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Abstract
This paper presents an enhanced base-isolation (BI) system equipped with a
novel passive control device composed of a tuned liquid damper and an inerter
(TLCDI). With the aim of reducing the seismic response of BI systems, this
contribution focuses on the design of the TLCDI providing analytical solu-
tions for the optimal TLCDI parameters, easily implementable in the design
phase. The effectiveness of the proposed approach in terms of seismic response
reduction and computational gain is validated by comparison with classical
numerical optimization techniques. The control performance of two different
base-isolated TLCDI-controlled structures is assessed by employing real-ground
motion records, and relevant comparisons with both uncontrolled base-isolated
structures and equipped with a conventional TLCD are presented.

1 INTRODUCTION

Seismic base isolation (BI) is undoubtedly one of the most
efficient control strategies conceived to protect structures
from damage due to earthquakes (Kelly, 1990). It belongs
to the category of the so-called passive systems, which,
unlike active systems, do not require an external power
source and are therefore relatively inexpensive and always
functional even in the event of a power failure. Its effective-
ness relies on the decoupling effect of the structure from
the ground motion provided by a laterally flexible layer
placed in between the main structure (superstructure)
and its foundation. This isolation effect leads to a longer
fundamental natural period, compared to fixed-base struc-
tures, preventing in this way large deformations and high
accelerations in the superstructure. Indeed, earthquake-
induced vibrations occurring in the isolation subsystem
are only partially transmitted to the superstructure, which
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mostly experiences a rigid translation behaving like a sin-
gle block. However, these benefits come at the expense
of large displacements of the BI subsystem that may be
detrimental to the integrity of the employed isolation
devices, namely, the isolators (Kelly, 1999). Therefore, to
protect isolators from damage caused by excessive lat-
eral displacements and to improve the performance of the
conventional BI system, their combination with active or
semi-active control devices led to the concept of hybrid or
smart BI systems for improved resilience to multiple haz-
ards and extreme events (Aldemir et al., 2012; Javadinasab
Hormozabad et al., 2021).
Active systems require substantial power sources to gen-

erate control forces via actuators to allow the structure
to adjust its response during earthquakes, while limited
power, sometimes even a battery, is often sufficient for
semi-active systems (Ghaedi et al., 2017). In this con-
text, Gutierrez Soto and Adeli (2018) investigated active
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and semi-active strategies to improve the dynamic perfor-
mance of an eight-story L-shaped base-isolated structure
to achieve a real-time vibration control. In particular, they
demonstrated that the installation of actuators at the base
and applying the concept of replicator dynamics can pro-
vide an additional dampening effect for the BI system
(Gutierrez Soto & Adeli, 2018). The same authors also
investigated the integration of semi-active magnetorhe-
ological dampers in base-isolated highway bridges and
proved their beneficial effect on reducing themid-span dis-
placement of bridges under seismic actions (Gutierrez Soto
& Adeli, 2019).
Other researchers also considered passive mechanical

damping devices, such as the well-known tuned mass
dampers (TMDs; Den Hartog, 1956), tuned liquid damper
(TLDs; Banerji et al., 2000) and tuned liquid column
dampers (TLCDs; Hochrainer & Ziegler, 2006) as a com-
plement to improve BI systems. In this regard, Yang et al.
(1991) have shown that the use of an oscillating secondary
mass, such as the TMD, may be more effective and advan-
tageous in reducing the response of tall, isolated buildings
than the application of an active control system alone.
Moreover, TMDs have thoroughly proved to be most effec-
tive at reducing the displacement demand of low-damped
BI systems while preserving the small interstory drift,
overall leading to better performance than increasing the
damping of the isolators (Taniguchi et al., 2008; Tsai, 1995).
However, compared to the more common TMDs, TLDs
and TLCDs devices proved to be particularly convenient
for BI systems (Adam et al., 2017; Love et al., 2011). TLDs
are generally rectangular or cylinder-shaped devices, and
their effectiveness relies on the interaction force between
liquid and side walls and wave breaking to absorb vibra-
tion energy. On the other hand, TLCDs are designed as
U-shaped tanks filled with liquid (commonly water) that
dissipate energy through a combination of liquid motion,
the restoring force due to gravity, and the damping force
due to inherent head loss characteristics (Zhu et al., 2019).
TLDs and TLCDs comprise several advantageous features,
such as low cost, easy implementation, the possibility
to directly tune their parameters by adjusting the quan-
tity of liquid, the lack of required maintenance, and the
possibility to use the liquid contained in the tank as a sec-
ondary emergency water source (Gutierrez Soto & Adeli,
2013). However, despite the well-known beneficial effects
of TLDs and TLCDs for seismic response reduction in BI
systems, these devices may require excessively large mass
and large spaces to achieve higher efficiency (Kim&Adeli,
2005a).
Therefore, to face these issues, innovative types of

liquid-based dampers have been explored in combination
with other devices. The idea to retain the advantage of
both the TMD and TLD to a certain extent, while partially

eliminating the limitations of each, led to the alternative
configurations of the hybrid mass liquid damper (Banerji
& Samanta, 2011) and tuned liquid mass damper (Pandey
et al., 2022) comprising a secondary mass attached to
the primary structure through a spring-dashpot system
and supporting a liquid damper. Similarly, a combination
of a TLCD with TMD, referred to as a combined tuned
damper, was investigated by L. Wang et al. (2016) and
its efficacy experimentally validated by Di Matteo et al.
(2017). In order to increase the effectiveness of these pas-
sive control devices while maintaining the advantage of
not requiring an external power supply, their combination
with mass amplification mechanisms has been explored,
making them more competitive with active/semi-active
systems. In this regard, the first integration of inerter-based
devices into the traditional TMD has been considered to
form the so-called TMD inerter (TMDI; Marian & Gia-
ralis, 2014). Specifically, the inerter (Smith, 2002) is a
two-terminal mechanical device that generates a resisting
force proportional to the accelerations of its extremities,
with a constant referred to as inertance, measured in mass
units. There are still only a few studies on tested inerter
devices and real engineering applications.Most real inerter
devices, characterized by an inertance hundreds of times
larger than their physical mass, have been manufactured
by exploiting the rotational inertia of mechanisms with
gears, flywheels, and fluid flow (Smith, 2020). The incor-
poration of inerter into different types of TMDs has proven
to be particularly advantageous to realize more power-
ful devices without extra weight (Di Matteo et al., 2019;
Masnata et al., 2020). In view of the above, and consid-
ering that TLCDs can achieve the same motion reduction
level as traditional TMDs with significant practical advan-
tages, if properly designed (Xu et al., 1992), the inerter has
been also integrated into the classical TLCD to constitute
a device known in the literature as TLCD inerter (TLCDI;
Wang et al., 2020a). Notably, the inerter in the introduced
TLCDI configuration provides a mass amplification effect
of the system to which it is connected (Marian & Giar-
alis, 2014; Takewaki et al., 2012),making the TLCDI behave
like a TLCD with a larger mass, to achieve enhanced per-
formance, compared to the classical TLCD (Wang et al.,
2020a). Unlike the classical TLCD, the TLCDI is mounted
on a roller support and connected to the base slab via a
spring-damper system and to the ground via an inerter.
Therefore, in this case, the energy dissipation effect of the
TLCDI is due to the horizontal motion of the device itself
and of the liquid inside a U-tube container.
In this context, it has been shown in Wang et al. (2020a)

that by employing a TLCDI to reduce the displacement
of fixed-base structures during severe earthquakes, a sig-
nificant improvement can be achieved over the classical
TLCD. In addition, an unconventional seismic protection
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strategy employing the TLCDI as a link between adjacent
high-rise buildings has also demonstrated the effective-
ness of this device in mitigating the acceleration responses
(Wang et al., 2020b).
Clearly, the optimal design of the TLCDI plays a pivotal

role in obtaining the best control performance. It should
be noted, however, that in all the previous studies, many
of the optimal TLCDI parameters were simultaneously
derived for TLCDI-controlled structures by means of com-
plex numerical procedures based on the minimization of
different objective functions such as the peak displacement
and absolute acceleration responses (Wang et al., 2020a).
Therefore, these multi-objective optimization procedures
may be computationally demanding in a design phase (H.
S. Kim & Roschke, 2006), even leading in some cases to
unrealistic parameters not applicable in real design pro-
cesses (Wang et al., 2020a). To face this issue, an optimal
design of the TLCDI through direct closed form solutions
and ready-to-use design charts has been recently proposed
in Di Matteo et al. (2022).
Although the use of conventional TLCDs has been con-

sidered a promising strategy for controlling base-isolated
structures (Di Matteo et al., 2018; Furtmüller et al., 2019),
to the best of the authors’ knowledge, there are cur-
rently no studies in the literature on the use of TLCDI for
base-isolated structures.
On this basis, in this study, a BI system endowed with

a TLCDI device is considered, and the enhanced control
performances of this novel device are highlighted. Specifi-
cally, as a first novel contribution, the presentwork focuses
on providing analytical closed-form solutions for deter-
mining, in a straightforward way and without resorting
to unwieldy numerical algorithms, the TLCDI optimal
design parameters for a seismically excited multi-degree-
of-freedom (MDOF) base-isolated structure. In this regard,
the nonlinear equations of motion are established, and
TLCDI optimal parameters are evaluated by taking into
account a statistical linearization technique (SLT). Specif-
ically, the proposed optimization procedure is based on
the minimization of the BI subsystem displacement vari-
ance, which is found in a closed form on the base of some
reasonable assumptions. In particular, a Gaussian white
noise has been considered as base excitation and a lin-
ear undamped single-degree-of-freedom (SDOF) system
has been used to model the base-isolated structure. Most
importantly, these closed-formexpressions yield very accu-
rate results, without the need for computational effort as
in classical numerical methods. It should be emphasized
that the optimal parameters found in this work are rather
different from the TLCDI optimal parameters recently pre-
sented by Wang et al. (2020a), and a direct comparison
is not possible for several reasons. First, the optimization

F IGURE 1 (a) MDOF base-isolated structure; (b) MDOF
base-isolated tuned liquid column damper inerter
(TLCDI)-controlled structure

procedure proposed in the present study was formulated
with the specific purpose of reducing the base displace-
ment of BI systems, whereas the study conducted by
Wang et al. (2020a) focused on fixed-base SDOF structures.
Second, unlike the proposed optimization, the TLCDI
parameters found by Wang et al. (2020a) are the result
of numerical multi-objective minimization and no closed
forms of these parameters were obtained.
The accuracy of the proposed approximate closed-form

formula is investigated by comparison with a more elabo-
rate and unwieldy numerical procedure performed on the
original damped MDOF base-isolated structure. In addi-
tion, a thorough seismic analysis is performed in which
a five-story base-isolated structure and a 20-story base-
isolated structure equipped with TLCDI are subjected to a
set of 44 recorded accelerograms as base excitation, varying
inmagnitude and soil site type. In this regard, the effective-
ness of the TLCDI device is assessed by comparisons with
the pertinent responses of the BI system alone or endowed
with the classical TLCD device.

2 PROBLEM FORMULATION

Consider a base-isolated MDOF structure with the super-
structure having 𝑛 degrees of freedom as shown in
Figure 1a and subjected to a horizontal ground acceleration
�̈�𝑔(𝑡). The 𝑛 × 𝑛mass, damping, and stiffness matrix of the
main structure are denoted as𝐌𝒔,𝐂𝒔, and𝐊𝒔, respectively,
the 𝑛 × 1 vector 𝒙𝒔(𝑡) contains the nodal displacements of
the superstructure with respect to the base.
The BI subsystem with mass 𝑚𝑏, stiffness 𝐾𝑏, and

damping parameter 𝐶𝑏 is assumed to be linear, and its
displacement relative to the ground is denoted as 𝑥𝑏(𝑡).
Then, the 𝑛 + 1 equations of motion of the superstructure
coupled with the BI subsystem become (Kelly, 1997)
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⎡⎢⎢⎣
𝐌𝒔 𝐌𝒔𝐫

𝐫𝐓𝐌𝒔 𝑀𝑡𝑜𝑡

⎤⎥⎥⎦
⎡⎢⎢⎣
�̈�𝒔 (𝑡)

�̈�𝑏 (𝑡)

⎤⎥⎥⎦ +
⎡⎢⎢⎣
𝐂𝒔 𝟎

𝟎 𝐶𝑏

⎤⎥⎥⎦
⎡⎢⎢⎣
�̇�𝒔 (𝑡)

�̇�𝑏 (𝑡)

⎤⎥⎥⎦ +
⎡⎢⎢⎣
𝐊𝒔 𝟎

𝟎 𝐾𝑏

⎤⎥⎥⎦
⎡⎢⎢⎣
𝒙𝒔 (𝑡)

𝑥𝑏 (𝑡)

⎤⎥⎥⎦ = −
⎡⎢⎢⎣
𝐌𝒔𝐫

𝑀𝑡𝑜𝑡

⎤⎥⎥⎦ �̈�𝑔 (𝑡)
(1)

where the total system mass is composed of the mass of
the BI subsystem and the total mass of the superstruc-
ture:𝑀𝑡𝑜𝑡 = 𝑚𝑏 + 𝐫𝐓𝐌𝒔𝐫 with 𝐫 = [1, … , 1]

𝐓 representing
the 𝑛 × 1 quasi-static influence vector, and the apex T
denotes the transpose operation. Bold lowercase characters
indicate vectors and uppercase matrices and not bolded
italic characters stand for scalars and constants. A dot
over a variable indicates the derivation with respect to
time t.
To reduce the base displacements, the base-isolated

structure is equipped with a TLCDI device attached to the
base of the isolated structure as shown in Figure 1b.
The TLCDI device depicted in Figure 2 consists of a U-

shape tube with dimensions 𝐿𝑣 and 𝐿ℎ for the vertical and
horizontal liquid length, respectively. Thus, 𝐿 = 𝐿ℎ + 2𝐿𝑣
is the total length of the liquid in the container.
The liquid tank is characterized by the cross-sectional

area 𝐴 and its mass is 𝑀𝑐, while the liquid mass is 𝑚𝑙 =

𝜌𝐴𝐿 being 𝜌 the density of the liquid. The TLCDI is con-
nected to the BI subsystem by a spring and a damper with
stiffness and damping coefficient 𝑘2 and 𝑐2, respectively,
and to the ground by an inerter element with inertance
𝑏. The vertical motion of the liquid in the U-shape tube
is denoted as 𝑢(𝑡), while the horizontal motion of the
container relative to the base is 𝑦(𝑡).
The response of this TLCDI-equipped MDOF base-

isolated structure subjected to a horizontal ground accel-
eration is governed by the following set of 𝑛 + 3 nonlinear
differential equations:

⎡⎢⎢⎢⎢⎣

𝐌𝒔 𝐌𝒔𝐫 𝟎 𝟎

𝐫𝐓𝐌𝒔 𝑀𝑡𝑜𝑡 + 𝜌𝐴𝐿 +𝑀𝑐 + 𝑏 𝜌𝐴𝐿 +𝑀𝑐 + 𝑏 𝜌𝐴𝐿ℎ

𝟎 𝜌𝐴𝐿 +𝑀𝑐 + 𝑏 𝜌𝐴𝐿 +𝑀𝑐 + 𝑏 𝜌𝐴𝐿ℎ

𝟎 𝜌𝐴𝐿ℎ 𝜌𝐴𝐿ℎ 𝜌𝐴𝐿

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

�̈�𝒔 (𝑡)

�̈�𝑏 (𝑡)

�̈� (𝑡)

�̈� (𝑡)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

𝑪𝒔 𝟎 𝟎 𝟎

𝟎 𝐶𝑏 0 0

𝟎 0 𝑐2 0

𝟎 0 0
𝜌𝐴

2
𝜉 |�̇� (𝑡)|

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

�̇�𝒔 (𝑡)

�̇�𝑏 (𝑡)

�̇� (𝑡)

�̇� (𝑡)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

𝑲𝒔 𝟎 𝟎 𝟎

𝟎 𝐾𝑏 0 0

𝟎 0 𝑘2 0

𝟎 0 0 2𝜌𝐴𝑔

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝒙𝒔 (𝑡)

𝑥𝑏 (𝑡)

𝑦 (𝑡)

𝑢 (𝑡)

⎤⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎣

𝐌𝒔𝐫

𝑀𝑡𝑜𝑡 + 𝜌𝐴𝐿 +𝑀𝑐

𝜌𝐴𝐿 +𝑀𝑐

𝜌𝐴𝐿ℎ

⎤⎥⎥⎥⎥⎦
�̈�𝑔 (𝑡)

(2)
where 𝑔 is the gravity acceleration and 𝜉 is the so-called
head loss coefficient, introduced to represent the nonlinear
effect governing the hydrodynamic head losses that arise
during the motion of the liquid inside the vessel (Hitch-
cock et al., 1997; Wu et al., 2005). The nonlinear damping
force 𝜌𝐴𝜉|�̇�(𝑡)|�̇�(𝑡)∕2 in Equation (2) models the head

losses resulting from the orifices inside the TLCDI and vis-
cous interaction between the liquid and the container wall
(DiMatteo et al., 2014, 2015, 2018). To achieve better control
performance, this parameter can be adjusted by varying
the width of the orifices inside the container as is common
in semi-active control strategy (Kim&Adeli, 2005b). How-
ever, as customary for passive liquid-based absorbers, the
value of 𝜉 is assumed to be constant in this study.
Since the entire system behaves nonlinearly, minimiz-

ing the displacement demand of the isolation level may
encounter computational difficulties in the optimal design
of the TLCDI. For this reason, an equivalent linearization
procedure, which facilitates the optimal design process, is
considered.

2.1 SLT

The nonlinear Equation (2) can be linearized by adopt-
ing procedures such as the SLT (Navarra et al., 2020;
Roberts & Spanos, 1990). In this context, the BI system
equipped with the TLCDI is assumed to be excited by a
white Gaussian noise process with zero mean; hence, the
responses are also stochastic processes, and they are indi-
cated with capital letters as is common in the literature (Di
Matteo et al., 2018). Specifically, the nonlinear elements
in each equation can be linearized individually (Roberts
& Spanos, 1990). Consequently, the original nonlinear sys-
tem in Equation (2) can be replaced by a linear equivalent
system by making full use of the powerful tool of SLT.

⎡⎢⎢⎢⎢⎣

𝐌𝒔 𝐌𝒔𝐫 𝟎 𝟎

𝐫𝐓𝐌𝒔∕𝑀𝑡𝑜𝑡 1 + 𝜇𝑡 + 𝛽 𝜇𝑡 + 𝛽 𝛼𝜇𝑙
𝟎 1 1

𝛼𝜇𝑙

𝜇𝑡+𝛽

𝟎 𝛼 𝛼 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

�̈�𝒔 (𝑡)

�̈�𝑏 (𝑡)

�̈� (𝑡)

�̈� (𝑡)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

𝑪𝒔 𝟎 𝟎 𝟎

𝟎 2𝜁𝑏𝜔𝑏 0 0

𝟎 0 2𝜁2𝜔2 0

𝟎 0 0 2𝜁𝑙𝜔𝑙

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

�̇�𝒔 (𝑡)

�̇�𝑏 (𝑡)

�̇� (𝑡)

�̇� (𝑡)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

𝑲𝒔 𝟎 𝟎 𝟎

𝟎 𝜔2
𝑏

0 0

𝟎 0 𝜔2
2 0

𝟎 0 0 𝜔2
𝑙

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝑿𝒔 (𝑡)

𝑋𝑏 (𝑡)

𝑌 (𝑡)

𝑈 (𝑡)

⎤⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎣

𝐌𝒔𝐫

1 + 𝜇𝑡
𝜇𝑡

𝜇𝑡+𝛽

𝛼

⎤⎥⎥⎥⎥⎦
�̈�𝑔 (𝑡)

(3)

where the following terms have been introduced: 𝜔𝑏 =√
𝐾𝑏∕𝑀𝑡𝑜𝑡 and 𝜁𝑏 = 𝐶𝑏∕(2𝜔𝑏𝑀𝑡𝑜𝑡) are the natural fre-

quency and damping ratio of the BI subsystem, respec-
tively. Furthermore, 𝛼 = 𝐿ℎ∕𝐿 is the length ratio and
𝛽 = 𝑏∕𝑀𝑡𝑜𝑡 the inertance ratio while 𝜇𝑡 = 𝜇𝑙 + 𝛿 denotes
the total mass ratio of the TLCDI where 𝜇𝑙 = 𝜌𝐴𝐿∕𝑀𝑡𝑜𝑡

and 𝛿 = 𝑀𝑐∕𝑀𝑡𝑜𝑡 are the liquid and the container mass
ratio, respectively. In addition, 𝜔2 =

√
𝑘2∕(𝜌𝐴𝐿 +𝑀𝑐 + 𝑏)
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F IGURE 2 TLCDI device

is the natural frequency of the liquid container, 𝜁2 =
𝑐2∕[2𝜔2(𝜌𝐴𝐿 +𝑀𝑐 + 𝑏)] is the damping ratio, and 𝜔𝑙 =√
2𝑔∕𝐿 is the natural frequency of the liquid inside

the TLCDI. The result is four coupled linear differen-
tial equations in which only the nonlinear expression
𝜌𝐴𝜉|�̇�(𝑡)|�̇�(𝑡)∕2 in Equation (2), divided by 𝜌𝐴𝐿, has
been replaced by the equivalent linear damping force
2𝜁𝑙𝜔𝑙�̇�(𝑡). The variable 𝜁𝑙 is an equivalent damping ratio.
The equivalent damping ratio 𝜁𝑙 can be obtained bymin-

imizing themean square error between the nonlinear term
and its equivalent linear one, which results in (Di Matteo
et al., 2018):

𝜁𝑙 =
𝜉

2𝐿 𝜔𝑙

√
2

𝜋
𝜎�̇� (4)

In this relation, 𝜎�̇� represents the standard deviation
of the velocity of the liquid inside the TLCDI (compare
with Appendix A). It should be noted that the estima-
tion of 𝜁𝑙 for design purposes is not trivial since 𝜎�̇� is
still unknown and depends inherently on 𝜁𝑙 itself (Di Mat-
teo et al., 2018). Thus, due to this dependence generally,
an iterative solution procedure is required for determin-
ing 𝜁𝑙. In this procedure, the standard deviation of the
liquid velocity 𝜎�̇� with an arbitrary value initialization
of 𝜁𝑙 should be calculated first. Then, by substituting
the obtained 𝜎�̇� into Equation (4), a new value of 𝜁𝑙
can be evaluated. This process is repeated until conver-
gence is achieved between successive iterations. However,
this iterative approach would require the use of complex
numerical algorithms to determine the optimal parameters
of the TLCDI. Thus, when practical analytical formulas for
the optimal design parameters are sought, some simplified
hypotheses should be reasonably introduced as described
in the next section.

3 OPTIMIZATION PROCEDURE

Now that the mathematical model of the BI system with
TLCDI has been established, the focus is on the opti-
mal design of the TLCDI. From Equation (3), the TLCDI

parameters that affect the dynamic behavior of the system
are the mass ratios 𝜇𝑙 and 𝛿; the natural frequency 𝜔𝑙 and
the equivalent damping ratio 𝜁𝑙 of the liquid; the length
ratio 𝛼; the natural frequency 𝜔2 and the damping ratio 𝜁2
of theTLCDI container; and the inertance ratio𝛽. It is obvi-
ous that the best control performance can only be achieved
by an appropriate choice of the above parameters. Some
of these variables, however, are often fixed a priori due
to structural constraints as 𝜇𝑙, 𝛽, 𝛿, and 𝛼. Consequently,
only the design parameters 𝜁2, 𝜁𝑙, 𝜔𝑙, and 𝜔2 (or equiva-
lently the so-called frequency ratios 𝜈𝑙 = 𝜔𝑙∕𝜔𝑏 and 𝜈2 =

𝜔2∕𝜔𝑏) must be chosen appropriately by an optimization
technique.
As usually done in the relevant literature for TLCDI-

based control strategies, these parameters can be sought
by minimizing a specific quantity representative of the
dynamic response of the structural system such as the
response in terms of displacement or acceleration variance
of the considered system as well as via an energy-based
performance criterion (De Domenico & Ricciardi, 2018a;
Zelleke & Matsagar, 2010). In this particular case, it is
assumed that the target function of the optimization is the
variance in terms of base displacement of the base-isolated
structure. Specifically, the response variance in terms of
base displacement can be expressed as

𝜎2𝑋𝑏
= 𝐺0

∞

∫
0

|𝐻𝑋𝑏
(𝜔)|2 𝑑𝜔 (5)

in which 𝐺0 is the one-sided power spectral density (PSD)
of the white noise input, and 𝐻𝑋𝑏

(𝜔) is the BI subsystem
displacement transfer function of the structure equipped
with the TLCDI, defined as inAppendixA.Due to the com-
plexity of the function𝐻𝑋𝑏

(𝜔), the variance in Equation (5)
should be evaluated numerically, relying on cumbersome
and time-consuming algorithms (Wang et al., 2020a; Zhao
et al., 2019).
In addition, as described in the previous Section 2.1,

an iterative procedure should be pursued to optimize the
equivalent damping ratio 𝜁𝑙 (Roberts & Spanos, 1990; Di
Matteo et al., 2018). Therefore, in order to provide a tool
to promptly compute the optimal TLCDI parameters in
design phases, a direct analytical approach is proposed in
the following.

3.1 Approximate evaluation of the
response variance

In order to determine the optimal design parameters of the
TLCDI in a straightforwardmanner, a closed-form solution
in terms of steady-state response statistics is proposed on
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MASNATA et al. 1643

the base of simplifying assumptions. The first approxima-
tion concerns the response of the superstructure. Indeed,
in the treatment of base isolation systems, it is common to
approximate the superstructure as if it were a rigid block
since the main displacement contribution comes from the
isolation layer itself, which can undergo orders of magni-
tude larger displacements than those of themain structure.
Therefore, the proposed optimization procedure can be
applied considering an equivalent SDOF system charac-
terized by a mass equal to the total mass of the original
structure, as well as stiffness and damping of the isolation
system (Figure 3).
In this manner, the original system of equations is

significantly reduced to the following:

�̃��̈� (𝑡) + �̃��̇� (𝑡) + �̃�𝐙 (𝑡) = −�̃��̈�𝑔 (𝑡) (6)

where 𝐙(𝑡) = [𝑋𝑏(𝑡) 𝑌(𝑡) 𝑈(𝑡) ]
𝑇
is the vector collect-

ing the displacement of the degrees of freedom, �̃� =

[ 1 + 𝜇𝑡 𝜇𝑡∕(𝜇𝑡 + 𝛽) 𝛼 ]
𝑇
is the location vector. The mass

matrix �̃�, the damping matrix �̃�, and the stiffness matrix
�̃� are given as follows:

�̃� =
⎡⎢⎢⎣
1 + 𝜇𝑡 + 𝛽 𝜇𝑡 + 𝛽 𝛼𝜇𝑙

1 1 𝛼𝜇𝑙∕ (𝜇𝑡 + 𝛽)

𝛼 𝛼 1

⎤⎥⎥⎦ ;
�̃� =

⎡⎢⎢⎣
2𝜁𝑏𝜔𝑏 0 0

0 2𝜁2𝜔2 0

0 0 2𝜁𝑙𝜔𝑙

⎤⎥⎥⎦ ; �̃� =
⎡⎢⎢⎣
𝜔2
𝑏

0 0

0 𝜔2
2 0

0 0 𝜔2
𝑙

⎤⎥⎥⎦
(7)

The input is modeled as a zero-mean stationary Gaus-
sian white noise process. Therefore, the corresponding
Lyapunov equation for the evolution of the covariance
matrix can be written as (Di Matteo et al., 2018)

�̇�𝐐 (𝑡) = 𝐃𝐒𝚺𝐐 (𝑡) +𝚺𝐐 (𝑡)𝐃𝐓
𝐬 +𝐆𝐒𝐆

𝐓
𝐒𝜋𝐺0 (8)

where𝐐 = [𝐙 �̇� ]
𝑇
is the vector of the state variables,𝚺𝐐(𝑡)

denotes the covariance matrix given as

𝚺𝐐 (𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2𝑋𝑏
𝜎2𝑋𝑏𝑌

𝜎2𝑋𝑏𝑈
𝜎2
𝑋𝑏�̇�𝑏

𝜎2
𝑋𝑏�̇�

𝜎2
𝑋𝑏�̇�

𝜎2𝑌 𝜎2𝑌𝑈 𝜎2
𝑌�̇�𝑏

𝜎2
𝑌�̇�

𝜎2
𝑌�̇�

𝜎2𝑈 𝜎2
𝑈�̇�𝑏

𝜎2
𝑈�̇�

𝜎2
𝑈�̇�

𝜎2
�̇�𝑏

𝜎2
�̇�𝑏�̇�

𝜎2
�̇�𝑏�̇�

𝑠𝑦𝑚 𝜎2
�̇�

𝜎2
�̇��̇�
𝜎2
�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

while 𝐃𝐒 and 𝐆𝐒 are given as

𝐃𝐒 =

[
𝟎 𝐈3

−�̃�−1�̃� −�̃�−1�̃�

]
; 𝐆𝐒 =

[
𝟎

−�̃�

]
(10)

with 𝐈3 a 3 × 3 identity matrix.

F IGURE 3 Simplified SDOF model equipped with TLCDI

In the case of stationarity, Equation (8) can be equated
to zero to obtain the evolution of all the response statistics
of the system in Equation (6). In order to find analytical
expressions for the optimal TLCDI parameters, a closed
form of 𝜎2𝑋𝑏

is additionally required by introducing further
approximations.
Specifically, first, the approximate behavior of an

undamped BI system can be sought as customary in
many optimization procedures for passive vibration con-
trol systems (Di Matteo et al., 2019; Masnata et al., 2021).
Moreover, the assumption that the liquid has no damp-
ing effect seems reasonable at this phase (Zhao et al., 2019)
since the values of 𝜁𝑙 are generally so small as to be negligi-
ble (Tait, 2008). Nevertheless, an estimate of 𝜁𝑙 depending
on the optimal design parameters determined below is
given in the next section. Overall, on this base, only the
design parameters 𝜁2, 𝜈𝑙, and 𝜈2 are sought, and intro-
ducing the aforementioned assumptions into Equation (8),
after some algebra, the base displacement steady-state vari-
ance is derived in an analytical form as (Crandall & Mark,
1963)

𝜎2𝑋𝑏
= 𝜙𝑋𝑏

𝜋𝐺0

4𝜔3
𝑏

(11)

in which 𝜙𝑋𝑏
= 𝑁∕𝐷 with

𝑁 = 𝛼6𝜇3
𝑙
(𝛽 + 𝜇𝑡)

2
𝜈42 + 𝜈2

𝑙
(𝛽 + 𝜇𝑡)

2
[1 + (1 + 𝜇𝑡) ((1+

+𝜇𝑡)
(
𝜇𝑡 − 2 + 4𝜁22 (1 + 𝜇𝑡)

)
+ 𝛽

(
𝜇𝑡 − 1 + 4𝜁22 (1+

+𝜇𝑡))) 𝜈
2
2 + (1 + 𝜇𝑡)

2
(1 + 𝛽 + 𝜇𝑡)

2
𝜈42

)] (
𝜈2
𝑙
− 1

)2
+

+𝛼4𝜇2
𝑙

[
−2𝜈42(𝛽 + 𝜇𝑡)

3
+

(
1 − (𝛽 + 𝜇𝑡)

(
3 − 12𝛽𝜁22+

+4𝛽2𝜁22 − 𝜇𝑡
(
𝜇𝑡 + 4𝜁22 (3 + 𝜇𝑡)

))
𝜈22 + (𝛽 + 𝜇𝑡)

2
(6+

+6𝜇𝑡 + 𝜇2
𝑡

)
𝜈42
)
𝜈2
𝑙

]
+ 𝛼2𝜇𝑙 (𝛽 + 𝜇𝑡)

[
(𝛽 + 𝜇𝑡)

3
𝜈42+

−2(1 + (−1 − 2𝛽 − 2𝛽 (𝛽 − 3) (1 + 𝛽) 𝜁22 −3𝜇𝑡+

−2
(
𝛽2 − 3 − 8𝛽

)
𝜁22𝜇𝑡 +

(
𝛽 + (12 + 4𝛽) 𝜁22

)
𝜇2
𝑡 +

+
(
1 + 4𝜁22

)
𝜇3
𝑡 )𝜈

2
2 + (1 + 𝜇𝑡) (𝛽 + 𝜇𝑡) (2+ 𝛽 (3 + 𝜇𝑡) +

+4𝜇𝑡 + 𝜇2
𝑡

)
𝜈42)𝜈

2
𝑙
+
(
2 + 2

(
−1 + 𝜇𝑡

(
−3 + 𝜇2

𝑡 +

+4𝜁22 (1 + 𝜇𝑡) (2 + 𝜇𝑡)
)
+ 𝛽

(
𝜇2
𝑡 − 2 + 4 𝜁22 (1+

+𝜇𝑡) (2 + 𝜇𝑡))) 𝜈
2
2 + (1 + 𝜇𝑡) (𝛽 + 𝜇𝑡) (4𝛽+

+2𝜇𝑡𝛽 + (1 + 𝜇𝑡) (5 + 2𝜇𝑡)) 𝜈
4
2

)
𝜈4
𝑙

]
𝐷 = 𝜈2𝜁2𝜈

2
𝑙
(𝛽 + 𝜇𝑡)

[
𝛽 − 𝛼2𝜇𝑙 + 𝜇𝑡 − (𝛽 + 𝜇𝑡) 𝜈

2
𝑙

]2
(12)
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1644 MASNATA et al.

Taking into account Equation (11), one may directly
look for theminimumof the function𝜙𝑋𝑏

= 𝜙𝑋𝑏
(𝜁2, 𝜈𝑙, 𝜈2),

which is independent of𝐺0 and of the natural frequency of
the BI system 𝜔𝑏.
In general, an analytical expression for the minimum of

𝜙𝑋𝑏
(𝜁2, 𝜈𝑙, 𝜈2) could be obtained by solving the nonlinear

system of algebraic equations:

𝜕𝜙𝑋𝑏
(𝜁2, 𝜈𝑙, 𝜈2)

𝜕𝜁2
= 0 (13a)

𝜕𝜙𝑋𝑏
(𝜁2, 𝜈𝑙, 𝜈2)

𝜕𝜈2
= 0 (13b)

𝜕𝜙𝑋𝑏
(𝜁2, 𝜈𝑙, 𝜈2)

𝜕𝜈𝑙
= 0 (13c)

However, this procedure is often unfeasible, and thus
the minimum of 𝜙𝑋𝑏

(𝜁2, 𝜈𝑙, 𝜈2) can be more easily found
through numerical minimization procedures, such as
those already implemented inmany software packages (for
instance FindMinimum in Mathematica or fminsearch
in MATLAB environment). In this way, Equation (13)
provides the optimal design parameter values 𝜁2, 𝜈𝑙 and 𝜈2.

3.2 Analytical expression of the optimal
design parameters

Aiming at further reducing the computational complexity
in a design phase of the TLCDI, an analytical expression
of the optimal design parameters can be achieved consid-
ering some additional assumptions. As it can be seen in
Equations (11) and (12), the function 𝜎2𝑋𝑏

depends on the
mass ratios 𝜇𝑙 and 𝜇𝑡. Since generally𝜇𝑙 < 5% and𝜇𝑡 < 1%,
solutions of Equation (13) can be approximated by assum-
ing that the third and higher powers of 𝜇𝑙, 𝜇𝑡 and their
products can be neglected (Di Matteo et al., 2022).
In particular, under these assumptions, Equations (13a)

and (13b) �̃�2,𝑜𝑝𝑡(𝜈𝑙) and 𝜁2,𝑜𝑝𝑡(𝜈𝑙) can be expressed as
functions of 𝜈𝑙 as

�̃�2,𝑜𝑝𝑡 (𝜈𝑙) =
√
𝐴∕𝐵 (14a)

𝜁2,𝑜𝑝𝑡 (𝜈𝑙) =
√
𝐶∕𝐷 (14b)

with

𝐴 = 3𝛼4𝜇2
𝑙
𝜈2
𝑙
+ 2𝛼2𝜇𝑙𝜈

2
𝑙
(1 + 2𝛽 + 3𝜇𝑡)

(
𝜈2
𝑙
− 1

)
− 𝜈2

𝑙[
−𝛽2 − 2𝛽 + 𝜇𝑡

(
𝛽2𝜇𝑡 − 2 − 4𝛽 − 3𝜇𝑡

)] (
𝜈2
𝑙
− 1

)2
(15a)

𝐵 = −4𝛼4𝜇2
𝑙
𝛽
(
𝛽 − 3𝜈2

𝑙

)
+ 2

[
𝛽(1 + 𝛽)

2
+ (1 + 𝛽)(

1 + 5𝛽 + 2𝛽2
)
𝜇𝑡 + (4 + 𝛽 (2 + 𝛽) (6 + 𝛽)) 𝜇2

𝑡

]
𝜈2
𝑙(

𝜈2
𝑙
− 1

)2
+ +2𝛼2𝜇𝑙

[
𝛽3 + 3𝜇𝑡𝛽

2 − 2𝜈2
𝑙

(
2𝛽 + 3𝛽2 + (2 + 𝛽)

(1 + 4𝛽) 𝜇𝑡) + 𝜈4
𝑙

(
5𝛽 + 4𝛽2 +

(
5 + 16𝛽 + 6𝛽2

)
𝜇𝑡
)]

(15b)

𝐶 = −𝜈2
𝑙

[
4𝛽2 + 3𝛽3 +

(
8𝛽 + 21𝛽2 + 8𝛽3

)
𝜇𝑡 +

(
4 + 3𝛽

(
11 + 12𝛽 + 2𝛽2

))
𝜇2
𝑡

] (
𝜈2
𝑙
− 1

)3
+𝛼4𝜇2

𝑙

[
(4 + 𝛽) (1 + 8𝛽) 𝜈2

𝑙
− 12𝛽2 − 𝜈4

𝑙
(8 + 25𝛽)

]
+

− 𝛼2𝜇𝑙
(
𝜈2
𝑙
− 1

) [
4𝛽3 + 12𝛽2𝜇𝑡 − 𝜈2

𝑙

(
8𝛽 + 21𝛽2

+
(
8 + 66𝛽 + 40𝛽2

)
𝜇𝑡
)
+ 𝜈4

𝑙

(
12𝛽 + 13𝛽2 + 2𝜇𝑡(

6 + 29𝛽 + 16𝛽2
))]

(15c)

𝐷 = −8𝜈2
𝑙

(
𝜈2
𝑙
− 1

)3
[𝛽 (1 + 𝛽) (2 + 𝛽) + 𝜇𝑡(

2 + 𝛽 (4 + 𝛽) (3 + 2𝛽) +
(
9 + 25𝛽 + 12𝛽2

)
𝜇𝑡
)]

−8𝜈2
𝑙
𝛼4𝜇2

𝑙
𝛽
[
(𝛽 − 3) (5 + 4𝛽) + 𝜈2

𝑙

(
18 + 𝛽 − 𝛽2

)]
+

−8𝜈2
𝑙
𝛼2𝜇𝑙

(
𝜈2
𝑙
− 1

) [
𝛽
(
𝛽3 − 9 − 10𝛽 + 𝜈2

𝑙
(11 + 7𝛽)

)
+𝜇𝑡

(
−9 + 2𝛽

(
2𝛽2 − 20 − 9𝛽

)
+ 𝜈2

𝑙

(
11 + 40𝛽 + 12𝛽2

))]
(15d)

In Figure 4a,b, the approximated solutions of the opti-
mal parameters �̃�2,𝑜𝑝𝑡(𝜈𝑙) and 𝜁2,𝑜𝑝𝑡(𝜈𝑙) in Equations (14a)
and (14b) are compared with those obtained numerically
solving Equations (13a) and (13b) respectively, for several
values of 13a-c𝜇𝑙. As can be seen fromFigure 4, the approx-
imated analytical solutions of the optimal parameters
�̃�2,𝑜𝑝𝑡(𝜈𝑙) and 𝜁2,𝑜𝑝𝑡(𝜈𝑙) in Equations (14a) and (14b) closely
agree with the numerical solution of Equation (13). More-
over, Figure 4 shows that the optimal parameter �̃�2,𝑜𝑝𝑡(𝜈𝑙)
decreases for increasing values of 𝜇𝑙, and both �̃�2,𝑜𝑝𝑡(𝜈𝑙)

and 𝜁2,𝑜𝑝𝑡(𝜈𝑙) show an almost steady trend for 0.2 < 𝜈𝑙 <

0.7, suggesting that they are almost independent from 𝜇𝑙
in the range of practical interest.
Finally, optimal values of 𝜈𝑙,𝑜𝑝𝑡 that minimize the func-

tion 𝜙𝑋𝑏
(𝜁2, 𝜈𝑙, 𝜈2) can be found by solving Equation (13c).

In this regard, in Figure 5, the trend of 𝜕𝜙𝑋𝑏
(𝜁2, 𝜈𝑙, 𝜈2)∕𝜕𝜈𝑙

is depicted. As can be seen, a wide range of values of 𝜈𝑙
leads to values of 𝜕𝜙𝑋𝑏

(𝜁2, 𝜈𝑙, 𝜈2)∕𝜕𝜈𝑙 close to zero, out-
side the neighbourhood of 𝜈𝑙 = 1. Therefore, any choice
of this parameter, in that wide range, approximately leads
to the minimum of 𝜙𝑋𝑏

(𝜁2, 𝜈𝑙, 𝜈2), thus ultimately to the
minimum of the base displacement variance 𝜎2𝑋𝑏

.
In addition, the value of 𝜈𝑙 is strictly related to the total

length of the liquid inside the container𝐿 (𝜈𝑙 =
√

2𝑔∕𝜔2
𝑏
𝐿),

which is normally fixed by design constraints. Note that,
considering the length (generally 𝐿 > 5𝑚) usually adopted
for the design of these liquid tanks in real applications
and the range of frequency of a common base-isolated
structure, a plausible range of values for 𝜈𝑙 can be set
between 0.2 and 0.7. In this range of practical interest,
hence, a proper value of 𝜈𝑙,𝑜𝑝𝑡 can be chosen by setting
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MASNATA et al. 1645

(a) (b)

F IGURE 4 Approximated solutions (Equations 14a and 14b) versus numerical solutions (Equations 13a and 13b) for different values of 𝜇𝑙

(𝛼 = 0.9, 𝛿 = 0.01, 𝛽 = 0.3): a) �̃�2,𝑜𝑝𝑡(𝜈𝑙); b) 𝜁2,𝑜𝑝𝑡(𝜈𝑙)

F IGURE 5 Values of 𝜈𝑙 , which minimize the objective
function 𝜙𝑋𝑏

(𝜁2, 𝜈𝑙, 𝜈2) according to Equation (13c) for different
values of 𝜇𝑙 (for 𝛼 = 0.9, 𝛽 = 0.3, 𝜁𝑠 = 0.01)

a design value of the length 𝐿. Clearly, once the value of
𝜈𝑙,𝑜𝑝𝑡 is determined, Equations (14a) and (14b) can be used
for a straightforward determination of the optimal TLCDI
parameters.
As regards the determination of the optimal head loss

coefficient, as already explained in Section 2.1, classical
procedures determine the equivalent damping ratio 𝜁𝑙 by
employing a time-consuming iterative scheme. An accu-
rate estimation of 𝜁𝑙 can be performed by considering the
variance of the BI system with the TLCDI in Equation (6),
this time including the equivalent damping ratio 𝜁𝑙, fol-
lowing the procedure described in Appendix B. However,
once the input structural parameters and the optimal val-
ues of �̃�2,𝑜𝑝𝑡(𝜈𝑙) and 𝜁2,𝑜𝑝𝑡(𝜈𝑙) derived from Equations (14a)
and (14b) have been set, again, a numerical minimization
of the variance would be required to achieve an optimal
value of 𝜁𝑙. Conversely, this study proposes an alterna-
tive quicker method for an approximate estimation of 𝜁𝑙.
Specifically, the evaluation of the optimal value of 𝜁𝑙 is
obtained according to the analysis developed by Di Matteo

et al. (2022) considering the BI structure with a classical
TLCD subjected to a white noise excitation. In this case,
the BI systemdisplacement and the fluid velocity variances
can be expressed as (Di Matteo et al., 2018):

�̃�2𝑋𝑏
= �̃�𝑋𝑏

𝜋𝐺0

4𝜔3
𝑏

; �̃�2
�̇�
= �̃�

�̇�

𝜋𝐺0

4𝜔𝑙
; (16ab)

where �̃�𝑋𝑏
= �̃�𝑋𝑏

∕�̃�𝑋𝑏
and �̃��̇� = �̃��̇�∕�̃��̇� with the numer-

ators and denominators given by

�̃�𝑋𝑏
= 𝜁𝑙

(
1 + 𝜇𝑙 − 𝛼2𝜇𝑙

)2
+ 𝜈𝑙𝜁𝑏

[
𝛼4𝜇2

𝑙
+ 4𝜁2

𝑙
(1 + 𝜇𝑙)

2
]
+

+ 𝜈2
𝑙
𝜁𝑙(1 + 𝜇𝑙)

2 [
4𝜁2

𝑏
− 2 − 2 𝜇𝑙 + 3𝛼2𝜇𝑙 + 4𝜁2

𝑙
+

+4𝜁2
𝑙
𝜇𝑙
]
+ 𝜈3

𝑙
𝜁𝑏(1 + 𝜇𝑙)

2 (
𝛼2𝜇𝑙+ 4𝜁2

𝑙
+ 4𝜁2

𝑙
𝜇𝑙
)
+

+ 𝜈4
𝑙
𝜁𝑙(1 + 𝜇𝑙)

4
;

�̃�𝑋𝑏
= 𝜁𝑏𝜁𝑙 + 𝜈𝑙𝜁

2
𝑙

(
4𝜁2

𝑏
+ 𝛼2𝜇𝑙

)
+ 2𝜈2

𝑙
𝜁𝑏𝜁𝑙𝜇𝑙

[
2𝜁2

𝑏
− 1+

+
(
𝛼2 − 1

)
+ 2𝜁2

𝑙
(1 + 𝜇𝑙)

]
+ 𝜈3

𝑙
𝜁2
𝑏

[
𝛼2𝜇𝑙+

+ 4𝜁2
𝑙
(1 + 𝜇𝑙)

]
+ 𝜈4

𝑙
𝜁𝑏𝜁𝑙(1 + 𝜇𝑙)

2
;

�̃��̇� = 𝜁𝑏 + 𝜈𝑙𝜁𝑙
(
1 + 4𝜁2

𝑏
+ 𝜇𝑙

)
+ 𝜈2

𝑙
4𝜁3

𝑏
;

�̃��̇� = 𝜁𝑏𝜁𝑙 + 𝜈𝑙𝜁
2
𝑙

(
4𝜁2

𝑏
+ 𝛼2𝜇𝑙

)
+ 2𝜈2

𝑙
𝜁𝑏𝜁𝑙

[
2𝜁2

𝑏
− 1+

+
(
𝛼2 − 1

)
𝜇𝑙 + 2𝜁2

𝑙
(1 + 𝜇𝑙)

]
+ 𝜈3

𝑙
𝜁2
𝑏

(
𝛼2𝜇𝑙 + 4𝜁2

𝑙
+

+ 4𝜁2
𝑙
𝜇𝑙
)
+ 𝜈4

𝑙
𝜁𝑏𝜁𝑙(1 + 𝜇𝑙)

2
;

(17)

Considering the optimal values �̃�2,𝑜𝑝𝑡(𝜈𝑙) and 𝜁2,𝑜𝑝𝑡(𝜈𝑙)

found in Equations (14a) and (14b) and by minimizing the
variance in Equation (16a) of the BI system equipped with
TLCD, the optimal value of the equivalent damping ratio
𝜁𝑙 can be obtained, without any iteration, thus resulting
in a significant reduction in computational effort. Next,
by setting this value in the expression of the fluid velocity
variance, the value of �̃�𝑜𝑝𝑡 can be evaluated from

�̃�𝑜𝑝𝑡 = 2𝐿𝜁𝑙,𝑜𝑝𝑡𝜈𝑙,𝑜𝑝𝑡𝜔𝑏

√
𝜋∕

(
2�̃��̇�

)
(18)
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1646 MASNATA et al.

F IGURE 6 Benchmark model: Five story base-isolated
structure (De Domenico & Ricciardi, 2018a)

As it will be shown in the next Section 4, this approach
leads to almost identical results in terms of base dis-
placement variance, compared to the classical iterative
procedures without affecting the effectiveness of the
TLCDI.

4 OPTIMAL DESIGN PARAMETERS

The primary benefit of the proposed simplified approach
is the straightforward evaluation of the optimal design
parameters. To demonstrate its accuracy, a comparison is
made here with the optimal values obtained by a numer-
ical iterative procedure considering the original MDOF
isolated structure. In particular, the benchmark struc-
ture considered is the base-isolated five-story planar frame
(𝑛 = 5) previously studied by De Domenico and Ricciardi
(2018a) and illustrated in Figure 6. The first four stories of
the planar frame have a lumped mass of 𝑀𝑗 = 6 ⋅ 104 kg

(for 𝑗 = 1,… , 𝑛 − 1), and the mass of the fifth floor is
𝑀5 = 5 ⋅ 104 kg. The natural frequencies of this structure
are given as 𝜔𝑖[rad∕s] = [12.5, 33.2, 56.1, 79.5, 112.2] (𝑖 =
1, … , 𝑛). The superstructure is a classically damped sys-
tem with the damping ratio the same for each mode: 𝜁𝑖 =
0.02. The mass, natural frequency, and damping ratio of
the BI subsystem are 𝑀𝑏 = 𝑀5, 𝜔𝑏 = 𝜋 rad/s, 𝜁𝑏 = 0.1,
respectively. Moreover, to calculate the base displacement
variance in Equation (6), the PSD intensity is set to 𝐺0 =

0.002, corresponding to an approximative peak ground
acceleration of 0.02 g (Kaul, 1978).
The seismic performance of this base-isolated structure

is evaluated in comparison to the same structure with

the TLCDI. For this value of PSD and for this kind of
structure, according to the closed-form solutions in Equa-
tions (14a) and (14b), the optimal TLCDI design parameters
𝜈2,𝑜𝑝𝑡, 𝜁2,𝑜𝑝𝑡, and �̃�𝑜𝑝𝑡 have been calculated by assuming
that the liquid inside the TLCDI is water (𝜌 = 997 kg∕m3),
the length ratio is 𝛼 = 0.9 (Wang et al., 2020a) with the
total length 𝐿 = 10𝑚, 𝜇𝑙 = 0.04, the mass ratio of the
water tank 𝛿 is fixed to 1% and the inertance ratio 𝛽 =

0.3 (De Domenico & Ricciardi, 2018a; Di Matteo et al.,
2019). It is worth noting that the optimal parameters in
Equations (14a) and (14b) do not depend on 𝜁𝑏, 𝜁𝑠, and
𝐺0; hence, they are assumed constant when these param-
eters vary. Therefore, since these parameters have been
previously neglected to achieve the proposed approximate
expressions of the TLCDI parameters, the reliability of the
proposed formulation might be mainly jeopardized when
these parameters assume relatively high values. Moreover,
as previously discussed, in the aforementioned expressions
for the optimal parameters, the optimal frequency ratio of
the liquid 𝜈𝑙,𝑜𝑝𝑡 can be set within a wide range of values,
whichmight be rather different from each other according
to the feasible lengths of the liquid tank 𝐿.
Therefore, a parametric analysis has been performed

to verify the influence of 𝜁𝑏, 𝜁𝑠, 𝐿 and 𝐺0. Each one of
them has been varied over a wide range of plausible values
greater than zero since they cannot take negative values.
Based on practical considerations, the constraints on the
considered variables are the following: 𝐿 ∈ [1, 80], 𝐺0 ∈

[0.001, 0.03], 𝜁𝑏, 𝜁𝑠 ∈ [0.01, 0.3].
As customary in the literature, the numerical solution

can be obtained by performing a control algorithm. In this
respect, a single-objective genetic algorithm (GA) method
(Goldberg & Holland, 1988; Kim & Roschke, 2006) has
been used to find those values of �̃�2,𝑜𝑝𝑡, 𝜁2,𝑜𝑝𝑡, and �̃�𝑜𝑝𝑡
that minimize the base displacement variance of the com-
plete nonlinear system in Equation (2). The GA is often the
preferred choice over many other optimization methods
since, by applying the mechanisms of crossover, recom-
bination, and mutation present in genetics, the solution
is searched in multiple directions avoiding entrapment in
local minima (Li & Adeli, 2018). A comprehensive review
of control algorithms used primarily for vibration control
is presented in (Gutierrez Soto & Adeli, 2017).
Clearly, the implementation of this numerical min-

imization algorithm requires some constraints on the
sought TLCDI optimal parameters. Optimal values of
�̃�2,𝑜𝑝𝑡, and 𝜁2,𝑜𝑝𝑡 are sought in the range 0.01–1, while the
boundary conditions for the head loss coefficient are cho-
sen according to the experimental data of Wu et al. (2005)
and the damping ratio is limited to the maximum value
of 𝜁𝑙 = 1 (Di Matteo et al., 2015). It should be empha-
sized that in this procedure, each iteration of the GA
algorithm yields an optimal value of 𝜉𝑜𝑝𝑡, and the SLT
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MASNATA et al. 1647

must be iteratively applied to evaluate the equivalent linear
damping ratio 𝜁𝑙. Therefore, a cumbersome numerical pro-
ceduremust be implemented in this case.With reference to
the previously considered structural parameters, the opti-
mal design parameters �̃�2,𝑜𝑝𝑡, 𝜁2,𝑜𝑝𝑡, and �̃�𝑜𝑝𝑡 determined
through the proposed direct approach have been used to
compute the base displacement variance 𝜎2𝑋𝑏

of the system
as in Equation (5).
Next, the normalized displacement variance of the BI

structure with TLCDI, denoted as 𝜀𝑋𝑏
= 𝜎2𝑋𝑏

∕𝜎2𝑋0
, where

𝜎2𝑋0
the BI displacement variance of the system with-

out TLCDI, is evaluated. Note that this parameter may
represent also a performance control index since lower val-
ues of 𝜀𝑋𝑏 indicate higher control efficacy of the TLCDI.
The discrepancies between the normalized displacement
variance obtained by the complete numerical GA pro-
cedure (dashed line) and that one calculated with the
proposed analytical solutions of the optimal TLCDI param-
eters (dots) are shown in Figure 7 for different values of
𝐺0, 𝐿, 𝜁𝑏, and 𝜁𝑠. Considering the fact that these errors
are less than 2%, the proposed optimization method can
be viewed as practically equivalent to the GA method in
terms of control performance parameters. It is worth men-
tioning that the numerical approach is performed on the
original system, which is a general linear damped MDOF
base-isolated structure with the dynamic behavior gov-
erned by Equation (3). Hence, since a system with many
degrees of freedom is considered, compared to the sys-
tem in Equation (6) and the damping of the base isolation
system is taken into account, minimizing the integral in
Equation (5) requires many hours of computation time.
Moreover, this numerical algorithm must be adapted to
the new structural configuration for each possible varia-
tion of each parameter and performed again, unlike the
proposed approach that provides a direct formula that can
be used for the design of the TLCDI. Therefore, consider-
ing the large computational gain achieved by the proposed
approximate formulation, it can be concluded that the ana-
lytical expressions provided in Equations (14a) and (14b)
are a potent and reliable tool for the optimal design of the
TLCDI.
In order to further investigate the potential of the TLCDI

to represent a low-mass passive control strategy, the influ-
ence of the inertance on normalized variance 𝜀𝑋𝑏 has been
studied. In this regard, 𝜀𝑋𝑏 is illustrated in Figure 8 as func-
tions of the inertance ratio 𝛽 and for different values of
the liquid mass ratio 𝜇𝑙. The results of Figure 8 reveal that,
in accordance with the literature on other types of devices
with the inerter (De Domenico & Ricciardi, 2018a), a cer-
tain value of inertance ratio (𝛽 > 0.6), increasing values of
𝛽 lead to better performance 𝜀𝑋𝑏 by resorting to a smaller
quantity of liquid mass.

(a)

(b)

(c)

(d)

F IGURE 7 Normalized displacement variance: comparison
between the numerical genetic algorithm procedure (dashed line)
and the proposed formulation (dots) for different parameters
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1648 MASNATA et al.

F IGURE 8 The effect of inertance on the normalized
displacement variance of the base-isolation (BI) system with TLCDI

The greater increase of 𝜀𝑋𝑏 with a large mass ratio
for high 𝛽-values seems unusual, compared to traditional
devices such as TMDs and TLCDs. This phenomenon is
frequently observed when an inerter is used in combina-
tion with a secondary mass as discussed in the literature
(De Domenico & Ricciardi, 2018a). The apparent reduc-
tion of 𝜀𝑋𝑏 for increasing values of 𝛽 confirms that the
inclusion of the inerter can lead to better performance.
The additional inerter mechanism in the TLCDI greatly
enhances the efficiency of the classical TLCD and makes
the TLCDI an appealing, lightweight control device with
superior control performance, compared to conventional
TLCDs. In the literature, a value of inertance between 0.3
and 0.5 is usually suggested as a good compromise between
cost-effectiveness and performances (De Domenico &
Ricciardi, 2018a, Abdeddaim et al., 2020).
The results presented above were derived considering

a Gaussian white noise with zero mean for modeling
ground acceleration, whose properties allowed obtaining
approximate expressions for the optimal TLCDI param-
eters. Therefore, with the aim of proving the validity of
Equations (14a) and (14b) also in the case of more general
broad-band earthquake excitation, a further analysis was
carried out. For this purpose, thewidely usedKanai–Tajimi
stationary filtered process is adopted as a more realistic
model of earthquake ground acceleration. This process
is characterized by the following one-sided PSD (Tajimi,
1960).

𝐺�̈�𝑔
(𝜔) = 𝐺0

𝜔4
𝑔 + 4𝜁2𝑔𝜔

2
𝑔𝜔

2(
𝜔2
𝑔 − 𝜔2

)2
+ 4𝜁2𝑔𝜔

2
𝑔𝜔2

(19)

where 𝐺0 is the constant white noise PSD whose value is
related to the bedrock peak ground acceleration according
to Kaul (1978), while 𝜔𝑔 and 𝜁𝑔 are the soil natural fre-
quency and damping ratio. The corresponding variance of

F IGURE 9 Performance control index 𝜀𝑋𝑏
in case of

Kanai–Tajimi stationary filtered white noise process for different BI
sub-system damping ratios: analytical solution (dots) versus
numerical solution (dashed line)

the base isolation sub-system 𝜎2𝑋𝑏
is given as (Roberts &

Spanos, 1990)

𝜎2𝑋𝑏
=

∞

∫
0

|𝐻𝑋𝑏
(𝜔)|2𝐺�̈�𝑔

(𝜔) 𝑑𝜔 (20)

A closed form of this variance can be obtained in a sim-
ilar manner to the case of white noise input as explained
in Appendix B. However, since long and unwieldy closed-
form solutions would be achieved for this model, a
numerical minimization procedure is again pursued to
find the optimal TLCDI design parameters that reach
the minimum of Equation (20). Once these optimized
parameters are obtained by the numerical approach, the
corresponding performance control index 𝜀𝑋𝑏

is evaluated
and compared with the pertinent values obtained with the
optimal parameters in Equations (14a) and (14b). For the
sake of conciseness, results are shown in Figure 9 only for
𝜁𝑏 varying between 0 and 0.3 and for two different soil
conditions.
As it can be seen, even assuming a non-white earth-

quake excitation, the performance control index obtained
with the optimal values in Equations (14a) and (14b) (based
on a white noise process) largely agrees with the value
obtained with the complete solution, with a slight dis-
crepancy for the soft soil type. Considering the significant
reduction in computational effort achieved by the pro-
posed analytical solution and the small deviations in terms
of 𝜀𝑋𝑏

, the above approach again proves to be a powerful
and reliable tool for the efficient estimation of the TLCDI
design parameters.
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MASNATA et al. 1649

5 CONTROL PERFORMANCE

The above-proposed optimization procedure has been
derived considering a white noise base excitation, thus
leadingwith theminimal computational cost to the simpli-
fied analytical expressions in Equations (14a) and (14b) for
the TLCDI optimal parameters. However, the assumption
of stationarity and a constant PSD represents an idealized
model that does not take into account the real nature of
earthquakes. In light of this, to test the reliability of the pro-
posed analytical expressions when exposed to real ground
motions, 44 records of past seismic events selected from
the Federal Emergency Management Agency (FEMA)
P-695-FF record set (FEMA P-695, 2009) were applied
as the base excitation for the numerical simulations.
For completeness, to account for structures with differ-
ent properties, numerical simulations were performed on
two base-isolated frame structures with different num-
bers of floors, characterized by different mass, stiffness,
and damping parameters. The first case study is the same
structure already analyzed in Section 4, whereas the sec-
ond structure is a base-isolated high-rise building with 20
stories (Ma et al., 2014).
In addition to the seismic analysis of the system with

TLCDI, the dynamic response of the uncontrolled BI sys-
tem and the BI system equippedwith a conventional TLCD
were computed for comparison. The parameters of the
TLCD with the same mass and length as the TLCDI were
optimized according to a procedure presented in Di Mat-
teo et al. (2018). In these analyses, the coupled nonlinear
differential equations of motion (Equation 2 in the case
of the BI system with TLCD) were solved using a fourth-
order Runge–Kutta algorithm. For each of the 44 recorded
ground motions, the displacement relative to the ground,
total acceleration, and interstory drift ratio were deter-
mined for the BI structure, the BI structure equipped with
the TLCDI and the one controlled by the conventional
TLCD.
As a result of these analyses, Figure 10 shows a compari-

son of the profiles of the median (line with circle markers)
of the peak response quantities of the five-story BI struc-
ture without a control device (black dotted line), with
TLCD (blue dash-dotted line) and with TLCDI optimized
via the approximated solution (red solid line). The 16th
(markedwith crosses) and 84th (markedwith squares) per-
centile values are shown as ameasure of dispersion (Ibarra
& Krawinkler, 2005). Since the record-to-record variability
of the seismic response is in general more or less log-
normally distributed, the distribution of the considered
response quantity is completely captured by its median,

(a)

(b)

(c)

F IGURE 10 Response profiles of the five-story BI structure
with TLCDI designed with the proposed optimization procedure
(red solid line), BI structure with TLCD (blue dash-dotted line), and
BI structure (black dotted line) subjected to the 44 ground motion
records of the FEMA P-695-FF set: circles-median; crosses-16th
percentile; squares-84th percentiles. (a) Peak floor displacement
relative to the base; (b) Peak floor total acceleration; (c) Peak floor
interstory drift ratio
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1650 MASNATA et al.

16th and 84th percentile value, as explained, for instance,
in Limpert et al. (2001).
Figure 10 demonstrates that both devices are able to

mitigate the seismic response of the BI system. However,
the optimized TLCDI device in combination with the BI
subsystem results in displacements (Figure 10a) and total
accelerations (Figure 10b) of the BI system that is always
lower than the corresponding values of the BI system with
the conventional TLCD. In particular, the median of the
peak displacement and acceleration of the isolation floor is
decreased by 22% and 11%, respectively, when the BI struc-
ture is controlled with a TLCDI, compared to the plain
base-isolated structure. It should be noted that this reduc-
tion is not achieved at the expense of increased interstory
drift ratios (see Figure 10c) as it may happen when adopt-
ing strategies based on the amplification of the damping
of the BI subsystem (Kelly, 1999). Thus, the beneficial fea-
tures of BI systems are retained even when employing the
TLCDI.
In this regard, Figure 11 shows the comparison of the

response time histories, in terms of base displacement
(Figure 11a,b) and roof displacement relative to the ground
(Figure 11c–d), of the five-story BI benchmark structure
with TLCDI, with TLCD, andwithout any device subjected
to two records of the FEMA P-695-FF 44 with different fea-
tures, namely, the Kocaeli and the Duzce ground motions.
As can be seen, the TLCDI device is particularly effective in
reducing the BI displacement for both records with a sig-
nificant reduction of the peak BI displacement of almost
45% for the Kocaeli earthquake (Figure 11a) and 30% for
theDuzce earthquake (Figure 11b), whereas the TLCDpro-
vides a reduction of 9% and 3%, respectively, compared to
the peak responses of the BI system.
Similar results are also observed in the roof floor dis-

placements relative to the base, as depicted in Figure 11c,d,
where the TLCDI reduces the peak floor displacements up
to 34% for the Kocaeli earthquake (Figure 11c), compared
to the 12% achieved by the conventional TLCD. As can be
seen, both TLCDI and TLCD have little effect on the struc-
tural response in the first few seconds of the excitation
as is common with passive control devices. For an earlier
response suppression, the use of an active system device
or a sort of accelerated device is recommended (Lin et al.,
2010; Tsai, 1995).
Nevertheless, Figure 11 confirms that coupling a TLCDI

designed with the proposed approach with a BI system can
effectively reduce the BI displacements, as well as other
response quantities such as floor displacements, compared
to the system without TLCDI or with the conventional
TLCD.
For a better understanding, it is also worth taking a

view on the energy. In this regard, Figure 12a,b shows
the input energy and the dissipated energy for both the

(a)

(b)

(c)

(d)

F IGURE 11 Response in terms of BI displacement relative to
the ground induced by the (a) Kocaeli record; (b) Duzce record;
response in terms of roof displacement relative to the ground
induced by the (c) Kocaeli record; (d) Duzce record. Five-story BI
structure with TLCDI – red solid line, five-story BI structure with
TLCD–blue dash-dotted line, five-story BI structure without
device–black dotted line

 14678667, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.12929 by U
niversity D

egli Studi D
i Pale, W

iley O
nline L

ibrary on [22/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MASNATA et al. 1651

(a)

(b)

F IGURE 1 2 Comparison on energy contributions
time-history for: (a) Five-story BI structure with TLCDI; (b)
five-story BI structure with TLCD

BI system with TLCDI and the BI system with conven-
tional TLCD. Specifically, the mean of the cumulative
dissipation energy terms contributing to the total input
energy (De Domenico & Ricciardi, 2018b) during the 44
ground motion records is presented. In the TLCDI system
(Figure 12a), the dissipated energy provided by the TLCDI
damper and liquid motion is reasonably high (53% of
dissipation), compared to the energy dissipated by the
stand-alone BI system (38%). On the contrary, as observed
in Figure 12b, the energy dissipated by the TLCD (14%) is
lower than the energy dissipated by the BI system (75%).
Note a similar result was found in studies considering a
BI system with TMDI and with TMD (De Domenico &
Ricciardi, 2018b). Therefore, compared to the case with
TLCD, the energy stored in the isolators decreases for BI
systems endowedwith the TLCDI, confirming the remark-
able influence of the inerter on protecting the BI system
from undesirable vibrations.
To further verify the reliability of the simplified opti-

mization procedure, the study on the TLCDI control
performance is extended to the case of the high-rise

base-isolated building with 20 stories studied in Ma et al.
(2014). The mass and stiffness properties of the super-
structure are different depending upon the story number.
Specifically, the lumped masses at each story are: 𝑀𝑗 =

27.6 ⋅ 103𝑘𝑔 (for 𝑗 = 1 ÷ 8),𝑀𝑗 = 24.1 ⋅ 103𝑘𝑔 (for 𝑗 = 9 ÷

16) and 𝑀𝑗 = 20.7 ⋅ 103𝑘𝑔 (for 𝑗 = 17 ÷ 20), while the
mass of the BI subsystem is𝑀𝑏 = 34.4 ⋅ 104𝑘𝑔. The damp-
ing ratios of the superstructure and isolation slab are
𝜁𝑖 = 0.03 and 𝜁𝑏 = 0.1, respectively; the fundamental fre-
quency of the superstructure is𝜔𝑠,1 = 3.78rad∕s, and of the
base-isolated system is 𝜔𝑏 = 1.80rad∕s.
The response profiles of this structure subjected to the

44 ground motion records of the FEMA P-695-FF set are
shown in Figure 13. For this case study, a comparison with
the BI system equipped with a TMDI having equal mass
and inertance ratios as the TLCDI (and optimized as in
Di Matteo et al., 2019) has been also investigated. Similar
conclusions can be made for this structure by examining
the displacements relative to the ground in Figure 13a. As
can be seen, the most efficient control is attained by the BI
system equipped with the TLCDI (red solid line) and the
TMDI (green dashed line), while the BI systemwith TLCD
(blue dash-dotted line) shows a performance comparable
to that of the stand-alone BI structure (black dotted line).
Furthermore, a slight improvement in the interstory drift
ratio shown in Figure 13c by the TLCDI and the TMDI,
compared to the TLCD, is observed. In this case, the dis-
continuities in the interstory drifts at the eighth and 16th
floors are due to stiffness changes in the superstructure
(Ma et al., 2014). On the other hand, as far as the accelera-
tion profiles are concerned, the BI + TLCDI configuration
may lead to detrimental effects as illustrated in Figure 13b.
In fact, a small increase in the median and the 16th per-
centile of the peak accelerations is observed for the BI
systemwith TLCDI. Once again, the BI systemwith TMDI
leads to overlapping data with respect to the TLCDI indi-
cating that their use can be interchangeable for the purpose
of this study depending on the design requirements.
This effect of increased accelerations, shown by both

TMDI and TLCDI, can be attributed to the remarkable
contribution of higher modes of vibration to the seismic
response of this high-rise structure. Specifically, as dis-
cussed in Ma et al. (2014), higher modes have a substantial
effect on the seismic accelerations of the superstructure
while having a small impact on the response of the base
slab and the drift.
It is worth pointing out that these results are consis-

tentwith the fact that the proposed optimization procedure
was developed under the assumption that the superstruc-
ture is a single rigid mass, and thus focuses on the seismic
response of the first vibrationmode that usually dominates
the response of low base-isolated structures.
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(a) 

 

(b) 

 

(c) 

F IGURE 13 Response profiles of the 20-story BI structure
with TLCDI designed with the proposed optimization procedure
(red solid line), 20-story BI structure with TMDI (green dashed
line), with TLCD (blue dash-dotted line) and BI structure (black
dotted line) subjected to the 44 ground motion records of the FEMA
P-695-FF set: circles-median; crosses-16th percentile; squares-84th
percentiles. (a) Peak floor displacement relative to the base; (b) Peak
floor total acceleration; (c) Peak floor interstory drift ratio

Moreover, the results in Figure 13a indicate that the
effectiveness of the proposed approach, formulated with
the single objective of reducing the base displacement,
is still preserved for this purpose even when isolated
high-rise buildings are considered.
However, when a considerable number of higher modes

contribute to the dynamic response of the superstructure,
as in this case, the implementation of a multi-objective
optimization procedure or the resort to active control
devices may be more of an appropriate strategy.
In this regard, a multi-objective optimization aimed

at simultaneously reducing the higher mode acceleration
may lead to better overall control. On the other hand, active
or semiactive TLCDs, for example, by varying the opti-
mal value of the head loss coefficient according to the
frequency content of the external force, may be able to
reduce the response at each natural frequency (Kim &
Adeli, 2005b). Although these strategies may be consid-
ered more suitable to cover a wide range of excitation,
the proposed passive configuration of TLCD with inerter
is more convenient and inherently reliable for control-
ling those structures whose response is dominated by one
main mode (El-Khoury & Adeli, 2013), such as most base-
isolated structures, since it does not rely on an external
energy source.

6 CONCLUSION

This paper addressed the passive control effect of the
TLCDI on the dynamic response of seismically excited
base-isolated MDOF structures. The nonlinear equations
of motion of the hybrid-controlled system were estab-
lished, and the optimal design parameters of the TLCDI
were studied in detail by means of the SLT and the Lya-
punov equation. Approximate analytical expressions for
the optimal TLCDI parameters were found by minimiz-
ing the variance of the base displacement considering a
Gaussian white noise model of the base excitation and
under some simplifying assumptions. The following main
conclusions can be drawn from the results of this study:

1. The accuracy of these formulae was demonstrated by a
comparative analysis with a conventional cumbersome
numerical optimization procedure pursued when the
previous assumptions are removed.

2. In particular, the proposed approach leads to almost
identical results, compared to the numerical approach
with a significant reduction in computational
effort.
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3. Seismic analyses carried out on two different base-
isolated structures equipped with a TLCDI designed
with the proposed approach have demonstrated the
superior control performance of the TLCDI over a
classical TLCD with the same liquid mass.

In summary, the results of the performed analyses
demonstrated the reliability of the proposed optimiza-
tion procedure even in the presence of recorded ground
accelerations and proved that the TLCDI is a lightweight-
based control tool that significantly improves the seismic
performance of base-isolated structures.
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APPENDIX A
This appendix presents the transfer functions in terms of
displacements of the system in Equation (3) obtained by
applying the Fourier transform as follows:

𝐗𝑠 (𝜔)
(
−𝜔2𝐌𝑠 + 𝑖𝜔𝐂𝑠 + 𝐊𝑠

)
− 𝜔2𝐌𝑠𝐫𝑋𝑏 (𝜔)

= −𝐌𝑠𝐫�̈�𝑔 (𝜔)

𝑋𝑏 (𝜔)
[
−𝜔2 (1 + 𝜇𝑡 + 𝛽) + 2𝑖𝜔𝜔𝑏𝜁𝑏 + 𝜔2

𝑏

]
−

𝜔2𝐫𝐓𝐌𝑠

𝑀𝑡𝑜𝑡
𝐗𝑠 (𝜔) =

= (𝜇𝑡 + 𝛽) 𝜔2𝑌 (𝜔) + 𝛼𝜇𝑙𝑈 (𝜔) − (1 + 𝜇𝑡) �̈�𝑔 (𝜔)

𝑌 (𝜔)
[
− (𝜇𝑡 + 𝛽) 𝜔2 + 2𝑖𝜔𝜔2𝜁2𝜇𝑡 + 𝜇𝑡𝜔

2
2

]
−𝜔2 (𝜇𝑡 + 𝛽)𝑋𝑠 (𝜔) =

= 𝛼𝜇𝑙𝜔
2𝑈 (𝜔) − 𝜇𝑡�̈�𝑔 (𝜔)

𝑈 (𝜔)
[
𝜔2 + 2𝑖𝜔𝜔𝑙𝜁𝑙 + 𝜔2

𝑙

]
− 𝜔2𝛼𝑋𝑠 (𝜔) − 𝜔2𝛼𝑌 (𝜔)

= −𝛼�̈�𝑔 (𝜔)
(A.1)

By definition of the functions

𝑎 (𝜔) = − (1 + 𝜇𝑡 + 𝛽)𝜔2 + 2𝑖𝜔𝜔𝑠𝜁𝑠 + 𝜔2
𝑠

𝑏 (𝜔) = − (𝜇𝑡 + 𝛽)𝜔2 + 2𝑖𝜔𝜔2𝜁2𝜇𝑡 + 𝜇𝑡𝜔
2
2 (A.2)

𝑏 (𝜔) = − (𝜇𝑡 + 𝛽)𝜔2 + 2𝑖𝜔𝜔2𝜁2𝜇𝑡 + 𝜇𝑡𝜔
2
2

𝐝 (𝜔) = [−𝜔2𝐌𝒔 + 𝑖𝜔𝐂𝒔 + 𝐊𝒔]
−1

the BI displacement transfer function 𝐻𝑋𝑏
(𝜔) =

𝑋𝑏(𝜔)∕�̈�𝑔(𝜔) of the system with TLCDI, the con-
tainer displacement 𝐻𝑌(𝜔) = 𝑌(𝜔)∕�̈�𝑔(𝜔), the liquid
column transfer functions, 𝐻𝑈(𝜔) = 𝑈(𝜔)∕�̈�𝑔(𝜔), and
the superstructure displacement transfer function
𝐻𝐗𝑠

(𝜔) = 𝐗𝑠(𝜔)∕�̈�𝑔(𝜔)may be specified as follows:

𝐻𝑋𝑏
(𝜔) =

𝑁𝑋𝑏
(𝜔)

𝐷𝑋𝑏
(𝜔)

; 𝐻𝑌 (𝜔) =
𝑁𝑌 (𝜔)

𝐷
𝑌
(𝜔)

where 𝐷𝑌(𝜔) = 𝐷𝑋𝑏
(𝜔) and

𝑁𝑋𝑏
(𝜔) = −𝐫𝐓𝐌𝒔𝐝 (𝜔)𝐌𝒔𝐫𝛼

2𝜔6𝜇𝑙 + 𝑀𝑡𝑜𝑡𝛼
2𝜔4𝜇𝑙

(𝛽 + 𝜇𝑡 − 1)+

+ 𝑏 (𝜔) 𝑐 (𝜔)𝑀𝑡𝑜𝑡 (1 + 𝜇𝑡) (𝛽 + 𝜇𝑡) + 𝜔2 (𝛽+

+𝜇𝑡) (𝑐 (𝜔)𝑀𝑡𝑜𝑡𝜇𝑡+ +𝑏 (𝜔) 𝑐 (𝜔) 𝐫𝐓𝐌𝒔𝐝 (𝜔)𝐌𝒔𝐫+

+ 𝑏 (𝜔)𝑀𝑡𝑜𝑡𝛼
2𝜇𝑙;

𝐷𝑋𝑏
(𝜔) = −𝐫𝐓𝐌𝒔𝐝 (𝜔)𝐌𝒔𝐫𝛼

2𝜔8𝜇𝑙 − 𝑎 (𝜔) 𝑏 (𝜔) 𝑐 (𝜔)

𝑀𝑡𝑜𝑡 (𝛽+

+𝜇𝑡) + 2𝑀𝑡𝑜𝑡𝛼
2𝜔6𝜇𝑙 (𝛽 + 𝜇𝑡) + 𝜔4 (𝑏 (𝜔)

(
𝑀𝑡𝑜𝑡𝛼

2𝜇𝑙+

+𝑐 (𝜔) 𝐫𝐓𝐌𝒔𝐝 (𝜔)𝐌𝒔𝐫
)
(𝛽 + 𝜇𝑡) + 𝑀𝑡𝑜𝑡

(
𝑎 (𝜔) 𝛼2𝜇𝑙+

+𝑐 (𝜔) (𝛽 + 𝜇𝑡)
2
)

𝑁𝑌 (𝜔) = 𝑎 (𝜔) 𝑐 (𝜔)𝑀𝑡𝑜𝑡𝜇𝑡 + 𝑀𝑡𝑜𝑡𝜔
2
(
𝑎 (𝜔) 𝛼2𝜇𝑙+ 𝑐 (𝜔)

(1 + 𝜇𝑡) (𝛽 +

+𝜇𝑡)) + 𝜔4
(
𝑐 (𝜔) 𝐫𝐓𝐌𝒔𝐝 (𝜔)𝐌𝒔𝐫𝛽+ 𝑀𝑡𝑜𝑡𝛼

2𝜇𝑙
(1 + 𝛽 + 𝜇𝑡))

Moreover,

𝐻𝑈 (𝜔) =
𝛼

𝑐 (𝜔)

[
−1 + 𝜔2𝐻𝐗𝑠

(𝜔) + 𝜔2𝐻𝑌 (𝜔)
]
; 𝐻𝐗𝐬 (𝜔)

= 𝐝 (𝜔)
(
𝜔2𝐌𝒔𝐫𝐻𝑋𝑏

(𝜔) −𝐌𝒔𝐫
)

(A.3)

Once these functions have been evaluated, the response
variances in terms of container displacement, liquid dis-
placement, and main structure displacements can be
determined numerically by solving the following equa-
tions:

𝜎2𝑌 =

∞

∫
0

|𝐻𝑌 (𝜔)|2𝐺0 𝑑𝜔

𝜎2𝑈 =

∞

∫
0

|𝐻𝑈 (𝜔)|2𝐺0 𝑑𝜔 (A.4)

𝜎2𝐗𝐬 =

∞

∫
0

|𝐻𝐗𝐬 (𝜔)|2𝐺0 𝑑𝜔

APPENDIX B
In this appendix, the procedure for a more rigorous esti-
mation of the head loss coefficient is outlined. The base
displacement variance of the BI subsystem subjected to a
white noise process can be obtained by using the following
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integral form reported by Roberts and Spanos (1990)

𝜎2𝑋𝑏
=

𝐺0

2

∞

∫
0

Ξ𝑚 (𝜔)

Λ𝑚 (−𝑖𝜔)Λ𝑚 (𝑖𝜔)
𝑑𝜔 (A.5)

where

Ξ𝑚 (𝜔) = 𝜗𝑚−1𝜔
2𝑚−2 + 𝜗𝑚−2𝜔

2𝑚−4 +⋯+ 𝜗0;

Λ𝑚 (𝑖𝜔) = 𝜆𝑚(𝑖𝜔)
𝑚
+ 𝜆𝑚−1(𝑖𝜔)

𝑚−1
+⋯+ 𝜆0;

(A.6)

Specifically, the variance of 𝜎2𝑋𝑏
in Equation (A.5) (for

𝑚 = 6) can be expressed as

𝜎2𝑋𝑏
=

||||||||||||||

𝜗5 𝜗4 𝜗3 𝜗2 𝜗1 𝜗0
−𝜆6 𝜆4 −𝜆2 𝜆0 0 0

0 −𝜆5 𝜆3 −𝜆1 0 0

0 𝜆6 −𝜆4 𝜆2 −𝜆0 0

0 0 𝜆5 −𝜆3 𝜆1 0

0 0 −𝜆6 𝜆4 −𝜆2 𝜆0

||||||||||||||||||||||||||||

𝜆5 −𝜆3 𝜆1 0 0 0

−𝜆6 𝜆4 −𝜆2 𝜆0 0 0

0 −𝜆5 𝜆3 −𝜆1 0 0

0 𝜆6 −𝜆4 𝜆2 −𝜆0 0

0 0 𝜆5 −𝜆3 𝜆1 0

0 0 −𝜆6 𝜆4 −𝜆2 𝜆0

||||||||||||||

𝜋𝐺0

2𝜆6
(A.7)

where 𝜆𝑖(𝑖 = 0, .., 6) and 𝜗𝑗(𝑗 = 0,… , 5) are constant coeffi-
cients and the vertical lines ||mean the determinant of the
matrix. The definition of 𝜆𝑖(𝑖 = 0, .., 6) and 𝜗𝑗(𝑗 = 0,… , 5)

is presented below:

𝜆6 = 𝛽 − 𝛼2𝜇𝑙 + 𝜇𝑡;

𝜆5 = 2𝜔𝑏 (𝛽 + 𝜇𝑡)
[
𝜁2

(
1 + 𝛽 − 𝛼2𝜇𝑙 + 𝜇𝑡

)
𝜈2 + 𝜁𝑙𝜈𝑙

]
;

𝜆4 = 𝜔2
𝑏

[
−𝛼2𝜇𝑙

(
1 + (𝛽 + 𝜇𝑡) 𝜈

2
2

)
+ (𝛽 + 𝜇𝑡)

(
1 + (1 + 𝛽 + 𝜇𝑡) 𝜈

2
2+

+ 4𝜁2𝜁𝑙 (1 + 𝛽 + 𝜇𝑡) 𝜈2𝜈𝑙 + 𝜈2
𝑙

]
;

𝜆3 = 2𝜔3
𝑏 (𝛽 + 𝜇𝑡)

[
𝜁𝑙
(
1 + (1 + 𝛽 + 𝜇𝑡) 𝜈

2
2

)
𝜈𝑙+

+ 𝜁2𝜈2
(
1 + (1 + 𝛽 + 𝜇𝑡) 𝜈

2
𝑙

)]
;

𝜆2 = 𝜔4
𝑏 (𝛽 + 𝜇𝑡)

[
4𝜁2𝜁𝑙𝜈2𝜈𝑙 + 𝜈2

𝑙
+ 𝜈22

(
1 + (1 + 𝛽 + 𝜇𝑡) 𝜈

2
𝑙

)]
;

𝜆1 = 2𝜔5
𝑏
𝜈2𝜈𝑙 (𝛽 + 𝜇𝑡) (𝜁𝑙𝜈2 + 𝜁2𝜈𝑙) ; 𝜆0 = 𝜔6

𝑏
𝜈22𝜈

2
𝑙 (𝛽 + 𝜇𝑡) ;

(A.8)

𝜗5 = 0; 𝜗4 =
(
𝛽 − 𝛼2𝜇𝑙 + 𝜇𝑡

)2
;

𝜗3 = 2 (𝛽 + 𝜇𝑡)
[(
𝛼2𝜇𝑙 − 𝜇𝑡 − 1

) (
𝛽 − 𝛼2𝜇𝑙 + 𝜇𝑡+

+ 2𝜁22
(
𝛼2𝜇𝑙 − 𝜇𝑡 − 1

)
(𝛽 + 𝜇𝑡) 𝜈

2
2 − 4𝛼2 (𝛽 − 1) 𝜁2𝜁𝑙𝜇𝑙𝜈2𝜈𝑙+

+
(
𝛼2𝜇𝑙 − 𝛽 − 𝜇𝑡 + 2𝜁2

𝑙 (𝛽 + 𝜇𝑡)
)
𝜈2
𝑙

]
𝜔2
𝑏
;

𝜗2 = (𝛽 + 𝜇𝑡)
[
(𝛽 + 𝜇𝑡)

(
1 − 𝛼2𝜇𝑙 + 𝜇𝑡

)2
𝜈42+

+ 2
(
−𝛼2 (1 + 𝛽) 𝜇𝑙 + 2

(
𝛽 − 𝛼2𝜇𝑙

)
𝜇𝑡 + 2𝜇2

𝑡 +

+2 (𝛽 + 𝜇𝑡) − 4𝜁2
𝑙 (1 + 𝜇𝑡) (𝛽 + 𝜇𝑡) +

+4𝜁22 (1 + 𝜇𝑡) (𝛽 + 𝜇𝑡)
(
𝛼2𝜇𝑙 − 1 − 𝜇𝑡 + 2𝜁2

𝑙 (1 + 𝜇𝑡)
))

𝜈22𝜈
2
𝑙

+ + (𝛽 + 𝜇𝑡) 𝜈
4
𝑙

]
𝜔4
𝑏
;

𝜗1 = 2 (1 + 𝜇𝑡) (𝛽 + 𝜇𝑡)
2
𝜈22𝜈

2
𝑙

[(
𝛼2𝜇𝑙 − 1 − 𝜇𝑡 + 2𝜁2

𝑙 (1 + 𝜇𝑡)
)

𝜈22 + +
(
−1 + 2𝜁22 (1 + 𝜇𝑡)

)
𝜈2
𝑙

]
𝜔6
𝑏
;

𝜗0 = (1 + 𝜇𝑡)
2
(𝛽 + 𝜇𝑡)

2
𝜈42𝜈

4
𝑙
𝜔8
𝑏
;

(A.9)
It is worth noting that the expressions in Equations (A.8)

and (A.9) and thus the variance in (A.7) include the equiva-
lent damping ratio 𝜁𝑙, compared to the variance computed
by means of Equation (11) where it was neglected. By
numerically minimizing the variance in (A.7) and consid-
ering the input structural parameters obtained by means
of the proposed procedure, the optimal value of the
equivalent damping ratio 𝜁𝑙 can be obtained.
As previously stated, the formulation presented in this

appendix has been derived considering a white noise base
excitation. However, in the case of more generic broad-
band earthquake excitation, such as the Kanai–Tajimi
stationary filtered white noise process, previously intro-
duced in Section 4, the same integral formulation can
be adopted. Specifically, since this kind of filter, charac-
terized by the one-sided PSD reported in Equation (19),
adds two degrees of freedom to the original system, the
numerator and denominator of the expression in Equa-
tion (A.7) would implymatriceswith dimensions 8 × 8 and
𝜆𝑖(𝑖 = 0, .., 8) and 𝜗𝑗(𝑗 = 0,… , 7), thus leading to rather
complex formulae of 𝜆𝑖 and 𝜗𝑗 here not reported for the
sake of brevity. Moreover, considering that, as shown in
Section 4, the proposed approach, based on thewhite noise
assumption, practically matches the numerical solution
evenwhen implementing aKanai–Tajimi filter, on the light
of the great computational gain achieved, the proposed
formulae can be considered as accurate enough for the
purpose of the present optimization problem.
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