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Nonclassicality detection from few Fock-state probabilities
Luca Innocenti 1,2,3✉, Lukáš Lachman1 and Radim Filip 1

Experimentally certifying the nonclassicality of quantum states in a reliable and efficient way is a challenge that remains both
fundamental and daunting. Despite decades of topical research, techniques that can exploit optimally the information available in a
given experimental setup are lacking. Here, we introduce a different paradigm to tackle these challenges, that is both directly
applicable to experimental realities, and extendible to a wide variety of circumstances. We demonstrate that Klyshko’s criteria,
which remained a primary approach to tackle nonclassicality for the past 20 years, is a special case of a much more general class of
nonclassicality criteria. We provide both analytical results and numerical evidence for the optimality of our approach in several
different scenarios of interest for trapped-ion, superconducting circuits, optical and optomechanical experiments with photon-
number resolving detectors. This work represents a significant milestone towards a complete characterisation of the nonclassicality
detectable from the limited knowledge scenarios faced in experimental implementations.
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INTRODUCTION
Many fundamental quantum information protocols rely on the
nonclassicality of bosonic systems induced by nonlinear phenom-
ena1,2. Nonclassical statistics are a crucial resource for quantum
sensing3, as demonstrated by the recent experiments with
trapped ions4,5 and superconducting qubits6, and more generally
for the advancement of quantum information processing7,8. Most
existing nonclassicality criteria require knowledge of the statistical
moments of the boson-number distribution9–20, which are hard to
estimate accurately in experimental platforms such as
superconducting-circuits and trapped-ions21–25, as well as with
photon-number-resolving detectors26–29. At the same time, not
being tailored to the observables that are directly accessible in a
given experimental platform, these tests do not make optimal use
of the information available. Nonclassicality criteria relying on
photon-click statistics30–35 have similar shortcomings. We here
tackle both issues: on the one hand, we devise improved
nonclassicality tests that can be directly applied to finite numbers
of estimated boson-number probabilities, which is useful to better
resolve the different brands of nonclassicality underlying boson-
number distributions24,36–42. On the other hand, we investigate
the ultimate limits of any such test.
While deciding the nonclassicality of an unknown input state

is fundamentally impossible with finitely many measurements,
we find that, remarkably, in at least some cases of interest it is
nonetheless possible to devise criteria that are optimal with
respect to a given finite amount of information. Such criteria
are very useful in providing definitive answers to precisely
which states can be certified as nonclassical in a given
experimental scenario. While we focus on the nonclassicality
detectable from few Fock-state probabilities, our methodology,
based on rather general geometric ideas, can be extended to
tackle the nonclassicality of different types of measurements.
This approach departs considerably from methods relying on
quasiprobability phase-space distributions, which typically
rely on complete tomographic information to determine the
(non)classicality of a state43–50. The two approaches not only

provide incomparable results, but also rely on fundamentally
different assumptions.
A pioneering step in this direction was taken by D.N. Klyshko51,

who developed nonclassicality criteria—in the form of inequalities
for the Fock-state probabilities—satisfied by all classical states.
These criteria found numerous applications in both theoretical
and experimental contexts39,52–55. Similar criteria were also
independently formulated in ref. 56. For many photon and phonon
states, Klyshko’s inequalities are however still insufficient to detect
nonclassicality, and a thorough analysis of their completeness is
lacking.
Here, we strengthen Klyshko’s methodology, developing criteria

to certify nonclassicality from few Fock-state probabilities that are
well-suited to experimental implementations. More specifically,
we address the open issue of determining, given a vector P≡ (P0,
P1, . . . , Pn) of Fock-state probabilities, whether these probabilities
are incompatible with classical states. It is worth stressing that,
because knowing the probabilities in a fixed basis is not sufficient
to characterize a quantum state, it is possible for a given P to
correspond to both classical and non-classical states. Nonetheless,
we can assess compatibility with a classical distribution, thus
allowing to certify the nonclassicality of a given state. In other
words, our approach allows to determine whether nonclassicality
is detectable at all from a finite amount of given information.
Moreover, we prove that in at least some cases our strengthened
criteria are already complete, in the sense that all finite sets of
Fock-state probabilities corresponding to nonclassical states are
detected as such. A significant advantage of our approach over
previous endeavours is our working directly on the Fock-state
probabilities, rather than using photon-click statistics or statistical
moments. This makes the criteria detector-independent and of
broader applicability, in particular in the context of recent
optical57, atomic58, circuit quantum electrodynamics59, and
optomechanical60 experiments, and in light of the recent progress
in photon-number-resolving detection technology31,57,61.
While the focus of this paper is on P-nonclassicality1–3,62, that is,

on detecting states whose P function cannot be interpreted as a
probability distribution, our approach can be extended to
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different notions of nonclassicality, thus paving the way for a
similar characterization of non-Gaussianity35, a crucial resource for
quantum computing with bosonic systems.

RESULTS
In this section, we will discuss the extension of Klyshko’s criteria51,
and how our geometrical approach that allows to provide
definitive answers regarding the question of which nonclassical
states can be certified as such in a given scenario where a limited
number of observables are accessible.
Klyshko showed that, for all k ≥ 1, the condition kP2k > ðk þ

1ÞPkþ1Pk�1 cannot be fulfilled by classical states51. Here, we
generalize these criteria to make them usable in arbitrary subsets
of Fock-state probabilities of the form {P0, P1, . . . , PN}. Furthermore,
we will show that the nonclassicality criteria involving the
unobserved probabilities {PN+1, PN+2, . . . } can be expressed in
terms of the observable ones, providing a stronger nonclassicality
criterion. We will show that, in the N= 2 case, these criteria
characterize the set of nonclassical states. This means that our
criterion, at least in such special instances, exhausts the amount of
information about nonclassicality that can be pried from Fock-
state probabilities. Finally, we will showcase applications of our
criteria to several classes of experimentally relevant states whose
nonclassicality is impervious to alternative methods. The geome-
trical approach we use to derive our results has several
advantages over alternative methods such as those based on
the maximization of task-dependent functionals33. In the Supple-
mentary Information, we discuss how some of our results could be
derived using this approach, which further highlights how the
geometric approach might be a preferable venue to tackle the
problems studied here. It is worth stressing that our criteria are not
directly comparable with standard phase-space-based approaches
which rely on the negativity of Wigner or P-function of the
full state. Such approaches require full information about the
state43–50, and cannot be directly compared with the results in
the partial-knowledge scenario we consider. Same argument
applies for momentum-based approaches9–20. All these methods
share the shortcomings of relying on information about a state
that is not easily estimated in many practical scenarios. For the
sake of completeness, we present in the Supplementary Informa-
tion the results obtained using such criteria, in order to highlight
the fundamental differences between them.

Boundary of nonclassicality
Let S � H be the set of quantum states on a single-mode Hilbert
spaceH, and Ccoh � S the set of coherent states, that is, of trace-1
projectors of the form f αj i αh jgα2C, where αj i denotes a coherent
states with average boson number ∣α∣2. Finally, let C � S denote
the set of classical states, that is, the convex hull of Ccoh . This is the
set of states ρ that can be written as ρ ¼ R

d2αPðαÞ αj i αh j for
some probability distribution P(α). Classical states can always be
prepared by a classical external driving force on the quantized
linear oscillator63. As such, their features are explainable via a
classical formalism1.
Given N ≥ 1, consider the reduced probability space

PN � ðP0; P1; :::; PNÞ :
XN
k¼0

Pk � 1 and Pk � 0

( )
: (1)

This is the set of vectors which can be part of some larger
probability distribution. Denote with πN : S ! PN the natural
projection sending each state to its corresponding Fock-state
probabilities: πNðρÞ � ðρkkÞNk¼0 2 PN . We want to characterize
algebraically the projection πNðCÞ of C onto the reduced
probability space PN . A crucial observation is that πN is linear.
This implies that convex regions in S are mapped into convex

regions in PN , and thus in particular πNðCÞ is convex. Characteriz-
ing its boundary ∂πNðCÞ is therefore sufficient to characterize the
whole of πNðCÞ.

Generalizing Klyshko’s inequalities
A first investigation of the N= 2 case was presented in33, where
nonclassicality criteria using (P0, Pk) were derived. We summarize
and extend these results, discussing the nonclassicality in general
spaces of the form (Pn, Pm). We then extend these considerations
to bound the possible Fock-state probabilities in arbitrary
probability spaces. In particular, we derive criteria in the form of
inequalities relating probability tuples ðPI1 ; :::; PIℓÞ and ðPJ1 ; :::; PJℓÞ
such that ∑iIi= ∑iJi and I and J are comparable via majorization. We
say that a tuple I is majorized by J, and write I≼ J, if the sum of the
k largest elements of I is smaller than the sum of the k largest
elements of J, for all k. We say that I is comparable to J via
majorization if either I≼ J or J≼ I. An example of non-comparable
tuples is (2, 2, 2, 0) and (3, 1, 1, 1)64–67. More precisely, if I≼ J and ρ
is classical, then the associated probabilities are bound to satisfyYs
i¼1

Ii !PIi �
Ys
i¼1

Ji!PJi ; (2)

where s≡ ∣I∣= ∣J∣. Each such criterion corresponds to a nonclassi-
cality criterion which can be used when the experimenter is given
the corresponding set of Fock-state probabilities.
To prove Eq. (2), we start by defining Qk≡ k!Pk, so that the

statement reads
Qs

i¼1 QIi �
Qs

i¼1 QJi . Remembering the general
identity for products of sumsYn
i¼1

Xm
j¼1

aij ¼
X
J

Yn
i¼1

aiJi ; (3)

where the last sum ranges over all multi-indices J of length n, with
Ji∈ {1, . . . ,m} for all i= 1, . . . , n. For any classical state, the
probabilities have the form

Pk ¼
X
λ

pλe
�λ λ

k

k!
; (4)

and thusY
i

QIi ¼
Y
i

X
λ

pλe
�λλIi ¼

X
λ

pλe
jλjλI; (5)

where we used the shorthand notation pλ �
Q

ipλi , ∣λ∣ ≡ ∑iλi, and
λI � Q

iλ
Ii
i , and the sum is extended to all possible tuples of values

of λ. From the above expression, we see thatY
i

QIi �
Y
i

QJi ¼
X
λ

pλe
�jλjðλI � λJÞ: (6)

The conclusion then follows from Miurhead’s inequalities64,68. More
details are provided in the Supplementary Information.
In particular, when I, J have length 3, we get inequalities

involving triples of probabilities: for all 0 ≤ n ≤m ≤ k, classical
states are bound to satisfy:

ðm!PmÞk�n � ðn!PnÞk�mðk!PkÞm�n: (7)

Violation of Eq. (7) thus certifies nonclassicality. For n= N−1,m=
N and k ≥ N, defining Qk≡ k!Pk, we have Qk�Nþ1

N � Qk�N
N�1Qk; and

thus

k!Pk � QN
N�1

QN�1
N

QN

QN�1

� �k

; 8k � N � 1: (8)

Using this in conjunction with the normalization condition ∑kPk=
1 we get

XN�2

k¼0

Pk þ QN
N�1

QN�1
N

X1
k¼N�1

1
k!

QN

QN�1

� �k

� 1: (9)
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Using the Taylor expansion of the exponential function to writeP1
k¼N�1

xk
k! ¼ ex �PN�2

k¼0
xk
k!, we then conclude that all classical

states must satisfy the inequality

XN�2

k¼0

Pk þ QN
N�1

QN�1
N

e
QN

QN�1 �
XN�2

k¼0

ðQN=QN�1Þk
k!

" #
� 1: (10)

Together with the standard Klyshko conditions in the form
Q2
k � Qk�1Qkþ1, Eq. (10), defines a closed region DN � PN

containing πNðCÞ. Any probability vector P∉DN is certifiably
nonclassical. In the rest of the paper, we will refer to condition (10)
as K1;N , and to the Klyshko condition Q2

k � Qk�1Qkþ1 as Kk . We
will also use K1 to refer more generally to criteria of the type
K1;N for some N.
Let us remark two additional facts:

1. Having access to a finite set of probabilities (P0, . . . , PN−1),
there are always nonclassical states that are not detectable
by any criterion. For example, consider ρðNÞ � pρcl þ ð1�
pÞ Nj i Nh j for some classical state ρcl. Having only access to
the first N probabilities amounts to working with the
reduced distribution πN−1(ρ(N))= pπN−1(ρcl). Being ρcl classi-
cal, as we discussed previously, πN−1(ρcl) satisfies all the
inequalities K1 and Kk . The scaled probability vector pπN
−1(ρcl) is then also bound to satisfy the Klyshko-like
inequalities Kk , as these are scale-invariant. It is then also
easy to verify that if K1;N�1 is satisfied for πN−1(ρcl), then it
must also be satisfies for pπN−1(ρcl) for any 0 < p < 1.

2. The K1 inequalities are a necessary addition to fully expoit
the knowledge encoded in the Fock-number probability
distributions. Indeed, there are always nonclassical states
undetected by the Klyshko-like inequalities. For example,
knowing any set (P0, . . . , PN), the Fock state Nj i can be seen
to satisfy all inequalities of type Kk , but it violates K1;N .

The fundamental question that remains to be addressed is
whether the inequalities of the form Kk and K1 exhaust the
information about nonclassicality encoded in Fock-state probabil-
ities. This amounts to asking whether a probability vector
sastisfying all the inequalities (those usable given a finite set of
probabilities), implies the existence of a classical state resulting in
said probabilities. In other words, we want to know whether
satisfying all relevant inequalities certifies compatibility with some
classical state, which is the most one can ask for in this scenario.

Nonclassicality in (P0, P1, P2)
To analyse the applicability of the conditions K1;N beyond51, we
study what nonclassical states can be detected when only the first
three Fock-state probabilities are known. We will find that,
remarkably, the nonclassicality of a state is completely captured
by only two algebraic inequalities.
Let us denote with K1 the region:

K1 � fðP0; P1; P2Þ 2 P2 : P
2
1 ¼ 2P0P2g; (11)

and with K1;2 the set of points satisfying Eq. (10) with N= 2,
that is, the probability vectors ðP0; P1; P2Þ 2 P2 such that
P0 þ P21

2P2
expð2P2P1

Þ � 1
h i

¼ 1. The associated nonclassicality cri-
teria are then

P21 > 2P0P2; (12)

P0 þ P21
2P2

exp
2P2
P1

� �
� 1

� �
>1: (13)

The notation K_
1 and K_

1;2 will be used to denote the sets
obtained by replacing the equality in these definitions with
the corresponding inequality sign (e.g. K�

1 is the set of points
such that P21 � 2P0P2, while K<

1 is the set of points such that
P21 < 2P0P2). We will prove in this section that π2ðCÞ ¼ K�

1 \ K�
1;2,

that is, that Eqs. (12) and (13) are necessary and sufficient
conditions for a state being detectable as nonclassical when only
knowledge of the first three Fock-state probabilities is given. It is
worth stressing that these nonclassicality criteria are strictly
stronger than previously reported criteria using pairs of Fock-
state probabilities33.
We already showed that all classical states are contained in

K�
1 \ K�

1;2. To prove that the inequalities provide a necessary and
sufficient condition for compatibility with classical states, we need
to show that any probability vector in K�

1 \ K�
1;2 is compatible

with a classical state. For the purpose, we will show that any P
inside this region can be written as convex combination of
probability vectors compatible with classical states. In other words,
we want to find the mixture of coherent states corresponding to a
given triple of probabilities P � ðP0; P1; P2Þ 2 K�

1 \ K�
1;2. To

achieve this, we will (1) show that P is a convex mixture of the
origin and a point P1 2 K�

1 \ K1;2; (2) show that P∞ can be
written as convex combination of (1, 0, 0) (the point corresponding
to the vacuum state) and an element of K1 \ K1;2; (3) show that
all vectors in K1 \ K1;2 are compatible with coherent states. This
will allow us to conclude that P is compatible with a convex
combination of coherent states.
Let P 2 K�

1 \ K�
1;2 be an arbitrary point not satisfying the

nonclassicality criteria (Eqs. (12) and (13)). Define the quantities
K1ðPÞ � P21 � 2P0P2 and K1;2ðPÞ � P0 þ P21

2P2
½expð2P2=P1Þ � 1�.

Note that, upon rescaling P→ ϵP, the sign of K1 is invariant, and
K∞,2→ ϵK∞,2. We can therefore always find ϵ ≥ 1 such that
P0 � ϵP 2 K�

1 \ K1;2. We can thus write P as a convex combina-
tion of P0 and the origin in probability space, 0≡ (0, 0, 0), as
P ¼ 1=ϵP0 þ ð1� 1=ϵÞ0. Note that 0 is the probability vector
generated by a coherent state in the limit of infinite average
boson number, and is thus classical. It now remains to prove that
P0 is also classical to conclude that P is. For the purpose, consider
convex combinations of P0 and e0 � ð1; 0; 0Þ � π2ð 0j i 0h jÞ, and
notice that

K1;2ðpP0 þ ð1� pÞe0Þ ¼ pK1;2ðP0Þ þ ð1� pÞ ¼ 1;

K1ðpP0 þ ð1� pÞe0Þ ¼ p2K1ðP0Þ � 2pð1� pÞP02:
(14)

Solving for the p ≠ 0 such that K1= 0, we find

p ¼ 2P02
ðP01Þ2

e�2P02=P
0
1 � 1; (15)

where we used K1;2ðP0Þ ¼ 1 and K1ðP0Þ � 0. This means that
there is some P00 2 K1 \ K1;2 such that P0 ¼ p�1

p e0 þ 1
p P

00. To
conclude, we now only need to show that P″ is compatible with a
coherent state. By definition of K1 \ K1;2, the elements of P″
satisfy

P
002
1

2P
00
2

e2P
00
2 =P

00
1 ¼ P

00
0e

P
00
1 =P

00
0 ¼ 1: (16)

We finally note that, for any value of P
00
0, these conditions uniquely

determine P
00
1 and P

00
2, and that a coherent state with average

boson number μ ¼ � log P0 produces these probabilities.
It is worth remarking that the above reasoning not only proves

that the given inequalities characterize the boundary of classical
states in P2, but also provides a constructive method to find
classical states compatible with an observed (not nonclassical)
probability distribution.

Applications: Fock and squeezed states
A class of states benefiting from the K1 criteria are Fock states.
The Fock state 1j i � ay 0j i clearly satisfies P21 > 2P0P2, and is
therefore detected as nonclassical by K1. More generally, convex
mixtures of 0j i and 1j i are all detected as nonclassical by K1 but
not by K1;2, as also seen in Fig. 1. On the other hand, 2j i ¼
1ffiffi
2

p ay2 0j i is detected as nonclassical by K1;2 but not by K1.
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Consider now attenuated Fock states, that is, states of the form
ETð kj i kh jÞ with kj i Fock states and ET the channel corresponding
to attenuation through a beamsplitter with transmittivity T ∈ [0, 1]
(thus, in particular, E1ðρÞ ¼ ρ and E0ðρÞ ¼ Tr ðρÞ 0j i 0h j for all ρ). In
these cases, we find that ETð kj i kh jÞ is, in principle, detected as
nonclassical by both K1 and K1;2, for all T∈ [0, 1] and k 2 N.
However, the criteria detect this nonclassicality very differently: it
is harder to detect the nonclassicality with K1 for T closer to 1,
while K1;2 makes it easier in this regime, and viceversa for smaller
values of T. A Fock state such as 2j i sits on the boundary of the
classical region, and is therefore undetectable as nonclassical with
finite statistics with K1, which is why these results are consistent
with our previous statement that 2j i can only be detected as
nonclassical with K1;2. This hardness for T approaching unity
increases for higher Fock states kj i, as shown in the Supplemen-
tary Information. More generally, K1 cannot certify the nonclassi-
cality of convex mixtures of 2j i and 0j i, which is however revealed
by K1;2. This suggests squeezed states as another class benefiting
from our extended criteria.
In the Supplementary Information we show that many

squeezed thermal states69 also require K1;2 to be detected as
nonclassical.

Applications: Boson-added noisy states
Photon- and phonon-added coherent states70–72 are defined as
α; ℓj i � Cα;ℓayℓ αj i with Cα,ℓ normalization constants. The asso-
ciated Fock-state distribution equals that obtained adding
single bosons to Poissonian noise with average number μ ¼ αj j2,
here denoted ρμ. The introduced criteria provide enhanced
predictive power also for these highly noisy states ρμ. For
example, for ℓ= 2, K1 does not predict nonclassicality with P0,
P1, P2, but K1;2 does. The same holds for probabilistic boson
addition. Consider, e.g. states of the form p a†ρμa+ (1−p)ρμ. We
find that using K1 criteria allows to detect nonclassicality more
efficiently, as shown in Fig. 2. More details are found in the
Supplementary Information.

Applications: Noisy Fock states
Consider now displaced Fock states, α; kj i ¼ DðαÞ kj i, obtained
applying the displacement operator D(α) to a Fock state kj i73.
Averaging over the phases of α, these produce the same Fock-
state probabilities ðPðk;μÞj Þ

j
as Fock states with added Poissonian

noise, and model states produced in realistic experimental
conditions, where the displacement operator causes Fock states
higher than kj i to contribute. As shown in Fig. 3, K1 criteria
increase the predictive power when few Fock-state probabilities
are known. For example, for k= 1, when P0, P1, P2 are known, K1

does not certify nonclassicality for 0.29≲ μ≲ 1.71, but K1;2 does
for μ≲ 1.35. This means that K1;2 allows to detect nonclassical
states in regimes in which K1 is not sufficient. Another striking
feature emerging from Fig. 3 is that adding more noise can make
it easier to detect nonclassicality, as highlighted by the presence
of bright red regions for large values of μ. This remains the
case even if, instead of simply increasing the average boson
number of the added Poissonian noise, we add incoherent noise
to the state. We find that this can also make the nonclassicality of
a distribution easier to detect. More details are found in the
Supplementary Information.

Fig. 1 Classical set in the (P0, P1, P2) space. The orange (upper)
surface is the set of points on K1 , while the green (lower) surface
the set of points on K1. The black line is the set of coherent states.
We notice that the upper surface can be generated as the set of lines
going from (1, 0, 0) to the coherent states, while the lower surface as
the set of lines going from (0, 0, 0) to the coherent states. All the
states with probabilities lying above the upper surface will satisfy
Klyshko’s inequalities, and can therefore be detected as nonclassical
only using Eq. (13).

Fig. 2 Nonclassicality of boson-added states p a†ρμa+ (1−p)ρμ
with p= 0.5. For each μ, we highlight whether the different criteria
detect the corresponding probability distribution as nonclassical
(red) or not (blue). Note how restricting to the first three Fock-state
probabilities, when only K1 and K1;2 are accessible, nonclassicality
is certified only up to μ ~ 1.7. On the other hand, knowing P3,
nonclassicality is certifiable up to μ ~ 3, thanks to K1;3.

Fig. 3 Nonclassicality of noisy Fock states. Notation is as in Fig. 2.
We highlight the regions of nonclassicality detected by K1 (upper
light red) and K1;2 (lower dark red) for noisy Fock states statistics
P(k; μ), for k= 1, 2, 3, 4. For example, we see that μ= 1.5 corresponds
to a classical statistics for P(1; μ), a nonclassical one detected by K1;2
for P(2; μ), and a nonclassical one also for P(3; μ) and P(4; μ), now
detected by K1. Further details can be found in Supplementary Figs.
6 and 7.
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DISCUSSION
We showed that Klyshko’s criteria are a special case of a broader
class of nonclassicality criteria. Leveraging this result we found that,
when only few Fock-state probabilities are known, these enhanced
criteria grant additional insight into nonclassical properties of boson
statistics, even in realistic experimental conditions. Such criteria are
pivotal to deepen our understanding of nonclassical phenomena
and uncover additional resources for quantum technologies. Our
method is directly applicable to trapped-ion4,5, superconducting-
circuit6, and optical experiments with photon-number resolving
detectors31,57,61. More specifically, the application of the proposed
methodology to a given experimental scenario is completely
straightforward, only requiring to verify whether the measured
quantities satisfy a finite set of algebraic inequalities.
We proved the optimality of our improved criteria with respect

to the first three Fock-state probabilities, and discussed a number
of example applications of the criteria for several classes of states
of interest, including boson-added thermal states, noisy Fock
states, and thermal and Fock states. Others, such as thermal states,
are also considered and discussed in the Supplementary Informa-
tion. We remark that even in cases in which the K1 criteria do not
provide additional predictive capabilities, as is the case for
example for some classes of noisy Fock states, discussed in the
section “Applications: Noisy Fock states” and in the Supplementary
Information, and boson-added thermal states, discussed in the
Supplementary Information. We stress that, even in these cases,
our analysis is useful allowing to conclude that the nonclassicality
certification problem, in some circumstances, is simply unsolvable
with the information given.
The optimality of the proposed criteria in higher-dimensional

slices of probability space remains a stimulating open question,
which if solved would provide further insight into the nonclassi-
cality of boson statistics. Another interesting aspect emerging
from a combination of this approach with the methodology of
Filip and Lachman33, is how adding noise to a state, which is
generally an easy operation, can make it easier to detect the
nonclassicality of the state from its Fock-state distribution. Our
results, paired with modern optimization techniques, pave the
way to a complete characterization of the nonclassicality
accessible from finite sets of measurable quantities.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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