaches to canopy segmentation and classification (Huang et al., 2020).
Nevertheless, among the supervised ML methods, GMM exhibited the
lowest error index and stands out as one of the most stable classifiers.
SVM showed some errors in classification, however, it can be considered
relatively stable, in contrast to RF, which showed clear errors in deter-
mining shadows classified as soil or vegetation. Concerning RF method,
lower accuracy in shadow detection in VSP systems has been previously

Fig. 10. Results of different vineyard canopy detection methods in high vigor growth conditions. (a) GMM; (b) SVM; (c) K-Means; (d) RF; (e) Mask R-CNN; (f) U-Net.
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observed as well (Kerkech et al., 2018; Pádua et al., 2022). It is well-
known that various factors can influence the accuracy of OBIA
methods, including segmentation parameters, feature selection, and
detailed algorithm tuning. Therefore, thorough controls are necessary to
determine the optimal parameter values (Gonçalves et al., 2019). The
division of the image dataset into training, validation, and testing sets
was performed after a series of trials with different dataset splits. It was
observed that all OBIA methods showed better performance with
increasing training dataset size. The dataset splitting procedure used in
this study was consistent with that of other studies, where a training
dataset portion equal to or greater than 70 % was selected, and the
classification accuracy demonstrated robust stability with no overfitting
observed for ML models (Ye et al., 2023; Yuba et al., 2021). OBIA
methods, tuning the number of elements for the training samples of each
image can have a significant impact on the classification accuracy. In
this study, the subdivision was made considering the study conducted by
(Qian et al., 2014) in which it is observed that the different ML methods
become insensitive to an increase in sample size and thus the accuracy of
the models does not increase significantly by exceeding the threshold of
125 samples (Zhou et al., 2021). Therefore, the greater stability ach-
ieved by GMM and SVM methods could be attributed to their lower
sensitivity to changes in the number of samples, as demonstrated by

(Qian et al., 2014).
The superior performance of Mask R-CNN observed here can be

justified by the use of multi-band images, an approach known to
significantly enhance segmentation accuracy compared to models uti-
lizing single-band images (Yu et al., 2022). Moreover, image spatial
resolution has a direct impact on the accuracy of detection, which is
notably high in this study. It is acknowledged that (CNN) are signifi-
cantly influenced by spatial resolutions, and their efficiency diminishes
as resolution decreases (Hao et al., 2021; Safonova et al., 2021). In line
with the findings of this study, a recent comparison was made between
the performance of Mask R-CNN and the OBIA-MDTWS algorithm. The
experimental results affirmed the effectiveness of Mask R-CNN in seg-
menting crops, revealing a higher overall average F1-score of 97.63 %
compared to the OBIA method (Ye et al., 2023). From vineyard in-
vestigations using RGB and NIR images, it is evident that semantic
segmentation methods, including U-Net, exhibit overall superior per-
formance compared to unsupervised segmentation methods. This aligns
with the results presented in this study. However, the authors demon-
strate that some of these methods can have competitive performance
under specific conditions (Barros et al., 2022). In this study, U-Net
accurately identifies the three classes, particularly in terms of canopy
delineation. U-Net has achieved positive outcomes primarily due to the

Fig. 11. Illustration of two canopy boundary masks under two different vigor conditions; (a) Overlapping of U-Net (yellow line) and K-Means (red line) canopy
masks in LV vineyard zones; (b) overlapping of U-Net (yellow line) and K-Means (red line) canopy masks in HV vineyard zones. (c) graphical representation of LV
vineyard canopy NDVI; (d) graphical representation of canopy NDVI in HV zones.
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concatenation and upsampling structures it incorporates. The encoder
and decoder layers, indeed, allow for the acquisition of detailed infor-
mation from the features of the training image set (Sun et al., 2022). This
result is consistent with the literature, which asserts that the use of se-
mantic segmentation can significantly improve the efficiency of multi-
class segmentation (Osco et al., 2021; Sahin et al., 2023).

4.2. Inter-relationship analysis among methods and agronomic
parameters

Recent studies have revealed that semantic segmentation signifi-
cantly improved the accuracy of LAI estimates compared to traditional
methods (Shao et al., 2023). This is done by masking multispectral im-
ages through U-Net to generate specific canopies segmentations, follows
by the computation of VI, together with analyses conducted to under-
stand how specific parts of the canopy influence the spectral charac-
teristics. This study conducted on an on–farm vineyard with VSP system,

more accurate canopy delineation results were observed during the
vegetative phase BBCH65. During this period, the general conditions of
shoot growth did not have a negative impact or make the image analysis
process laborious. The canopy exhibited a more distinctive morpho-
logical aspect compared to the BBCH85 stage, where the occurrence of
shading and other background elements could result in a performance
decrease for some methods. The canopy size affects the results of pixel-
wise model delineation. Canopies with higher density tend to be over-
sized, and this effect has been observed for DL networks (Xi et al., 2021).
However, in this study, DL networks were not significantly disadvan-
taged by this effect. On the contrary, traditional segmentation methods
were significantly influenced, as also noted by (Ouyang et al., 2020).
The variation in canopy sizes plays a crucial role in segmentation and
classification processes. In this study, it was observed that differences in
canopy size were not solely phenological but were also related to vari-
ations in vine vigor within the plot. The accuracy and F1-score results
indicate that certain classifiers, both in OBIA methods and unsupervised

Fig. 12. NDVI histograms of three different canopy detection methods respectively for LV canopy (a) and HV canopy (b) zones of the vineyard.

Fig. 13. Correlation matrices for the 15 variables examined. The matrices show the Pearson correlation coefficient (r) values between the agronomic variables and
the NDVI and Projected Canopy Area (PCA) data identified using the six image segmentation methods. The colour intensity is proportional to the correlation co-
efficients, with values close to 1 coloured in blue, and values close to zero in orange. The correlation matrix in figure a and b refer the phenological period BBCH65
and BBCH85, respectively.
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approaches, tend to exclude smaller vine canopies in LV areas. HV zones,
conversely, vine rows with high canopy thickness and density tend to be
oversized. The error is likely related to the presence of shadows in the
images, affecting both the K-Means method (Cinat et al., 2019), and
OBIA methods, such as the RF classifier (Pádua et al., 2022). The mul-
ticlass segmentation analysis allows for the identification of soil and
particularly shadow influence on the overall area of pure vegetation
pixels. Methods that underestimated canopy sizes in LV zones exhibited
an overall higher NDVI compared to more accurate methods. In HV
vineyard zones, on the other hand, methods with higher classification
errors overestimated canopy pixels, resulting in lower NDVI compared
to methods that achieved high accuracy and excluded the spectral
response from shadows. The literature regarding this specific result,
observed for pure pixels, is limited. However, the phenomenon can be
explained by considering the findings from Sozzi et al., (2020) where the
Gini index is taken into account. The authors conducted a multi-
resolution comparison study, comparing two data acquisition plat-
forms in a vineyard and evaluating their respective NDVI. They report
that a high NDVI value is associated with a lower Gini index, and
conversely, a lower NDVI is paired with a high Gini index. These results
align with those identified in this study. A similar result to that identified
in this study was observed by Aboutalebi et al., (2019), where the
average NDVI in pure canopy pixels were higher than those in shadowed
vegetation pixels. The authors applied both unsupervised classification
methods and supervised OBIA techniques, with the latter achieving su-
perior accuracy indices in shadow detection. On the other hand, the
results shown by RF and K-Means methods in LV vineyard zones are a
consequence of the small and constrained canopy sizes, especially in VSP
systems. This phenomenon has also been observed in other studies (Hall
et al., 2003; Poblete-Echeverría et al., 2017). Campos et al., 2021,
observed that background elements negatively influence the pixels of
the vine canopy area. The edge effect on multispectral images signifi-
cantly impacts the NDVI of the vine canopy, consequently decreasing its
correlation with canopy architecture parameters. Correlation matrices
demonstrate positive and significant interactions in comparing NDVI
data with agronomic parameters such as TLA and Chl. It has been found
that the correlations between canopy NDVI and TLA, evaluated through
high-resolution UAV images, can be rather low. This is explained by
considering the phenomenon that canopy pixels are more influenced by
the physiological activity of the vine than canopy structure (Caruso
et al., 2023). Conversely, NDVI obtained from lower-resolution images,
such as satellite imagery, incorporate reflectance information from both
the canopy and the soil. Consequently, it is more influenced by changes
in vegetation cover than by plant physiology (Gitelson et al., 2002). In
this study, it was demonstrated that the correlation between pure can-
opy pixel NDVI and vineyard leaf area can be increased by exploiting
canopy segmentation and classification methods that remove the nega-
tive influence of background effects. These observations are in line with
other recent studies, which obtained higher accuracy in the estimation
of LAI and leaf Chl after removing shaded canopy pixels in an orchard
context (Zhang et al., 2024).

The coefficients of determination obtained between NDVI and leaf
chlorophyll content indicate a high correlation, supporting the capa-
bility of NDVI to precisely assess chlorophyll content in leaves. These
results are in line with the findings reported by Caruso et al., (2023),
which highlighted a consistent and stable relationship between these
two parameters. Furthermore, correlations related to NDVI data ob-
tained from segmentation methods showed a decline in correlation with
leaf chlorophyll content at BBCH85, in agreement with observations by
Caruso et al., (2017) in which the estimation of vine leaf chlorophyll
content was conducted using UAV images.

Results obtained suggest that it is possible to enhance canopy
delineation and achieve an accurate estimation of spectral conditions.
Improving vine canopy delineation through the application of these
technologies opens new perspectives for vineyard phenotyping and the
prediction of key agronomic parameters. The scientific contributions of

this study primarily concern the development of more precise and reli-
able phenotyping systems, enabling the identification of variation in
canopy growth in relation to plant vigor. A more realistic monitoring of
vigor offers the possibility to accurately identify the onset of abiotic
stress. Vine canopy segmentation and vigor monitoring have the po-
tential to provide valuable information for improving grapevine growth
simulation models.

4.3. Limitations and future work directions

In this study, the dataset used for training exhibited high variation in
vegetation growth conditions, in terms of vigor and overall vegetation
growth between low and high vigor canopies. This spatial variability
primarily concerns the differing canopy thickness, and consequently
also the spectral response evaluated through NDVI between LV and HV
vineyard zones. For these reasons, a biennial trial was conducted, in two
distinct phenological phases, with the aim of evaluating the impact of
canopy growth variability on segmentation and classification processes.
In the future, to obtain more accurate measurements of Chl and TLA, it is
desirable to retrieve more data on canopy structure. Future studies will
include sensors capable of capturing canopy biometric data through
direct measurement systems rather than point-based approaches.
Manual annotation of ground truth masks for model segmentation
training poses a challenge due to its laborious nature in terms of time
and effort. For instance, accurately delineating canopy shadows gener-
ated by sunlight in aerial photography is one of the main challenges in
the labelling process. Possible future directions will be exploration of
hybrid annotation approaches, combining semi-automatic methodolo-
gies, or using machine learning algorithms capable of generating initial
masks. These approaches could drastically reduce the annotation
workload required while simultaneously improving the flexibility and
overall efficiency of the process. This study did not report the time
consumed for model calculations. However, it was observed that the
computationally most expensive algorithms, ML ones used in OBIA
analysis, demandedmore time to complete the analysis, heavily utilizing
processor capabilities. ML algorithms utilize the CPU to analyze the
multi-dimensional features of each object. In this study, analyzing a very
large multispectral image dataset requires multiple computation cycles
to segment and classify each class, leading to a significant increase in
processing time, which represents an intrinsic limitation of the CPU. On
the contrary, the two DLmethods leverage the parallel computing power
of GPU, designed to handle large amounts of data. These distribute
computations across multiple cores, significantly accelerating the seg-
mentation and classification process of classes. This research provides
the baseline for future studies on the implementation of UAV-mounted
multispectral sensors that could be equipped with GPUs for real-time
canopy detections, providing accurate information on vineyard pheno-
typing or vegetation maps in real time.

5. Conclusions

The utilization of multispectral image analysis technologies captured
by UAVs represents an additional asset for the comprehensive moni-
toring and prediction of vineyard vegetation conditions. By combining
these technologies with computational models of OBIA or deep learning,
it becomes possible to accurately compute VIs using various spectral
bands. This study presents a workflow that includes cutting-edge deep
learning methods such as Mask R-CNN and U-Net, supervised machine
learning methods such as GMM, SVM, RF, and the unsupervised K-
Means method. The analyses were executed employing high-resolution
multispectral images acquired from UAV. The methods were employed
for vine canopy delineation, aiming to investigate the potential influ-
ence of segmentation and classification algorithms on crucial parame-
ters such as the projected canopy area and NDVI. These parameters,
derived from image analysis, were subsequently correlated with agro-
nomic data, encompassing total leaf area, shoot length, and leaf
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chlorophyll content. In conclusion, the Mask R-CNN and U-Net achieved
higher accuracy indices overall compared to OBIA algorithms. However,
among the OBIA methods, the GMM algorithm demonstrated the lowest
error rate and can be considered one of the valid OBIA methods for
extracting canopy margin features. While SVM yielded acceptable ac-
curacy, it faced challenges in efficiently separating shadows from
vegetation in certain contexts. On the other hand, the RF and K-Means
algorithms reported misclassifications of image components, signifi-
cantly affecting the spectral data of the canopy. Specifically, for LV
vineyard zones, the NDVI was overestimated, while in HV vineyard
zones, the NDVI was underestimated. This result has a direct impact on
the correlation with canopy agronomic parameters. The NDVI identified
in canopies delineated using Mask R-CNN and U-Net methods showed a
strong correlation with total leaf area and chlorophyll content. Super-
vised OBIA methods employing GMM and SVM algorithms exhibit stable
and positive determination coefficients with agronomic variables,
although marginally lower than those obtained from DL networks. This
study represents an innovative approach that elucidates the practical
implications of using neural networks and OBIA methods for the
detailed assessment of canopy. By expanding this knowledge, vineyard
vigor monitoring systems can be enhanced, providing grape growers
with increasingly precise and reliable crop information.
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different object-based classifications using machine learning algorithms and UAVs
multispectral imagery: a case study in a citrus orchard and an onion crop. European
Journal of Remote Sensing 54, 431–460. https://doi.org/10.1080/
22797254.2021.1951623.

Moghimi, A., Pourreza, A., Zuniga-Ramirez, G., Williams, L.E., Fidelibus, M.W., 2020.
A Novel Machine Learning Approach to Estimate Grapevine Leaf Nitrogen
Concentration Using Aerial Multispectral Imagery. Remote Sens. (Basel) 12, 3515.
https://doi.org/10.3390/rs12213515.

Novara, A., Pisciotta, A., Minacapilli, M., Maltese, A., Capodici, F., Cerdà, A., Gristina, L.,
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