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Abstract: Micronutrients are required in many reactions involved in physical activity and exercise.
Most physically active people do not meet the body’s needs in terms of micronutrients through
diet. The novelty of the present manuscript is the use of an innovative dietary approach to supply
micronutrients to physically active people through biofortified food. Therefore, the key point of
this study was to verify whether supplementation with biofortified vegetables—and specifically
molybdenum (Mo)-enriched lettuce—in healthy volunteers affects essential regulators of body home-
ostasis and, specifically, hematological parameters, iron and lipid metabolism, and hepatic function.
Twenty-four healthy volunteers were allocated in a double-blinded manner to either a control group
that consumed lettuce, or the intervention group, which consumed Mo-enriched lettuce, for 12 days.
Blood samples were collected at baseline (T0) and after 12 days (T1). We found that supplementation
with Mo-enriched lettuce did not affect hematological parameters, liver function, or lipid metabolism,
but significantly improved iron homeostasis by increasing non-binding hemoglobin iron by about 37%
and transferrin saturation by about 42%, while proteins of iron metabolism (e.g., transferrin, ferritin,
ceruloplasmin) were not affected. The serum molybdenum concentration increased by about 42%.
In conclusion, this study shows that consumption of Mo-biofortified lettuce ameliorates iron home-
ostasis in healthy subjects, and suggests that it could be used as a new nutritional supplementation
strategy to avoid iron deficiency in physically active people.

Keywords: dietary supplements; micronutrients; molybdenum; vegetarian diets; iron homeostasis

1. Introduction

Micronutrients play key roles in energy metabolism; therefore, their deficiency states
may have profound consequences, especially for athletes [1]. In fact, a balanced diet,
consumed in adequate quantities to meet energy requirements, supplies the required
amounts of dietary minerals. However, most of the population—especially athletes—do
not meet the body’s needs in terms of macronutrients and micronutrients to function
satisfactorily through diet alone [2–5]. This is due not only to inadequate dietary intake
(not all athletes get an appropriate energy intake from diet, and they may not eat a varied
diet), but also to the higher physiological demand in the different stages of life, e.g., during
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childhood development and aging [6]. Furthermore, functional foods, due to the vegetable
matrix, might increase the absorption and bioavailability of nutrients.

Molybdenum (Mo) is one of the nutritional micronutrients essential for the human
body. Mo is a cofactor for four different enzymes: sulfite oxidase, xanthine oxidase,
aldehyde oxidase, and the mitochondrial amidoxime-reducing component [7]. In each
of them, Mo is bound to a very complex and organic component called molybdopterin,
forming the entity molybdenum cofactor. Foods rich in Mo include nuts, legumes, and
grains. However, Mo content in food is influenced by the soil. Therefore, for example,
the content in meat depends on the forage of the animals, while that in plants depends
on the regional richness of the soil [8]. The recommended dietary allowance of Mo is
45 µg/day [9]. The tolerable upper intake level is 2 mg/day. The biomonitoring equivalent
(BE) of molybdenum in urine (considering the reference dose and tolerable daily intake
exposure guidance values) is 22 µg/L, while the BE value associated with toxicity is
200–7500 µg/L [10].

Biofortification is considered a good strategy to deliver micronutrients to the pop-
ulations and, among other agronomic practices [11–15], it represents a key technique to
improve crop quality [16–22]. It differs from fortification because there is no addition of
nutrient supplements to the foods during food processing; rather, plants are grown under
specific conditions to be naturally more nutritive. Hence, the crops increase their nutritional
value [23]—for example, in terms of micronutrients. Moreover, consumption of biofortified
vegetables in individuals improves body health [24,25].

Iron is an essential dietary mineral because it is a key component of the hemoglobin
protein, and is a cofactor of many enzymes involved in essential cell functions [26]; it is
used by the body in many fundamental processes at the cellular level, such as energy
production and oxygen transport. Therefore, iron homoeostasis is important in the general
population to avoid iron deficiency, and is essential in athlete populations, where iron
deficiency is reported in 15–35% of female and 3–11% of male athletes, and can compromise
athletic performance [27].

Previous studies have shown that sustained-release preparations of molybdenized
ferrous sulfate given as a supplement during pregnancy improve iron deficiency [28–30].
Therefore, we thought that biofortification of vegetables with molybdenum, if it impacts
iron homeostasis, could offer an excellent opportunity to increase iron availability in the
human body. It could reduce the negative effects of iron integration treatments—such
as constipation and gastric effects—due to its vegetal-rich matrix. Therefore, the aim of
the present study was to verify whether supplementation for 12 days with Mo-fortified
vegetables—and specifically Mo-biofortified lettuce—influences iron homeostasis, hematic
and lipid profiles, and liver function in a population of healthy individuals.

2. Materials and Methods
2.1. Experimental Design

The study employed a randomized, placebo-controlled design over a 12-day period,
and is part of a larger program—the Nutri-Mo-Food project. The study was registered at
Clinicaltrials.gov as NCT04985240. The protocol was approved by the Ethics Committee of
Palermo University Hospital (Project Number 2/2020 AIFA CE 150109), and was conducted
in accordance with the Declaration of Helsinki.

2.2. Participants

An a priori power calculation based on previous studies of hematological parame-
ters [24,25,31], utilizing a level of statistical significance (α) of 5% and probability (β) of 20%,
was used to estimate a sample size of eight participants. Twelve subjects were included
in the study to reduce the risk of type-two errors and to enhance the evaluation power
for secondary outcomes. As previously described, 24 healthy volunteers—12 males and
12 females—participated in the study, and provided written informed consent prior to
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study inclusion. Participant characteristics are shown in Table 1, while a flowchart of the
recruitment, selection, and assignment of participants to groups is presented in Figure 1.

Table 1. Characteristics of participants at baseline; n: number of members in the group. Values are
indicated as means ± standard deviations (SD); p-values higher than 0.05 mean that the change is not
statistically significant.

Parameters
Control Group Age

Range: 23–57
(n = 12), Mean ± SD

Intervention Group Age
Range: 27–53

(n = 12), Mean ± SD
p-Value

Age 37.5 ± 13.5 40 ± 10 >0.05

Height(m) 1.68 ± 10 1.72 ± 9 >0.05

Weight (Kg) 69 ± 9.8 72 ± 13 >0.05

BMI (kg/m2) 24.3 ± 2.5 24.2 ± 2.8 >0.05

Visceral fat (%) 6.5 ± 3.3 7.2 ± 3.2 >0.05

Fat mass (%) 28.6 ± 7.3 26.5 ± 7.1 >0.05

Lean mass (%) 32.8 ± 5.8 33.2 ± 5.4 >0.05

Median age 38.5 39 >0.05
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Participants were required to satisfactorily answer a health screening questionnaire,
a daily food diary, and lifestyle information, and to be prepared to comply with study
requirements. Participants with a known history of blood-related dysfunction; cardiac,
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gastrointestinal, or metabolic disorders; or recent viral infection were not eligible for the
study. Additionally, anybody reporting the use of supplementation (e.g., molybdenum) or
medication (including exogenous hormones for females) for >6 weeks before the start of the
study, as well as those with known adverse or allergic reactions to dietary intake of lettuce,
were excluded from the study. Pregnant and breastfeeding patients were not eligible for
the study. The eligibility criteria of the study are summarized in Table 2. Participants
were instructed by nutritionists and physicians to maintain the same dietary habits and
lifestyle (including physical activity levels) throughout the intervention period. They
were provided with example diaries and individually instructed in diary completion. As
previously reported [24], food diaries were completed by participants in the first 8 days
before starting the study and until the end of the study, as a means to monitor adherence
and compliance, along with food habits and lifestyle changes.

Table 2. Eligibility criteria summary of the study.

Selection Criteria Inclusion Criteria Exclusion Criteria

Absence of blood-related dysfunction; cardiac,
gastrointestinal, and metabolic disorders; recent

viral infection; and food allergies
Volunteers of Italian ethnicity Presence of chronic disease

Not taking medications Age range: 18–60 years Use of medication

Absence of obesity Clinically healthy Use of dietary supplements

Not taking supplements Body mass index: 18.5–28 kg/m2 Breastfeeding, Pregnancy

2.3. Procedures of the Experimental Design

The procedures took place in the Nutrition, Age, and Bone (NABbio) laboratory
of the STEBICEF Department at the University of Palermo, under controlled conditions.
As previously reported [24], participants attended the laboratory, having had their last
meal ~12 h before the appointment. Upon arrival, each participant’s anthropometric
measurements (i.e., height, body mass, body fat) were recorded [32,33], and a venous
whole-blood sample was collected in VACUTAINER and EDTA-K3 tubes between 7:00
and 8:00 a.m. [34,35]. At baseline, participants were allocated in a double-blinded manner
to one of the two intervention groups. Each participant received three entire crops of
lettuce, corresponding to about two kilograms of canasta lettuce, in order to consume
100 g each day, for a total of 12 days. For the storage conditions, it was suggested to
wash and dry the lettuce and to store it in a domestic refrigerator (at 4 ◦C, in the drawers
for storing vegetables) wrapped in a kitchen cotton towel. Before the consumption of
the lettuce, the appearance of the leaves was examined—the color, the texture, and the
smell. Lettuce with leaves of a bright green color, firm and hard, smooth, and with a
good smell (decisive, aromatic) was considered good for consumption. If the leaves were
yellow brown or gray and the smell was pungent (like stagnant water), the lettuce was
considered not good for consumption. Six male and six female participants, for a total of
twelve volunteers, were allocated to the control group and received control canasta lettuce,
while six male and six female participants, for a total of twelve volunteers, were allocated
to the molybdenum-biofortified group, and received canasta lettuce with molybdenum. As
previously reported [20], lettuce enrichment with Mo was achieved through foliar spraying
of molybdenum as sodium molybdate (Na2MoO4) during the period of growth. Specifically,
the lettuce was supplied with a dose of 3 µmol Mo L−1 in the form of sodium molybdate.
Therefore, as previously reported [24], the intervention group received 8 mg of Mo in 100 g
of fresh lettuce, while the control group received 0.21 mg of Mo in 100 g of fresh lettuce,
every day, for a total of 12 days. Blood sample collection was performed at baseline = T0
and at T1, after 12 days (Figure 2).
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the end of the nutritional intervention (T1).

2.4. Analysis of Blood Samples

Blood sample analysis was performed at the central analysis laboratory of the Poli-
clinico Hospital of the University of Palermo at T0 and T1. Whole blood samples were
collected in tubes without any anticoagulant and fractionated by centrifugation at 1.300× g
for 15 min at room temperature to obtain serum. The serum was used to measure the
following chemical markers, using automated procedures according to standard, commer-
cially available assays supplied by Roche Diagnostics, performed on the Roche COBAS
c503: Iron, ferritin, transferrin saturation, and albumin (ALB) were measured by immuno-
turbidimetric assay, while ceruloplasmin and transferrin were measured by turbidimetric
assay. Triglycerides (TG), total cholesterol, cholesterol LDL, alkaline phosphatase (AF),
gamma-glutamyl transferase (GGT), total protein (TP), and HDL cholesterol were measured
by colorimetric assay. Aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) were measured by the IFCC (International Federation of Clinical Chemistry and
Laboratory Medicine) pyridoxal 5′-phosphate activation assay.

For determining blood cell counts and other blood parameters, the blood was collected
in EDTA tubes and immediately inverted 10 times to mix the anticoagulant additive
with the blood. The tubes were immediately processed using the Sysmex automated
hematology analyzer (Roche Diagnostics, Milan, Italy), and the following parameters
were determined: red blood cell count (RBC), white blood cell count (WBC), platelet
count, hemoglobin, hematocrit, mean cell volume (MCV), mean corpuscular hemoglobin
concentration (MCHC), mean corpuscular hemoglobin (MCH), red blood cell distribution
width (RDW), and platelet count (PLT).

2.5. Analysis of Mo Concentration in Serum

The determination of Mo in samples of serum was performed by inductively coupled
plasma mass spectrometry (7700x series ICP-MS, Agilent Technologies, Santa Monica, CA,
USA). The extraction procedure and the ICP-MS analysis were carried out as described
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by Cammilleri et al. [36]. Briefly, 1 mL of the serum samples was digested using an Ultra-
wave digestion system (Milestone, Sorisole, Italy) with 3 mL of 60% (V/V) ultrapure nitric
acid and 5 mL of deionized water in previously decontaminated polytetrafluoroethylene
vessels. Digestion was conducted in an Ultrawave digester (Milestone, Sorisole, Italy).
The samples were digested and diluted to 50 mL with ultrapure (Milli-Q) deionized water
until the ICP-MS analysis. The instrument parameters were as follows: nebulizer car-
rier gas flow, 1.2 L/min; plasma gas flow, 15 L/min 15; reflected power, <5; RF power,
1550 W. For calibration, a certified reference standard from Agilent (USA) was used. The
analysis was carried out on the basis of calibration curves constructed by the linear in-
terpolation of at least 7 points corresponding to the readings of 7 standard solutions and
white calibration, admitting a maximum error of 5% in the reading of the single standards,
and a correlation coefficient r2 > 0.999. The validation parameters considered were LOD,
LOQ, repeatability, recovery, and uncertainty. The LOD value of 0.0004 mg kg−1 and
LOQ value of 0.0013 mg kg−1 were calculated on the basis of the results for 10 replicates
of a serum sample spiked at 0.005 mg kg−1 (level 1), 10 replicates of a serum sample
spiked at 0.010 mg kg−1 (level 2), and 10 replicates spiked at 0.05 mg kg−1 (level 3). Re-
peatability was 0.001 mg kg−1 at the first level, 0.001 mg kg−1 at the second level, and
0.004 mg kg−1 at the third level. Recovery of 104.3% was obtained using 10 replicates at
each level. Uncertainty was±0.001 mg kg−1 at the first level,±0.001 mg kg−1 at the second
level, and ±0.005 mg kg−1 at the third level. The measuring field was between 0.002 and
0.05 mg kg−1.

2.6. Statistical Analyses

To compare the characteristics of the groups at baseline, we used Student’s t-test,
while one-way ANOVA followed by Tukey’s post hoc test was used to compare differences
between T0 and T1, using GraphPad Prism software. A p-value ≤ 0.05 was considered
statistically significant for all tests. Data are presented as means ± standard deviations.

3. Results

The study enrolled a total of 24 individuals. The characteristics of the control and
treated populations are listed in Table 1. The population enrolled was homogeneous, with
no significant differences between the groups in terms of age, weight, height, lean or fat
body mass, or visceral fat. They joined and completed the short-term intervention study in
good health, with excellent compliance, and without drop-out.

3.1. Consumption of Mo-Biofortified Lettuce and Hematological Parameters

The hematological profile of the intervention group was compared with the control
group at T0 (baseline), and after 12 days of lettuce consumption. The results of the compari-
son are shown in Table 3. No differences in the quality and quantity of red and white blood
cell or platelet counts, hemoglobin, hematocrit, mean cell volume, corpuscular hemoglobin
concentration, mean corpuscular hemoglobin, or red blood cell distribution width were
observed between the control group and the Mo-treated group following the 12 days
of intervention.



Nutrients 2022, 14, 2971 7 of 14

Table 3. Hematological profiles in response to the 12-day nutritional intervention with control or
Mo-biofortified lettuce. Values are indicated as means ± standard deviations; p-values higher than
0.05 mean that the change is not statistically significant.

Parameters

Control Group Intervention Group

Mean ± SD p-Value Mean ± SD p-Value

T0 T1 T0 T1

WBC (103/µL) 7.3 ± 2.0 7.0 ± 2.2 >0.05 7.1 ± 1.3 7.5 ± 1.8 >0.05

NEUT. (%) 57 ± 6.1 54.3 ± 7.2 >0.05 56.7 ± 6.5 58.7 ± 9.7 >0.05

LYMP. (%) 30.7 ± 3.7 34.1 ± 5.1 >0.05 31.7 ± 7.1 30.3 ± 9.6 >0.05

MON. (%) 8.3 ± 1.8 7.9 ± 1.5 >0.05 7.9 ± 0.9 7.7 ± 1.1 >0.05

EOS. (%) 2.2 ± 1.4 2.0 ± 1.0 >0.05 2.8 ± 1.9 2.3 ± 1.5 >0.05

BAS. (%) 0.7 ± 0.3 0.7 ± 0.4 >0.05 0.6 ± 0.3 0.7 ± 0.5 >0.05

NEUT. (103/µL) 3.5 ± 1.3 3.6 ± 1.4 >0.05 3.2 ± 1.0 3.1 ± 1.0 >0.05

LYM. (103/µL) 2.3 ± 0.8 2.4 ± 1.0 >0.05 2.2 ± 0.8 2.2 ± 0.8 >0.05

MON. (103/µL) 0.6 ± 0.2 0.5 ± 0.1 >0.05 0.5 ± 0.2 0.6 ± 0.1 >0.05

EOS. (103/µL) 0.2 ± 0.2 0.2 ± 0.1 >0.05 0.2 ± 0.1 0.2 ± 0.1 >0.05

BAS. (103/µL) 0.0 ± 0.0 0.0 ± 0.0 >0.05 0.0 ± 0.0 0.0 ± 0.0 >0.05

RBC (106/µL) 4.8 ± 0.6 4.8 ± 0.6 >0.05 4.8 ± 1.0 4.9 ± 0.6 >0.05

HGB (g/dL) 13.9 ± 1.1 13.2 ± 1.4 >0.05 14.4 ± 1.8 14.0 ± 1.6 >0.05

HCT % 39.1 ± 5.3 38.7 ± 4.6 >0.05 41.4 ± 6.4 40.5 ± 4.5 >0.05

MCV (fL) 83.2 ± 6.4 81.7 ± 6.7 >0.05 84.5 ± 7.3 82.9 ± 7.0 >0.05

MCH (pg) 27.6 ± 2.7 27.8 ± 2.7 >0.05 28.6 ± 3.2 28.7± 2.9 >0.05

MCHC (g/dL) 33.1 ± 1.4 33.6 ± 1.9 >0.05 33.2 ± 1.8 34.1 ± 1.7 >0.05

RDW (%) 13.5 ± 1.3 13.6 ± 1.3 >0.05 13.5 ± 1.3 13.5 ± 1.3 >0.05

RDW (fL) 40.0 ± 2.4 39.8 ± 2.8 >0.05 40.6 ± 2.9 40.2 ± 2.8 >0.05

PLT (103/µL) 245.2 ± 42.8 232.7 ± 43.3 >0.05 262.0 ± 72.0 273.2 ± 47.4 >0.05

Acronyms: HCT, hematocrit; HGB, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular
hemoglobin concentration; MCV, mean cell volume; RBC: red blood cells; RDW, red blood cell distribution width;
PLT, platelet; WBC, white blood cells.

3.2. Consumption of Mo-Biofortified Lettuce and Iron Homeostasis

Different parameters involving iron metabolism were compared between the two study
groups. Within the intervention group (Figure 3A,B, in purple), we observed an increase
in non-hemoglobin blood iron concentration and transferrin saturation after 12 days of
lettuce consumption with respect to the control group (Figure 3A,B, in green). The values
of non-hemoglobin blood iron concentration and transferrin saturation were within the
physiological range. The non-binding hemoglobin iron increased by about 37% with respect
to the control group, while transferrin saturation increased by about 42% with respect to the
control group. On the other hand, ferritin, transferrin, and ceruloplasmin concentrations
were not influenced by the nutritional intervention. In the control group, no differences
were reported in non-hemoglobin blood iron, transferrin saturation, ferritin, transferrin, or
ceruloplasmin (Figure 3, in green).
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3.3. Consumption of Mo-Biofortified Lettuce: Liver Function and Lipid Homeostasis

Liver function parameters were compared between the two groups (control and
intervention). No differences were reported in aspartate aminotransferase, alanine amino-
transferase, alkaline phosphatase, gamma-glutamyl transferase, albumin, or total protein
in the intervention group following 12 days of short-term nutritional intervention (Table 4).

We then compared the lipid profiles of the two groups (control vs. intervention). No
differences were observed between the control group and the Mo-treated group at baseline
or following 12 days of short-term intervention in terms of triglycerides, total cholesterol,
LDL cholesterol, or HDL cholesterol (Table 5).
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Table 4. Liver function in response to the 12-day nutritional intervention with control or Mo-
biofortified lettuce. Values are indicated as means ± standard deviations; p-values higher than
0.05 mean that the change is not statistically significant, and indicate strong evidence for the null hy-
pothesis.

Parameters

Control Group Intervention Group

Mean ± SD p-Value Mean ± SD p-Value

T0 T1 T0 T1

AST (U/L) 22.0 ± 4.5 19.0 ± 5.0 >0.05 20.7 ± 4.4 18.6 ± 6.9 >0.05

ALT (U/L) 19.9 ± 11.3 20.6 ± 9.1 >0.05 19.3 ± 8.5 12.7 ± 4.9 >0.05

ALP (U/L) 63.0 ± 10.0 58.5 ± 10.9 >0.05 65.5 ± 11.6 59.4 ± 8.8 >0.05

GGT (U/L) 15.2 ± 6.2 14.7 ± 5.1 >0.05 15.7 ± 6.4 15.7 ± 6.4 >0.05

TP (g/L) 71.1 ± 3.0 70.8 ± 3.9 >0.05 71.4 ± 2.9 70.7 ± 3.7 >0.05

ALB (g/L) 45.5 ± 3.5 46.5 ± 2.7 >0.05 44.1 ± 2.3 46.7 ± 2.7 >0.05
Acronyms: AST, aspartate aminotransferase; ALT, alanine transaminase; ALP, alkaline phosphatase; GGT, gamma-
glutamyl transferase; TP, total protein; ALB, albumin.

Table 5. Lipid profiles in response to the 12-day nutritional intervention with control or Mo-
biofortified lettuce. Values are indicated as means ± standard deviations; p-values higher than
0.05 mean that the change is not statistically significant, and indicate strong evidence for the null
hypothesis.

Parameters
Control Group Intervention Group

Mean ± SD p-Value Mean ± SD p-Value

T0 T1 T0 T1

TG (mg/dL) 84.7± 45.6 81.5 ± 28.6 >0.05 89.0 ± 36.8 87.0 ± 40.9 >0.05

CHOL TOT (mg/dL) 167.9 ± 23.6 166.9 ± 27.8 >0.05 174.2 ± 23.0 173.7 ± 23.0 >0.05

CHOL LDL (mg/dL) 96.9 ± 22.4 97.2 ± 28.0 >0.05 102.1 ± 17.7 104.2 ± 28.8 >0.05

CHOL HDL (mg/dL) 49.1 ± 7.00 47.2 ± 7.5 >0.05 55.3 ± 15.6 56.1 ± 16 >0.05

Acronyms: TG, triglycerides; CHOL, cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein.

3.4. Serum Mo Concentration

Table 6 shows the serum concentrations of Mo measured in the intervention group and
the control group at T0 (baseline), and following 12 days of lettuce consumption. Serum
concentrations of Mo were significantly increased in the intervention group at T1 with
respect to the control group. Within the intervention group, we also observed a significant
increase in Mo serum concentrations after 12 days of lettuce consumption with respect to
T0. The serum molybdenum concentrations increased by about 42% in the intervention
group compared to the control group.

Table 6. Serum molybdenum concentrations (µg/L).

Control Group Intervention Group

Mean ± SD Mean ± SD

T0 T1 T0 T1

4.9 ± 1.6 µg/L 5.1 ± 1.7 µg/L 5.0 ± 1.7 µg/L 7.1* ± 1.5 µg/L
p-Values lower than 0.05 mean that the change is statistically significant, and are indicated by asterisks. Asterisks
denote significant differences compared to T0 and T1of the control group and T0 of the intervention group with
respect to T1 of the intervention group; n = 12 in each group.
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4. Discussion

Primary prevention aims to prevent disease before it ever occurs. The present nu-
tritional intervention, in a population of healthy individuals, evaluated the effects of
supplementation with Mo-fortified lettuce for 12 days on iron homeostasis, hematic and
lipid profiles, and liver function. These represent essential functions for the proper func-
tioning of the human body, and are influenced by nutrition. This study aimed to investigate
whether supplementation with Mo-fortified lettuce could be used as a new dietary ap-
proach to supply micronutrients to individuals to improve their health status, since no
studies have investigated this to date.

We selected a healthy population by using specific selection criteria to exclude partici-
pants with disorders such as cardiac, gastrointestinal, or metabolic disorders, blood-related
dysfunctions, and recent viral infections. We measured the hematic parameters in the
control and treated groups before and at the end of the intervention in order to reduce the
intraindividual and interindividual variability.

The idea to examine the effects of supplementation with Mo-fortified lettuce on iron
homeostasis in a healthy population came from our recent study [24], where it was found
that eating Mo-enriched lettuce for 12 days could positively impact glucose homeostasis.
In particular, we observed an improvement in insulin sensitivity, as measured by HOMA2-
%S, of fasting glucose, insulin, and insulin resistance index. Therefore, because glucose
and systemic iron metabolism are strictly connected (i.e., adequate iron availability is
essential for functional beta cells to regulate glucose homeostasis [37]), we decided to
investigate whether the nutritional intervention with Mo-biofortified lettuce would impact
iron metabolism.

It was found that Mo-enriched lettuce consumption affects systemic iron metabolism.
In fact, 100 g of Mo-enriched lettuce, eaten every day, significantly increased non-binding
hemoglobin iron concentration and transferrin saturation, within the physiological range.
The results were confirmed by the lack of changes in blood iron concentration and transfer-
rin saturation in the control group. Mo is a cofactor of the enzyme xanthine oxidase, which
participates in the release of ferritin iron [38]. Thus, it is possible that the greater availability
of Mo, due to the daily consumption of Mo-enriched lettuce, enhances the activity of the
xanthine oxidase enzyme, and causes an increase in hematic iron. Therefore, the short-term
nutritional intervention might influence iron homeostasis by increasing iron’s availability
from the intestine in a physiological way, and then distributing iron to areas that need iron
to properly function, such as the pancreas [37].

Thus, consumption of Mo-enriched lettuce can affect iron homeostasis and, in turn,
this might improve glucose homeostasis, as we observed in our previous study [24]. In
fact, the homeostasis of iron lies in the regulation of dietary iron absorption, because the
body is unable to excrete iron [39], but this also tends to limit the absorption of iron. The
presence of ferritin in the mucosal cells inhibits further absorption of iron from the intestine
until the ferritin releases its iron into the bloodstream and again becomes apoferritin.
Xanthine oxidase, present in the small intestine, acts during iron absorption by reducing
iron of ferritin to a ferrous state and, thus, releases iron into the circulation [38]. After
the exit as ferrous iron, it is converted to ferric iron and binds to transferrin before being
distributed throughout the body. Our results are consistent with previous studies that
reported the ability of Mo to enhance iron absorption from the intestine in women who were
supplemented with a preparation of molybdenum ferrous sulfate to treat iron deficiency
during pregnancy [28–30]. Supplementation with molybdenum has also been used for the
treatment of anemia in the general population [40]. However, in our study, we did not
find differences in hematocrit, hemoglobin level, or blood cell counts and volumes. This
is probably due, on the one hand, to the fact that our volunteers were healthy and not
suffering from iron deficiency. On the other hand, it might be possible that 12 days are not
enough to show any difference in hematocrit parameters.

The quantity of Mo that was provided in our nutritional intervention was in line
with the biomonitoring equivalent (BE) values recommended to protect against nutritional



Nutrients 2022, 14, 2971 11 of 14

toxicity and deficits [10]. In fact, the Mo serum concentration that we measured was about
5 µg/L in the controls, and increased to 7 µg/L in the intervention group. The values were
consistent with those reported in a recent study, which measured Mo serum concentrations
by inductively coupled plasma mass spectrometry in a total population of 120 subjects (63
of whom were controls) [41], and found results far from 31 µg/L, which is the BE toxicity
value reported for plasma and serum [10].

Mo has been reported to improve metabolic syndrome by acting on all of its compo-
nents, including hypertriglyceridemia and HDL [42]. We did not observe any differences
in triglycerides, total cholesterol, LDL cholesterol, or HDL cholesterol in the intervention
group compared with the control group. Although it is possible to hypothesize that lipid
profiles could be improved by prolonging the time of the nutritional intervention, it must
be considered that our study enrolled a healthy population.

The liver plays a central role in human bodily metabolism, with hepatocytes carrying
out most of the function [43]. Therefore, we also investigated the effects of the short-
term nutritional intervention on liver function via the main liver functionality test, and
specifically aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase,
gamma-glutamyl transferase, albumin, and total protein concentrations. No differences
were observed between the two study groups, suggesting that consumption of Mo-enriched
lettuce did not impact liver function in healthy subjects.

Ceruloplasmin and transferrin are synthesized by hepatocytes [37]. Ceruloplasmin
facilitates cell iron egress, allowing the association of iron with transferrin, and the trans-
port of iron toward the cells of the organism. Therefore, we then investigated whether
consumption of Mo-enriched lettuce might impact these two proteins involved in iron
homeostasis. The lack of changes in ceruloplasmin and transferrin concentrations suggests
that hepatic synthesis of proteins involved in iron metabolism was not affected.

5. Conclusions

In the present study, we verified whether supplementation with biofortified vegetables—
specifically, molybdenum (Mo)-enriched lettuce—in healthy volunteers would positively
impact the essential regulators of bodily homeostasis and, specifically, hematological pa-
rameters, iron and lipid metabolism, and hepatic function. The purpose was to find an easy,
natural, and innovative approach to supply micronutrients to physically active people via
the diet, in an attempt to prevent micronutrient deficiency. The nutritional intervention,
conducted in healthy volunteers by supplying 100 g of Mo-enriched lettuce for 12 days,
suggested that biofortification of vegetables with molybdenum could offer an excellent
opportunity to increase iron availability in the human body. Therefore, we believe that
this kind of natural dietary supplementation could be of interest in the general population,
but even more so in a physically active population, because systemic iron homeostasis is
fundamentally important for athletes, with implications for sports performance. Iron is
a component of various muscle cell enzymes, as well as of myoglobin, hemoglobin, and
cytochrome. It plays a vital role in energy metabolism, transporting oxygen, and supporting
the immune system. Insufficient reserves of iron in the body can reduce athletic perfor-
mance, which may manifest as fatigue, exercise intolerance, or even cognitive function
impairment. Supplementation with Mo-enriched lettuce increased serum molybdenum
concentrations by about 42%, and significantly improved iron homeostasis by enhancing
non-binding hemoglobin and transferrin saturation. This, in our opinion, is of particular
interest for athletes, who could use this innovative nutritional approach to prevent the
disturbances of systemic iron homeostasis that athletes experience—for example, during in-
tense training periods characterized by higher training loads. Moreover, we think that this
innovative nutritional approach could be used to reduce the risk of depletion of iron stores
in specific athlete populations, such as women and adolescents, in whom the depletion
of iron is especially high. The iron levels of physically active women, in some cases, are
even twice as low as in non-trained humans. Our nutritional approach could prevent the
occurrence of severe iron deficiency by reducing the negative effects of classic iron integra-
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tion treatments—such as constipation and gastric effects—thanks to its vegetal-rich matrix.
In conclusion, our study suggests that biofortification of vegetables with molybdenum
could offer an excellent opportunity to avoid iron deficiency in physically active people by
improving iron homeostasis.
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