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Abstract: Adipose tissue (AT) secretes pro- and anti-inflammatory cytokines involved in AT home-
ostasis, including tumor necrosis factor-α (TNFα) and irisin. The functionality of AT is based on a
regulated equilibrium between adipogenesis and extracellular matrix (ECM) remodeling. We investi-
gated the contributions of adipose progenitors (ASCs) and adipocytes (AMCs) to TNFα-induced ECM
remodeling and a possible implication of irisin in AT impairment in obesity. ASCs and AMCs were
exposed to TNFα treatment and nuclear factor–kappa (NF-kB) pathway was investigated: Tissue
Inhibitor of Metalloproteinase (TIMP-1), Twist Family Transcription Factor 1 (TWIST-1), and perox-
isome proliferator-activated receptor-γ (PPARγ) expression levels were analyzed. The proteolytic
activity of matrix metalloproteinases (MMPs) -2 and -9 was analyzed by zymography, and the irisin
protein content was measured by ELISA. In inflamed AMCs, a TIMP-1/TWIST-1 imbalance leads to a
drop in PPARγ. Adipogenesis and lipid storage ability impairment come with local tissue remodeling
due to MMP-9 overactivation. In vitro and ex vivo measurements confirm positive correlations
among inflammation, adipose secreting irisin levels, and circulating irisin levels in patients with
visceral obesity. Our findings identify the NF-kB downstream effectors as molecular initiators of AT
dysfunction and suggest irisin as a possible AT damage and obesity predictive factor.

Keywords: obesity; ECM remodeling; adipose tissue dysfunction; molecular mechanism; metallopro-
teinase (MMP); irisin; extracellular matrix; inflammation

1. Introduction

Obesity is the result of multifactorial stimuli and conditions, including chronic low-
grade inflammation, oxidative stress, metabolic abnormalities, and immune dysfunction,
which represent the principal players in adipose tissue (AT) and its responses [1]. It is
accepted that obesity is associated with, and sustained by, a low level of chronic system
inflammation, which also reflects what it comes about in AT [2]. When a condition of
obesity develops, macrophage infiltration in AT occurs, releasing a massive amount of pro-
inflammatory cytokines, including interleukin (IL)-6 and tumor necrosis factor α (TNFα),
with consequent induction of several pro-inflammatory pathways and JNK and nuclear
factor–kappa B cells (NF-κB) [2–4].

During body weight alteration, pre-adipocytes become mature adipocytes and change
their size and shape to regulate temporary fat storage in AT [5,6].

Under healthy conditions, the acquisition and maintenance of mature adipose pheno-
types are guaranteed by the expression of the peroxisome proliferator-activated receptor
gamma (PPARγ) transcription factor [7,8]. In obesity, PPARγ expression is affected, and
the biological process is pathologically accelerated to accommodate adipocyte hyperplasia
(increase in cell number) and hypertrophy (increase in cell size) [9,10]. Failure to recruit
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new adipocytes due to the dysregulation of adipogenesis (in both the proliferation and dif-
ferentiation processes) leads to hypertrophic adipocytes with degradation and deposition
of new extracellular matrix (ECM) [9,11].

ECM remodeling is a complex process, involving several proteins with different
functions, especially metalloproteinases (MMPs) and their inhibitors (Tissue Inhibitor
of Metalloproteinase, TIMPs) and epithelial mesenchymal transition proteins, including
Twist Family BHLH Transcription Factor 1 (TWIST-1) [12–14]. In tissues, net MMP en-
zymatic activity is regulated by a balance between the protein levels of activated MMPs
and TIMPs [15]. This protein ratio is highly sensitive to the environment: when hostile
conditions are established (i.e., inflammation) regulation fails, and adipose tissue dys-
function (ATD) occurs [16–18]. MMP-2 and MMP-9 functions have been prominently
described in adipogenesis; constitutive MMP-2 and modulated MMP-9 expression were
found in adipose cells at different steps of the adipogenesis process and in subcutaneous
adipose tissue (SAT) of overweight patients [4,19,20]. At the same time, dysregulation
of the balance between TIMP-1 and its co-player, TWIST-1, in obese adipose tissue has
been observed [21–23]. Independent studies have reported increased circulating levels of
TIMP-1 and -2 in patients with metabolic syndrome, diabetes, and obesity. Data concerning
their expression level trends in obese adipose tissue remain under debate [24,25].

Although ECM remodeling has been thoroughly investigated, the trigger for the
inflammatory network to modify the expression pattern of MMPs/Tissue Inhibitor of MMP
system in obesity is unclear. Different intrinsic signals can disrupt the environment, TNFα,
and NF-kB cell signaling, the main pathway associated with the inflammatory process [3,4]

Over the past decade, AT has been proposed as an endocrine organ that secretes bioac-
tive peptides, termed ‘adipocytokines’ and has been identified as potential link between
obesity and other metabolic disease states, including irisin, which works through autocrine,
paracrine, and endocrine effects [26–28]. In obese adipose tissue, chronic inflammation
leads to the dysfunction of adipocytokines, including irisin, establishing a protective or
harmful imbalance [29–31]. Previously identified as myokine, irisin has been recognized as
an exercise-induced myokine that is able to increase energy, improve glucose tolerance, and
reduce insulin resistance [31–35]. Principally, irisin exerts its beneficial effect by shifting ma-
ture adipocytes towards a brown phenotype in a biological process defined as the browning
of white adipose tissue [36] In mice, the browning effect is well characterized, whereas in
humans, irisin has been described in mature adipocytes but not in pre-adipocytes, where
it seems able to inhibit adipose terminal differentiation and promote osteogenesis [37,38].
During browning, irisin upregulates the expression of uncoupling protein 1 (UCP1), a
protein that generates heat through the catalysis of proton movement across the mito-
chondrial membrane, causing energy expenditure [39,40]. Zhang et al., suggested that the
irisin effects are adipose-stage-dependent differentiation. Irisin treatment, in fact, induces
browning in adipocytes, inhibiting the adipogenesis of adipose progenitor cells [41].

The results concerning circulating irisin levels in obese patients are still controversial,
especially in the presence of metabolic dysfunction, i.e., dyslipidemia, type 2 diabetes melli-
tus (T2DM), and other components, which are also characterized by a chronic inflammatory
state [42–49]. A meta-analysis conducted by Jia and colleagues showed high circulating irisin
levels in obese patients when compared to healthy controls [50]. Furthermore, in vitro and
animal studies have attributed anti-inflammatory capabilities to irisin, including the reduction in
pro-inflammatory cytokines and the proliferation of macrophages, induction of M2 polarization,
inhibition of the inflammasome, and downregulation of NF-kB cell signaling [51].

In our recent study, we indicated a negative correlation between the levels of irisin and
IL-6, a pro-inflammatory cytokine involved in metabolic and cardiovascular disorders, in
the serum of patients suffering from T2DM under the addition of treatment with glucagon-
like peptide 1 (GLP-1) receptor agonists (GLP-1 RA) to any hypoglycemic therapy [49].

Interestingly, irisin, as happens with MMPs, shows a different expression pattern
depending on the study model, the stage of maturation, and the tissue location of adipose
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cells, and these aspects create many difficulties in gaining a full and complete understanding
of its intrinsic clinical significance [40,41,52].

In this in vitro study, to identify a possible target, concerning ECM remodeling events
to reduce inflammation, we investigated whether chronic TNFα exposure affects adipose
progenitor cells and adipocytes differently. Moreover, to clarify the possible role of irisin in
ATD, we explored whether a correlation may exist between inflammation, irisin secretion,
and adipogenesis. Finally, to propose irisin as a possible predictive marker of obesity,
we examined whether circulating irisin levels could be related to the presence of visceral
obesity, recognized as the principal risk factor for cardiometabolic disease and T2DM.
Our data show that, in ATD, precocious overinduction of NF-kB cell signaling causes
a TIMP-1/TWIST-1 imbalance, leading to dramatic ECM remodeling via MMP-9 and a
drastic impairment of adipose tissue maturation. Moreover, we found that irisin levels,
both locally in adipose tissue and in the sera of patients suffering from obesity, are strictly
associated with the grade of inflammation and visceral adiposity.

2. Results
2.1. Inflammation Impairs Adipose Tissue Function Affecting Adipose Cell Maturation

To determine whether TNFα time-different stimulation induces functional differences
between ASCs and AMCs, cell proliferation and the grade of differentiation (as lipid storage
capability) were assessed. During the adipose differentiation period, ASCs were kept under
TNFα (300 U/mL), mimicking an early and chronically inflamed environment (AMCsCI).
Untreated ASCs and AMCs were used as negative and positive controls, respectively.
Optical microscopy observations showed a lower cell density and dramatic decrement
in the droplet accumulation capability in AMCsCI when compared to untreated AMCs
(Figure 1a–c). The relative quantitative analysis of the oil-red-stained area percentage
(Figure 1d) revealed a lower lipid storage capability in AMCsCI compared to untreated
AMCs (6.53 ± 0.82% vs. 72.88 ± 4.49%, p value < 0.001). Cell cycle analysis revealed
different cell cycle distributions. A physiological decrement in the proliferation index
(PI) in AMC vs. ASCs was measured (PI 0.24). Moreover, a significant decrement in
proliferation was found in AMCsCI when compared both to ASCs and untreated AMCs,
respectively up to 50.08 ± 2.18% (Figure 1e) and up to 68.24 ± 1.87% (p < 0.005).
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Figure 1. TNFα affects functional maturation and proliferation. (a–c) Oil red staining. A representa-

tive optical microscopy image of undifferentiated ASCs (negative controls), AMCs after 21 days of 

TNFα treatment (AMCsCI). (d) The histogram graph represents quantification of the red area (lipid 

deposits stained with oil red) by ImageJ. (e) The histogram graph represents the comparative cell 

cycle distribution analysis between ASCs, AMCsCI, and 21-day AMCs. CI: 21 days of TNFα treat-

ment. The data are expressed as the mean of three different measurements, ±SD. *** p < 0.001. 
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induction of NF-kB fc in untreated AMCS and AMCsTNFα72 h compared to the control ASCs 
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Figure 1. TNFα affects functional maturation and proliferation. (a–c) Oil red staining. A represen-
tative optical microscopy image of undifferentiated ASCs (negative controls), AMCs after 21 days
of TNFα treatment (AMCsCI). (d) The histogram graph represents quantification of the red area
(lipid deposits stained with oil red) by ImageJ. (e) The histogram graph represents the comparative
cell cycle distribution analysis between ASCs, AMCsCI, and 21-day AMCs. CI: 21 days of TNFα
treatment. The data are expressed as the mean of three different measurements, ±SD. *** p < 0.001.

2.2. TNFα Induces the NF-kB Pathway in AMCs

As NF-kB cell signaling represents the main TNFα responsive upstream factor, its
activation was evaluated in ASCs and AMCs after pro-inflammatory treatment. Proteins
were extracted from untreated and TNFα (300 U/mL)-treated ASCs up to 72 h and in
AMCsCI. ASC52telo and subcutaneous adipose tissue from patients suffering from obesity
(referred to as SAT) were used as controls. Western blot (WB) assays were performed, and
the relative optical density was measured (Figure 2, right panel). Specifically, a modest
NF-kB activity was highlighted (Figure 2, right panel). In detail, we found a significant
induction of NF-kB fc in untreated AMCS and AMCsTNFα72 h compared to the control ASCs
(1.92 ± 0.24 fc and 2.72 ± 0.35 vs. ASCs p < 0.001). There were significant increments in
AMCsTNFα72 h and AMCsCI (Figure 2b) when compared to untreated AMCs (1.40 ± 0.15 fc
and 1.67 ± 0.19 fc vs. AMCs, p < 0.001). Significant NFk-B hyperactivation was detected
in AMCsCI vs. AMCs (about 52% up in AMCsCI vs. AMCs, p < 0.001). There were no
differences in AMCsCI and AMCsTNFα72 h (p > 0.05).
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Figure 2. NF-kB activation via TNFα treatment affects adipose differentiation. (a) Western blot (WB)
analysis: a representative WB assay is presented in the left panel, showing gel bands consistent with
p65 (NF-kB), phospho(p)-p65 (pNF-kB), and Act-b (β-actin, normalized protein): ASC52Telo (line 1),
ASC52Telo + TNFα (72 h) (line 2); SATob (line 3), SATobTNFα (72 h) (line 4), ASCs (line 5), AMCs +
TNFαCI (line 6), ASCs (line 7), and ASCs + TNFα (72 h). (b) The histogram graph represents the
p-NF-kB and NF-kB quantitative protein ratio based on optical density values and normalized on CP
β-actin (right panel). CP: ASC52telo positive controls; CI: 21 days of TNFα treatment. The data are
expressed as the mean of three different measurements, ±SD. *** p < 0.001, and ns p > 0.05.

These data firstly suggest that the activation of NF-kB cell signaling represents an
obligatory event in adipose differentiation and maturation processes and, secondly, indicate
that differentiated adipocytes from SAT of obese patients have high basal levels of NF-kB.
It is reasonable to speculate that TNFα prematurely induces NF-kB in pre-adipocytes,
compromising their full maturation.

2.3. TNF-α Is Crucial for Adipose Maturation

As NF-kB cell signaling is well-known to be involved in MMP activation, the mRNA
expression levels of NF-kB, MMP-9, and MMP-2 and of their principal regulators, TIMP-1
and TWIST-1, were analyzed. ASCs and AMCs were treated with 300 U/mL TNFα for
72 h and compared to AMCsTNF-CI through a qRT-PCR experiment. In detail, a significant
increment in NF-kB mRNA expression levels was found in AMCs compared to ASCs
(3.42 ± 0.31-fc vs. ASCs), p < 0.001). Significant differences were found in AMCsTNFα(72 h)
and in AMCsCI with upregulation of NF-Kb by approximately 36.8% and 29.2%, respec-
tively, when compared to AMCs. Moreover, AMCsTNFα(72 h) NF-kB mRNA expression
levels showed no difference compared to AMCsCI, whereas upregulation of 1.13 ± 0.11 and
3.75 ± 0.27-fold was detected compared to AMCs and ASCs, respectively. AMCs showed
the overexpression of MMP-9 and MMP-2 by 2.23 ± 0.18-fc and 18.23 ± 0.2-fc compared to
ASCs. AMCsCI and AMCsTNFα(72 h) exhibited higher mRNA expression levels of MMP-9
and MMP-2 (3.46 ± 0.75-fc and 3.25 ± 0.23-fc, 25.06 ± 0.42-fc and 25.25 ± 0.14-fc vs. ASCs,
respectively). Interestingly, no impacts of TNFα treatment on ASCs and no significant dif-
ferences in AMCsCI and AMCsTNFα(72 h) were detected (Figure 3b,c). TIMP-1 and TWIST-1
showed opposite trends in expression. We found decrements of approximately 43.30%
and 48.7% and 44.42%, and 27.15%, respectively, for TIMP-1 and TWIST-1 expression in
AMCsCI and AMCsTNFα(72 h) when compared to AMCs (Figure 3a–e).
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Figure 3. TNFα negatively affects the specific adipose gene profile. The histogram graphs show
gene expression levels of (a) NF-kB; (b) MMP-9; (c) MMP-2; (d) TIMP-1; (e) TWIST-1; and (f), PPARγ
in ASCs, ASCs + TNFα (72 h), AMCs, AMCs + TNFα (72 h), and AMCsCI. CI: 21 days of TNFα
treatment. The data are expressed as the mean of three different measurements, ±SD. * p < 0.05,
** p < 0.005, *** p < 0.001, and n.s. p > 0.05.

Finally, the mRNA expression levels of the key adipose gene specific marker, PPARγ,
were downregulated in AMCsTNF-CI. No difference was observed in AMCsTNFα(72 h) com-
pared to AMCs, whereas there was a significant downregulation of approximately 40.42%
in AMCsTNF-CI compared to AMCsTNFα(72 h), suggesting that inflammation affects early
adipose terminal differentiation (Figure 3f).
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2.4. Chronic Inflammation Results in Local Tissue Remodeling

To evaluate the enzymatic activity of MMP-2 and MMP-9, gelatin substrate gel zymog-
raphy was assessed. Different activity patterns for ASCs were detected for MMP-2 and
MMP-9 (Figure 4a). No TNFα inducible activity was detected in ASCs and ASCtelo (used
as positive controls), which showed no MMP-9 and, in contrast, constitutive expression of
MMP-2. In contrast, in adipocytes (derived from obese SAT), the modulation of MMP-9, in
both pro and active forms, was appreciable. TNFα significantly modulated the proteolytic
function of MMP-9, inducing increments of approximately 0.57-fc and 0.72-fc, respectively,
in AMCsCI and AMCsTNFα(72 h) when compared to AMCs (Figure 4b). These data suggest
that, in the absence of stimuli, ECM remodeling is not a persistent event.
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Figure 4. TNFα affects MMP activity. (a) Representative zymography gel (inverted color) of the effects
of TNF-α on MMP-2 and MMP-9 release: SATobese, adipocytes derived from subcutaneous adipose
tissue of patient suffering from obesity (line 1); AMCs (line 2); AMCsCI (line 3); AMCsTNF-α (72 h)

(line 4); ASCs (line 5), ASCs TNF-α (72 h) (line 6); ASCsTelo (line 7); and ASCsTelo TNF-α (72 h) (line 8).
kDa (KiloDalton), pro (pro-enzyme), act (active form), MMP (metalloproteinase). (b) The histogram
graph represents MMP-2 and MMP-9 activity expressed by fold change. CI: 21 days of TNFα
treatment. The data are expressed as the mean of three different measurements, ±SD. ** p < 0.005,
*** p < 0.001, and n.s. p > 0.05.

2.5. Mature Adipocytes Release Irisin in a TNFα Dose- and Time- Dependent Manner

As altered irisin levels were previously found in serum of T2D patients under additive
treatment with GLP-1 RA, we investigated whether a correlation between adipose irisin
release and inflammation exists [49]. Firstly, the protein contents secreted in SATob treated
with several concentrations of TNFα (200, 300 and 500 U/mL) at 24 and 48 h and in AMCsCI
exposed to the same TNFα concentrations up to 72 h were measured. Finally, we coupled
adipose-secreting irisin protein levels with PPARγ mRNA level expression and circulating
irisin levels with IL-6 and visceral obesity. We found values of 1.38-fc and 2.77-fc in SATob
treated with 200 U/mL of TNFα, 1.61-fc and 4.25-fc in SATob treated with 300 U/mL of
TNFα, and 2.93-fc and 5.85-fc in SATob treated with 500 U/mL of TNFα when compared
to AMCs at 48 h and 72 h, respectively (p < 0.05) (Figure 5a). We found lower protein
contents secreted in AMCsCI, at 200, 300 and 500 U/mL TNFα when compared to untreated
AMCs, of about 0.69-fc, 0.87-fc, 1.03-fc respectively (p < 0.05). TNFα dose-dependent irisin
relative release appeared to be weakly present. In line with several studies, higher secreted
irisin levels were detected in ASCs (3.27 ± 0.15 µmL). Increments of about 26% and 18%,
respectively, were detected in AMCs + 500 U/mL TNFα and AMCsCI, + 300 U/mL TNFα
when compared to AMCsCI, + 200 U/mL TNFα (Figure 5b).
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Figure 5. Irisin secretion. (a) Comparative irisin secretion by adipocytes derived from subcutaneous
adipose tissue of patients suffering from obesity (SATob) exposed to different concentrations of TNFα
at 48 and 72 h. (b) Comparative relative irisin secretion in AMCs and AMCs exposed to different
concentrations of TNFα at 72 h. (c,d) The line graphs represent the correlation analysis of irisin (protein
secreted levels) and PPARγ (mRNA expression levels) related to TNF-α treatment at 48 (c) and 72 h (d).
(e,f) The bar graphs represent the correlation analysis between the visceral obesity and basal serum
levels of irisin and IL-6 (e, f, respectively). The histogram and line graph represent three different sets of
experiments. The data are expressed as the mean ± SD; *** p < 0.0001, n.s. p > 0.05.

To investigate whether irisin might be a marker of maturation and the adipose function
grade, a correlation analysis between the adipose-secreted level of irisin and the gene
expression level of PPARγ was carried out. We found that PPARγ expression levels are
negatively related to irisin released by AMCs when treated with TNFα. In detail, dose- and
time-dependent relations to TNFα treatment were detected: decrements of 57.13 ± 1.81%
and 54.63 ± 4.12% in adipose irisin release were accompanied by lower PPARγ mRNA
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expression levels in AMCs exposed to 500 U/mL TNFα at 48 and 72 h when compared to
untreated AMCs (3.71 ± 0.2 vs. 6.21 ± 0.31-fc and 3.15 ± 0.14 vs. 6.35 ± 0.21-fc) at 48 and
72 h, respectively. Figure 5c–e).

Obesity is characterized by prolonged low-grade tissue and systemic inflammation
mediated by high serum concentrations of circulating pro-inflammatory cytokines, in-
cluding IL-6. To investigate whether irisin might be a predictive marker of disease, the
circulating basal levels of irisin were compared to circulating basal levels of IL-6 and the
waist circumference.

The analysis revealed that irisin is positively related to IL-6 circulating levels and
visceral obesity (13.9 ± 0.89 ng/mL and 5.26 ± 1.83 pg/mL vs. 11.07 ± and 3.69 ± 2.38, in
patients with visceral obesity vs. patients without visceral obesity. Figure 5e,f).

Together, these results suggest that a signaling mechanism linking inflammation and
irisin expression could be hypothesized.

3. Discussion

Obesity involves 170 million children (under the age of 18) and 650 million adults,
with growing prevalence in low- and middle-income countries [52]. Obesity complications
include type 2 diabetes mellitus (T2DM), thyroid diseases, hypertension, cancer, and de-
pression, representing a worldwide concern both for the negative impact on the quality of
life and for the associated elevated annual health-care costs [53]. 80% of patients suffering
from T2DM also suffering from obesity, whereas 10–30% of people with obesity show
no metabolic alteration [54]. of patients suffering from T2DM also suffering from obe-
sity, whereas 10–30% of people with obesity show no metabolic alteration [54]. Although
obesity is related to an excess weight gain (expressed as an increase of the body mass
index (BMI)), it is reductive to define it as an energy imbalance between calorie intake
and expenditure. The established link between inflammation and development of insulin
resistance (IR) and T2DM is well recognized. Inflammation, resulting from the progressive
development of obesity, may play a role in inducing IR [3,55]. However, an impairment
of AT remodeling in obesity is not necessarily found, and IR does not necessarily occur
in obesity. Inflammation could also be driven by adipose tissue expansion through the
activation of several cell activation signals due to interactions between the cells and the
extracellular matrix (ECM). Independent studies show that tumor necrosis factor alpha
(TNFα) levels are essentially dependent on the visceral fat amount and are positively asso-
ciated with higher values of glycated hemoglobin (HbA1c) in patients with T2DM [56–58].
Conversely, the cellular and molecular contributions of affected adipose tissue (AT) are not
well-described. During fat mass expansion, extracellular matrix (ECM) remodeling with
the commitment of metalloproteinases occurs (MMPs) [4,19,59]. MMPs, a family of zinc-
dependent endopeptidases, are primarily involved in enzymatic degradation of the ECM,
and their function is central to many physiological and pathological processes, including
adipogenesis [60,61]. MMPs are released in an inactive enzymatic form (pro-MMPs) and
become active in the extracellular environment once they have been cleaved. In several
chronic inflammation diseases, it has been observed that MMP activity is also affected by
the balance between TIMP-1 and TWIST-1, but the effect on adipogenesis has not been
clarified [62]. Moreover, embryogenesis in vivo studies performed in both Drosophila and
mice revealed an adipose deficiency and atrophy in multiple tissues from mutant animals,
suggesting negative feedback regulation by TWIST-1 that represses the NF-kB-dependent
cytokine pathway [62,63]. Although MMP involvement and ECM remodeling in the adi-
pose differentiation process are well-established, their regulation in obese adipose tissue
dysfunction is controversial [16,17].

A crucial event in physiological adipose tissue remodeling is pre-adipocyte recruit-
ment and commitment by peroxisome proliferator-activated receptor gamma (PPARγ),
a key regulator of adipogenesis [64]. Dysregulation of PPARγ can disrupt the balance
between adipocyte differentiation and lipid storage, leading to hypertrophy (accumula-
tion of triglycerides in enlarged adipocytes) and can alter the production and release of



Int. J. Mol. Sci. 2023, 24, 12082 10 of 18

adipocytokines, leading to an imbalance between energy homeostasis and anti- and pro-
inflammatory factors, irrevocably contributing to the impairment of AT functionality, a
condition known as AT dysfunction (ATD) [9,11]. Among the adipocytokines described
in AT homeostasis, irisin is arousing great interest. Despite its widely described potential
beneficial role for browning white adipose tissue and inducing thermogenesis gene ex-
pression, the therapeutic potential of irisin is controversial [65–67]. The discrepancy in the
results principally regards its involvement in the inhibition of the adipogenesis process by
downregulating PPARγ expression via the induction of Wnt/β–catenin signaling and the
divergence between evidence observed in animal models and in humans [37,38,51]. Recent
studies have indicated that irisin is a predictive marker of several pathologies, including
sarcopenia, atherosclerosis, and heart failure [45,68–70].

In this in vitro study, we aimed to clarify whether the different statuses of inflam-
mation affect mature adipocytes (AMCs) and their progenitors, adipose mesenchymal
stem cells (ASCs), in a different dose- and time-dependent manner, and if irisin could be
recognized as a possible predictive marker of obesity. For this purpose, we investigated the
effect of TNFα at different concentrations, mimicking the different grades and moments
of inflammation in obese adipose tissue in ASCs, AMCs, and chronically inflamed AMCs.
We focused on NF-kB cell signaling, the master pathway induced by TNFα, and its down-
stream mediators, including MMPs, especially MMP-2 and MMP-9, and their enzymatic
activity modulators, TIMP-1 and TWIST-1. Our data reveal that different TNFα treatment
conditions evoke different responses in AMCs and ASCs. Chronically inflamed AMCs
progressively lose the terminal adipose phenotypic features: lipid droplet accumulation
capability and mRNA expression of the adipose specific marker, PPARγ, dramatically
fall, whereas irisin release increases. Based on the comparative analysis between SAT
derived from obese patients, pre-adipocyte progenitor cells, and mature adipocytes, we
speculate that the premature activation of NF-kB cell signaling leads to pathological ECM
remodeling through the proteolytic activity of MMPs (primarily of MMP-9) and alteration
of the adipocyte maturation grade. Although NF-kB cell signaling induction obligatorily
occurs during the adipose maturation process, we found that its premature overactiva-
tion causes dysregulation of the MMPs/TIMP-1 and TIMP-1/TWIST-1 balance, probably
preventing the expression of PPARγ [71]. Moreover, our findings suggest that PPARγ
expression levels could also be disturbed by increased adipose irisin secretion. The irisin
secretion trend observed was accompanied by an opposite trend in PPARγ expression
levels: pre-adipocytes released large amounts of irisin and did not express PPARγ, and
weak irisin secretion was detected in adipocytes with higher PPARγ expression levels,
whereas adipocytes showed significantly increased irisin secretion when exposed to a rising
concentration of TNFα, while a drastic downregulation of PPARγ was detected. The irisin
adipose secretion movement is in line with increasing circulating irisin levels detected in
the serum of patients with visceral obesity and a higher systemic inflammation basal grade.
Due to the negative correlations found between adipose irisin release, inflammation, the
occurrence of visceral obesity, the proliferation index, and the impairment of the lipidic
storage capability in inflamed adipocytes, we speculate that adipocytes release irisin to
counteract the effects of inflammation and mass fat expansion.

4. Materials and Methods
4.1. Ethical Statement

The protocol was approved by the Independent Ethical Committee (no. 08/2018;
27 August 2018) at the Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone”,
Palermo, Italy. All patients gave their written informed consent.

Population

Obesity was defined by a body mass index (BMI) ≥ 25 kg/m2; visceral obesity was
defined by a waist circumference > 102 cm in males or 88 cm in females. Seventy-one pa-
tients suffering from obesity referred to the Division of Endocrinology of the University of
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Palermo from March 2019 to May 2020 were consecutively included in the correlation anal-
ysis. Among them, there were 40 with visceral obesity and (56%) and 31 without (44%) vis-
ceral obesity. Inclusion criteria were glycated hemoglobin (HbA1c) < 6.5% (48 mmol/mol),
20–70 years in age, and BMI ≥ 25 kg/m2. Exclusion criteria were the presence of diabetes,
systemic inflammatory disease, pregnancy, infectious disease, a personal history of cancer
or multiple endocrine neoplasia type 2, and acute or chronic liver injury defined as the
elevation of transaminases or bilirubin or alkaline phosphatase ≥ 3 above the upper limit
of the normal value.

4.2. Human Biological Sample
4.2.1. Subcutaneous Adipose Tissue (SAT)

Subcutaneous (SAT) adipose tissue biopsies were obtained from seventy-one consent-
ing patients (BMI) ≥ 25 kg/m2): 40 obese and 31 non-obese subjects undergoing elective
open-abdominal and laparoscopy surgery.

4.2.2. Cell Culture: Adipocyte, Adipose Mesenchymal Stem Cells (ASCs),
and Adipose Differentiation

The stromal vascular fraction (SVF) and adipocytes were obtained as previously
described [72]. Briefly, bioptic specimens kept in DMEM/Ham’s F12 1:1 were mechanically
dissected from fibrous material and visible blood vessels, cut into little fragments, and
incubated in PBS Ca2++/Mg++ (phosphate-buffered saline with calcium and magnesium)
(Sigma Chemical, St. Louis, MO, USA) supplemented with 1 mg/mL collagenase type I
(Sigma Chemical, St. Louis, MO, USA) with vigorous shaking (100 cycles/min) for 1 h at
37 ◦C. The samples were filtered and centrifugated to separate adipocytes and free oil from
the SVF (presenting the ASCs).

ASC expansion: After isolation, ASCs were cultured in the complete culture medium,
consisting of Dulbecco’s Modified Eagle Medium (DMEM) and Ham’s F12 with L-glutamine
(Euroclone S.p.a, Pero, MI, Italy) supplemented with 5% fetal bovine serum (FBS, Euroclone
S.p.a, Pero, MI, Italy), and passaged when 80–90% confluence was reached [72]. ASCs
between culture passages four and seven were used in the experiments.

Differentiation protocol: For adipose differentiation, ASCs were cultured in an adi-
pose differentiation medium consisting of DMEM:F12 with 500 µmol/L of 3-isobutyl-
1-methylxanthine (IBMX, Gibco, Gaithersburg, MD, USA), 10−4 mM of dexamethasone
(Sigma-Aldrich, Merck KGaA, Darmstadt, Germany), 100 µM of indomethacin (Sigma-
Aldrich, Merck KGaA, Darmstadt, Germany), and 1 µg/mL of insulin at 37 ◦C in 5% CO2
for up to 21 days. Once the differentiation period had been completed, lipid droplets
were detected by oil red O staining (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany)
according to the manufacturer’s procedures and observed by optical microscopy [72].

Adipocytes:
SATob: adipocytes were isolated from the bioptic SAT of patients suffering from

obesity by centrifugation and filtration, as previously described [72].
AMCsCI: differentiated AMCs derived from ASCs were exposed to 300 U/mL TNFα

treatment during the differentiation period, which we refer to as chronically inflamed
AMCs (AMCsCI)

Positive control cell line: the ASC52telo (SCRC-4000, ATCC, Manassas, VA, USA)
hTERT immortalized adipose-derived mesenchymal stem cell line.

4.2.3. Serum Sample for the Correlation of Visceral Obesity with IL-6 and Irisin
Laboratory Assays

Venous blood was collected from each patient into sterile 5 mL vacutainer serum
separator tubes with clot activator (SST; Becton Dickinson, Franklin Lakes, NJ, USA). Serum
samples were assayed for irisin and IL-6 concentrations using a commercial kit (respectively,
EK-067-29; Phoenix Pharmaceuticals, Karlsruhe, Germany, and electrochemiluminescence
assay, Roche, Milan, Italy) following the manufacturers’ instructions.
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4.3. Cell Treatment: ASC TNFα Stimulation

For the stimulation experiments ASCs52Telo, ASCs, AMCs, and SATob were seeded at a
cell density of 2 × 104/cm2 in six-well cell culture plates. The day after, they were stimulated
with 200, 300, or 500 U/mL TNFα (PeproTech, Inc., London, UK) for up to 48 and 72 h.

Low-chronic-inflammation-mimicking conditions: Differentiated AMCs were kept
under 300 U/mL TNFα for a 21-day differentiation period (referred as to AMCsCI).

Untreated cells were used as controls. (1 U = 2.7 × 105 according to R&D Systems).

4.4. Flow Cytometry Analysis

Single-cell suspensions of ASCs, AMCs, and AMCsCI were obtained, and a DNA
content analysis was performed according to Nicoletti’s protocol. Briefly, 1 × 106 cells were
fixed in 70% ethanol, rehydrated in phosphate-buffered saline (PBS), and then resuspended
in a DNA extraction buffer (with 0.2 M NaHPO4 and 0.1% Tritonx-100 at pH 7.8). After
staining with 1 µg/mL propidium iodide for 5 min, the fluorescence intensity was deter-
mined by analysis on a FACS Calibur flow cytometer (Becton-Dickinson, East Rutherford,
NJ, USA). Data acquisition was performed with CellQuest (Becton Dickinson) software,
and the percentages of G1, S, and G2 phase cells were calculated with the MODFIT-LT
2.0 software program (Verity Software House, Inc., Topsham, ME, USA). The proliferation
index (PI) was measured by the following equation [73]:

PI =
phase G2 num cells

(phase M num cells + phase S num cells)

4.5. Gene Expression: Quantitative Real-Time-PCR (qRT-PCR)

Total RNA was extracted from ASCs with or without 300 U/mL TNFα for up to
72 h, AMCs with or without 300 U/mL TNFα for up to 72 h, and AMCsCI by the RNeasy
kit (Qiagen, Hamburg, Germany), according to the manufacturer’s instructions. The
amplification reaction of genes was performed using the Quantitect SYBR Green PCR
Kit (cod. 204243, Qiagen, Hamburg, Germany) on the RotorGene Q Instrument (Qiagen,
Hamburg, Germany). The amplification of specific genes was confirmed by the melting
curve profiles at the end of each qRT-PCR. Relative expression levels for each gene were
assessed using the 2−∆∆Ct method by normalization for β-actin. The results were presented
as histograms with GraphPad Prism 5 software (GraphPad Software, Inc., La Jolla, CA,
USA). The primers used for qRT-PCR reactions are listed in Table 1.

Table 1. Primer sequences.

Gene Sequence (5′-3′)/Code

MMP-2 QT00088396 Qiagen

MMP-9 QT00011956 Qiagen

NF-Kb
F: GCAGGTTGTTCTGGAAGTTG

MWG
R: CTGGGGTTTTTCCCTCTCTT

TWIST-1
F: GTCCGCAGTCTTACGAGGAG

MWG
R: CTTGAGGGTCTGAATCGGGCT

TIMP-1
F: CTGTTGTTGCTGTGGCTGATA

MWG
R: CCGTCCACAAGCAAGAGT

PPARγ
F: GAGTTCATGCTTGTGAAGGATGC

MWG
R: CGATATCACTGGAGATCTCCGCC

β-actin QT00095431 Qiagen
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4.6. MMP Activity Evaluation: Zymography

AMCs were treated with 300 U/mL TNFα. After treatment, the cells were centrifuged,
and condition media were collected. The protein concentration was evaluated by the
Bradford assay (Bio-Rad Laboratories S.r.l., Segrate, MI, Italy). A total of 40 µg of the
non-reduced protein sample was loaded on 7.5% SDS-polyacrylamide gels containing
1 mg/mL gelatin (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany), following the
Gelatin Zymography Protocol developed by Abcam (https://www.abcam.com/protocols/
gelatin-zymography-protocol, accessed on 24 July 2023). Gels were stained with 0.5%
Coomassie Blue R-250 (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) and destained
in 10% acetic acid. Enzymatic activities appear as clear bands on a dark background. Equal
amounts of cell lysate were loaded for the gelatin zymography test. The data obtained
by densitometry for each band were referred to as the standard protein and expressed
as relative peaks of the area by ImageJ software V1.52. The results were presented as
histograms with GraphPad Prism 5 software (GraphPad Software, Inc., La Jolla, CA, USA).

4.7. Cell Signaling Investigation: Western Blotting

ASCs and AMCs kept under experimental conditions (72 h and 21 days TNFα
300 U/mL) were scraped and incubated in ice for 30 min with RIPA buffer (50 mM Tris-HCl,
pH 7.4, 150 mM NaCl, 1% Nonidet P40) and a protease inhibitor cocktail (Complete EDTA-
free, Roche Molecular Biochemicals, Merck KGaA, Darmstadt, Germany). The total cellular
lysate was centrifuged at 14,000 rpm for 1 h to clear cell debris. The protein concentration
was determined using the Bradford assay. Proteins were denatured in Laemmli sample
buffer (2% SDS, 10% glycerol, 5% 2-mercaptoethanol, 62.5 mM Tris-HCl pH 6.8, 0.004%
bromophenol blue), separated on 12% polyacrylamide gels, transferred to nitrocellulose
membranes (TransBlot Transfer Medium Bio-Rad Laboratories S.r.l., Segrate, MI, Italy), and
blotted with the primary antibodies listed in Table 2. Antigen–antibody complexes were
visualized using the SuperSignal West Femto Maximum Sensitivity Substrate (Pierce) on a
CCD camera (Chemidoc, Bio-Rad Laboratories S.r.l., Segrate, MI, Italy).

Table 2. Primary Antibody codes.

Protein Primary Antibody Code

NF-kB p65 51-0500 Invitrogen
Phospho-p65 14-9864-82 Invitrogen
β-actin 15G5A11/E2 Invitrogen

The ASC52telo (SCRC-4000, ATCC, Manassas, VA, USA) hTERT immortalized adipose
derived mesenchymal stem cell line was used as a positive control. Western blot bands were
quantified by densitometry using ImageJ software V1.52 and the results were presented as
histograms using GraphPad Prism 5 software (California).

4.8. Irisin Production and Secretion: ELISA Assay

Mature adipocytes from SAT from obese patients were exposed to three different
TNFα concentrations, 200, 300, and 500 U/mL. Irisin release at 48 and 72 h was evaluated
by ELISA assay (irisin, recombinant human, mouse, rat, canine ELISA protocol, Phoenix
Pharmaceuticals, Inc., Burlingame, CA, USA), according to the manufacturer’s instructions.

The relative irisin release was evaluated in adipose-differentiated ASCs kept under
different TNFα concentrations (200, 300, and 500 U/mL). The results were presented as
histograms with GraphPad Prism 5 Software (GraphPad Software, Inc., La Jolla, CA, USA).

4.9. Protein Interaction Network and Pathway Representation

Network analysis was performed on the modulated genes coding for the invari-
ant and variant proteins using the STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) website (http://stringdb.org/, accessed on 1 January 2023). The sug-

https://www.abcam.com/protocols/gelatin-zymography-protocol
https://www.abcam.com/protocols/gelatin-zymography-protocol
http://stringdb.org/


Int. J. Mol. Sci. 2023, 24, 12082 14 of 18

gested pathway was presented as a flowchart using SmartDraw Software, LLC (free on
https://www.smartdraw.com/, accessed on 1 April 2023).

4.10. Data Analysis and Statistics

Data are presented as the mean ± SD. All analyses were performed using GraphPad
Prism 5 Software (GraphPad Software, Inc., La Jolla, CA, USA). The statistical analy-
sis was performed with an unpaired T-test or ANOVA test and a Tukey’s post-analysis.
p-values ≤ 0.05 were considered statistically significant. The analysis correlation was per-
formed with SPSS version 19 (SPSS, Inc., Chicago, IL, USA). Data are presented as the mean
and ± SD. The differences between the two groups were evaluated with an unpaired t-test
and the Shapiro–Wilk test. Bivariate correlation analyses were used to identify relationships
between changes in the variables. A p value ≤ 0.05 was considered statistically significant.

5. Conclusions

In conclusion, we speculate that in SAT of patients suffering from obesity, inflammation
leads progressively to AT dysfunction from the earliest stage of adipogenesis differentiation.
TNFα leads to a TIMP-1/TWIST-1 imbalance via the NF-kB pathway, causing downregulation
of the expression of PPARγ, the main adipose-specific marker, and TIMP-1/MMPs imbalance
with the overactivation of MMP-9, the principal cytoskeletal remodeling protein (Figure 6b).
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ECM remodeling, and possible irisin involvement; (b) Flow diagram of the proposed molecular
mechanism correlating TIMP-1 with ECM remodeling, dysregulation, and adipogenesis failure in AT
dysfunction; (c) The flowchart summarizes the responses of pre-adipocytes and adipocytes to TNFα
in healthy and obese patients. The difference in circulating irisin levels in patients suffering from
obesity with or without visceral obesity is highlighted.

It is important to mention that this study did not aim to identify TNFα as the only pro-
inflammatory cytokine responsible for adipose tissue dysfunction. Many other cytokines
contribute to the establishment of the chronically inflamed environment. Our results add
knowledge about the different behaviors of mature adipocytes and their progenitors in
response to a pro-inflamed environment, highlighting different cellular and molecular
contributions to ATD. These findings confirm the importance of acting promptly to address
inflammation and that of two interesting players: TWIST-1 and irisin.

However, there are several limitations to our study. Further silencing experiments are
needed to clarify the role of TWIST-1 as a key regulator of balance in ECM remodeling and a
possible anti-obesity target. Secondly, although the role of irisin as a driver of the browning
of white adipose tissue is largely consistent with the literature, we did not investigate this
aspect. Additionally, we did not examine irisin as a possible pharmacological target but
suggest that irisin is a possible predictive marker of obesity related to systemic and adipose
tissue inflammation. Finally, the small sample size may limit the generalizability of the
results. However, our preliminary data could be considered significant as a basis for future
wider population analyses.
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