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Accurate, timely assessment of the vineyard on a field scale is essential for successful

grape yield and quality. Remote sensing can be an effective and useful monitoring tool, as

data from sensors on board Unmanned Aerial Vehicles (UAV) can measure vegetative and

reproductive growth and thus directly or indirectly detect variability. Through the images

obtained from UAV, the Vegetation Indices (VIs) can be calculated and compared with

various agronomic characteristics of the vineyard. The objective of this study was to

evaluate the multispectral response of the vineyard in three specific phenological phases

and to analyse the spatial distribution of vegetative vigour. A multirotor UAV equipped

with a camera featuring multispectral sensors was used. Four VIs namely Normalised

Difference Vegetation Index (NDVI), Normalised Difference Red Edge (NDRE), Green Nor-

malised Difference Vegetation Index (GNDVI), Modified Soil Adjusted Vegetation Index

(MSAVI), were calculated using the georeferenced orthomosaic UAV images. Computer

vision techniques were used to segment these orthoimages to extract only the vegetation

canopy pixels. High level of agronomic variability within the vineyard was identified.

Pearson's coefficient showed a significant correlation between NDVI and NDRE indices and

yield since early phenological stages (r ¼ 0.80 and 0.72 respectively), GNDVI at grape

ripening (r ¼ 0.83). Shoot pruning weight (SPW) shows the highest values of correlation

(r ¼ 0.84) with NDVI during the phenological stage of berries pea size. Simple linear

regression techniques were evaluated using VIs as predictors of the SPW, and accurate

predictive results were obtained for NDVI and NDRE with RMSE values of 0.18 and 0.24,

respectively. Geostatistical analysis was applied to model the spatial variability of SPW,

and thus vineyard vigour. Assessing spatial variability and appreciating the level of vigour

enables improved vineyard management by increasing sustainability and production

efficiency.
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Nomenclature

Abbreviation Definition

PV Precision viticulture

UAV Unmanned aerial vehicles

VI Vegetation index

NDVI Normalised difference vegetation index

NDRE Normalised difference red edge

GNDVI Green normalised difference vegetation index

MSAVI Modified soil adjusted vegetation Index

SPW Shoot pruning weight

RGB Red Green Blue

TLA Total leaf area

SLRM Simple linear regression models

PDO Protected designation of origin

GNSS RTK Global navigation satellite system real-time

kinematic

GPS Global positioning system

GSD Ground sample distance

NIR Near-infrared

ha Hectare

cv Cultivar

VSP Vertical shoot position

DOY Day of year

VTOL Vertical take-off and landing

CMOS Complementary metal oxide semiconductor

MP Mega pixel

nm Nanometre

FOV Field of view

a.g.l Above ground level

TIFF Tagged Image File Format

GCP Ground control point

DEM Digital elevation model

VP Vineyard plot

SD Standard deviation

F Flight

HV High vigour

MV Medium vigour

LV Low vigour

TSS Total soluble solids

R2 Coefficient of determination

r Pearson's correlation coefficient

RMSE Root mean square error

MAPE Mean absolute percentage error
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1. Introduction

Grapevine (Vitis vinifera L.) is a crop of great economic impor-

tance, widely cultivated worldwide. Vineyards' reproductive
and qualitative variability is very high (Baluja et al., 2012;

Barbagallo, Guidoni, & Hunter, 2011; Pisciotta, Barbagallo,

Lorenzo, & Hunter, 2013), in addition to environmental fac-

tors is also influenced by anthropogenic factors regarding

agronomic techniques (Pisciotta, Di Lorenzo et al., 2013).

Nowadays, it's increasingly important to achieve excellent

production standards, focusing on grape quality, which are
influenced by several factors, such as genetic factors that

distinguish cultivars and clones, or the effects of soil charac-

teristics (Barbagallo, Vesco, Di Lorenzo, Lo Bianco, & Pisciotta,

2021), soil erosion (Novara et al., 2018), row orientation

(Catania, Orlando, Roma, & Vallone, 2019; Hunter et al., 2021;

Pisciotta, Catania, Orlando, & Vallone, 2019, pp. 367e374),

nutrients, light, temperature and water availability (Hunter

et al., 2014; Triolo, Roby, Pisciotta, Di Lorenzo, & van

Leeuwen, 2019), which occur as single factors or as an inter-

action (Mir�as-Avalos, Fandi~no, Rey, Dafonte, & Cancela, 2020;

Poni et al., 2018). In addition there are risks related to climatic

conditions, which are expected to worsen and thus strongly

impact the whole sector (Droulia & Charalampopoulos, 2021).

All these factors contribute to increasing the spatial variability

of vineyards, therefore information on spatial and temporal

variation is essential to support farmers in decisionmaking to

enhance profitability. The estimation of the agronomic vari-

ability of each plot should be done from year to year and at

different phenological stages of the vineyard (Bramley &

Hamilton, 2004). Today, there are new technologies for

monitoring and managing the vineyard and controlling vege-

tative and productive growth. Using high-resolution remote

and proximal sensors, spatial variability of vine vigour can be

investigated, and chemical parameters determined from

grapes (Kemps, Leon, Best, De Baerdemaeker, & De Ketelaere,

2010), at any time; this information can thus be used for the

variable application ofmany agronomic practices according to

the principles of Precision Viticulture (PV) (Matese et al., 2015).

Satellite systems and Unmanned Aerial Vehicles (UAVs)

that capture images in the visible and near-infrared bands of

the electromagnetic spectrum are widely used to generate

vegetation maps (Roma & Catania, 2022). Sensors used for

crop monitoring have a specific geometric resolution, which

refers to the size of the ground surface area (pixel) whose

electromagnetic energy is detected. They have also a certain

spectral resolution, which indicates the number of acquisition

bands and their range, and a specific radiometric resolution

indicating the intensity of the radiation that the sensor can

identify. Finally, there is a temporal resolution which in-

dicates the period of time between two consecutive images

acquisition (Assmann, Kerby, Cunliffe, & Myers-Smith, 2018).

Satellites employed for multispectral surveys are divided ac-

cording to their spectral resolution (Anastasiou et al., 2018;

Sun et al., 2017). These platforms can assess vineyard vari-

ability in a relatively detail in terms of resolution. On the

contrary, UAVs proved to be more effective tools in repre-

senting vineyard variability as they can easily discretise the

canopy from the inter-row (Khaliq et al., 2019). If satellite

systems are very suitable for extensive cultivation (Sozzi et al.,

2021), in other areas the use of UAVs is preferred, allowing

quick surveys and providing important information for

winegrowers. In general, the spectral sensors that UAVs are

equipped with, have high spatial resolution and can be clas-

sified according to the method by which they achieve spectral

discrimination (Sellar & Boreman, 2005). These sensors have a

short ground sampling distance, and the captured images can

generate high-quality dense point clouds and high-resolution

orthomosaics (Aasen, Honkavaara, Lucieer, & Zarco-Tejada,

2018; Toth & J�o�zk�ow, 2016). The combination of the different

bands of the electromagnetic spectrum provides important
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https://doi.org/10.1016/j.biosystemseng.2023.06.001


b i o s y s t em s e n g i n e e r i n g 2 3 1 ( 2 0 2 3 ) 3 6e5 638
information about the vegetative growth of crops (P�adua,

Marques, Hru�ska, Ad~ao, Bessa, et al., 2018). For instance, the

wavelength of RGB (Red, Green, Blue) investigates the pig-

ments present in the vegetative tissues and the status of

biomass (Jannoura, Brinkmann, Uteau, Bruns, & Joergensen,

2015; Lu et al., 2021). The combination of RGB with Red Edge

studies the efficiency of chlorophyll pigments, whereas the

prediction of biophysical parameters is carried out by inves-

tigating the Red and Near-Infrared spectrum regions (Giovos,

Tassopoulos, Kalivas, Lougkos, & Priovolou, 2021). Vegeta-

tionmapping is performed by calculating different Vegetation

Indices (VIs) from specific wavelengths (Xue & Su, 2017) and is

often used to estimate plant growth parameters.

An equally important issue is the relationship between

multispectral indices and vegetative vigour; it's known that

there is a close relationship between Normalised Difference

Vegetation Index (NDVI) and vigour (Costa Ferreira et al., 2007,

pp. 1372e1381). A distance-based index commonly used in PV is

ModifiedSoil-AdjustedVegetation Index (MSAVI); it reduces the

soil disturbance effect and produces more accurate vineyard

vegetation assessment (Tassopoulos, Kalivas, Giovos, Lougkos,

& Priovolou, 2021). The Normalised Red Edge Difference Index

(NDRE) and the Green Normalised Difference Vegetation Index

(GNDVI), are able to provide information on the health status of

grapevine's through determining the variability of vegetation

physiological parameters (Daglio et al., 2022; Tosin, Martins,

Pôças, & Cunha, 2022). The agronomic estimation of vine

vigour is often carried out by assessing the Shoot Pruning

Weight (SPW) (Rey-Caram�es, Tardaguila, Sanz-Garcia, Chica-

Olmo, & Diago, 2016). SPW is related to the vegetative biomass

in the growing season and, therefore, to vine vigour. Among the

vegetative growth parameters it is distinguished by its high

sensitivity to variations in soil fertility and water availability

(White, 2015). SPW is used to assess the relationship between

vegetative and reproductive growth by calculating the Ravaz

index (Taylor & Bates, 2012), which is an indicator of vine bal-

ance and grape quality (Smart& Robinson, 1991). The predictive

study of SPW is a topic that has always attractedmuch interest;

knowing in advance how the variability of this vigour param-

eter is distributed, allows to manage vines by balancing

vegetative-productive development. It is reported in the litera-

ture that pruning weight correlates well with multispectral

indices or RGB imagery (Caruso et al., 2017; Dobrowski, Ustin,&

Wolpert, 2003; Garcı́a-Fern�andez, Sanz-Ablanedo, Pereira-

Obaya, & Rodrı́guez-P�erez, 2021; Rey-Caram�es, Diago, Martı́n,

Lobo, & Tardaguila, 2015). Positive spatial autocorrelations

were found through comparisons made between SPW and

NDVI data of the vineyard canopy surveyed by UAV (Pastonchi,

Di Gennaro, Toscano, & Matese, 2020). Many authors separate

SPW values into different vigour classes and identify equally

differences in NDVI class data, using different monitoring

platforms (Bonilla, Toda, & Martı́nez-Casasnovas, 2013; Caruso

et al., 2017; Filippetti et al., 2013; Gatti, Garavani, Vercesi,& Poni,

2017). Matese and Di Gennaro (2018) demonstrated that using

UAVs allows for obtaining both detailed spectral information

that correlates well with SPW and also optimal correlations

with canopy geometric characters, such as thickness (Matese&

Di Gennaro, 2021).

Leaf Area Index (LAI) is another relevant index applied for

assessing vigour spatial variability. The estimation of this
canopy parameter using multispectral and hyperspectral im-

ages taken by UAV has given positive results (Kalisperakis,

Stentoumis, Grammatikopoulos, & Karantzalos, 2015;

Siegfried, Viret, Huber, & Wohlhauser, 2007).

The estimation of yield parameters using UAV-derived data

is demonstrated to be very efficient; in fact, an assessment of

spatial variability indicates common behaviour in high vigour

zones where higher yields and higher total acidity values are

associated. In turn, low vigour zones exhibit higher pH and

higher soluble solids. In opposition, medium vigour zones are

associated with greater leaf area, high values of shoot pruning

weights and average bunch weights (Ferrer et al., 2020; Gatti

et al., 2017). In L�opez-Garcı́a et al. (2022) RGB imagery provides

better yield prediction results at the beginning of the grapevine

growing season, in contrast with multispectral data at the

phenological stages of fruit set andat ripening. The estimates of

yield at the beginning of the growing season allow farmers to

perform cultural practices to adjust yield, reducing production

quantity but increasing quality. The identification of vineyard

areas with different productive and qualitative potentials

makes it possible to apply selective harvesting by selecting

grapes with different compositions and processing them ac-

cording to their properties (Bramley, 2022; Gatti et al., 2019).

Using Variable Rate Technology (VRT), the effects of uneven

plot vigour could be reduced, for instance by setting up fertil-

isation based on the real needs of the vines (Sozzi et al., 2020,

pp. 343e347). Plant protection dosage based on spatial vari-

ability uses Variable Rate Application (VRA) and is adapted to

the vines' requirements. By exploiting these innovations, sig-

nificant pesticide savings can be achieved without compro-

mising treatment efficacy (Campos et al., 2020; I. del-Moral-

Martı́nez, Rosell-Polo, Uribeetxebarria, & Arn�o, 2020; Gil et al.,

2013; Rom�an et al., 2020).

Although spectral reflectance indices have been exten-

sively used to evaluate the characteristics of various crops, the

information on the performance of some indices, which differ

from the commonly used NDVI, is not very thorough.

Furthermore, the evaluation of these indices at different

phenological stages can improve knowledge on the prediction

of a given agronomic variable.

This study aims at determining vineyard spatio-temporal

variability based in UAV high resolution multispectral im-

ages, in order to optimise the vineyard management. In

particular, vineyard multispectral orthoimages were used to

detect some agronomic parameters, to assess the vegetative

growth and to determine grape yield variability. Four vege-

tation indices and their relationship to vegetative growth

and yield were examined, providing more detailed infor-

mation to winegrowers for the management of crop opera-

tions. The spatial variability of SPW was also determined by

assessing the most correlated multitemporal VI of the

vineyard canopy.
2. Materials and methods

2.1. Experimental site

The studywas carried out during the 2021 growing season in a

15 years old vineyard, cultivar Catarratto, grafted onto

https://doi.org/10.1016/j.biosystemseng.2023.06.001
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rootstock 1103 Paulsen. The experimental site was located

within the Alcamo Protected Designation of Origin (PDO) area,

in the hinterland of western Sicily (Italy) at Tenuta Rapital�a

farm (37�5509.6100N; 13� 4028.5900E).
Thevineyard is located at analtitudeof 315mabovesea level

and is drip irrigated (600m3 ha�1). The plot has an extension of

8.2 ha and a perimeter of 1162 m, with layout of planting

2.40� 1.00m (4170 plants ha�1). The rowsorientation isNEeSW

(Fig. 1), with an angle to the North of about 22�. The terrain is

slightly hilly, with slopes of approximately 12% on the steepest

line.

Vines were vertically trained (VSP trellis system) and

double cordon spur pruned with two buds per spur, spaced

at approximately 0.20 m. Catarratto is an ancient white

variety of the Italian grapevine assortment. It is a vigorous,

medium-late-ripening grapevine cultivar, widely cultivated

in western Sicily. The vineyard has been managed following

ordinary agronomic practices conducted uniformly on the

whole field. The vineyard was traditionally managed with

five passes of superficial tillage (0.1 m depth) during the

year to control weeds and water evaporation and to prevent

soil cracking. A mineral soil fertilisation was carried out at

DOY82. Pest management practices to produce healthy

grapes were applied. Figure 2 shows the meteorological data

in the examined area during the period under consider-

ation. The 2021 season was hot and dry, a typical hot arid

climate.

Taking the period from 1 April to the end of October, the

amount of average daily temperatures that directly influence

the vine growth and grape ripening season, the Winkler index,

can be computed. In this case, it was 2300 �C, a value often

observed in Mediterranean areas and exacerbated by
Fig. 1 e Location of the experimental vin
heatwaves, while the total rainfall during the 2021 season was

810 mm.

2.2. Aerial platform and multispectral sensors used

The remote images were acquired with a UAV, a Da-Jiang In-

novations (DJI) quadcopter model Phantom 4 (DJI, Shenzhen,

China), classified as VTOL (Vertical Take-Off and Landing). The

UAV can carry amaximumpayload of 477 g for 20e30minwith

a maximum flight range of 7 km. The flight autonomy of the

UAV is approximately 30 min, guaranteed by a LiPo 4S battery

with a capacity of 5870 mAh and a voltage of 15.2V. Three bat-

teries were used to survey the entire plot. The Phantom 4 was

used to acquire RGB andmultispectral images; it was equipped

with a camera composed of six 1/2.9” CMOS sensors, mounted

on the UAV using a two-axis carbon fibre gimbal, one RGB

sensor for visible light images, and five monochrome sensors

for multispectral image acquisition. The gimbal mitigated

airframe vibration (pitch and roll) caused by wind and allowed

pointing vertically downwards for image collection. Multispec-

tral sensors operate in the bands of blue (B): 450 nm, green (G):

560 nm, red (R): 650 nm, red-edge (RE): 730 nm, and near-

infrared (NIR): 840 nm, with a resolution of 2.08 MP. Each

sensor has a spectral sensitivity range of ±16 nm respect to its

nominal wavelength, except the NIR sensor which has a spec-

tral sensitivity range of ±26 nm (Tominaga, Nishi, & Ohtera,

2021). The features of the camera are focal length 5.74 mm,

image size 1600 � 1300 pixels, angle of view (FOV) 62.7� and

aperture f/2.2. Radiometric calibration is performed based on

the irradiance measured in real-time by the sensor located on

the top of the UAV. In addition, a radiometric calibration was

applied to the image blocks, using reference images from a
eyard in Sicily, south Italy (WGS84).

https://doi.org/10.1016/j.biosystemseng.2023.06.001
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Fig. 2 e Daily maximum (¡) and mean (¡) air temperature and daily rainfall (¡) were recorded from the beginning of

November 2020 to the end of December 2021, nearby the experimental vineyard. (Sicilian Agrometeorological Information

System; SIAS).
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calibrated reflectance panel (LABSPHERE INC., North Sutton,

US).

2.3. Data acquisition

The flight sessions performed with the UAV were conducted

with 70% forward overlap and 70% lateral overlap at z70 m

a.g.l height from the take-off point in a dual-grid configura-

tion, obtaining an image pixel size (GSD) of approximately

3.7 cm for RGB and multispectral images (Fig. 3). The field of

view (FOV) was 51.50 � 41.25 m and the flight speed was

20 km h�1. The camera takes photos automatically, at an in-

terval of 1 s, and the image is stored in TIFF format.

Three flight sessions were carried out during the 2021

vegetative season in different vine phenological stages (scale

Biologische Bundesanstalt, Bundessortenamt und CHemische

Industrie, BBCH, according to Lorenz et al., 1995) (Table 1). The

first flight was performed at berries pea size (BBCH 75), while

the second at beginning of ripening (BBCH 81). The last flight

wasmade close to ripening, at full ripening (BBCH 89). Surveys

were conducted during these phenological stages based on the

physiological vine behaviour corresponding to the ripening

process. The flight operations were scheduled from 11:30 AM

to 01:00 PM.

Theweather data summarised in Table 1 relate to the three

flight dates, giving information about brightness,measured by

irradiance, and wind conditions, both in terms of speed and

direction, referred to the hours of the day when the flights

took place. During the flights, there was excellent light, the

wind speed was very low, and the conditions were optimal for

carrying out the surveys.

2.4. Data processing

The georeferenced multispectral images were mosaicked

using Agisoft Metashape Professional Edition (Agisoft LLC St.

Petersburg, Russia - https://www.agisoft.com/). A high-

resolution orthophoto 3.7 cm pixel�1) in GeoTIFF format and
a Digital Elevation Model (DEM) of the experimental vineyard

were created. The first post-processing operation was to align

the orthoimages. Automated procedures (batch processing)

were then carried out to generate the dense points cloud and

the generation of the multi-band orthomosaic. To assure the

accuracy of the image, the ground control point (GCP) method

was applied for geometric correction, fixing 14 points using a

GPS receiver on the entire plot (Catania et al., 2020).

Using the software QGIS version 3.22. It was possible to

calculate some vegetation indices (Table 2); indeed, based on

the generated orthomosaic, the NDVIwas calculated using the

NIR bands at a wavelength of 840 nm and the red band at a

wavelength of 650 nm (Rouse Jr et al., 1974). The GNDVI, that is

directly proportional to leaf chlorophyll concentration at

wavelengths of 540 nm and 760 nm was also used (Candiago,

Remondino, De Giglio, Dubbini, & Gattelli, 2015; Gitelson &

Merzlyak, 1998; Maccioni, Agati, & Mazzinghi, 2001). The

NDRE was also evaluated, providing useful information on the

ecophysiological state of the crop (Barnes et al., 2000). Previous

research observed a sudden change between the Red and NIR

reflectance of vegetation in what is known as the Red Edge

band. This zone marks the boundary between chlorophyll

absorption in the red band and scattering due to the internal

structure of leaves in the NIR band (Jorge, Vallb�e, & Soler,

2019). The MSAVI was also considered; this is the soil-

adjusted vegetation index that attempts to address some of

the limitations of NDVI when applied to areas with a high

degree of the exposed soil surface, at wavelengths of 640 nm

and 760 nm (Candiago et al., 2015; Martı́nez & Gomez-Miguel,

2017; Qi, Chehbouni, Huete, Kerr, & Sorooshian, 1994).

After computing the vegetation index maps, it was neces-

sary to identify and segment the vineyard canopy from the

soil and weeds by applying the unsupervised k-means seg-

mentation algorithm as applied by (Cinat, Di Gennaro, Berton,

& Matese, 2019). The principle is to segregate k groups of

similar pixels (clusters) from other groups of dissimilar pixels

within the raster (Fig. 4). The k-means segregates clusters

based on theirmean value (Galambo�sov�a, Rataj, Prokeinov�a,&

https://www.agisoft.com/
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Fig. 3 e Procedure for vegetation indices calculation using multispectral images acquired by UAV.
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Pre�sinsk�a, 2014; Javadi, Guerrero, & Mouazen, 2022). The al-

gorithm produced a 1-bit image, with pixels assuming values

equal to zero for the soil and 1 for the vegetation as Digital

Number (DN). The mask thus obtained was multiplied by the

NDVI map using the QGIS raster calculator, in order to assign

zero to all the soil pixels (0 ¼ NULL) and leave the DN of the

vegetation pixels unchanged. Through a new k-means clas-

sification (k ¼ 3), the latter made it possible to identify the
management areas with low (LV), medium (MV) and high (HV)

vigour.

2.5. Plant sampling and measurements

At full ripening (BBCH 89), fourteen vineyard blocks belonging

to different areas of the vineyard, showing diverse vigour,

were identified, forming the Vineyard Plot 1 (VP1). Each block

https://doi.org/10.1016/j.biosystemseng.2023.06.001
https://doi.org/10.1016/j.biosystemseng.2023.06.001


Table 1 e Remote sensing data acquisition during the 2021 growing season. Meteorological data logged by the station
closest to the surveyed area (Sicilian Agrometeorological Information System; SIAS).

UAV flight missions

Acquisition time Growth stage DOY Radiation (MJ/m2) Wind Speed (m/s) Wind direction

18 June 2021 BBCH 75 169 26.40 1.62 NeO

21 July 2021 BBCH 81 202 27.80 1.57 SeE

28 August 2021 BBCH 89 239 25.84 1.68 SeO

Table 2 e Vegetation indices and equations used.

Vegetation Index Equation Author

NDVI
ðNIR� REDÞ
ðNIRþ REDÞ Rouse, Haas, Deering, Schell, and Harlan (1974)

GNDVI
ðNIR� GREENÞ
ðNIRþ GREENÞ Gitelson and Merzlyak (1998)

NDRE
ðNIR� RED EDGEÞ
ðNIRþ RED EDGEÞ Maccioni et al. (2001)

MSAVI
2*NIRþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2*NIRþ 1Þ2 � 8*ðNIR � REDÞ

q
2

Qi et al. (1994)

Fig. 4 e Workflow of the unsupervised algorithm proposed for multispectral indices maps by applying K-means clustering.

From the first step to the second, soil is identified by the black colour and the remaining set of pixels identifies vines (white

colour). In third step the canopy of the vegetation is obtained. (For interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this article.)
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consisted of 6 vines and, consequently a total of 84 vines were

monitored in VP1. The Total Leaf Area per vine (TLA) was

measured using the LI-3100C area meter (Li-COR Biosciences,

Lincoln, NE, USA). At harvest, the yield per vine wasmeasured

and the number of bunches was counted on each vine per

block. The weight of each bunch per vine was determined

with a balance (Wunder, mod.60, Milan, Italy). The grape of

each vine was crushed, and 100 ml of must were taken to

determine the total soluble solid (TSS) (�babo) using a digital

refractometer (HANNA Instruments, mod. HI96811, Italy) and

titratable acidity (TA) using a Crison Compact Titrator (Crison

Instruments, mod. PH-Matic 23, Barcelona, Spain). During

winter, SPW was determined using a dynamometer (Wunder,

mod. 60, Milan, Italy) on the 84 vines selected at harvest (VP1).

In addition to this group of vines (VP1), another 57 vineyard

blocks of 6 vines (342 total vines) were identified forming the

Vineyard Plot 2 (VP2), where only SPW was measured to

perform an accurate analysis of pruningweight prediction. All

the analyses were carried out in triplicates.
The six plants of each vineyard block were identified using

the coordinates by the GPS STONEX S70G (STONEX® Srl,

Milan, Italy) with real-time kinematic correction (RTK) and

sub-centimetre accuracy. Through these points it was

possible to develop buffers in shape file format on QGIS, with

defined dimensions, length of 6 m and width of 0.80 m (Fig. 5).

2.6. Statistical analysis

The characteristics of the vegetation indices (count, mean,

minimum, maximum, and standard deviation) from the UAV

raster images were extracted using the Zonal statistical plugin

in QGIS. Statistical data extracted from each vegetation index

raster were processed using a shapefile with polygons corre-

sponding to the sampling blocks VP1 and VP2, which included

only vegetation pixels. The data obtained from the plant

measurements were processed with a variance analysis

model (ANOVA). The significance level (a) was set at 99%

(p < 0.01). The null hypothesis (H0) in the comparison of the
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Fig. 5 e Scheme of sampling used in the vineyard plot. Overview of the entire process for identifying the sampling blocks in

the field, performed using GCP information to obtain the contours of the sampling polygons.
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three groups is that all means are equal, whereas the alter-

native hypothesis (H1) is that not all means are equal. Tukey's
multiple comparison tests were used to detect the different

averages. In addition, the relationships between the vegeta-

tion indices and the qualitative parameters of the plants were

tested using regression analysis and Pearson's correlation

coefficient (r) in the three acquisition times. The difference

between slopes was tested using Student's t-test. The SLRM

was employed using the multispectral VIs that best correlated

with the SPW sampling data. The prediction model was

developed based on a SPW training dataset consisting of 3 VP1

sampling blocks and 11 VP2 sampling blocks, equally distrib-

uted over the field. Using the SLRM, the SPW prediction of 57

sampling blocks (VP2) was made and then these prediction

data were compared with the 57 SPW data observed in the

field. Once the model was tested, multispectral VIs data were

used for prediction of 1000 SPW values, which were used as

input for Kriging to generate the maps. All the statistical

procedures were performed using R software (R Core Team,

2020).

2.7. Geostatistical analysis

The spatial variability of multispectral indices and the vine-

yard vigour were conducted using QGIS. Based on a semi-

variogram and a cross-validation analysis, appropriate

models were fitted, and the input parameter employed the

ordinary kriging interpolate. This method can express the

spatial variation of a specific variable by minimising the dis-

tribution error of the predicted values. Kriging interpolation

assumes that the estimate at an arbitrary point in a specific

zone of the field is expressed with a linear weighting of all

observations. To provide the best linear estimation,
semivariograms are calculated, which consider the spatial

structure (Chiles & Delfiner, 2009; Webster & Oliver, 2007):

yðhÞ¼ 1
2N ðhÞ

XNðhÞ

i¼1

½Zðxiþ hÞ � ZðxiÞ�2 [1]

where N(h) represents the number of pairs of observations

separated by a value (h), which in turn corresponds to the

distance deviation expressed inmeters. The parameter Z(xi) is

the value of the variable Z at the sampled location xi. The

semivariogram, therefore, allows modelling functions to be

developed for many infinitely large environmental variables.

Therefore, the selection of a semivariogram is critical for

geostatistics analysis techniques, as it allows the parameters

needed to perform Kriging interpolation to be defined. The

selection of the suitable semivariogram was done by calcu-

lating the semivariances at different distance intervals (h),

fitting specific theoretical models. Isotropic semivariograms

were chosen as it was observed that the spatial correlation

depends only on the distance module, but not on direction.

The experimental semivariogram [1] was adapted through the

application of some appropriate theoretical models (Cressie,

2015): the spherical [2] and the exponential ones [3].

yðhÞ¼C0 þ C

"
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h
a
� 0:5
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[2]

yðhÞ¼C0 þ C

�
1� exp

�
�h
a

��
[3]

In these mathematical models, the input parameters are

the sill variance (C0þC), the range indicated by (a), and nugget

variance (C0), these inputs were calibrated to identify the

spatial variability of vineyard vigour. The sill variance
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Table 3 e Descriptive statistics of the vegetation indices obtained by UAV multispectral images at different growth stages.
The mean value of each index is obtained from 71 replicates ± standard deviation (SD).

F1 F2 F3

mean ± SD range mean ± SD range mean ± SD range

NDVI 0.64 ± 0.03 0.60e0.68 0.57 ± 0.06 0.51e0.63 0.35 ± 0.05 0.31 ± 0.40

GNDVI 0.46 ± 0.05 0.43e0.49 0.44 ± 0.03 0.40e0.48 0.42 ± 0.05 0.39 ± 0.46

NDRE 0.62 ± 0.03 0.59e0.66 0.33 ± 0.02 0.20e0.36 0.31 ± 0.01 0.18 ± 0.33

MSAVI 0.75 ± 0.04 0.73e0.76 0.68 ± 0.06 0.63e0.73 0.70 ± 0.08 0.66 ± 0.75
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concerns the amount of spatial structural variance in the data

set. The range represents the distance in which the semi-

variogram lies around a limit value. The nugget defines the

variability of a sampling interval or analysis error.

In cross-validation, the values estimated from ordinary

kriging were compared with the SPW values observed at the

sampling points. To check the accuracy of the calculated

predicted values for pruning weight estimation, the coeffi-

cient of determination (R2) [4], the root means square error

(RMSE) [5] and mean absolute percentage error (MAPE) [6]

index were calculated as follows:

R2 ¼ 1�
Pn

i¼1fyðxiÞ � y*ðxiÞg2Pn
�ı¼1fyðxiÞ � yðxiÞg2

[4]

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

fyðxiÞ � y*ðxiÞg2

N

vuuut
[5]

MAPE¼ 100%
N

Xn
i¼1

����yðxiÞ � y*ðxiÞ
yðxiÞ

���� [6]

where n is the number of points, y(xi) is the measured value,

and y *(xi) is the predicted value, y (xi) is the mean value of the
Fig. 6 e Green normalised differential vegetation index map sh

vigour (LV) vegetation classes derived from a multispectral ima

interpretation of the references to colour in this figure legend, t
observed data. The best prediction model was obtained when

the RMSE and MAPE had the lowest value.
3. Results

3.1. Vegetation index data

Table 3 shows the average values and range of the four

vegetation indices, showing the minimum and maximum

values among the zones considered. These values are distinct

for the three flights performed during the growing season and

indicatedwith the letter F, and thus flight F1 was performed at

berries pea size stage, flight F2 at beginning of ripening, and F3

at full ripening. The average values of all the indices were

lower during the full ripening phase than in the others, except

for MSAVI whose lowest values were observed in the veraison

phase (F2). The mean values of NDVI and GNDVI, decreased

gradually in the three phenological phases. This result can be

explained by considering the spectral response of the vege-

tation in F2, in which the level of photosynthetic activity and

efficiency is high, due to the activity of the chlorophyll pig-

ments. Instead, it is difficult to understand the spectral

response of NDRE index, again during the F1 monitoring the
owing the high-vigour (HV), medium-vigour (MV) and low-

ge remotely sensed by UAV during the F1 survey. (For

he reader is referred to the Web version of this article.)
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Fig. 7 e GNDVI map with zones of different vigour, (a) section of vineyard row with low vigour (LV), (b) section of vineyard

row with high vigour HV). Canopy in LV vines (c), and HV vines (d).
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values are within the range 0.59e0.66, as the other indices; in

the subsequent phenological phase there is a drastic reduc-

tion that continues until the last monitoring.

From the vigour maps generated, different vigour zones

were identified by applying the k-means clustering algorithm.

For each vegetation index considered, areas of low, medium

and high vigour were identified from the first survey F1 (Fig. 6);

the determinations made for the subsequent surveys (F2 and

F3) confirmed this variability.

Figure 7 (a) and (b) show row sections with different

thickness and thus variability in the number of pixels; the

differences identified in the rasters were observed in the

vineyard, as illustrated in Fig. 7 (c) and (d).

With reference to VP1 blocks, they were distributed in the

three vigour levels as follows: 5 blocks in LV zone, 5 blocks in

MV zone and 4 blocks in HV zone. The results of the

vegetative-productive variability are shown in the boxplots in

Fig. 8. With reference to VP2 blocks sampled at pruning, they

were distributed in the three vigour levels as follows: 20 blocks

in the LV zone, 21 blocks in the MV zone and 16 blocks in the

HV zone.
In agreement with the above, it was revealed that there

were different growth trends among the vines (VP1) of the

three vigour levels identified. The leaf area per vine was

higher in HV and MV (3.24 and 2.90 m2/vine respectively) than

in LV vines (2.45 m2/vine) (Fig. 8 a). Figure 8 b shows how the

three vigour levels identified for VP1 vines through the clus-

tering algorithm correspond to three levels of agronomic

vigour identified in the field. Indeed, the vines in the LV zones

have an SPW average value of 0.29 kg, which is different from

high vigour vines (0.47 kg); MV vines, on the other hand, show

statistically intermediate values (0.38 kg) between low andHV.

3.2. Yield and must composition variability

The descriptive statistics of yield and must quality data are

reported in Fig. 9, which shows a wide variability over the

different zones detected through the analysis of the UAV

images. The vines monitored at harvest (VP1) reported a

different number of bunches between low and mediumehigh

vigour vines, as shown in Fig. 9 a The group of vines corre-

sponding to the low vigour (LV) zones had an average of 10
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Fig. 8 e Box plots showing the vegetative parameters of the VP1 vines group. (a) Leaf area (b) Shoot PruningWeight. CMean

values; data were processed according to Tukey's test with 99% confidence level. Box plot marked with different letters are

significantly different (p ≤ 0.01).
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bunches per plant, compared to 14 bunches reported by the

high vigour plants. The average bunch weight of the medium

and high vigour vineswas 66%higher than that of the LV vines

(Fig. 9 b). Yield per vine was also significantly different among

the groups. It was positively correlated with increasing vigour

as illustrated in Fig. 9 c, varying from 1.2 kg in LV to 2.8 kg in

HV, corresponding to a potential yield of 5 and 11.3 t ha�1

respectively. This higher yield per vine is due both to the

higher number and the greater weight of the bunches, as

observed in the sampled vines.

The grape quality parameters showed different behaviour

between the three vigour levels (Fig. 9 d), the vines from the

low vigour zones had a higher soluble solids content (18.3�)
than the group of higher vigour vines (17.6�). In view of the

above, the vines with a higher yield showed a higher total

acidity (5.3 g/L), compared to the vines with a lower yield

(4.8 g/L) (Fig. 9 e).

3.3. Correlation analysis between ground measurements
and UAV spectral indices

Table 4 shows the correlations and relative significance be-

tween the vegetation indices and the corresponding values of

the quantitative and qualitative parameters of VP1 vines. The

first parameter considered was the number of bunches per

vine The Pearson index was calculated to find a correlation

between the vegetation indices as the number of bunches

increased or decreased. However, it was not found a clear

trend between the two evaluated variables, as shown by the

low values in Table 4. Further considering the variability

related to the bunch, the correlation between the indices and

the measured weight of bunch was evaluated. Excellent
results were found in this case, since the first phenological

phase F1 and for the other two surveys carried out. High

correlation rates were found, especially for the vegetation

indices investigating the spectral response in the red band

and red edge. GNDVI also showed a good correlation with

bunch weight. However, non-significant correlations be-

tween the MSAVI vegetation index and the variable consid-

ered were found. For the other two phenological periods

examined, excellent significant correlations were found with

high values of the Pearson correlation coefficients. Regarding

the yield per plant, the results obtained through correlations

are in line with those of the average bunch weight. NDVI

proved to be a very good predictor of average production per

plant. It showed high correlation values of 0.786 in the period

inwhich the first flight was carried out, showing very positive

correlations for the two subsequent phenological periods,

0.754 at veraison; the highest correlation of this parameter

was found at full berry ripening, equal to 0.806. GNDVI can

also be considered a good predictor, but in the phenological

periods before ripening it shows a lower correlation than

NDVI; when ripening is reached, GNDVI shows a very good

correlation with plant yield, equal to 0.839. NDRE was a good

predictor in the early phases of crop development with a

Pearson correlation index from 0.728 to 0.748 for the pheno-

logical phases of berry development and veraison, respec-

tively. After these phases, NDRE showed a lower value and

significance than the vegetation indices previously exam-

ined. Regarding the only soil-adjusted index, MSAVI, it is not

a reliable predictor of production per plant when evaluated at

early phenological stages; however, the index proved to be a

good predictor of grape yield at veraison with a correlation

index of 0.765.
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Fig. 9 e Box plots showing the reproductive parameters measured at harvest of the VP1 vines group. CMean values; data

were processed according to Tukey's test with 99% confidence level. Columns marked with different letters are significantly

different (p ≤ 0.01), n.s ¼ not significant.
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Table 4 e Pearson correlation coefficients between
agronomic yield variables measured for the VP1 vines
group and vegetation indices, with significance *p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001, n.s ¼ not significant.

F1 F2 F3

Bunch/vine

Spectral indices

NDVI 0.542* 0.528* 0.314n.s

GNDVI 0.307n.s 0.382n.s 0.444n.s

NDRE 0.403n.s 0.416n.s 0.265n.s

MSAVI 0.374n.s 0.545* 0.419n.s

Bunch weight [g]

NDVI 0.805*** 0.744** 0.770***

GNDVI 0.646** 0.753*** 0.875***

NDRE 0.757*** 0.767*** 0.701**

MSAVI 0.466n.s 0.730** 0.739**

Yield [kg per vine]

NDVI 0.786*** 0.754*** 0.806***

GNDVI 0.609* 0.687** 0.839***

NDRE 0.728** 0.748*** 0.616*

MSAVI 0.504n.s 0.765*** 0.654**

Table 5 e Pearson correlation coefficients between
pruning weight measured for the VP1 vines group and
the vegetation indices considered, with significance
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, n.s ¼ not significant.

Shoot Pruning weight [kg per vine]

F1 F2 F3

NDVI 0.844*** 0.771*** 0.521n.s

GNDVI 0.663** 0.696** 0.584*

NDRE 0.759*** 0.597* 0.564n.s

MSAVI 0.473n.s 0.776*** 0.655*

Table 6 e Pearson correlation coefficients between grape
quality parametersmeasured for theVP1 vines group and
vegetation indices, with significance *p≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001, n.s ¼ not significant.

Total soluble solids [�babo]

F1 F2 F3

NDVI - 0.513 ** - 0.391 * - 0.341*

GNDVI - 0.760 *** - 0.722*** - 0.662**

NDRE - 0.411 ** - 0.651** - 0.714**

MSAVI - 0.186n.s - 0.219* - 0.573**

Total acidity [g L�1]

NDVI 0.428n.s 0.214n.s 0.326n.s

GNDVI 0.490 * 0.479n.s 0.338n.s

NDRE 0.462n.s 0.466n.s 0.426 *

MSAVI 0.063n.s 0.306n.s 0.539 *

Table 7 e Quantitative relationships between spectral VIs (y) a
sampling blocks of the vineyard for 2021 growing season.

Model calibration (VP1 a

Data set VIs R2 Prediction mod

F1 NDVI 0.81 y ¼ 2.231

NDRE 0.69 y ¼ 2.092

F2 NDVI 0.70 y ¼ 1.347

MSAVI 0.67 y ¼ 1.683
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The vegetation indices considered in this study are well

correlated with the agronomic variables of grape production.

It is relatively easy to identify a phenological period that

proves most suitable for evaluating the yield in the vineyard.

The highest correlation values were observed at veraison,

both in terms of average bunch weight and yield per vine.

In this study, in addition to the evaluation of yield and

quality parameters, an important vegetative parameter

closely linked to plant vigour was evaluated for VP1 vines, the

shoot pruning weight describing the overall growth of the

vine. Table 5 shows the correlation data between vegetation

indices and SPW. NDVI proves to be a good index in predicting

the weight of the pruning mass when evaluated in the

phenological phases before veraison. Similar results can be

observed for the indices investigated in the green and red edge

band, with the only exception of MSAVI which shows a low

correlation at the phenological stage of berry growth. On the

contrary, MSAVI showed a very positive correlation with SPW

at survey F2, also NDVI correlated highly at this phenological

stage corresponding to veraison. These results indicate that

sampling flights must be carried out during the first periods of

vine development to have a more accurate estimation of the

pruning mass weight. As berries approach ripeness and

senescence processes of the chlorophyll, tissues are triggered,

there is a risk of not making a real estimation of this agro-

nomic parameter.

Grape quality parameters correlations with the vegetation

indexes are shown in Table 6. Negative Pearson correlation

coefficients were found for total soluble solids, indicating that

an increase in one of the two variables leads to a reduction in

the other and vice versa. This study showed that TSS is well

correlatedwith NDREwith a high statistical significance in the

last two surveys. GNDVI also showed a good correlation with

this parameter, while NDVI did not show a satisfactory cor-

relation with TSS during the three surveys; in the two

phenological stages after the first survey, the statistical sig-

nificance of the correlation decreased (p < 0.05). In addition,

the adjusted soil index did not show a good correlation with

the previously mentioned quality parameter. In F1 survey,

there is no correlation; in the F2 survey, the significance is low

(p < 0.05); however, the survey in the F3 is an exception,

showing a fair correlation (p < 0.01). No clear correlationswere

found about total acidity. In all the phenological periods

considered, the correlation indices are not significant except

for NDRE and MSAVI indices, which show statistically signif-

icant correlation in correspondence with the last sampling

flight F3. Based on the results obtained, it can be stated that

total acidity could not be easily predicted using multispectral

images.
nd shoot pruning weight (SPW) (x) of 3 VP1 and 11 VP2

nd VP2) Model validation (VP2)

el RMSE (kg vine�1) MAPE (%)

4 x - 1.0657 0.18 11.21

8 x - 0.9431 0.24 14.77

5 x e 0.4101 0.30 19.11

4 x - 0.7890 0.34 20.51
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Fig. 10 e Correlation between predicted and observed shoot pruning weight for monitored vines (VP2) using SLRM based on

a data set for model validation (p < 0.001). (a) correlations developed as a function of NDVI values observed in F1 (R2 ¼ 0.69);

(b) NDRE values observed in F1 (R2 ¼ 0.69); (c) MSAVI values observed in F2 (R2 ¼ 0.46); (d) NDVI values observed in F2

(R2 ¼ 0.49).

Fig. 11 e Histogram of residual values showing the

frequency of each range of values referred to the prediction

model using NDVI index data at survey F1.
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3.4. Analysis of prediction model of shoot pruning
weight

After evaluating the correlations among vegetation indices

and the key agronomic parameters, it was appropriate to test

the validity of the multispectral indices and their possible

predictive use. Based on the results of the relationships be-

tween SPW andmultispectral data, it was decided to continue

with the setting up of predictive models with the aim of

verifying the validity of these correlations to extend these

relationships and information on vegetative growth, to the

entire vineyard. Obtaining this information will make it

possible to optimise the pruning of the vineyard, adopting a

balanced bud load according to the vegetative capacity of the

vines. In agreement with the correlation values, NDVI from F1

shows the highest R2 value, while the other indices, although

showing a valid linear regression, remain at lower values

(Table 7). The SLRM were developed, which showed a good fit

between VIs and SPW, for flight missions F1 and F2. Model
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Table 8 e Geostatistical parameters of the fitted semivariogram models for shoot pruning weight predict.

SPW predictive indices Semivariogram model Range a (m) Nugget Sill variance Nugget/sill ratio %

SPW NDVI (F1) Spherical 89 0.001 0.005 20

SPW NDRE (F1) Exp 110 0.001 0.002 50

SPW MSAVI (F2) Exp 228 0.001 0.002 50

SPW NDVI (F2) Exp 233 0.002 0.005 40

Nugget/sill ratio (%) ¼ [C0/(c0þc)] x 100.
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error metrics were computed, which provide information on

the prediction error of the agronomic variable. The bestmodel

was based on NDVI index referred to the F1 flight survey,

which showed a good linear relationship with pruning weight

(R2 ¼ 0.81; RMSE ¼ 0.18; MAPE ¼ 12.8%). The SLRM based on

MSAVI, although having a very good correlation with pruning

weight, was the index with the highest error value (R2 ¼ 0.67;

RMSE ¼ 0.34; MAPE ¼ 20.51%), demonstrating poor reliability

in developing predictive calculations on pruning weight.

The relationships between the forecast pruning weight and

the observed value, for the four cases studied, are shown in

Fig. 10. In Fig. 10 (a) the SLRM between the observed SPW (VP2)

and the predicted data using the NDVI at F1 as a predictor var-

iable is presented, with correlation R2 ¼ 0.69. Figure 10 (b) again

shows the linear distribution between the data observed SPW in

vineyard (VP2) and those calculated by the prediction model

using NDRE index as a predictor, with R2¼ 0.69. The application

of themodel predicting the parameter SPW as a function of the

vegetation indices with reference to the period F2, instead, did

not provide acceptable results, which can be observed in Fig. 10

(c), (d). Based on the results, it is evident that the prediction

correlation of SPW is better in the phenological stages prior to

veraison. The prediction of SPW for the 342 vines (VP2) moni-

tored throughflightF1was themost accurate, showing themost

stable performance with the lowest RMSE values.

Histograms of the residuals were plotted for all the

regression models; Fig. 11 shows only the best regression re-

sults identified between the predicted and observed pruning

weights calculated from the multispectral NDVI F1 data. The

residuals are predominantly concentrated around zero and

have a normal distribution, indicating that there are notmany

outliers.

With the aim of spatialising the prediction data of shoot

pruning weight over the entire vineyard area, we applied

geostatistics techniques. A semivariogram is used to repre-

sent the spatial variation of regionalised variables. Cross-

validation is an evaluation technique used to assess the ac-

curacy of results obtained from training data on test data. The

estimation accuracy was applied to the data set of values

calculated as a function of NDVI, NDRE, andMSAVI referred to

F1 and F2. For further clarity on the distribution of variability,

the results of some parameters of the geostatistical analyses

are reported in Table 8. The semivariogram models that dis-

played the best fit interpolation for the four datasets consid-

ered were the exponential and spherical models. The

semivariograms of the predicted pruning weight data calcu-

lated based on NDRE (F1), MSAVI (F2), and NDVI (F2) indices

were described by the exponential model, reporting a spatial

dependence distance of 110(m), 228(m), 233(m) respectively.

However, the smallest spatial dependence distancewas found
by a spherical type semivariogram model, concerning the

predicted pruning weight data calculated from NDVI (F1). We

calculated the percentage ratio between the fraction of vari-

ability not related to distance and the fraction of variability

associated with distance; it was found that the lowest values

were related to the spherical model.

These statistical analyses highlight the differences among

the four data sets, as shown in Fig. 12. The fit of the semi-

variogram models of the kriging interpolation was based on

the values of the cross-validation determination coefficients

near the coefficient of the 1:1 line. The value of RMSE refers to

the estimation errors in the interpolation of the data and thus

in the spatial distribution of the vigour data, this value should

be as low as possible. The kriging technique was validated

using R-square and RMSE to evaluate the performance and

errors associated with the SPW prediction map. The values of

R-square were calculated to measure the goodness of fit. The

R-square values for the semivariogram models of NDVI and

NDRE (Fig. 12 a - b) calculated based on the F1 surveys, show a

good fit, while MSAVI and NDVI indices calculated based on

the F2 surveys do not offer an acceptable fit. RMSE values vary

from 0.027 to 0.044; these results indicate the accuracy of

precision of the prediction models.

Based on the semivariogram concept and models, krig-

ing interpolation methods were evaluated for the spatial

distribution of the predicted SPW data in the entire vine-

yard (Fig. 13). The vegetative vigour showed a heteroge-

neous distribution in all the four vigour maps, revealing

the randomness and dependence of the spatial distribution

of vegetative vigour in some areas of the vineyard.

Figure 13 a shows the spatial distribution of vegetative

vigour; this map was developed based on NDVI index data

recorded in flight F1. The pruning weight values of the

whole vineyard are concentrated around the average

values of 0.6 kg. Figure 13 b and 13d, on the contrary, show

SPW values greater than the average weight assessed in

the field, and thus the maps tend to provide an over-

estimation of pruning weight. Figure 13 c, referred to the

spatial distribution of pruning weight and developed as a

function of MSAVI index, on the other hand, shows an

underestimation compared to the true value.
4. Discussion

The most significant results obtained in this study are dis-

cussed in this section: (i) the analysis of the vineyard spectral

response in the three phenological stages; (ii) the correlations

between multispectral indices and some vegetative and

qualitative characteristics considered; (iii) the analysis of the

https://doi.org/10.1016/j.biosystemseng.2023.06.001
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Fig. 12 e Output of cross-validation between the observed and predicted pruning weight data for the regression models

developed according to the VIs examined, (a) based on NDVI F1 (R2 ¼ 0.75; RMSE ¼ 0.034); (b) NDRE F1 (R2 ¼ 0.61;

RMSE ¼ 0.030); (c) MSAVI F2 (R2 ¼ 0.47; RMSE ¼ 0.027); (d) NDVI F2 (R2 ¼ 0.55; RMSE ¼ 0.044).
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prediction shoot pruning weight and then the spatial distri-

bution of vigour according to the indices showing the best

correlations with this agronomic parameter.

The data shown in Table 3 concerning the variability of the

spectral response of the monitored plots allow an estimation

of the level of intra-plot variability. Similarly, the agronomic

data presented in Figs. 8 and 9 also show some spatial vari-

ability. Pruning weight, which is a very good descriptor of

vigour, is one of the parameters that best represents this

spatial variability. It shows high variability between low,

medium and high vigour plots, in line with other studies (Gatti

et al., 2017) conducted in a Mediterranean environment in a

non-irrigated vineyard of cv. Barbera cultivated using the

trellis system. Also, Matese and Di Gennaro (2021), using UAV-

derived multispectral images for surveys on cv. Sangiovese,

obtained a distribution in three different vigour levels after

performing canopy segmentation of the vineyard. However,

three levels of vigour were identified for the multispectral

indices considered (Fig. 6), observing the agronomic data; on
the other hand, three distinct levels of vigour were not iden-

tified, except for the SPW. The temporal dynamics of the four

UAV-basedmultispectral indices studied at the three different

phenological stages show average values with a decreasing

trend. The highest values were found during the first survey

(F1) and then decreased near the last survey, that coincided

with the phenological stage of berry ripening. This result can

be related to the canopy development; when the first two

surveys were performed, the vines were in a phase of intense

vegetative growth and therefore the canopies were denser, as

obtained by Katsoulas et al. (2016). The last survey was per-

formed at ripeness, when vegetative growth ceased, as a

function of which the canopies were sparser (Matese & Di

Gennaro, 2021). Also Romboli et al. (2017) identified two

vigour levels through UAV surveys in a non-irrigated vineyard

in Montalcino (central Italy) of the Sangiovese variety trained

on trellis system. NDVI values of the only pixels of the vine

canopy of each experimental block were 0.58 ± 0.04 (HV) and

0.36 ± 0.08 (LV). The authors conducted surveys at three

https://doi.org/10.1016/j.biosystemseng.2023.06.001
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Fig. 13 e Maps obtained by interpolation of predicted pruning weight (kg). Set of points (training): 1000 on all maps. SPW

prediction maps calculated as a function of VIs (a) based on NDVI F1; (b) NDRE F1; (c) MSAVI F2; (d) NDVI F2.
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phenological periods that coincide with those shown in our

study, with NDVI values having a decreasing trend from fruit

set phenological stage to ripening for the low vigour level area.

The variability in canopy size development impacts the

outcome of the spectral response (Hall, Louis, & Lamb, 2008),

as vineyards, not being continuous cropping systems, are

affected by the vineyard background (Comba, Gay, Primicerio,

&Aimonino, 2015; Rey-Caram�es et al., 2015; Turner, Lucieer,&

Watson, 2011); by reducing canopy density, the effect of soil

background reflectance increases. Somemultispectral indices

are very sensitive to the effect of soil reflectance, and low LAI

values can affect the spectral response (Liu, Pattey, & J�ego,

2012). Furthermore, with the onset of grape ripening, leaf tis-

sues show senescence and chlorophyll pigment degradation

phenomena, marked by the progressive yellowing of leaves

(Filimon, Rotaru, & Filimon, 2016), which cause a change in

canopy reflectance (P�adua, Marques, Hru�ska, Ad~ao, Peres,

et al., 2018). The vine performance in terms of yield, soluble

solid content, acidity reported by the vine groups examined

shows a different behaviour only between low and high

vigour, while the group of medium vigour plants shows

agronomic behaviour comparable to the high vigour areas

according to the ANOVA. A corresponding vigour distribution

was also observed for the agronomic parameter SPW by Gatti

et al., 2017, inwhich the total pruningmasswas different in all

vigour classes, varying between 0.485 (LV) and 0.895(HV) g/

vine. Similar results were also obtained by Bonilla et al. (2013),

using multispectral remote sensing images on the Tempra-

nillo variety, in which vigour-related variables such as leaf

area and SPW showed significant differences within the three

zones. Matese and Di Gennaro (2018) through multispectral

UAV surveys carried out during the veraison stage, identified

two vigour levels where NDVI data varied between 0.55 (LV)

and 0.60 (HV) with corresponding differences in SPW values.

In our study, the results for leaf area while not equally
distributed across the three vigour levels are significantly

different in LV areas compared to HV areas, as Gatti et al.

(2017). In their study, LV vines are characterised by less can-

opy leaf area than HV vines, this may have affected the leaf-

to-fruit ratio, a feature noted to influence carbohydrate

accumulation in vines (Kliewer & Dokoozlian, 2005).

In our study, TSS shows significant differences between LV

and HV zones, the latter showing less accumulation of soluble

solids; these results agree with those obtained by Bonilla et al.

(2013), Carrillo et al. (2016), Romboli et al. (2017), Gatti et al.

(2017).This phenomenon is related to the greater leaf layers

in HV vines compared to LV vines; this affects the exposure of

the bunch to sunlight and consequently a change in temper-

ature at the berry level, as observed by Dokoozlian and

Kliewer (1996). They found that berries grown under lower

sunlight conditions from the fruit set stage to ripening have

lower soluble solids contents than those of bunches well

exposed to sunlight.

No differences in total acidity were found in our study

among the three vigour levels; a similar result is reported in

Bonilla et al. (2013) and Filippetti et al. (2013).

The relationships between multispectral indices and the

quantitative and qualitative parameters of the grape, and

vegetative parameters of the vineyard canopy were investi-

gated. Positive correlations were found through Pearson's
index computation, especially with bunch weight and yield

per vine (Table 4), as well as SPW (Table 5). Pearson's index

showed negative correlations with total soluble solids (Table

6); in contrast, no correlation was found with total acidity as

well as for the number of clusters. This study shows that high-

resolution images captured by UAV can improve the re-

lationships between yield or quality parameters and multi-

spectral indices. For example, very strong correlations with

yield data, in all the phenological stages considered, were

obtained in contrast to Bonilla et al. (2013), instead (L�opez-
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Garcı́a et al., 2022) found positive correlations between yield

and VIs in determined phenological phases, especially

considering NDVI, in agreement with the results of this study.

The study of the relationships between technological

ripeness and multispectral indices did not provide a clear

trend. The relationships between soluble solids and NDVI

were not satisfactory, at any of the three phenological stages.

Only one multispectral index showed excellent correlation

performance with TSS; in effect, GNDVI can be considered in

studies predicting the variability of sugar accumulation in

grapes. Significant Pearson's correlation values were found for

all the relevant phases (Table 6), moreover, a negative corre-

lation between GNDVI and TSS was also found by

Maimaitiyiming, Sagan, Sidike, and Kwasniewski (2019) who

obtained r ¼ �0.53. However, it has been shown that the

prediction of soluble solids content of grapes, which is usually

performed considering the NIR absorption band, can be

influenced by some specific substances such as pigments,

carbohydrates and especially the presence of water (Benelli,

Cevoli, Ragni, & Fabbri, 2021). The variation in their content

depends on ripeness and thus this can influence the result of

correlations. The results found in this study are in agreement

with other studies conducted by (Anastasiou et al., 2018), in

which negative correlations were found through satellite

surveys for TSS and NDVI and GNDVI. Among the vegetative

variables, pruning weight and its correlations with the spec-

tral indices were mainly considered. The results obtained

show that measurements conducted with UAV at pre-

veraison phenological stages are more correlated with some

multispectral indices than measurements conducted close to

grape ripening. The results of the present study confirm the

relationship between NDVI and pruning weight found by

other authors (Baluja et al., 2012; Dobrowski et al., 2003;

Proffitt&Malcolm, 2005; Rey-Caram�es et al., 2015). Overall, the

obtained multispectral indices showed very good significant

correlations with the parameters that are most related to

vigour, namely grape yield and shoot pruning weight.

As a result of the correlations observed in this study, we

deployed forecastmodels tomonitor the variability of pruning

weight and thus vigour of the entire vineyard. The prediction

models shown in Table 7 were linear, high coefficients of

determination were identified, and low values of RMSE and

MAPE were obtained, implying that stable prediction models

were selected. Consequently, acceptable coefficients of

determination between predicted and observed pruning

weights were identified (Fig. 10a and Fig. 10b), with some ex-

ceptions for multispectral indices based on the flight of the F2

survey, as shown in Fig. 10c and Fig.10d. To extend these

vigour prediction models to the entire vineyard extension

(8.2 ha), we performed geostatistical analyses. The four sem-

ivariograms obtained provided different information

regarding the spatial distribution of vigour. Taking into

consideration the pruning weight data obtained with the

predictive model based on NDVI (F1), vigour shows a distri-

bution that is closely dependent on the spatial variability of

the field and thus not random. In the other cases considered

by the prediction models, the semivariogram parameters

indicate a weak spatial dependence. Indeed, in agreement

with the criteria proposed by Cambardella et al. (1994), in the

first case the Nugget variance parameter (C0) corresponds to a
small portion of the Sill variance (C0 þ C), and thus the per-

centage ratio of Nugget/Sill is less than 20% (Table 8). For the

second case, the Nugget/Sill ratio is more than 40%, either for

the prediction model based on NDRE (F1) or the other two

indices MSAVI and NDVI (F2); this typifies the weak spatial

dependence. Based on these results, the prediction of SPW

and thus vigour that best represents the variability of the

vineyard is obtained by taking into consideration NDVI data

for the flight performed before veraison. Previous studies

confirmed that key vegetative components are a spatially

dependent agronomic variable (Baluja et al., 2012; Rey-

Caram�es et al., 2016); environment predominantly influences

the vegetative-productive performance of the vineyard

through intrinsic variables such as, for example, the direct

effect of soil (Bramley, Ouzman,& Boss, 2011; Tardaguila et al.,

2012).
5. Conclusions

This study investigated the capability of amulti-spectral sensor

mounted on a multirotor UAV to monitor vegetative indices

derived from the spectral response of the vineyard, at different

phenological stages of the crop cycle. According to the results

obtained by the four multispectral indices studied, it was

possible to identify three different vigour levels in the vineyard.

Through Pearson's correlation analysis it was found that a large

proportion of the agronomic variables showed a stable corre-

lation with the multispectral indices. The correlation analysis

between yield components and multispectral surveys per-

formed in the three periods was highly significant. For F1 sur-

vey, the indices most correlated with yield were NDVI and

NDRE; at veraison and berry maturity, instead, all indices

showed a very positive correlation with yield. However,

awareness of these correlations at early stages allows correc-

tive operations to be planned and applied throughout the sea-

son to improve yield or grape quality. Grape quality parameters

were most correlated with multispectral indices investigated

mainly in the green band. In fact, GNDVI proved to be the most

suitable for representing the variability of grape TSS accumu-

lation, displaying high correlation values starting from the

phenological stage of berries pea size. SPW and vegetative

vigour should be estimated before veraison, especially using

VIs that include the red and near-infrared band. NDVI and

NDRE showed high significance of correlation with SPW espe-

cially during the phenological stage of berries pea size. At

veraison, on the contrary, only NDVI and MSAVI index showed

good correlation. Through geostatistical analyses, it was

possible to observe that the ordinary kriging method obtained

very good interpolation results when using vigour prediction

data processed as a function of NDVI from flights performed at

preliminary stages of the vineyard crop cycle. These evalua-

tions indicate that among the indices examined, NDVI provides

detailed information for themanagement of crop operations. It

was correlated with most of the agronomic parameters

considered during the three phenological periods. However, for

certain agronomic parameters and in certain phenological

stages, the GNDVI and NDRE indices should also be considered.

The UAV sensing system enables the assessment of vari-

ability in a mid-range cultivation area, typical of
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Mediterranean vineyards, with higher efficiency than manual

sensors and more detailed spatial resolution than satellite

systems. In addition, we aimed to extend vineyardmonitoring

techniques with predictive survey methods, thus simplifying

the sampling procedure performed in the field and relying on

the accuracy of multispectral surveys by obtaining spatial

awareness of whole-field variability. Prediction maps can

assist farmers in managing subareas of the vineyard with

different vigour. SPW predictionmaps can guide winegrowers

in choosing the appropriate bud load for winter pruning.

Finally, these results could be used to develop new pruning

management techniques.
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