Pairs of nontrivial smooth solutions for nonlinear Neumann problems

Calogero Vetro ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123, Palermo, Italy

Abstract

We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator with a reaction term that exhibits strong resonance at infinity. Using variational tools based on the critical point theory, we prove the existence of two nontrivial smooth solutions.

Keywords: Second deformation theorem, strong resonance, nonlinear regularity, C_{c}-condition 2010 MSC: 35J60, 35J65,

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. In this paper we study the following nonlinear Neumann problem:

$$
\begin{equation*}
-\operatorname{div} a(\nabla u(z))=f(z, u(z)) \text { in } \Omega, \quad \frac{\partial u}{\partial n_{a}}=0 \text { on } \partial \Omega . \tag{1}
\end{equation*}
$$

In this problem $a: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a strictly monotone and continuous map which satisfies certain other regularity and growth properties listed in hypotheses $H(a)$ below. These conditions provide a general framework in which we can fit many differential operators of interest such as the p-Laplacian and the (p, q)-Laplacian which appears in many models of physical processes (see [13, 14, 15, 16] and the references therein). The reaction (source) term $f(z, x)$ is a Carathéodory function (that is, $z \rightarrow f(z, x)$ is measurable and $x \rightarrow f(z, x)$ is continuous). We assume that this term is strongly resonant with respect to the principal eigenvalue $\widehat{\lambda}_{1}=0$ of the Neumann p-Laplacian. By $\frac{\partial u}{\partial n_{a}}$ we denote the conormal derivative of u corresponding to the differential operator $\operatorname{div} a(\nabla u)$.

Strongly resonant problems were first considered by Landesman-Lazer [7], who coined the term "strong resonance". Further results were obtained later by Thews [18, Gonçalves-Miyagaki [6] (semilinear equations driven by the Laplacian) and by Bartolo-Benci-Fortunato [2], Filippakis-Gasiński-Papageorgiou [5] (nonlinear equations driven by the p-Laplacian). All these works deal with the Dirichlet problem and multiplicity results were proved in [5, 6. Finally, we mention some recent related works focusing on the so-called double phase operators: Byun-Ryu-Shin [3, Papageorgiou-Rădulescu-Repovš [11, Ragusa-Tachikawa [17] (regularity results), Cencelj-Rădulescu-Repovš [4], Papageorgiou-Rǎdulescu-Repovš [10] (existence of solutions with variable growth conditions).

2. Preliminaries - Hypotheses

Let $\xi \in C^{1}(0,+\infty)$ with $\xi(t)>0$ for all $t>0$ and assume that
$0<\widehat{c} \leq \frac{\xi^{\prime}(t) t}{\xi(t)} \leq c_{0}$ and $c_{1} t^{p-1} \leq \xi(t) \leq c_{2}\left[t^{s-1}+t^{p-1}\right]$ for all $t>0$, with $c_{1}, c_{2}>0,1 \leq s<p<+\infty$.

Email address: calogero.vetro@unipa.it (Calogero Vetro)

The hypotheses on the map $a(\cdot)$ are:
$H(a): a \in C^{1}\left(\mathbb{R}^{N} \backslash\{0\}, \mathbb{R}^{N}\right) \cap C\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ satisfies
(i) $|\nabla a(y)| \leq c_{3} \frac{\xi(|y|)}{|y|}$ for some $c_{3}>0$, all $y \in \mathbb{R}^{N} \backslash\{0\}$;
(ii) $(\nabla a(y) v, v)_{\mathbb{R}^{N}} \geq \frac{\xi(|y|)}{|y|}|v|^{2}$ for all $y \in \mathbb{R}^{N} \backslash\{0\}$, all $v \in \mathbb{R}^{N}$.

Remark 1. These conditions are motivated by the nonlinear regularity theory of Lieberman [8].
These conditions on $a(\cdot)$ and (2) lead to the following properties.
Lemma 1. If hypotheses $H(a)$ hold, then
(a) $y \rightarrow a(y)$ is continuous and maximal monotone;
(b) $|a(y)| \leq c_{4}\left[|y|^{s-1}+|y|^{p-1}\right]$ for all $y \in \mathbb{R}^{N}$, some $c_{4}>0$;
(c) $(a(y), y)_{\mathbb{R}^{N}} \geq \frac{c_{1}}{p-1}|y|^{p}$ for all $y \in \mathbb{R}^{N}$.

If $G(y)=\int_{0}^{1}(a(t y), y)_{\mathbb{R}^{N}} d t$ for all $y \in \mathbb{R}^{N}$, then $\nabla G(y)=a(y)$ and $G(\cdot)$ is convex. So, we have

$$
\begin{equation*}
G(y) \leq(a(y), y)_{\mathbb{R}^{N}} \quad \text { for all } y \in \mathbb{R}^{N} \tag{3}
\end{equation*}
$$

From Lemma 1 and (3), we obtain the following growth properties of $G(\cdot)$.
Corollary 1. $\frac{c_{1}}{p(p-1)}|y|^{p} \leq G(y) \leq c_{5}\left[1+|y|^{p}\right]$ for all $y \in \mathbb{R}^{N}$, some $c_{5}>0$.
Example 1. The following maps $a(y)$ satisfy hypotheses $H(a)$:

$$
\begin{aligned}
& a(y)=|y|^{p-2} y \quad 1<p<+\infty \quad \text { (the } p \text {-Laplacian) } \\
& a(y)=|y|^{p-2} y+|y|^{q-2} y \quad 1<q<p<+\infty \quad(\text { the }(p, q) \text {-Laplacian) } \\
& a(y)=\left[1+|y|^{2}\right]^{\frac{p-2}{2}} y \quad 1<p<+\infty \quad \text { (the modified capillary operator). }
\end{aligned}
$$

Consider the following nonlinear eigenvalue problem:

$$
\begin{equation*}
-\Delta_{p} u(z)=\widehat{\lambda}|u(z)|^{p-2} u(z) \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega . \tag{4}
\end{equation*}
$$

This problem has a smallest eigenvalue $\widehat{\lambda}_{1}=0$ which is isolated and simple. Let $\widehat{u}_{1}=\frac{1}{|\Omega|_{N}^{1 / p}}\left(|\cdot|_{N}\right.$ being the Lebesgue measure on \mathbb{R}^{N}) be the normalized positive principal eigenfunction. Since $\widehat{\lambda}_{1}=0$ is isolated, we can define the second eigenvalue $\hat{\lambda}_{2}>0$ of (4). If $\partial B_{1}^{L^{p}}=\left\{u \in L^{p}(\Omega):\|u\|_{p}=1\right\}$ and $M=W^{1, p}(\Omega) \cap \partial B_{1}^{L^{p}}$, then from Aizicovici-Papageorgiou-Staicu [1] (Proposition 2), we have

Lemma 2. $\widehat{\lambda}_{2}=\inf _{\widehat{\gamma} \in \widehat{\Gamma}} \max _{-1 \leq t \leq 1}\|\nabla \widehat{\gamma}(t)\|_{p}^{p}$ with $\widehat{\Gamma}=\left\{\widehat{\gamma} \in C([-1,1], M): \widehat{\gamma}(-1)=-\widehat{u}_{1}, \widehat{\gamma}(1)=\widehat{u}_{1}\right\}$.
Let $V=\left\{u \in W^{1, p}(\Omega): \int_{\Omega} u d z=0\right\}$ and note that $W^{1, p}(\Omega)=\mathbb{R} \oplus V$. We define

$$
\begin{equation*}
\hat{\lambda}_{V}=\inf \left[\frac{\|\nabla v\|_{p}^{p}}{\|v\|_{p}^{p}}: v \in V, v \neq 0\right] . \tag{5}
\end{equation*}
$$

Lemma 3. $0<\hat{\lambda}_{V} \leq \hat{\lambda}_{2}$.

Proof. Consider a sequence $\left\{v_{n}\right\}_{n \geq 1} \subseteq V$ such that $\left\|v_{n}\right\|_{p}=1$ for all $n \in \mathbb{N}$ and

$$
\left\|\nabla v_{n}\right\|_{p}^{p} \downarrow \hat{\lambda}_{V} \quad \text { as } n \rightarrow+\infty
$$

Evidently $\left\{v_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega)$ is bounded and so we may assume that $v_{n} \xrightarrow{w} v$ in $W^{1, p}(\Omega)$. Hence $\|v\|_{p}=1$ and $v \in V$. From the weak lower semicontinuity of the norm functional we have $\|\nabla v\|_{p}^{p} \leq \widehat{\lambda}_{V}$, hence $\|\nabla v\|_{p}^{p}=\widehat{\lambda}_{V}$ (see (5)). If $\widehat{\lambda}_{V}=0$, then $v=\eta \in \mathbb{R} \backslash\{0\}$, contradicting the fact that $v \in V$. Therefore $0<\widehat{\lambda}_{V}$.

Next suppose that $\hat{\lambda}_{2}<\hat{\lambda}_{V}$. Then according to Lemma 2, we can find $\widehat{\gamma} \in \widehat{\Gamma}$ such that

$$
\begin{equation*}
\|\nabla \widehat{\gamma}(t)\|_{p}^{p}<\widehat{\lambda}_{V} \quad \text { for all } t \in[-1,1] \tag{6}
\end{equation*}
$$

Consider the map $k(t)=\int_{\Omega} \widehat{\gamma}(t)(z) d z$ for all $t \in[-1,1]$. We see that $k(-1)<0<k(1)$ and $k(\cdot)$ is continuous. So, by Bolzano's theorem, we can find $t_{0} \in(-1,1)$ such that $k\left(t_{0}\right)=0$. Then $\widehat{\gamma}\left(t_{0}\right) \in V$ and so $\widehat{\lambda}_{V} \leq\left\|\nabla \widehat{\gamma}\left(t_{0}\right)\right\|_{p}^{p}$, which contradicts (6). Therefore $\widehat{\lambda}_{V} \leq \widehat{\lambda}_{2}$.
Remark 2. If $p=2$, then $\hat{\lambda}_{V}=\hat{\lambda}_{2}$.
The hypotheses on the reaction $f(z, x)$ are the following:
$H: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that $f(z, 0)=0$ for a.a. $z \in \Omega$ and
(i) $|f(z, x)| \leq a(z)\left[1+|x|^{r-1}\right]$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, with $a \in L^{\infty}(\Omega), p<r<p^{*}$;
(ii) if $F(z, x)=\int_{0}^{x} f(z, s) d s$, then there exist functions $F_{ \pm} \in L^{\infty}(\Omega)$ such that $\int_{\Omega} F_{ \pm}(z) d z \leq 0$, $\lim _{x \rightarrow \pm \infty} F(z, x)=F_{ \pm}(z)$ uniformly for a.a. $z \in \Omega ;$
(iii) $F(z, x) \leq \frac{c_{1}}{p(p-1)} \widehat{\lambda}_{V}|x|^{p}$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$;
(iv) there exists a function $\vartheta \in L^{\infty}(\Omega)$ such that $\vartheta(z) \geq 0$ for a.a. $z \in \Omega, \vartheta \not \equiv 0, \liminf _{x \rightarrow 0} \frac{p F(z, x)}{|x|^{p}} \geq \vartheta(z)$ uniformly for a.a. $z \in \Omega$.
Remark 3. In the special case of the p-Laplacian, hypothesis $H(i i)$ implies that at $\pm \infty$ we have strong resonance with respect to $\widehat{\lambda}_{1}=0$, while at $x=0$ we have nonuniform nonresonance with respect to $\widehat{\lambda}_{1}=0$ (see $H(i v))$.

3. Pair of Nontrivial Solutions

Let $\varphi: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the energy Euler functional for problem (1) defined by

$$
\varphi(u)=\int_{\Omega} G(\nabla u) d z-\int_{\Omega} F(z, u) d z \quad \text { for all } u \in W^{1, p}(\Omega)
$$

We have $\varphi \in C^{1}\left(W^{1, p}(\Omega)\right)$. We recall that $\varphi \in C^{1}\left(W^{1, p}(\Omega)\right)$ satisfies the C_{c}-condition if any sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega)$ such that $\varphi\left(u_{n}\right) \rightarrow c \in \mathbb{R}$ and $\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ in $W^{1, p}(\Omega)^{*}$ as $n \rightarrow+\infty$ has a convergent subsequence. It is well-known that strongly resonant problems are characterized by partial loss of compactness. This is evident in the next proposition.

Proposition 1. If hypotheses $H(a), H$ hold and $c<\min \left\{-\int_{\Omega} F_{+} d z,-\int_{\Omega} F_{-} d z\right\}$, then φ satisfies the C_{c}-condition.
Proof. Consider a sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\varphi\left(u_{n}\right) \rightarrow c \in \mathbb{R} \text { and }\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W^{1, p}(\Omega)^{*} \text { as } n \rightarrow+\infty \tag{7}
\end{equation*}
$$

We will show that $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega)$ is bounded. Arguing by contradiction, suppose that $\left\|u_{n}\right\| \rightarrow+\infty$ and let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}, n \in \mathbb{N}$. Then $\left\|y_{n}\right\|=1$ for all $n \in \mathbb{N}$ and so we may assume that

$$
y_{n} \xrightarrow{w} y \text { in } W^{1, p}(\Omega) .
$$

From (7) we have

$$
\begin{align*}
& \varphi\left(u_{n}\right) \leq M_{1} \quad \text { for some } M_{1}>0, \text { all } n \in \mathbb{N} \\
\Rightarrow \quad & \frac{c_{1}}{p(p-1)}\left\|\nabla y_{n}\right\|_{p}^{p}-\int_{\Omega} \frac{F\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d z \leq \frac{M_{1}}{\left\|u_{n}\right\|^{p}} \quad \text { for all } n \in \mathbb{N} . \tag{8}
\end{align*}
$$

On account of hypothesis $H(i i)$, we can find $M_{2}>0$ such that

$$
\begin{equation*}
F(z, x) \leq \max \left\{\left|F_{+}(z)\right|,\left|F_{-}(z)\right|\right\}+1 \quad \text { for a.a. } z \in \Omega, \text { all }|x| \geq M_{2} \tag{9}
\end{equation*}
$$

Combining (9) with hypothesis $H(i)$ we see that

$$
F(z, x) \leq \widehat{a}(z) \quad \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R}, \text { with } \widehat{a} \in L^{\infty}(\Omega) .
$$

Using (9), Fatou's lemma and (8), we have

$$
\begin{aligned}
& \left\|\nabla y_{n}\right\|_{p} \rightarrow 0 \\
\Rightarrow \quad & y_{n} \rightarrow y=\eta \in \mathbb{R} \backslash\{0\} \text { in } W^{1, p}(\Omega)
\end{aligned}
$$

We may assume $\eta>0$ (the reasoning is similar if $\eta<0$). We have $u_{n}(z) \rightarrow+\infty$ for a.a. $z \in \Omega$ and so $F\left(z, u_{n}(z)\right) \rightarrow F_{+}(z)$ for a.a. $z \in \Omega$ (see $\left.H(i i)\right)$. Then by the dominated convergence we have

$$
\begin{equation*}
\int_{\Omega} F\left(z, u_{n}\right) d z \rightarrow \int_{\Omega} F_{+}(z) d z \tag{10}
\end{equation*}
$$

We have

$$
\begin{aligned}
& -\int_{\Omega} F\left(z, u_{n}\right) d z \leq \varphi\left(u_{n}\right) \quad \text { for all } n \in \mathbb{N}, \\
\Rightarrow \quad & -\int_{\Omega} F_{+}(z) d z \leq c \quad(\text { see } 10 \text { and } 7 \text {) })
\end{aligned}
$$

which contradicts the choice of $c \in \mathbb{R}$. Therefore $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega)$ is bounded. So, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } W^{1, p}(\Omega) . \tag{11}
\end{equation*}
$$

From (7) we have

$$
\begin{equation*}
\left|\int_{\Omega}\left(a\left(\nabla u_{n}\right), \nabla h\right)_{\mathbb{R}^{N}} d z-\int_{\Omega} f\left(z, u_{n}\right) h d z\right| \leq \frac{\varepsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \quad \text { for all } h \in W^{1, p}(\Omega) \text { with } \varepsilon_{n} \rightarrow 0^{+} \tag{12}
\end{equation*}
$$

If in (12) we choose $h=u_{n}-u$, pass to the limit as $n \rightarrow+\infty$ and use 11). Then we have $\lim _{n \rightarrow+\infty} \int_{\Omega}\left(a\left(\nabla u_{n}\right), \nabla u_{n}-\nabla u\right)_{\mathbb{R}^{N}} d z=0$ and so $u_{n} \rightarrow u$ in $W^{1, p}(\Omega)$ (see Proposition 2.7 of PapageorgiouRǎdulescu (9). We conclude that φ satisfies the C_{c}-condition.

Now we are ready for the multiplicity theorem.
Theorem 1. If hypotheses $H(a), H$ hold, then problem (1) has at least two nontrivial smooth solutions $u_{0}, \widehat{u} \in C^{1}(\bar{\Omega}), u_{0} \neq \widehat{u}$.

Proof. On account of hypothesis $H(i v)$, given $\varepsilon>0$, we can find $\delta=\delta(\varepsilon)>0$ such that

$$
\frac{1}{p}[\vartheta(z)-\varepsilon]|x|^{p} \leq F(z, x) \quad \text { for a.a. } z \in \Omega, \text { all }|x| \leq \delta
$$

If $\eta \in \mathbb{R}$ with $|\eta| \leq \delta$, then

$$
\begin{aligned}
& \varphi(\eta)=-\int_{\Omega} F(z, \eta) d z \leq \frac{|\eta|^{p}}{p} \int_{\Omega}[\varepsilon-\vartheta(z)] d z<0 \quad \text { for } \varepsilon \in\left(0, \frac{\|\vartheta\|_{1}}{|\Omega|_{N}}\right), \\
\Rightarrow \quad & \inf \left[\varphi(u): u \in W^{1, p}(\Omega)\right]=\widehat{m}<0=\varphi(0) .
\end{aligned}
$$

Since $\widehat{m}<0 \leq \min \left\{-\int_{\Omega} F_{+} d z,-\int_{\Omega} F_{-} d z\right\}$, from Proposition 1 it follows that φ satisfies the $C_{\widehat{m}^{-}}$ condition. By Proposition 5.1.8, p. 302, of Papageorgiou-Rǎdulescu-Repovš [12, we can find $u_{0} \in W^{1, p}(\Omega)$ such that

$$
\begin{aligned}
& \varphi\left(u_{0}\right)=\widehat{m}<0=\varphi(0) \\
\Rightarrow \quad & u_{0} \neq 0, \quad u_{0} \in K_{\varphi}=\left\{u \in W^{1, p}(\Omega): \varphi^{\prime}(u)=0\right\} .
\end{aligned}
$$

The regularity theory of Lieberman [8] implies that $K_{\varphi} \subseteq C^{1}(\bar{\Omega})$. So, $u_{0} \in C^{1}(\bar{\Omega}) \backslash\{0\}$ and is a solution of (1).

If $v \in V$, then using Corollary 1 and H (iii), we have

$$
\begin{align*}
& \varphi(v) \geq \frac{c_{1}}{p(p-1)}\left[\|\nabla v\|_{p}^{p}-\widehat{\lambda}_{V}\|u\|_{p}^{p}\right] \geq 0 \quad(\text { see (5) }), \\
\Rightarrow \quad \inf _{V} \varphi & =0 \tag{13}
\end{align*}
$$

Also, from the previous arguments, we have that there exists $r>0$ such that $\widetilde{m}_{r}=\sup _{\bar{B}_{r} \cap \mathbb{R}} \varphi<0$ ($B_{r}=\left\{u \in W^{1, p}(\Omega):\|u\|<r\right\}$).

We introduce the following set of continuous paths in $W^{1, p}(\Omega)$

$$
\Gamma=\left\{\gamma \in C\left(\bar{B}_{r} \cap \mathbb{R}, W^{1, p}(\Omega)\right):\left.\gamma\right|_{\partial B_{r} \cap \mathbb{R}}=\mathrm{id}\right\}
$$

Suppose that $K_{\varphi}=\left\{0, u_{0}\right\}$ and consider the deformation $h(t, u)$ postulated by the second deformation theorem with $a=\widetilde{m}_{r}<0=b$ (see Papageorgiou-Rǎdulescu-Repovš [12, Theorem 5.3.12, p. 386). On account of Proposition 1,φ satisfies the C_{c}-condition for all $c \in\left[\widetilde{m}_{r}, 0\right)$. We consider the map $\widehat{\gamma}: \bar{B}_{r} \cap \mathbb{R} \rightarrow$ $W^{1, p}(\Omega)$ defined by

$$
\widehat{\gamma}(u)= \begin{cases}u_{0} & \text { if }\|u\| \leq \frac{r}{2} \\ h\left(\frac{2(r-\|u\|)}{r}, \frac{r u}{\|u\|}\right) & \text { if } \frac{r}{2}<\|u\|\end{cases}
$$

If $\|u\|=\frac{r}{2}$, then $h(1,2 u)=u_{0}$ and so $\widehat{\gamma}(\cdot)$ is continuous. Also, for $u \in \partial B_{r} \cap \mathbb{R}$, we have $h(0, u)=u$, hence $\widehat{\gamma} \in \Gamma$. Since the deformation h is φ-decreasing (see Papageorgiou-Rǎdulescu-Repovš [12], p. 386), it follows that

$$
\begin{equation*}
\varphi(\widehat{\gamma}(u))<0 \quad \text { for all } u \in \bar{B}_{r} \cap \mathbb{R} \tag{14}
\end{equation*}
$$

From Papageorgiou-Rǎdulescu-Repovš [12] (p. 327), we know that $\left\{\partial B_{r} \cap \mathbb{R}, \bar{B}_{r} \cap \mathbb{R}\right\}$ link with V. Hence we have

$$
\begin{equation*}
\widehat{\gamma}\left(\bar{B}_{r} \cap \mathbb{R}\right) \cap V \neq \emptyset \tag{15}
\end{equation*}
$$

Combining (13), (14), (15) we have a contradiction. So, there exists $\widehat{u} \in K_{\varphi} \subseteq C^{1}(\bar{\Omega}), \widehat{u} \notin\left\{0, u_{0}\right\}$. This is the second nontrivial smooth solution of (1).

Acknowledgment: The author wishes to thank the two knowledgeable referees for their corrections and remarks.

References

References

[1] S. Aizicovici, N.S. Papageorgiou, V. Staicu, The spectrum and an index formula for the Neumann p-Laplacian and multiple solutions for problems with a crossing nonlinearity, Discrete Contin. Dyn. Syst. 25 (2009) 431-456
[2] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. 7 (1983) 981-1012.
[3] S.-S. Byun, S. Ryu, P. Shin, Calderón-Zygmund estimates for ω-minimizers of double phase variational problems, Appl. Math. Lett. 86 (2018) 256-263.
[4] M. Cencelj, V.D. Rǎdulescu, D.D. Repovš, Double phase problems with variable growth, Nonlinear Anal. 177 (2018) 270-287.
[5] M.E. Filippakis, L. Gasiński, N.S. Papageorgiou, Quasilinear hemivariational inequalities with strong resonance at infinity, Nonlinear Anal. 56 (2004) 331-345.
[6] J.V.A, Gonçalves, O. Miyagaki, Multiple nontrivial solutions of semilinear strongly resonant elliptic equations, Nonlinear Anal. 19 (1992) 43-52.
[7] E.M. Landesman, A.C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970) 609-623.
[8] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991) 311-361
[9] N.S. Papageorgiou, V.D. Rădulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud. 16 (2016) 737-764.
[10] N.S. Papageorgiou, V.D. Rǎdulescu, D.D. Repovš, Double-phase problems with reaction of arbitrary growth, Z. Angew. Math. Phys. 69:108 (2018) 1-21.
[11] N.S. Papageorgiou, V.D. Rǎdulescu, D.D. Repovš, Double-phase problems and a discontinuity property of the spectrum, Proc. Amer. Math. Soc. 147 (2019) 2899-2910.
[12] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovs̆, Nonlinear Analysis - Theory and Methods, Springer, Switzerland (2019).
[13] N.S. Papageorgiou, V.D. Rǎdulescu, D.D. Repovš, ($p, 2$)-equations asymmetric at both zero and infinity, Adv. Nonlinear Anal. 7 (2018) 327-351.
[14] N.S. Papageorgiou, C. Vetro, F. Vetro, Positive solutions for singular ($p, 2$)-equations, Z. Angew. Math. Phys. 70:72 (2019) 1-10.
[15] N.S. Papageorgiou, C. Vetro, F. Vetro, Multiple solutions with sign information for a ($p, 2$)-equation with combined nonlinearities, Nonlinear Anal. (2019), https://doi.org:10.1016/j.na.2019.111716
[16] N.S. Papageorgiou, C. Zhang, Noncoercive resonant ($p, 2$)-equations with concave terms, Adv. Nonlinear Anal. 9 (2020) 228-249.
[17] M.A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020) 710-728.
[18] K. Thews, Non-trivial solutions of elliptic equations at resonance, Proc. Roy. Soc. Edinburgh Sect. A 85 (1980) 119-129.

