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Abstract

We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator with a reaction
term that exhibits strong resonance at infinity. Using variational tools based on the critical point theory,
we prove the existence of two nontrivial smooth solutions.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study the following
nonlinear Neumann problem:

−div a(∇u(z)) = f(z, u(z)) in Ω,
∂u

∂na
= 0 on ∂Ω. (1)

In this problem a : RN → RN is a strictly monotone and continuous map which satisfies certain other
regularity and growth properties listed in hypotheses H(a) below. These conditions provide a general
framework in which we can fit many differential operators of interest such as the p-Laplacian and the
(p, q)-Laplacian which appears in many models of physical processes (see [13, 14, 15, 16] and the references
therein). The reaction (source) term f(z, x) is a Carathéodory function (that is, z → f(z, x) is measurable
and x → f(z, x) is continuous). We assume that this term is strongly resonant with respect to the principal

eigenvalue λ̂1 = 0 of the Neumann p-Laplacian. By ∂u
∂na

we denote the conormal derivative of u corresponding
to the differential operator div a(∇u).

Strongly resonant problems were first considered by Landesman-Lazer [7], who coined the term “strong
resonance”. Further results were obtained later by Thews [18], Gonçalves-Miyagaki [6] (semilinear equations
driven by the Laplacian) and by Bartolo-Benci-Fortunato [2], Filippakis-Gasiński-Papageorgiou [5] (nonlinear
equations driven by the p-Laplacian). All these works deal with the Dirichlet problem and multiplicity results
were proved in [5, 6]. Finally, we mention some recent related works focusing on the so-called double phase
operators: Byun-Ryu-Shin [3], Papageorgiou-Rǎdulescu-Repovš [11], Ragusa-Tachikawa [17] (regularity
results), Cencelj-Rǎdulescu-Repovš [4], Papageorgiou-Rǎdulescu-Repovš [10] (existence of solutions with
variable growth conditions).

2. Preliminaries - Hypotheses

Let ξ ∈ C1(0,+∞) with ξ(t) > 0 for all t > 0 and assume that

0 < ĉ ≤ ξ′(t)t

ξ(t)
≤ c0 and c1t

p−1 ≤ ξ(t) ≤ c2[t
s−1 + tp−1] for all t > 0, with c1, c2 > 0, 1 ≤ s < p < +∞. (2)
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The hypotheses on the map a(·) are:
H(a): a ∈ C1(RN \ {0},RN ) ∩ C(RN ,RN ) satisfies

(i) |∇a(y)| ≤ c3
ξ(|y|)
|y|

for some c3 > 0, all y ∈ RN \ {0};

(ii) (∇a(y)v, v)RN ≥ ξ(|y|)
|y|

|v|2 for all y ∈ RN \ {0}, all v ∈ RN .

Remark 1. These conditions are motivated by the nonlinear regularity theory of Lieberman [8].

These conditions on a(·) and (2) lead to the following properties.

Lemma 1. If hypotheses H(a) hold, then

(a) y → a(y) is continuous and maximal monotone;

(b) |a(y)| ≤ c4[|y|s−1 + |y|p−1] for all y ∈ RN , some c4 > 0;

(c) (a(y), y)RN ≥ c1
p− 1

|y|p for all y ∈ RN .

If G(y) =
∫ 1

0
(a(ty), y)RNdt for all y ∈ RN , then ∇G(y) = a(y) and G(·) is convex. So, we have

G(y) ≤ (a(y), y)RN for all y ∈ RN . (3)

From Lemma 1 and (3), we obtain the following growth properties of G(·).

Corollary 1.
c1

p(p− 1)
|y|p ≤ G(y) ≤ c5[1 + |y|p] for all y ∈ RN , some c5 > 0.

Example 1. The following maps a(y) satisfy hypotheses H(a):

a(y) = |y|p−2y 1 < p < +∞ (the p-Laplacian),

a(y) = |y|p−2y + |y|q−2y 1 < q < p < +∞ (the (p, q)-Laplacian),

a(y) = [1 + |y|2]
p−2
2 y 1 < p < +∞ (the modified capillary operator).

Consider the following nonlinear eigenvalue problem:

−∆pu(z) = λ̂|u(z)|p−2u(z) in Ω,
∂u

∂n
= 0 on ∂Ω. (4)

This problem has a smallest eigenvalue λ̂1 = 0 which is isolated and simple. Let û1 = 1

|Ω|1/pN

(| · |N

being the Lebesgue measure on RN ) be the normalized positive principal eigenfunction. Since λ̂1 = 0 is

isolated, we can define the second eigenvalue λ̂2 > 0 of (4). If ∂BLp

1 = {u ∈ Lp(Ω) : ∥u∥p = 1} and
M = W 1,p(Ω) ∩ ∂BLp

1 , then from Aizicovici-Papageorgiou-Staicu [1] (Proposition 2), we have

Lemma 2. λ̂2 = inf
γ̂∈Γ̂

max
−1≤t≤1

∥∇γ̂(t)∥pp with Γ̂ = {γ̂ ∈ C([−1, 1],M) : γ̂(−1) = −û1, γ̂(1) = û1}.

Let V = {u ∈ W 1,p(Ω) :
∫
Ω
udz = 0} and note that W 1,p(Ω) = R⊕ V . We define

λ̂V = inf

[∥∇v∥pp
∥v∥pp

: v ∈ V, v ̸= 0

]
. (5)

Lemma 3. 0 < λ̂V ≤ λ̂2.

2



Proof. Consider a sequence {vn}n≥1 ⊆ V such that ∥vn∥p = 1 for all n ∈ N and

∥∇vn∥pp ↓ λ̂V as n → +∞.

Evidently {vn}n≥1 ⊆ W 1,p(Ω) is bounded and so we may assume that vn
w−→ v in W 1,p(Ω). Hence

∥v∥p = 1 and v ∈ V . From the weak lower semicontinuity of the norm functional we have ∥∇v∥pp ≤ λ̂V ,

hence ∥∇v∥pp = λ̂V (see (5)). If λ̂V = 0, then v = η ∈ R \ {0}, contradicting the fact that v ∈ V . Therefore

0 < λ̂V .
Next suppose that λ̂2 < λ̂V . Then according to Lemma 2, we can find γ̂ ∈ Γ̂ such that

∥∇γ̂(t)∥pp < λ̂V for all t ∈ [−1, 1]. (6)

Consider the map k(t) =
∫
Ω
γ̂(t)(z)dz for all t ∈ [−1, 1]. We see that k(−1) < 0 < k(1) and k(·) is

continuous. So, by Bolzano’s theorem, we can find t0 ∈ (−1, 1) such that k(t0) = 0. Then γ̂(t0) ∈ V and so

λ̂V ≤ ∥∇γ̂(t0)∥pp, which contradicts (6). Therefore λ̂V ≤ λ̂2.

Remark 2. If p = 2, then λ̂V = λ̂2.

The hypotheses on the reaction f(z, x) are the following:

H: f : Ω× R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and

(i) |f(z, x)| ≤ a(z)[1 + |x|r−1] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω), p < r < p∗;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds, then there exist functions F± ∈ L∞(Ω) such that

∫
Ω
F±(z)dz ≤ 0,

lim
x→±∞

F (z, x) = F±(z) uniformly for a.a. z ∈ Ω;

(iii) F (z, x) ≤ c1
p(p− 1)

λ̂V |x|p for a.a. z ∈ Ω, all x ∈ R;

(iv) there exists a function ϑ ∈ L∞(Ω) such that ϑ(z) ≥ 0 for a.a. z ∈ Ω, ϑ ̸≡ 0, lim inf
x→0

pF (z, x)

|x|p
≥ ϑ(z)

uniformly for a.a. z ∈ Ω.

Remark 3. In the special case of the p-Laplacian, hypothesis H (ii) implies that at ±∞ we have strong

resonance with respect to λ̂1 = 0, while at x = 0 we have nonuniform nonresonance with respect to λ̂1 = 0
(see H (iv)).

3. Pair of Nontrivial Solutions

Let φ : W 1,p(Ω) → R be the energy Euler functional for problem (1) defined by

φ(u) =

∫
Ω

G(∇u)dz −
∫
Ω

F (z, u)dz for all u ∈ W 1,p(Ω).

We have φ ∈ C1(W 1,p(Ω)). We recall that φ ∈ C1(W 1,p(Ω)) satisfies the Cc-condition if any sequence
{un}n≥1 ⊆ W 1,p(Ω) such that φ(un) → c ∈ R and (1 + ∥un∥)φ′(un) → 0 in W 1,p(Ω)∗ as n → +∞ has a
convergent subsequence. It is well-known that strongly resonant problems are characterized by partial loss
of compactness. This is evident in the next proposition.

Proposition 1. If hypotheses H(a), H hold and c < min{−
∫
Ω
F+dz,−

∫
Ω
F−dz}, then φ satisfies the

Cc-condition.

Proof. Consider a sequence {un}n≥1 ⊆ W 1,p(Ω) such that

φ(un) → c ∈ R and (1 + ∥un∥)φ′(un) → 0 in W 1,p(Ω)∗ as n → +∞. (7)
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We will show that {un}n≥1 ⊆ W 1,p(Ω) is bounded. Arguing by contradiction, suppose that ∥un∥ → +∞
and let yn = un

∥un∥ , n ∈ N. Then ∥yn∥ = 1 for all n ∈ N and so we may assume that

yn
w−→ y in W 1,p(Ω).

From (7) we have

φ(un) ≤ M1 for some M1 > 0, all n ∈ N,

⇒ c1
p(p− 1)

∥∇yn∥pp −
∫
Ω

F (z, un)

∥un∥p
dz ≤ M1

∥un∥p
for all n ∈ N. (8)

On account of hypothesis H (ii), we can find M2 > 0 such that

F (z, x) ≤ max{|F+(z)|, |F−(z)|}+ 1 for a.a. z ∈ Ω, all |x| ≥ M2. (9)

Combining (9) with hypothesis H (i) we see that

F (z, x) ≤ â(z) for a.a. z ∈ Ω, all x ∈ R, with â ∈ L∞(Ω).

Using (9), Fatou’s lemma and (8), we have

∥∇yn∥p → 0,

⇒ yn → y = η ∈ R \ {0} in W 1,p(Ω).

We may assume η > 0 (the reasoning is similar if η < 0). We have un(z) → +∞ for a.a. z ∈ Ω and so
F (z, un(z)) → F+(z) for a.a. z ∈ Ω (see H (ii)). Then by the dominated convergence we have∫

Ω

F (z, un)dz →
∫
Ω

F+(z)dz. (10)

We have

−
∫
Ω

F (z, un)dz ≤ φ(un) for all n ∈ N,

⇒ −
∫
Ω

F+(z)dz ≤ c (see (10) and (7)),

which contradicts the choice of c ∈ R. Therefore {un}n≥1 ⊆ W 1,p(Ω) is bounded. So, we may assume that

un
w−→ u in W 1,p(Ω). (11)

From (7) we have∣∣∣∣∫
Ω

(a(∇un),∇h)RNdz −
∫
Ω

f(z, un)hdz

∣∣∣∣ ≤ εn∥h∥
1 + ∥un∥

for all h ∈ W 1,p(Ω) with εn → 0+. (12)

If in (12) we choose h = un − u, pass to the limit as n → +∞ and use (11). Then we have
lim

n→+∞

∫
Ω
(a(∇un),∇un − ∇u)RNdz = 0 and so un → u in W 1,p(Ω) (see Proposition 2.7 of Papageorgiou-

Rǎdulescu [9]). We conclude that φ satisfies the Cc-condition.

Now we are ready for the multiplicity theorem.

Theorem 1. If hypotheses H(a), H hold, then problem (1) has at least two nontrivial smooth solutions
u0, û ∈ C1(Ω), u0 ̸= û.
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Proof. On account of hypothesis H (iv), given ε > 0, we can find δ = δ(ε) > 0 such that

1

p
[ϑ(z)− ε]|x|p ≤ F (z, x) for a.a. z ∈ Ω, all |x| ≤ δ.

If η ∈ R with |η| ≤ δ, then

φ(η) = −
∫
Ω

F (z, η)dz ≤ |η|p

p

∫
Ω

[ε− ϑ(z)]dz < 0 for ε ∈
(
0,

∥ϑ∥1
|Ω|N

)
,

⇒ inf[φ(u) : u ∈ W 1,p(Ω)] = m̂ < 0 = φ(0).

Since m̂ < 0 ≤ min{−
∫
Ω
F+dz,−

∫
Ω
F−dz}, from Proposition 1 it follows that φ satisfies the Cm̂-

condition. By Proposition 5.1.8, p. 302, of Papageorgiou-Rǎdulescu-Repovš [12], we can find u0 ∈ W 1,p(Ω)
such that

φ(u0) = m̂ < 0 = φ(0),

⇒ u0 ̸= 0, u0 ∈ Kφ = {u ∈ W 1,p(Ω) : φ′(u) = 0}.

The regularity theory of Lieberman [8] implies that Kφ ⊆ C1(Ω). So, u0 ∈ C1(Ω) \ {0} and is a solution
of (1).

If v ∈ V , then using Corollary 1 and H (iii), we have

φ(v) ≥ c1
p(p− 1)

[
∥∇v∥pp − λ̂V ∥u∥pp

]
≥ 0 (see (5)),

⇒ inf
V

φ = 0. (13)

Also, from the previous arguments, we have that there exists r > 0 such that m̃r = sup
Br∩R

φ < 0

(Br = {u ∈ W 1,p(Ω) : ∥u∥ < r}).
We introduce the following set of continuous paths in W 1,p(Ω)

Γ =

{
γ ∈ C(Br ∩ R,W 1,p(Ω)) : γ

∣∣∣
∂Br∩R

= id

}
.

Suppose that Kφ = {0, u0} and consider the deformation h(t, u) postulated by the second deformation
theorem with a = m̃r < 0 = b (see Papageorgiou-Rǎdulescu-Repovš [12], Theorem 5.3.12, p. 386). On
account of Proposition 1, φ satisfies the Cc-condition for all c ∈ [m̃r, 0). We consider the map γ̂ : Br ∩R →
W 1,p(Ω) defined by

γ̂(u) =


u0 if ∥u∥ ≤ r

2
,

h

(
2(r − ∥u∥)

r
,
ru

∥u∥

)
if

r

2
< ∥u∥.

If ∥u∥ =
r

2
, then h(1, 2u) = u0 and so γ̂(·) is continuous. Also, for u ∈ ∂Br ∩ R, we have h(0, u) = u,

hence γ̂ ∈ Γ. Since the deformation h is φ-decreasing (see Papageorgiou-Rǎdulescu-Repovš [12], p. 386), it
follows that

φ(γ̂(u)) < 0 for all u ∈ Br ∩ R. (14)

From Papageorgiou-Rǎdulescu-Repovš [12] (p. 327), we know that {∂Br∩R, Br∩R} link with V . Hence
we have

γ̂(Br ∩ R) ∩ V ̸= ∅. (15)

Combining (13), (14), (15) we have a contradiction. So, there exists û ∈ Kφ ⊆ C1(Ω), û ̸∈ {0, u0}. This
is the second nontrivial smooth solution of (1).

Acknowledgment: The author wishes to thank the two knowledgeable referees for their corrections and
remarks.
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