
Safety Science 158 (2023) 105969

A
0
n

Contents lists available at ScienceDirect

Safety Science

journal homepage: www.elsevier.com/locate/safety

Macroscopic and microscopic dynamics of a pedestrian cross-flow: Part II,
modelling
Francesco Zanlungo a,b,∗, Claudio Feliciani c, Zeynep Yücel b, Katsuhiro Nishinari c,d,
Takayuki Kanda e

a International Professional University of Technology in Osaka, 3-3-1 Umeda, Kita-ku, 530-0001, Osaka, Japan
b Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku, 700-8530, Okayama, Japan
c Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan
d Department of Aeronautics and Astronautics, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 153-8656, Tokyo, Japan
e Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyo-ku, 606-8317, Kyoto, Japan

A R T I C L E I N F O

Keywords:
Pedestrian dynamics
Cross-flow
Body orientation
Self-organising patterns

A B S T R A C T

In this work, we try to reproduce empirical results concerning the behaviour of a human crowd in a cross-flow
using a hierarchy of models, which differ in the details of the body shape (using a disk-shaped body vs a more
realistic elliptical shape) and in how collision avoiding is performed (using only information regarding ‘‘centre
of mass’’ distance and velocity, or actually introducing body shape information). We verified that the most
detailed model (i.e., using body shape information and an elliptical body) outperforms in a significant way
the simplest one (using only centre of mass distance and velocity, and disk-shaped bodies). Furthermore, we
observed that if elliptical bodies are introduced without introducing such information in collision avoidance,
the performance of the model is relatively poor. Nevertheless, the difference between the different models
is relevant only in describing the ‘‘tails’’ of the observable distributions, suggesting that the more complex
models could be of practical use only in the description of high density settings. Although we did not calibrate
our model in order to reproduce ‘‘stripe formation’’ self-organising patterns observed in the crossing area, we
verified that they emerge naturally in all models.
1. Introduction

Numerical simulation has become a common practice in the de-
sign of pedestrian facilities. Several commercial and non-commercial
crowd simulation software are available and used in the construction
of train/metro stations, shopping malls, stadia, etc. or to study past
accidents (Lovreglio et al., 2020). Crowd simulators are used in a
variety of contexts, including urban planning (Arisona et al., 2012),
performance assessment of transportation facilities (Hoy et al., 2016)
and, more recently, evaluation of policies preventing the spread of
infectious diseases (Comai et al., 2020). However, due to their impor-
tance in terms of safety, evacuation scenarios are still the ones at which
crowd simulations are typically targeted. Due to the widespread use
of crowd simulators and the legal implications in case of accidents,
a standard for the validation of evacuation codes has been recently
proposed (ISO20414 (International Organization for Standardization,
2020)). This shows that simulation models have gradually moved from
a purely theoretical topic discussed among researchers to an instrument
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employed by facility managers, whose validation criteria are defined
by international standards. As such, the accuracy of simulation models
plays an utmost role now than ever before. In this context, we should
note that although the increasing use in realistic scenarios partially
proves that simulation software have reached a sufficient degree of
quality, they are still far from being perfect. The Social Force Model
(SFM) (Helbing and Molnar, 1995), which is commonly used in com-
mercial applications, has still many limitations and in this work we
will discuss them and propose an approach which aims at highlighting
behavioural features which are most needed in a pedestrian model.

To allow a critical assessment of the model proposed here, we
will study the behaviour of a pedestrian crowd in a relatively simple
geometry, the crossing area of two orthogonal corridors, each one char-
acterised by a uni-directional flow. This is obviously an extremely ide-
alised condition, since in the real world we do not often have perfectly
orthogonal corridors and the ones existing are often created in large
areas where people arrive from several directions heading to different
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destinations. Nevertheless, the cross-flow scenario represents a good
trade-off between a simple experimental setup and realistic observed
behaviour. Considering the complex interactions among pedestrians,
which require both anticipatory and collision avoidance abilities, we
believe the fundamental behaviour observed in crowds in such a setup
is not much different than a real scenario, especially when people are
heading towards a specific destination such as in evacuations.

However, despite its remarkable properties, the cross-flow has not
been explored in detail in the literature and the few studies considering
this geometry have mostly analysed only macroscopic quantities, often
as part of a comparison with other geometries, without discussing
its properties on the microscopic level (Cao et al., 2017, 2018). On
the other hand, most studies in pedestrian dynamics focus either on
the behaviour of pedestrians in a simpler geometry, a single corridor
(either in the uni- or bi-directional (Zhang et al., 2012; Feliciani and
Nishinari, 2016; Murakami et al., 2021) case), or on possible variations
of the (mostly uni-directional) bottle-neck/evacuation from a room
scenario (Seyfried et al., 2009; Adrian et al., 2020; Feliciani et al.,
2020b).

All the above cases are obviously very interesting and still present
open questions. Even the behaviour in a simple corridor is not com-
pletely understood; see for example many works discussing condi-
tions causing the observed variations in fundamental diagrams (den-
sity/velocity relations) (Chattaraj et al., 2009; Fujita et al., 2019; Ye
et al., 2021). Furthermore, when a second, opposite, flow is allowed,
the dynamics becomes considerably more complex, and possibly not
completely feasible to be analysed in controlled experiments (due to so-
cial norms on walking sides (Zanlungo et al., 2012), stronger influence
of social groups (Zanlungo et al., 2020), etc.).

When variables accounting for conditions close to reality are further
added, things get even more complex, since route choice (Crociani
et al., 2016) or exit selection (Bode et al., 2015), walking impair-
ment or disabilities (Geoerg et al., 2019), collaborative vs competitive
behaviours (Von Krüchten and Schadschneider, 2017), level of com-
petitiveness (Feliciani et al., 2020b), social bonds (Ye et al., 2021;
Zanlungo et al., 2014, 2015; Zanlungo and Kanda, 2015; Zanlungo
et al., 2017a, 2019), available information (Feliciani et al., 2020a), etc.
have to be taken into account; all aspects that may even be impossible
to realistically reproduce as a whole in a controlled experiment setting.

Nevertheless, all the uni-directional settings share a strongly sim-
plifying feature, namely that all pedestrians have roughly the same
goal, and as a result have very similar velocities. While in general
a collision avoidance model needs information concerning relative
distance and velocity, as soon as all the pedestrians have similar
velocities, the relative velocity may be (at least in a first, rough zeroth-
order approximation) ignored. Although in the bi-directional corridor
setting pedestrians are split into two streams with opposite goals and
thus roughly opposite velocities, self-organisation (either induced by
collision avoidance or, on a much faster scale, by social norm (Zanlungo
et al., 2012)) causes the streams to spatially separate. Although the
time scale of this separation is a problem that still needs to be fully
addressed, the ‘‘stationary state’’ is still (in a first approximation)
fundamentally uni-directional (Feliciani et al., 2018).

The above reasons explain why many research works may still rely
on the ‘‘Circular Specification’’ (CS) (Helbing and Molnar, 1995) of
the Social Force Model, although this model ignores relative velocity
and may thus not be able to describe collision scenarios with a more
complex dynamics (Johansson et al., 2007; Zanlungo et al., 2011).

On the other hand, the geometry studied in this work naturally
induces interactions in which pedestrians in different flows have ve-
locity vectors with relative angles ≈ 𝜋∕2, and since, differently from
the single corridor bi-directional scenario, it does not present a trivial
solution in which two continuously flowing streams are physically
separated by a single stationary boundary, it does not allow for the
2

above simplification (i.e., ignoring relative velocity).
Previous, although preliminary, studies suggest anyway the emer-
gence of a self-organising pattern that reduces the interactions between
the streams while optimising the overall flow, namely the presence
of ‘‘diagonal stripes’’ (Naka, 1977; Ando et al., 1988; Helbing et al.,
2005). This behaviour, which is well-known to be used in ‘‘centrally
organised’’ marching parades (Rokko High School, 2017), deserves
to be deeply studied in self-organising pedestrian crowds. Theoreti-
cal justification for the emergence of such a pattern can be found
in Cividini et al. (2013a), Cividini and Appert-Rolland (2013) (using
a discrete lattice model), Cividini et al. (2013b) (using a mean field
approach), Hittmeir et al. (2016) (using a partial differential equation
model) and Totzeck (2019) (using an an-isotropic agent model). Such a
pattern has also been reported in a very recent experimental analysis,
which focuses in particular on the relation between stripe orientation
and the crossing angle (Mullick et al., 2022). On the other hand, this
work focuses on density conditions while keeping the crossing angle
fixed at 𝜋∕2.

In a previous work (Zanlungo et al., 2022), we analysed six different
experimental conditions of the crossing scenario. In each condition, we
changed the pedestrian density in the flows (while keeping the density
equal between the flows), and we repeated the experiment six times for
each condition. The analysis was based on the statistical study of nine
different macroscopic and microscopic observables. Some of them are
quite standard in pedestrian studies (evolution of density in time, speed
distribution), while others are studied less often, such as the probability
distribution of distances between first neighbours (either in the same
or in the crossing flow), and the distribution of the velocity direction.
Other features have, at least to our knowledge, been explored even less
often, such as the distribution of relative position angles between first
neighbours (either in the same or in the crossing flow). Finally, as we
believe that, at least in the high density regime, the detailed orientation
and movement of the body may play a role in collision avoidance, we
studied the body orientation angle, and its deviation with respect to the
velocity direction.

In this work, we attempt to explain our findings through the use
of computational models. In this respect, we would like to stress that
it is not our intention to introduce a new ‘‘better’’ or ‘‘best’’ collision
avoidance model, and in particular not a general purpose model, but a
model that may allow us to explain the observed data, with particular
attention to those data that have not been reported before (orientation
and relative angles).

In this respect, we have decided to use as a starting point the ‘‘Colli-
sion Prediction’’ (CP) formulation of the Social Force Model (Zanlungo
et al., 2011). We use this model for two reasons: (1) it is a concep-
tually simple (although not necessarily trivial from a computational
viewpoint) model that predicts, based on a linear approximation using
current relative position and velocity, the future possible occurrence of
a collision, and generates a force ‘‘opposite to the collision’’, and it is
thus a possible way of overcoming the limitations of the CS Social Force
Model specification while preserving a similar conceptual framework;
(2) it fairly reproduces the emergence of self-organising stripes in a
crossing scenario (Zanlungo, 2007b,a; Menge CrowdSim, 2014).

Nevertheless, as the model does not include a specific description
of the shape of the human body, nor a description of its orientation
dynamics, we modify and extend it to take these aspects in consider-
ation. As stated above, the proposed model is more an ‘‘explanation
tool’’ than a ‘‘computational tool’’ to be used for practical purposes.
We believe, based on the discussion above and the analysis to come
in the rest of this work, that a model of collision avoidance that may
properly describe the studied behaviour has to: (1) rely on information
concerning relative position, velocity body shape and orientation to
understand the possibility of a collision, and (2) determine the variation
in velocity and orientation that may avoid such a collision. Our model
is based on a conceptually simple implementation of these principles,
although not necessarily in the most efficient or practical way.
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Fig. 1. (a): Schematic illustration of the experimental setup. To simplify the representation, only a limited number of pedestrians is given for reference. Width was set as 𝑤 = 3
m for all experiments, while the size of the starting areas was varied using different values of length 𝑙, thus modifying the initial density in each unidirectional flow. (b): frame
showing a specific moment (shortly after the start) in the case of an experiment with 𝜌𝐼 = 1.5 ped/m2 (length of the starting area set at 𝑙 = 6.0 m). The size of the frame
corresponds roughly to the blue area shown in the schematic representation in (a). Those participants wearing a cap being neither red nor yellow were wearing the tablet devices
used to obtain body orientation (through the in-built gyroscope). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
2. Experiments

The model calibration and evaluation performed in this work are
based on an experimental campaign aimed to study the behaviour of
crowds in a cross-flow scenario, which is shortly described in this
section. Details on experimental setup, procedure, participants and data
collection are presented by Zanlungo et al. (2022) where a detailed
definition of observables is also provided along with a presentation of
the empirical results. In this section, only information relevant to the
understanding of the data used in this work is presented, and readers
interested in subtle empirical aspects are addressed to Zanlungo et al.
(2022).

To reproduce the dynamics observed in an orthogonal and sym-
metric cross-flow geometry, two unidirectional flows were created
by having participants line up in ‘‘corridor’’-like waiting areas. Each
waiting area had an equal width 𝑤 = 3.0 m and participants moved
by walking straight between the lines delimiting both sides. Both
unidirectional flows crossed perpendicularly in a specific area where
trajectories of participants were collected. A schematic representation
of the experimental setup is presented in Fig. 1(a) and a top-view image
extracted from the video of an experiment is also provided in Fig. 1(b).

Density was varied by changing the length of each starting area.
For instance, the highest density tested, i.e. 𝜌𝐼 = 2.5 ped/m2, was
created by restricting participants from the entrance to the central area
to a distance of 4.5 m. Similarly, in the case of the lowest density,
i.e. 𝜌𝐼 = 0.25 ped/m2, participants were able to line up over a distance
of 36 m. Experiments had been designed to have 27 participants in each
area (thus, 54 in total), with the aim to create six different density
conditions: 𝜌𝐼 = 0.25, 𝜌𝐼 = 0.5, 𝜌𝐼 = 1, 𝜌𝐼 = 1.5, 𝜌𝐼 = 2 and
𝜌𝐼 = 2.5 ped/m2. However, as no cancellation occurred on the day of
the experiments, all 56 present participants took part in the experiment,
taking real density slightly above the designed figures. Nonetheless, to
keep the presentation of the results clear, original design densities are
used to label each experiment.

Participants were instructed on how to align at each density con-
figuration and were simply asked to walk straight and pass the central
area after hearing the start signal. Care was taken to ensure that they
would not stop after crossing the area to avoid a building up of den-
sity obstructing motion. Density conditions were randomly changed to
avoid participants to anticipate the condition coming next. In general,
given the employed procedure and geometry, it is quite unlikely that
3

participants were able to learn an ‘‘optimal strategy’’ from the first
to the last trial. For each density condition 6 trials were performed,
with the only exception of 𝜌𝐼 = 0.25 ped/m2 where the number was
increased to 8.

Marking was performed in the starting and central areas, both to
direct participants in the right direction and to allow a qualitative
inspection of the experiments by checking the videos. In particular,
given the importance of the central area a clearly recognisable colour
was preferred (pink, as seen in Fig. 1(b)). Also, due to the strong
interactions observed in the crossing area and to its importance in the
frame of data collection and analysis, this region has been delimited
using chain partitions (see Fig. 1(b)). It should be nonetheless remarked
that chain partitions were low in height, and thus some participants
were able to enter the ‘‘forbidden region’’ outside the crossing area by
slightly bending their bodies. This detail was taken into consideration
both in data analysis (definition of the density observable) and in
simulation settings, as explained below.

Trajectories of participants in the central area were extracted using
PeTrack software (Boltes et al., 2010; Boltes and Seyfried, 2013) using
caps as markers. In addition, 9 participants were equipped with tablets,
fixed to their chest through a bib, and the tablets’ built-in gyroscope
was used to measure the angular velocity of the upper part of the body
and eventually gain body orientation. Data relative to body motion
were synchronised with trajectories, thus allowing to know the position
and body orientation at any given time for participants using the tablet.
More information on data extraction and pre-processing is provided
by Zanlungo et al. (2022), with details on the use of tablets to measure
body orientation are discussed by Nagao et al. (2018), Feliciani and
Nishinari (2022).

The data set is freely available at Feliciani et al. (2022).

3. Observables

In our work we use 9 observables to quantify cross-flow dynamics.
In this section, we introduce them providing a qualitative description
of their definition and meaning, while a detailed, operative and quan-
titative definition may be found in Zanlungo et al. (2022). The names
and symbols of all observables are summarised in Table 1. Figs. 2
and 3 explain in a graphical way definitions of angles, signs and first

neighbours.
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Fig. 2. Graphical definition of observables 𝜃𝑣, 𝜃 and 𝛥𝜃. 𝜃 is defined as the angle between the normal to the pedestrian chest 𝐧 and the corridor axis 𝑦 corresponding to the
pedestrian’s flow. 𝜃𝑣 is defined as the angle between the velocity 𝐯 and 𝑦, while 𝛥𝜃 is defined as the (modulo 2𝜋) difference between 𝜃 and 𝛥𝜃. Angles are defined as positive
when spanning in the direction of the 𝑥 axis, the latter showing the direction from which the crossing pedestrians are coming. To better clarify the definition, (a) shows the angle
definitions for pedestrians that see the crossing flow as in-coming from their right, while (b) shows the angle definitions for pedestrians that see the crossing flow as in-coming
from their left. Arrows starting from the 𝑦 axis represent positive angles, arrows ending on the 𝑦 axis negative ones.
Fig. 3. Graphical definition of observables 𝛿𝑠, 𝛿𝑜 and 𝜙𝑠 and 𝜙𝑜. First neighbours are defined as ‘‘the closest pedestrian in the direction of motion’’, i.e. in the growing 𝑦 directions
(thus the dashed grey area is ignored), and differentiated as belonging to the same or opposite flows. Pedestrians belonging to different flows are shown in different colours. Angle
signs are defined as in Fig. 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Summary of observables.

Name Symbol

Density in the crossing area 𝜌
Exit time 𝐸𝑡
Pedestrian speed 𝑣
Velocity direction angle 𝜃𝑣

Body orientation 𝜃
Difference between 𝜃 and 𝜃𝑣 𝛥𝜃
Distance to the first neighbour in the same flow 𝛿𝑠

Distance to the first neighbour in the crossing flow 𝛿𝑜

Same flow first neighbour relative angle 𝜙𝑠

Crossing flow first neighbour relative angle 𝜙𝑜
4

The density in the crossing area 𝜌(𝑡) (1) is the time dependence of
the number of pedestrians tracked at each time in the crossing region
divided by the area of such region, and it is measured in ped/m2. This
is the only macroscopic (i.e., defined at the crowd-level, and not at
the individual pedestrian-level) observable that we use. Nevertheless,
it is strongly related to a microscopic observable, the exit time (from
the tracking area) 𝐸𝑡, and we will sometimes refer also to the latter
observable because it allows for a more straightforward definition of a
probability distribution.

By 𝑣 we denote the pedestrian speed (2), whose probability distri-
bution is denoted with 𝑃 (𝑣), a notation used also for all the other
pedestrian-level (microscopic) observables defined below.

To investigate also the direction of the pedestrian velocity, we study
the velocity direction angle 𝜃𝑣 (3). This angle assumes values in [−𝜋, 𝜋),
𝜃𝑣 = 0 denoting movement along the corridor axis. The angle is defined
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in such a way that 𝜃𝑣 > 0 denotes angles in the direction of the other
flow is coming from (Fig. 2).

A subset of ten subjects was carrying a sensor that allowed us to
know their body orientation. This is denoted with 𝜃 (4), assuming values
in [−𝜋, 𝜋). Here 𝜃 = 0 corresponds to the state in which the normal to
the pedestrian chest is aligned with the corridor’s axis. Again, 𝜃 > 0
denotes angles in the direction the other flow is coming from.

The difference between 𝜃 and 𝜃𝑣 is defined as 𝛥𝜃 (5) in such a way
that, again, −𝜋 ≤ 𝛥𝜃 < 𝜋.

For all pedestrians we also measure, as a vector, the distance to
their first neighbours, distinguishing between neighbours in the same
flow and in the crossing flow (refer to Fig. 3 and, for further details,
to Zanlungo et al. (2022)). In order to identify the presence of a self-
organising pattern, neighbours are defined to be other pedestrians on
he front of the pedestrian under consideration, i.e., located in the
irection of motion, as identified by the corridor’s axis. In such a way,
f a stripe pattern emerges, there will be a peak in the relative angle
istribution corresponding to the stripe axis (if also neighbours on the
ack were present such a peak would be duplicated by symmetry).

The magnitude of the relative distance to the first neighbour in the same
low is denoted as 𝛿𝑠 (6), while the magnitude of the relative distance
o the first neighbour in the crossing flow is denoted as 𝛿𝑜 (7). The angles

that these distance vectors form with the corridor axis are, respectively,
the same flow first neighbour relative angle 𝜙𝑠 (8) and crossing flow first
neighbour relative angle 𝜙𝑜 (9). These angles are defined to assume values
in [−𝜋∕2, 𝜋∕2), 𝜙 = 0 identifying the corridor axis and 𝜙 > 0 the
direction the other flow is coming from.

4. Computational models

Here we provide a short description of the main features of the mod-
els we use to reproduce and hopefully understand cross-flow dynamics.
For the operational details of the model implementation, we refer to
Appendix C.

The CP model, introduced in its preliminary form by Zanlungo
(2007b,a), and developed by Zanlungo et al. (2011), brings the concept
of collision avoidance as a way to modify the velocity to avoid a
‘‘future predicted collision’’ (Reynolds, 1987; Van Den Berg et al.,
2011; Curtis and Manocha, 2014) in the SFM framework. Using relative
velocity information, it improves with respect to the original SFM
specification in describing non-trivial situations (Zanlungo et al., 2011)
(for a more straightforward modification of SFM to include velocity
see Johansson et al. (2007)). It qualitatively reproduces the cross-
flow stripe pattern (Zanlungo, 2007b,a), in a way that, at least from
a qualitative viewpoint appears to be ‘‘more smooth’’ than in other
collision avoidance models (Rokko High School, 2017).

The CP model intentionally does not consider the explicit shape or
dimension of the pedestrians’ bodies in the prediction of the collision.
Actually, the predicted ‘‘collision’’ refers to a point of future maximum
approach based on a linear velocity and point-like body approximation.
The ‘‘repulsive’’ forces of SFM are then applied using such future
‘‘approach distance’’. As discussed by Zanlungo (2007b,a), Zanlungo
et al. (2011), this is done to introduce in the SFM framework the
‘‘anticipation’’ of a collision, and it is intended to reproduce human
behaviour in low-medium density range.

Nevertheless, at higher density, when collisions may happen in a
short time, it has to be expected that the body shape and orientation
have to be taken into consideration. For example, in the data analysis,
reported in Zanlungo et al. (2022) we have seen that the deviation
between the body orientation and the velocity, which is measured as
𝛥𝜃, increases with density, and we have also seen that the deviation
between the body orientation and the ‘‘direction to the goal’’ (corri-
dor axis), which is measured as 𝜃, increases with density, although
ess strongly. One of the purposes of this work is to investigate the
5

mportance of this degree of freedom in crowd dynamics. (
There are a few subtle points to be considered when we analyse
the importance of body orientation in crowd dynamics. It is clear
that, as long as we know that body orientation and velocity orienta-
tion are considerably not aligned (as shown in the statistical analysis
reported by Zanlungo et al. (2022)), a model according to which
the two are identified is not completely satisfying from a scientific
viewpoint (Yamamoto et al., 2019). Nevertheless, this does not imply
that such a model may not be adequate for most practical purposes.
A (non-obese, healthy, normally walking) person, normally occupies
a larger ‘‘cross-section’’ orthogonal to motion if body orientation and
velocity are aligned. For this reason, a model in which bodies are
circular and orientation is simply ignored may, in some geometrical
and density settings, perform better than a model with more realistic
body dynamics; and may even better fit real data. Nevertheless, this
could lead to an over-fitting problem, i.e., the model could fail in
describing more challenging conditions in which body orientation may
not be ignored anymore. Furthermore, in such conditions, pedestrians
may take advantage of their body asymmetry by rotating to decrease
their ‘‘cross-section’’ beyond the one of a circular body, creating further
differences between the two models (Yamamoto et al., 2019).

The discussion above shows clearly that both factors, namely the
deviation between velocity and body orientation, denoted by us with
𝛥𝜃, and the ‘‘absolute’’ (i.e., with respect to the goal, or main walking
direction) deviation 𝜃, play an important role. Nevertheless, it is not
clear, just by analysing the data reported by Zanlungo et al. (2022),
to understand if we are studying conditions in which proper intro-
duction of the body direction degree of freedom and of its dynamics
are necessary to reproduce crowd behaviour. For this reason, we are
going to introduce a class of models of increasing complexity, to try
to understand which elements are necessary to describe the observed
behaviour.

To simplify, we may say that we want to compare the CP model (Zan-
lungo et al., 2011), that did not take into consideration body orien-
tation and its dynamics, with a model that includes such degrees of
freedom and their dynamics. Anyway, the distinction is a little bit more
subtle, as we may consider whether body shape and the related degree
of freedom may be introduced somehow passively, i.e., by introducing
the new physical degrees of freedom without modifying the decision
dynamics, or more actively, i.e., by performing a detailed ‘‘prediction of
collisions’’ between non-circular bodies. As a result, we will be actually
comparing four models, summarised below and described in detail in
Appendix C.

4.1. Long range (circular)

Except a few substantial differences described in Appendix C.1,
this model is fundamentally an updated version of the one introduced
by Zanlungo et al. (2011). It is a velocity-dependent implementation
of a (Social) Force Model, i.e., a second order differential pedestrian
model (Adrian et al., 2019), known to reproduce stripe formation in
cross-flows (Zanlungo, 2007b,a; Rokko High School, 2017).

Following the Social Force framework, the ‘‘social force’’, or, more
properly, the acceleration due to decisional dynamics, of a pedestrian
is given by

𝐫̈ = −𝑘𝑣𝑝 (𝐫̇ − 𝐯𝑝) + 𝐅𝑙𝑜𝑛𝑔 . (1)

Here, the first term on the right refers to the tendency of pedestrians to
walk with velocity 𝐯𝑝, determined by their preferred speed and wanted

alking direction (the parameter 𝑘𝑣𝑝 having dimension 𝑡−1), while
he second term 𝐅𝑙𝑜𝑛𝑔 introduces the interaction with the environment
elated to collision avoidance. The idea behind the specification of this
orce can be re-conducted to Reynolds (1987). Fundamentally, through
irst order approximation (i.e. assuming constant velocity), the time
nd position of maximum approach to an obstacle (possibly a moving
ne, such as another pedestrian) is computed, and the interaction force

acceleration) is determined based on such ‘‘future condition’’. We
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somehow improperly call this model ‘‘long range’’ because the mo-
ment of future maximum approach to the obstacle is computed based
only on the geometry of trajectories (relative positions and velocity
of pedestrian centre of mass), with no regard to actual body shape.
Thus, although it describes local interactions with pedestrians and other
obstacles, it somehow does it at a ‘‘longer range’’ than the model using
detailed body shape and size introduced in Section 4.2.

Although the model may in principle be applied to different body
shapes (and indeed we will use it also for elliptical bodies), by not
taking into consideration the shape of the body its natural applications
are to symmetrical ones (disks).

4.2. Short range (ellipse)

The model of Zanlungo et al. (2011) was designed for moderate
densities and did not take into account the shape of the human body.
In order to describe the motion of pedestrians at high density, it
is necessary to consider at least the fact that the 2D projection of
the human body is not rotationally symmetric (Chraibi et al., 2010;
Langston et al., 2006; Heliövaara et al., 2012; Hidalgo et al., 2017;
Echeverría-Huarte et al., 2020; Yajima et al., 2020) (this asymmetry
may be first approximated by using ellipses instead of circles.1) When
such an asymmetry is introduced, even if we still limit ourselves to
the motion of pedestrians on a 2D plane, we need to introduce a
new degree of freedom, body orientation angle 𝜃. Assuming body
orientation to be equal to velocity orientation would be a too strong
limitation, since it would not allow pedestrians to rotate their torso
while avoiding a collision without changing considerably their motion
direction (Yamamoto et al., 2019). We thus consider the pedestrian to
be characterised by 3 degrees of freedom, 2D position 𝐫 = (𝑥, 𝑦) and
angle 𝜃. The latter variable identifies the orientation of an ellipse with
axes 𝐴 ≥ 𝐵.

As we are operating in the Social Force Model paradigm, we deal
with second order differential equations2 for the pedestrian linear and
angular acceleration 𝐯̇ ≡ 𝐫̈ and 𝜔̇ ≡ 𝜃̈, as functions of 𝐫, 𝐫̇ ≡ 𝐯, 𝜃 and 𝜔 ≡
̇ . Assuming the 𝐫 and 𝜃 equations to be decoupled is highly unrealistic,
since, while pedestrians are indeed able to walk in a direction different
from their body orientation, they prefer moving in the direction of their
body orientation (Willems et al., 2020). By ignoring body oscillations
due to gait, we propose the following equations

𝐯̇ = −𝑘𝑣𝑝 (𝐯 − 𝐯𝑝) − 𝑘𝑣𝜃(𝐯 − 𝑣𝐧) + (1 − 𝛽(𝑡𝑐 ))𝐅𝑙𝑜𝑛𝑔 + 𝛽(𝑡𝑐 )𝐅𝑠ℎ𝑜𝑟𝑡, (2)

and

𝜔̇ = −𝑘𝜔𝜔 − 𝑘𝜔𝜃 𝛥𝜃 + 𝛽(𝑡𝑐 )𝑇 𝑠ℎ𝑜𝑟𝑡. (3)

Many terms deserve to be explained. 𝑘𝜔 accounts for the tendency of
educing body oscillations, while 𝑘𝑣𝜃 and 𝑘𝜔𝜃 for the tendency of walking

in the direction of body orientation, through the angle difference be-
tween velocity and body orientation given either by 𝛥𝜃 (see Fig. 2 and,
for further details (Zanlungo et al., 2022)) or the vectorial difference
between the pedestrian velocity 𝐯 and the velocity they would have if

alking with equal speed in the direction given by their chest normal
(refer again to Fig. 2 and, for further details (Zanlungo et al., 2022)).

𝑐 is the time at which the first collision will happen between the
llipse representing the pedestrian body and an obstacle (such as a
all or another pedestrian), computed using an event-driven algorithm

1 Given the theoretical approach of this work, we decided to follow this
ath since an ellipse is the most natural geometrical generalisation of a circle.
evertheless, this choice is not to be recommended when the priority is given

o issues concerning implementation and computational efficiency (Donev
t al., 2005). For a more realistic body shape refer to Alonso-Marroquin et al.
2014).

2 Or better, with the corresponding difference equation obtained by
6

pplying a Euler integrator. 𝜟
(the algorithm was based on the one proposed by Foulaadvand and
Yarifard (2013)) under the assumption of no acceleration. The function
𝛽 introduces the idea that far away collisions are managed just using
the model of Zanlungo et al. (2011), while close ones use forces taking
into account body shape (𝐅𝑠ℎ𝑜𝑟𝑡, defined below). In detail, 𝛽 introduces
wo time scales 𝜏1, 𝜏2 such that

𝛽(𝑡) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑡 ≤ 𝜏1,
𝜏2−𝑡
𝜏2−𝜏1

if 𝜏1 < 𝑡 ≤ 𝜏2.

0 if 𝑡 > 𝜏2.

(4)

As stated above, we use an event-driven algorithm to compute the time
of the next collision between ellipses and obstacles (wall polygons or
other ellipses). This algorithm can be used to reproduce the dynamics
of hard ellipses undergoing elastic collisions, i.e., it provides also the
force and torque that the ellipse undergoes at the moment of collision,
under the assumption of impenetrability and conservation of energy
and momentum.3

These forces and momenta can be used as the basis of a collision
avoidance method. To understand the logic behind the model, let us
first for simplicity consider the case of a 2D disc (i.e., ignoring 𝜃)
colliding frontally with a wall at velocity 𝐯 in time 𝑡𝑐 (𝑡𝑐 is the time
from now at which the collision will happen if the pedestrian velocity is
not modified). At the moment of collision, the pedestrian will undergo
a change in velocity 𝜟𝐯 = −2𝐯. If a force 𝜟𝐯∕2𝑡𝑐 is applied on the
edestrian, collision will be avoided, with the pedestrian just stopping
hort of the collision.4

In order to generalise this, we rely on an algorithm to detect ellipse
overlapping (Foulaadvand and Yarifard, 2013) and compute forces
and torques assuming energy and angular momentum conservation in
elastic collisions. By this generalisation we may define, with respect
to pedestrian 𝑖, for all static obstacles (i.e., walls, represented as poly-
gons) and moving obstacles (i.e., pedestrians) 𝑗 in the environment the
predicted time of collision with 𝑖 as 𝑡𝑐𝑖,𝑗 , and the predicted change of mo-
mentum and angular momentum of 𝑖 in the collision as, respectively,5
𝜟𝐩𝑖,𝑗 and 𝜟𝐋𝑖,𝑗 . Assuming 𝑡𝑐𝑖,𝑗 = +∞ if no collision is predicted, and
defining

𝑡𝑐𝑖 = min
𝑗

𝑡𝑐𝑖,𝑗 , (5)

𝑗 = argmin
𝑗

𝑡𝑐𝑖,𝑗 , (6)

we finally have

𝐅𝑠ℎ𝑜𝑟𝑡
𝑖 =

𝛾
𝑡𝑐𝑖
𝜟𝐩𝑖𝑗 , (7)

𝐓𝑠ℎ𝑜𝑟𝑡
𝑖 =

𝛾
𝑡𝑐𝑖
𝜟𝐋𝑖𝑗 , (8)

𝛾 being a model parameter.

4.3. Physical dynamics

Eqs. (2) and (3) realise the ‘‘social’’ interaction of pedestrians,
i.e., their decisional process, that is, for simplicity’s sake, realised at
a fixed time step 𝛥𝑡 = 0.05 s (i.e., the decisional dynamics is solved by

3 These are actually impulsive forces and torques, i.e., expressed as an
nstantaneous change in linear and angular momentum.

4 Obviously, if the equations of motion are exactly integrated in continuous
ime it can be shown that the pedestrian reaches zero velocity half the way
o the obstacle. Nevertheless, the approximation in the text still provides the
orrect order of magnitude.

5 Impulsive forces are assumed as orthogonal to the contact surface. As
result, they are central forces for disks, and in the Circular case we have

𝐋𝑖,𝑗 = 𝟎, consistent with our choice to ignore the variable 𝜃 for disks.
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using an Euler integrator.6) For the physical dynamics of the system,
.e., in order to deal with actual (as opposed to predicted) collisions
etween pedestrians, we use again an event-driven algorithm (Foulaad-
and and Yarifard, 2013) to detect ellipse overlapping and implement
hysical dynamics assuming collisions to be elastic, i.e., conserving
nergy and angular momentum. Such an approach has the advan-
ages of forcing absence of overlapping, and thus constraints on space
ccupation, and providing a quantitative measure for the amount of
ollisions (kinetic energy, both linear and angular, exchanged in colli-
ions7 (Zanlungo et al., 2020)). The downside is that elastic collisions
re not very realistic between pedestrians, but this problem should not
e a serious one for a functional collision avoidance method, i.e. a
ethod in which collisions are extremely reduced.8

.4. Possible model specifications

As stated above, the main purpose of the modelling portion of this
ork is not to propose the best or most efficient model to reproduce the
ata, but to understand which fundamental behaviours or physical features
ave to be introduced in the model to reproduce the crowd dynamics. By
his, we mean that although most of the details (e.g., the specific form
f interaction force function, or even something more fundamental such
s using a second order model that specifies accelerations as opposed
o using a first order approach that acts directly on velocities) of
he proposed model could be replaced by possibly better alternatives
btaining a quantitative change in the model’s ability to reproduce
rowd behaviour, we are here interested in more fundamental and
rguably qualitative differences.

We believe these differences to be the following:

1. Introducing or not an asymmetry in the shape of the human
body, and the corresponding angle dynamics.

2. Introducing or not a short range behaviour, in which pedestrians
react to close-time collisions by taking explicitly into account the
shape of their body.

The asymmetry in the human body is introduced by using an ellipse
ith semi-axes 𝐴 ≠ 𝐵, and by using non-zero values of 𝑘𝑣𝜃 , 𝑘𝜔, 𝑘𝜔𝜃 .

We will call such a choice of parameters an elliptical specification of
the proposed model.9 In this work, for simplicity’s sake, in elliptical
specifications we use 𝐴𝐸 = 0.225 m, 𝐵𝐸 = 0.1 m, which may be con-
sidered to provide a rough approximation of the 2D projection of the
body of Japanese young adults that took part in the experiment (Digital
Human Laboratory, 1992).

On the other hand, using a circle with 𝑅 = 𝐴𝑐 = 𝐵𝑐 =
√

𝐴𝐸𝐵𝐸 (so
that the same 2D area is occupied by the pedestrian’s body) and zero

6 As discussed in previous works on the CP model (Zanlungo et al., 2011),
t is important that 𝛥𝑡 is comparable to the time scale of human decisions,
.e., to the reaction times of humans to external events. In this work, we did
ot study model dependence on 𝛥𝑡.

7 This information was not used in this work, since we were missing
empirical data on possible collisions between pedestrians in the experiments.

8 The implemented algorithm presented a convergence problem in ex-
tremely packed settings. Namely, events were predicted consistently at time
steps close to machine precision, ‘‘stalling’’ the numerical integrator. Since
such packed settings are not expected to occur in proper pedestrian behaviour,
these convergence problems occur only in the first steps of the optimisation
process. We thus introduced in our Genetic Algorithm optimisation procedure
an exception to deal with such problems, namely halting the integration and
giving a very low fitness to the solution that caused the problem.

9 This should not be confused with the Elliptical Specification of SFM
proposed by Johansson et al. (2007), that corresponds to modifying the SFM
force potential creating an asymmetry due to the velocity direction, but
unrelated to body shape.
7

values for 𝑘𝑣𝜃 ,a.24 𝑘𝜔, 𝑘𝜔𝜃 , corresponds to a circular specification of the
proposed model.10

The short range behaviour is introduced by having non-zero values
for parameters 𝛾, 𝜏1 and 𝜏2. We refer to such a model specification
as full (meaning it includes both short and long range behaviours),
while a model with 𝛾 = 𝜏1 = 𝜏2 = 0 is referred to as no-short (range
behaviour).11

We will thus consider, and explicitly calibrate, four possible quali-
tatively different alternatives of the proposed model: (1) Full Elliptical
(often just referred to as Full) (2) Full Circular, (3) No-short Elliptical
and (4) No-short Circular (often referred to as CP). In our analysis of the
results, we will need to take into account that different specifications of
the model correspond to different dimensions of the parameter space,
and thus different optimisation problems. Specifically, 8 parameters
need to be calibrated for a No-short Circular specification, 11 for the
Full Circular and No-short Elliptical ones, and 14 for a Full Elliptical
specification (see Appendix C.3).

The source code of the model(s) is freely available at Zanlungo
(2022c).

5. Full Elliptical model calibration and evaluation

We used Genetic Algorithms ((GA), 24 runs, each one using 30
generations, 50 genomes and 8 different sets of mutation, crossover and
selection hyper-parameters) to calibrate the Full Elliptical model (the
quantitative comparison to the other models is discussed in Section 6).
The fitness function was based on an Earth Mover Distance (EMD,
Appendix E) comparison between the observables at initial densities of
0.25 and 1.5 ped/m2, and the ones produced by the model. Initial con-
ditions (entry points in the crossing area and corresponding velocity)
were taken from the data, and each experimental run was reproduced.

After performing an exploratory analysis to decide which observ-
ables to include in the fitness function, we noticed that the models
were able to reproduce to a good extent the 𝜙𝑠 and 𝜙𝑜 pdfs (and thus
the related qualitative emergence of a stripe pattern) even though such
observables were not used for calibration. We thus decided to include in
the fitness function only the remaining observables, namely 𝜌 (through
the 𝐸𝑡 pdf), 𝑣, 𝜃𝑣, 𝜃, 𝛥𝜃, 𝛿𝑠 and 𝛿𝑜. The results concerning observables
𝜙𝑠 and 𝜙0 are anyway shown for evaluation in Section 6.

The fitness function was defined using the EMD (see Appendix E)
between the experimental and model observable pdfs. For each model
solution and observable, we computed a probability distribution by
averaging over repetitions with equal density initial conditions, and
compared the result to the experimental one by computing the EMD
distance (the used pdfs are normalised to have 1 as the sum over all bin
probabilities). Finally, the result (i.e., the EMD distance) was averaged
over all the observables and over the two density conditions used in
calibration, namely 𝜌𝐼 = 0.25 ped/m2 and 𝜌𝐼 = 1.5 ped/m2. The fitness
function was finally defined as the negative of such average12

Figs. 4–9 show the results for one of the best performing solutions.

10 Again, this should not be confused with the original SFM model of Helbing
and Molnar (1995), which is referred to as a Circular Specification by Jo-
hansson et al. (2007) and Zanlungo et al. (2011) due to the lack of velocity
direction dependent asymmetry in its interaction force.

11 Since we consider the Zanlungo et al. (2011) model as a starting point,
due to its ability to reproduce qualitatively the stripe formation in a cross-
flow (Zanlungo, 2007b,a; Rokko High School, 2017), all models include the
long range module.

12 This computation is completely equivalent to the one performed in the
model evaluation of Section 6, the only difference being that evaluation is
performed comparing to the 𝜌𝐼 = 2.5 ped/m2 initial density condition (and
averaged over solutions). Namely, the fitness function for the Full and No-short
Elliptical models is equivalent to the ‘‘Total evaluation measure’’ of Table 2,
and the fitness function for the Full and No-short Circular models is equivalent
to the ‘‘No body evaluation measure’’ of Table 5.
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Fig. 4. (a): 𝜌(𝑡) for the experimental 𝜌𝐼 = 0.25 ped/m2 initial condition (exp: 0.25, red circles), the calibrated 𝜌𝐼 = 0.25 ped/m2 initial condition (sim: 0.25, orange squares),
the experimental 𝜌𝐼 = 1.5 ped/m2 initial condition (exp: 1.5, blue up triangles), the calibrated 𝜌𝐼 = 1.5 ped/m2 initial condition (sim: 1.5, green down triangles). (b): 𝑃 (𝑣) for
the experimental 𝜌 = 0.25 ped/m2 initial condition (exp: 0.25, red circles), the calibrated 𝜌 = 0.25 ped/m2 initial condition (sim: 0.25, orange squares), the experimental 𝜌 = 1.5
ped/m2 initial condition (exp: 1.5, blue up triangles), the calibrated 𝜌 = 1.5 ped/m2 initial condition (sim: 1.5, green down triangles). Dashed lines provide standard error intervals
(computed over independent repetitions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. 𝑃 (𝜃𝑣) for the experimental 𝜌𝐼 = 0.25 ped/m2 initial condition (exp: 0.25, red circles), the calibrated 𝜌𝐼 = 0.25 ped/m2 initial condition (sim: 0.25, orange squares), the
experimental 𝜌𝐼 = 1.5 ped/m2 initial condition (exp: 1.5, blue up triangles), the calibrated 𝜌𝐼 = 1.5 ped/m2 initial condition (sim: 1.5, green down triangles). (a): logarithmic plot;
(b): linear plot. Dashed lines provide standard error intervals (computed over independent repetitions). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Fig. 6. (a): 𝑃 (𝛿𝑠) for the experimental 𝜌𝐼 = 0.25 ped/m2 initial condition (exp: 0.25, red circles), the calibrated 𝜌𝐼 = 0.25 ped/m2 initial condition (sim: 0.25, orange squares), the
xperimental 𝜌𝐼 = 1.5 ped/m2 initial condition (exp: 1.5, blue up triangles), the calibrated 𝜌𝐼 = 1.5 ped/m2 initial condition (sim: 1.5, green down triangles). (b): 𝑃 (𝛿𝑜) for the
xperimental 𝜌𝐼 = 0.25 ped/m2 initial condition (exp: 0.25, red circles), the calibrated 𝜌𝐼 = 0.25 ped/m2 initial condition (sim: 0.25, orange squares), the experimental 𝜌𝐼 = 1.5
ed/m2 initial condition (exp: 1.5, blue up triangles), the calibrated 𝜌𝐼 = 1.5 ped/m2 initial condition (sim: 1.5, green down triangles). Dashed lines provide standard error intervals
computed over independent repetitions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
8
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Fig. 7. 𝑃 (𝜃) for the experimental 𝜌𝐼 = 0.25 ped/m2 initial condition (exp: 0.25, red circles), the calibrated 𝜌𝐼 = 0.25 ped/m2 initial condition (sim: 0.25, orange squares), the
experimental 𝜌𝐼 = 1.5 ped/m2 initial condition (exp: 1.5, blue up triangles), the calibrated 𝜌𝐼 = 1.5 ped/m2 initial condition (sim: 1.5, green down triangles). (a): logarithmic plot.
(b): linear plot. Dashed lines provide standard error intervals (computed over independent repetitions). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. 𝑃 (𝛥𝜃) for the experimental 𝜌𝐼 = 0.25 ped/m2 initial condition (exp: 0.25, red circles), the calibrated 𝜌𝐼 = 0.25 ped/m2 initial condition (sim: 0.25, orange squares), the
experimental 𝜌𝐼 = 1.5 ped/m2 initial condition (exp: 1.5, blue up triangles), the calibrated 𝜌𝐼 = 1.5 ped/m2 initial condition (sim: 1.5, green down triangles). (a): logarithmic plot.
(b): linear plot. Dashed lines provide standard error intervals (computed over independent repetitions). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. (a): 𝑃 (𝜙𝑠) for the experimental 𝜌𝐼 = 0.25 ped/m2 initial condition (exp: 0.25, red circles), the calibrated 𝜌𝐼 = 0.25 ped/m2 initial condition (sim: 0.25, orange squares),
the experimental 𝜌𝐼 = 1.5 ped/m2 initial condition (exp: 1.5, blue up triangles), the calibrated 𝜌𝐼 = 1.5 ped/m2 initial condition (sim: 1.5, green down triangles). (b): 𝑃 (𝜙𝑜) for
the experimental 𝜌𝐼 = 0.25 ped/m2 initial condition (exp: 0.25, red circles), the calibrated 𝜌𝐼 = 0.25 ped/m2 initial condition (sim: 0.25, orange squares), the experimental 𝜌𝐼 = 1.5
ped/m2 initial condition (exp: 1.5, blue up triangles), the calibrated 𝜌𝐼 = 1.5 ped/m2 initial condition (sim: 1.5, green down triangles). Dashed lines provide standard error intervals
(computed over independent repetitions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. (a): 𝜌(𝑡) for the experimental 𝜌𝐼 = 2.5 ped/m2 initial condition (exp: 2.5, red circles) and the calibrated 𝜌𝐼 = 2.5 ped/m2 initial condition (sim: 2.5, blue squares). (b):
𝑃 (𝑣) for the experimental 𝜌𝐼 = 2.5 ped/m2 initial condition (exp: 2.5, red circles) and the calibrated 𝜌𝐼 = 2.5 ped/m2 initial condition (sim: 2.5, blue squares). Dashed lines provide
tandard error intervals (computed over independent repetitions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
his article.)
Fig. 11. 𝑃 (𝜃𝑣) for the experimental 𝜌𝐼 = 2.5 ped/m2 initial condition (exp: 2.5, red circles) and the calibrated 𝜌𝐼 = 2.5 ped/m2 initial condition (sim: 2.5, blue squares). (a):
logarithmic plot. (b): linear plot. Dashed lines provide standard error intervals (computed over independent repetitions). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
We run the model over the 𝜌𝐼 = 2.5 ped/m2 initial condition and
compare it to experimental results in Figs. 10–15 for the same solution
as in calibration, while Figs. 16–23, which are discussed in more detail
in Section 6, show results averaged over all solutions.

The examined solution appears to reproduce almost perfectly the
time evolution of density (Figs. 4 (a) and 10 (a)) for all the three initial
conditions, both in calibration and evaluation.13 This is obviously one
of the most important features of pedestrian crowd models. Not all
GA solutions are equally good at reproducing the empirical data, and
some present a longer tail, due to few pedestrians being stuck for a
long time in one corner (at the crossing point of the exiting flows,
i.e., on the top-right of Fig. 1(b) or bottom-right of Figs. A.24 (a),
(b), (c)). According to a qualitative visual analysis of the simulations,
this behaviour is probably mainly caused by the triviality of the path
planning mechanism Appendix C.2. Nevertheless, as it happens for high
density scenarios, it is clearly accentuated by poor collision avoidance,

13 Almost all solutions of all the models reproduce very well the time
volution of density at 𝜌𝐼 = 0.25 ped/m2. This is due to the fact that at low

density pedestrians are (almost) freely-moving, and thus the time evolution
of density, including to a large extent also fluctuations, is mostly determined
by entry times, which are specified as boundary conditions in the simulations
10

(and thus are independent of the model solution).
and it does not appear in good performing models and solutions. The
longer tail is better analysed in the logarithmic plots of Fig. 16(b),
which includes for all models the average over all solutions, including
a few sub-optimal ones.

Concerning the speed distribution (Figs. 4 (b) and 10 (b)), the
analysed solution is able to reproduce in a satisfying way calibration
and evaluation distributions. On the other hand, some of the solutions
reproduced pdfs skewed towards higher velocities at low densities. This
tendency could be probably due to the fact that the model assumes a
density-independent preferred speed, while the actual preferred speed
may be different between free walking and packed settings.

Concerning 𝜃𝑣, the chosen solution appears to describe better the
tails (logarithmic plots in Figs. 5 (a) and 11 (a)) than the bulk (linear
plots in Figs. 5 (b) and 11 (b)) of the distributions. This behaviour is
not typical, since, as shown in Fig. 18, most solutions have (for any
density) a tendency to overestimate the values of 𝑃 (𝜃𝑣) at 𝜃𝑣 ≈ 0 and
|𝜃𝑣| ≈ 𝜋, while intermediate values are underestimated.

Excluding a slight underestimation of the minimum value in the
high-density support (non-zero domain) of 𝑃 (𝛿𝑠), the reproduction
of the 𝛿 observables is almost perfect at low and high densities, in
calibration and evaluation (Figs. 6 (a), 6 (b), 12 (a) and 12 (b)).

Reproducing the 𝜃 observables is probably the main task of the
proposed model. The chosen solution is, compared to other solutions
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Fig. 12. (a): 𝑃 (𝛿𝑠) for the experimental 𝜌𝐼 = 2.5 ped/m2 initial condition (exp: 2.5, red circles) and the calibrated 𝜌𝐼 = 2.5 ped/m2 initial condition (sim: 2.5, blue squares). (b):
𝑃 (𝛿𝑜) for the experimental 𝜌𝐼 = 2.5 ped/m2 initial condition (exp: 2.5, red circles) and the calibrated 𝜌𝐼 = 2.5 ped/m2 initial condition (sim: 2.5, blue squares). Dashed lines provide
standard error intervals (computed over independent repetitions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 13. 𝑃 (𝜃) for the experimental 𝜌𝐼 = 2.5 ped/m2 initial condition (exp: 2.5, red circles) and the calibrated 𝜌𝐼 = 2.5 ped/m2 initial condition (sim: 2.5, blue squares). (a):
logarithmic plot. (b): linear plot. Dashed lines provide standard error intervals (computed over independent repetitions). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 14. 𝑃 (𝛥𝜃) for the experimental 𝜌𝐼 = 2.5 ped/m2 initial condition (exp: 2.5, red circles) and the calibrated 𝜌𝐼 = 2.5 ped/m2 initial condition (sim: 2.5, blue squares). (a):
logarithmic plot. (b): linear plot. Dashed lines provide standard error intervals (computed over independent repetitions). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 15. (a): 𝑃 (𝜙𝑠) for the experimental 𝜌𝐼 = 2.5 ped/m2 initial condition (exp: 2.5, red circles) and the calibrated 𝜌𝐼 = 2.5 ped/m2 initial condition (sim: 2.5, blue squares).
(b): 𝑃 (𝜙𝑜) for the experimental 𝜌𝐼 = 2.5 ped/m2 initial condition (exp: 2.5, red circles) and the calibrated 𝜌𝐼 = 2.5 ped/m2 initial condition (sim: 2.5, blue squares). Dashed lines
provide standard error intervals (computed over independent repetitions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
(see Figs. 22 and 23), relatively good in reproducing the tails of the
distributions (logarithmic plots in Figs. 7 (a), 8 (a), 13 (a) and 14
(a)), while still describing in a satisfactory way the 𝜃 and, to a lesser
extent, 𝛥𝜃, bulks (linear plots in Figs. 7 (b), 8 (b), 13 (b) and 14 (b)).
Nevertheless, even this solution fails in reproducing the fact that in
empirical distributions |𝛥𝜃| is limited to assume values smaller than
𝜋∕2, while |𝜃| is limited to assume values smaller than 𝜋∕4. This
tendency is stronger in less performing GA solutions (Figs. 22 and
23), that usually overestimate the probability of having very large
deviations from 0, the latter effect being stronger for 𝜃 as compared
to 𝛥𝜃.

There are probably two reasons for this phenomenon. One is the
choice of the calibration method, since areas with 𝑃 ≪ 1 do not give
a strong contribution to the EMD metric. The second one is related to
the model itself. While our model includes a linear recall force in 𝛥𝜃
(Eq. (3)), Fig. 7(a) and 13 (a) suggest that pedestrians have a strong
tendency, almost a constraint, to avoid |𝜃| > 𝜋∕4. For this reason,
non-linearity may be introduced in future models.

Finally, concerning 𝜙 observables, we may recall that these were not
calibrated, so all the results in Figs. 9 (a), 9 (b), 15 (a) and 15 (b) have
to be considered as an evaluation of a dynamical property of the system
that has not been calibrated. It is our opinion that any model that is
able to reproduce fairly the other observables (and maybe even just
the time-density relation), should exhibit the stripe pattern described
by Zanlungo et al. (2022), and thus reproduce at least qualitatively the
maxima and minima in the figures (see Appendix A for a qualitative
visualisation of stripe formation in experiments and models).

6. Model comparison

To compare models, we evaluate them on the 𝜌𝐼 = 2.5 ped/m2 initial
condition. More in detail, we obtain for each model 24 independent GA
solutions (calibrating on 𝜌𝐼 = 0.25 ped/m2 and 𝜌𝐼 = 1.5 ped/m2 initial
conditions), and evaluate them on the 𝜌𝐼 = 2.5 ped/m2 initial condition.
For each observable, we compute the EMD, and average it over the
different GA solutions. As a way to compare the overall performance of
a model, we also provide a ‘‘Total evaluation measure’’ as an average
over all the observables on which the model was calibrated. Never-
theless, as observables 𝜃 and 𝛥𝜃 are not defined for circular models,
all comparisons involving a circular model are performed computing a
‘‘No body (angles) evaluation measure’’ (i.e., not considering 𝜃 and 𝛥𝜃).
Observables 𝜙𝑠 and 𝜙𝑜 are not included in the ‘‘Total’’ and ‘‘No body’’
12

evaluation measures, since relative angles were not used in calibration.
Table 2
EMD metric comparison between Full and No-short elliptical models, evaluation at
𝜌𝐼 = 2.5 ped/m2.

Full ⟨ ⟩ ± 𝜀(𝜎) No-short ⟨ ⟩ ± 𝜀(𝜎) 𝑝 Effect size

Total 0.0147 ± 0.001(0.005) 0.0191 ± 0.0011(0.005) 0.0065 0.84
𝜌 0.00967 ± 0.0021(0.01) 0.0142 ± 0.0017(0.0082) 0.1 0.49
𝑣 0.0194 ± 0.0034(0.016) 0.0291 ± 0.003(0.015) 0.037 0.63
𝜃𝑣 0.00887 ± 0.00053(0.0025) 0.0109 ± 0.00091(0.0044) 0.063 0.56
𝛿𝑠 0.0189 ± 0.0011(0.0054) 0.0257 ± 0.00092(0.0044) 2.5e−05 1.4
𝛿𝑜 0.0164 ± 0.0015(0.0074) 0.0198 ± 0.0024(0.011) 0.24 0.35
𝜙𝑠 0.0207 ± 0.0017(0.0083) 0.0314 ± 0.0021(0.0099) 0.00025 1.2
𝜙𝑜 0.0424 ± 0.0032(0.015) 0.0384 ± 0.0033(0.016) 0.39 0.26
𝜃 0.0156 ± 0.0008(0.0039) 0.0164 ± 0.0019(0.0093) 0.69 0.12
𝛥𝜃 0.0144 ± 0.00066(0.0032) 0.018 ± 0.00099(0.0047) 0.0049 0.87

Nevertheless, the EMD values for these observables are reported in
tables.

For each model we performed 24 calibration runs, using 8 different
sets of hyper-parameters (i.e., each set is used 3 times). Figs. 16–23
compare the observable pdf obtained by each model on the 𝜌𝐼 =
2.5 ped/m2 initial condition with the experimental data (experimental
data are reported as average over all experiment repetitions, while the
model standard errors are computed by averaging over all GA solutions;
i.e., for each solution we first compute the average over experiment
repetitions, and then use the variation of such averages on GA solutions
to compute the standard errors in the figures).

As tools to quantify differences and guide our discussion (without
any claim to ‘‘prove’’ or ‘‘disprove’’ anything), we compute for each
metric a 𝑡 test 𝑝 value and effect size (see Appendix D for definition
and interpretation of these statistical indicators).

6.1. Statistical comparison

We first verify what happens if we remove the short range be-
haviour, i.e., if we compare the Full model to a No-short Elliptical
specification (see Table 2). We then compare the Full Elliptical body
model to the Full Circular one in Table 3, the Full Elliptical model to
the No-Short Circular (CP) model in Table 4, and finally compare in
Table 5 the Full Circular and No-short Circular models.

6.2. Discussion

6.2.1. Long vs. Short range
When comparing the two models that are able to describe the body

orientation degree of freedom (the Full and No-short Elliptical models),
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Fig. 16. 𝜌 standard error intervals in different models (dashed lines) compared to the experimental values (squares) for the 𝜌𝐼 = 2.5 ped/m2 initial condition. (a): linear plot. (b):
ogarithmic plot. The standard error interval for the experimental values is shown as continuous black lines in the logarithmic plot. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
Fig. 17. 𝑣 standard error intervals in different models (dashed lines) compared to the experimental values (squares) for the 𝜌𝐼 = 2.5 ped/m2 initial condition. (a): linear plot. (b):
logarithmic plot. The standard error interval for the experimental values is shown as continuous black lines in the logarithmic plot. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 18. 𝜃𝑣 standard error intervals in different models (dashed lines) compared to the experimental values (squares) for the 𝜌𝐼 = 2.5 ped/m2 initial condition. (a): linear plot. (b):
ogarithmic plot. The standard error interval for the experimental values is shown as continuous black lines in the logarithmic plot. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
t
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e notice a very strong tendency of the Full model to outperform the
o-short concerning almost all observables (see Table 2). The only
bservable on which the No-short model appears to perform better
s 𝜙𝑜, on which the models are actually not calibrated. The ‘‘Total
valuation measure’’ on the observables for which the models have
een calibrated is different in a significant way, with a 𝑝 value smaller
13

o

han 10−2 and an effect size close to 1. Quite low 𝑝 values and large
ffect sizes are attained concerning almost all the observables, exclud-
ng the body orientation 𝜃 (although there is a significant difference
n 𝛥𝜃, i.e., in the deviation between body and velocity orientation),
nd the aforementioned 𝜙𝑜. The difference in 𝜌 is less strong than for
ther observables, not attaining statistical significance, but the No-short
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Fig. 19. 𝛿𝑠 standard error intervals in different models (dashed lines) compared to the experimental values (squares) for the 𝜌𝐼 = 2.5 ped/m2 initial condition. (a): linear plot. (b):
ogarithmic plot. The standard error interval for the experimental values is shown as continuous black lines in the logarithmic plot. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
Fig. 20. 𝛿𝑜 standard error intervals in different models (dashed lines) compared to the experimental values (squares) for the 𝜌𝐼 = 2.5 ped/m2 initial condition. (a): linear plot. (b):
ogarithmic plot. The standard error interval for the experimental values is shown as continuous black lines in the logarithmic plot. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
Fig. 21. (a): 𝜙𝑠 standard error intervals in different models (dashed lines) compared to the experimental values (squares, standard error interval shown as continuous black lines)
or the 𝜌𝐼 = 2.5 ped/m2 initial condition. (b): 𝜙𝑜 standard error intervals in different models (dashed lines) compared to the experimental values (squares, standard error interval

shown as continuous black lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
model appears to describe poorly the distance between pedestrians, in
particular 𝛿𝑠.

Although the corresponding results are not shown in the manuscript,
we verified that there is not a significant change in the difference
between the models when calibrated at 𝜌𝐼 = 1.5 ped/m2 or evaluated at
𝜌 = 2.5 ped/m2, the difference being actually a little more pronounced
14

𝐼

in evaluation, showing that the more complex model does not suffer
from over-fitting issues with respect to the simpler one.

It is quite clear, at least from these data, that when an elliptical
body is considered, the actual collisions between such elliptical bodies
should be predicted by the model.
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Fig. 22. 𝜃 standard error intervals in different models (dashed lines) compared to the experimental values (squares) for the 𝜌𝐼 = 2.5 ped/m2 initial condition. (a): linear plot. (b):
ogarithmic plot. The standard error interval for the experimental values is shown as continuous black lines in the logarithmic plot. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
Fig. 23. 𝛥𝜃 standard error intervals in different models (dashed lines) compared to the experimental values (squares) for the 𝜌𝐼 = 2.5 ped/m2 initial condition. (a): linear plot.
b): logarithmic plot. The standard error interval for the experimental values is shown as continuous black lines in the logarithmic plot. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)
Table 3
EMD metric comparison between Full Elliptical and Full Circular models, evaluation at
𝜌𝐼 = 2.5 ped/m2.

Elliptical ⟨ ⟩ ± 𝜀(𝜎) Circular ⟨ ⟩ ± 𝜀(𝜎) 𝑝 Effect size

No body 0.0146 ± 0.0014(0.0067) 0.0155 ± 0.001(0.0049) 0.61 0.15
𝜌 0.00967 ± 0.0021(0.01) 0.0136 ± 0.0018(0.0085) 0.17 0.41
𝑣 0.0194 ± 0.0034(0.016) 0.0206 ± 0.0022(0.01) 0.75 0.095
𝜃𝑣 0.00887 ± 0.00053(0.0025) 0.00818 ± 0.00082(0.0039) 0.48 0.21
𝛿𝑠 0.0189 ± 0.0011(0.0054) 0.0192 ± 0.0012(0.0057) 0.82 0.069
𝛿𝑜 0.0164 ± 0.0015(0.0074) 0.016 ± 0.0017(0.0081) 0.87 0.049
𝜙𝑠 0.0207 ± 0.0017(0.0083) 0.0198 ± 0.0025(0.012) 0.76 0.09
𝜙𝑜 0.0424 ± 0.0032(0.015) 0.0367 ± 0.0027(0.013) 0.17 0.41

Table 4
EMD metric comparison between Full Elliptical and No-Short Circular (CP) models,
evaluation at 𝜌𝐼 = 2.5 ped/m2.

Full ⟨ ⟩ ± 𝜀(𝜎) CP ⟨ ⟩ ± 𝜀(𝜎) 𝑝 Effect size

No body 0.0146 ± 0.0014(0.0067) 0.0192 ± 0.0017(0.0081) 0.041 0.62
𝜌 0.00967 ± 0.0021(0.01) 0.0139 ± 0.0025(0.012) 0.21 0.37
𝑣 0.0194 ± 0.0034(0.016) 0.0289 ± 0.004(0.019) 0.072 0.54
𝜃𝑣 0.00887 ± 0.00053(0.0025) 0.00937 ± 0.0007(0.0033) 0.57 0.17
𝛿𝑠 0.0189 ± 0.0011(0.0054) 0.0239 ± 0.0012(0.0056) 0.003 0.93
𝛿𝑜 0.0164 ± 0.0015(0.0074) 0.0201 ± 0.0022(0.011) 0.17 0.41
𝜙𝑠 0.0207 ± 0.0017(0.0083) 0.0283 ± 0.0021(0.01) 0.0079 0.82
𝜙𝑜 0.0424 ± 0.0032(0.015) 0.0291 ± 0.0036(0.017) 0.0081 0.82

Similar considerations can be made when we compare the two
15

odels that do not describe body orientation (the Full and No-short
Table 5
EMD metric comparison between Full Circular and No-short Circular models, evaluation
at 𝜌𝐼 = 2.5 ped/m2.

Full ⟨ ⟩ ± 𝜀(𝜎) No-short ⟨ ⟩ ± 𝜀(𝜎) 𝑝 Effect size

No body 0.0155 ± 0.001(0.0049) 0.0192 ± 0.0017(0.0081) 0.067 0.55
𝜌 0.0136 ± 0.0018(0.0085) 0.0139 ± 0.0025(0.012) 0.93 0.028
𝑣 0.0206 ± 0.0022(0.01) 0.0289 ± 0.004(0.019) 0.073 0.54
𝜃𝑣 0.00818 ± 0.00082(0.0039) 0.00937 ± 0.0007(0.0033) 0.27 0.33
𝛿𝑠 0.0192 ± 0.0012(0.0057) 0.0239 ± 0.0012(0.0056) 0.0071 0.83
𝛿𝑜 0.016 ± 0.0017(0.0081) 0.0201 ± 0.0022(0.011) 0.15 0.44
𝜙𝑠 0.0198 ± 0.0025(0.012) 0.0283 ± 0.0021(0.01) 0.012 0.77
𝜙𝑜 0.0367 ± 0.0027(0.013) 0.0291 ± 0.0036(0.017) 0.098 0.5

Circular models), although the difference in this case is less clear (see
Table 5). We indeed have, for the overall evaluation fitness, 𝑝 = 0.067
and a 0.55 effect size for the EMD metric. The differences between the
two circular models are actually stronger when the calibration phase
is considered (analysis not included in the manuscript). These results
suggest that over-fitting issues may be present when comparing the Full
and No-short Circular models.

The, somehow intuitive but nevertheless important, conclusion is
that predicting the details of short-time collisions is more important
when a non-symmetrical body shape is considered.

6.2.2. Elliptical vs. Circular
A straightforward comparison between the newly proposed Full
Elliptical model and the CP (Circular No-short) model (see Table 4),



Safety Science 158 (2023) 105969F. Zanlungo et al.

n
a
b

o
(
t
e
(
c
s

m
c

shows that the new model significantly outperforms the old one in
overall EMD fitness (𝑝 = 0.041, effect size 0.62) and in general performs
better on most observables, although a comparison with calibration
results (not shown in the manuscript), in which the difference between
the two models is more pronounced, suggests that the more complex
model (i.e., the model with more parameters) may suffer more (as
expected) of over-fitting.

Nevertheless, the problem of comparing Circular models to Ellip-
tical ones is more subtle than just referring to their calibration and
evaluation performances. Circular models are not able to reproduce
orientation dynamics, so for any kind of situation in which such dy-
namics is relevant, Elliptical ones (or other models including body
orientations) should be used. As we have seen in Zanlungo et al. (2022)
that the deviation of 𝛥𝜃 from 0 increases with density, this is probably
ecessary at very high densities. Furthermore, intuitive considerations
nd previous studies (Yamamoto et al., 2019) suggest this dynamics to
e very important in narrow spaces.

A different issue is understanding the regimes in which using body
rientation models is necessary. For the studied dynamics, we observe
see Table 3) that when the results are analysed using the EMD metric,
hat concerns the position of the distribution bulks, very little differ-
nce is observed between the Full Elliptical and Full Circular models
it should nevertheless be noted that the Elliptical model has been
alibrated to reproduce also body orientation, and thus it is ‘‘trying to
olve’’ a more complex dynamics).

Nevertheless, the situation is different when we focus on how
odels reproduce the tails of the distributions. Fig. 16(b) shows a

omparison between the empirical 𝜌(𝑡) at 𝜌𝐼 = 2.5 ped/m2 and the
evaluation results in all models (for each model the standard error
intervals obtained averaging over all solutions are shown). It can be
noticed that all models exhibit a tendency to have a fatter tail than
the empirical distribution. This is due to some pedestrians getting
stuck in an ‘‘impasse’’ near the top-right corner of the crossing area
in Fig. 1(b) (bottom-right of Figs. A.24 (a), (b), (c)). This problem
could probably be avoided by using a better path-finding behaviour.
Nevertheless, the occurrence of such situations are probably the closest
the virtual pedestrians ever get to an actual ‘‘clogged’’ situation in our
environment. It appears that the Full Elliptical model is better than the
Full Circular model in dealing with such situations. The use of the Full
Elliptical model could thus be necessary at higher densities/narrower
environments than the ones analysed in this work.

Another interesting point can be raised referring to Fig. 18(b),
showing a comparison for the pdf of the 𝜃𝑣 observable, namely the
only directional observable that may be reproduced by Circular models.
We see again that all models present fatter tails than the empirical
distribution, but this effect is much stronger in the Circular models.
Again, the Full Elliptical model seems better at describing rare events.
These results are in agreement with the discussion of empirical results
reported by Zanlungo et al. (2022), in which we suggested that in
describing rare, high local density events, body orientation could result
to be important.

As an overall consideration concerning model comparison, we may
say that although the fundamental properties of the dynamics are
already well-described by the CP model (refer to the graphs of Figs. 16–
23), including the short range interaction leads to a, although reduced,
quantitative and qualitative improvement. It is thus natural, also from a
purely theoretical viewpoint, to introduce such dynamics by taking ex-
plicitly into account the actual shape of the human body. The proposed
approximation, using 2D ellipses, indeed leads to an improvement in
the description of rare events (tails), for which probably a detailed
description of torso movements is needed.

Nevertheless, from a practical viewpoint, at least concerning the
description of cross-flows up to 2–3 ped/m2, the improvement in
the description of the dynamics could be too marginal compared to
the increase in computational cost (for a quantitative and qualitative
16

improvement in the description of the cross-flow it would probably
be more important to improve path-finding or other forms of strategic
choices that have not been considered in this work).

Models that take into account, at least in an approximate way, the
actual shape of the human body, are known to better describe the
behaviour in narrow environments (see for example Yamamoto et al.,
2019, Chraibi et al., 2010). Our results suggest that further experiments
and studies are necessary to assess their relevance for high density
crossing scenarios in medium to large environments as the one studied
in this work (i.e., environments whose minimum linear scale is quite
larger than the human body; e.g., a corridor as opposed to a door/exit).

6.2.3. Limitations and possible improvements
Arguably, explicit body orientation dynamics will be needed also

from a practical viewpoint at higher densities and in more complex
(and narrower) environments. To this end, it may be useful to analyse
some of the shortcomings of the proposed model. As can be observed
in Figs. 22 and 23, the proposed model does not include the strong
tendency of human pedestrians to ‘‘not turn their back’’ to their goal.
Although this is partially achieved by some solutions (Figs. 7 (a), 8
(a), 13 (a), 14 (a)), this happens to the detriment of the description of
the bulk distributions (Figs. 7 (b), 8 (b), 13 (b), 14 (b)). The proposed
model is linear in 𝜃 angles (i.e., given by a quadratic potential), and
thus an improvement could be using a steeper potential for large 𝜃.

Another shortcoming is the description of low 𝛿 values. Figs. 12(a)
and 19 show that Elliptical models underestimate the minimum value
assumed by 𝛿𝑠, although they describe in a more realistic way the
initial slope of the pdf (on the other hand, the Full Elliptical model
appears to have a good qualitative description of low 𝛿𝑜 values, see
Figs. 12(b) and 20). This is probably due to the limits of the 2D
ellipse approximation. Although, as described in Appendix C.1.3, we
tried to include in the basic CP model a tendency ‘‘not to overlap
steps’’ to account for the fact that our model completely ignores the
complex 3D dynamics of leg movement, a more detailed description
of limb shape and movement could be needed in future (this effect
is intuitively particularly important for elliptical models, since when
people are walking in a file and with their torso perpendicular to
walking direction, if the movement of the limbs are ignored, they may
get closer due to the smaller extension of their body in the walking
direction).

Finally, the detailed description of 𝜙 observables could be improved
(see Figs. 9, 15, 21). We nevertheless remind that we decided not to
calibrate this behaviour in the current work, and confined ourselves to
observing how it was ‘‘naturally’’ emerging in the models.

It may thus be useful to better study models describing body orien-
tation, and possibly develop more simple and efficient ones to decrease
issues of calibration and computational cost. Nevertheless, at least for
the problem and the range of density studied in this work, it does
not appear that body orientation is crucial to reproduce the observed
dynamics. From a practical viewpoint, for example, it may be that
a quantitative and qualitative improvement in the description of the
cross-flow may be attained by improving path-finding (or other forms
of strategic choices) aspects that have not been considered in this work.

7. Conclusions

In this work, we tried to reproduce the empirical results of a set of
controlled experiments concerning the behaviour of a human crowd in
a cross-flow scenario by using a hierarchy of models, which differ in the
details of the body shape (using a disk-shaped body vs a more realistic
elliptical shape) and in how collision avoidance is performed (using
only information regarding ‘‘centre of mass’’ distance and velocity, or
actually introducing body shape information). We verified that the most
detailed model (i.e., using body shape information and an elliptical
body) outperforms in a significant way the simplest one (using only
centre of mass distance, velocity, and disk-shaped bodies). Further-

more, we observed that if elliptical bodies are introduced without using
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such information in collision avoidance, the performance of the model
is relatively poor. Nevertheless, the difference between the different
models is relevant only in describing the ‘‘tails’’ of the observable distri-
butions, suggesting that the more complex models could be of practical
use only in the description of high density settings. Although we did
not calibrate our model in order to reproduce the ‘‘stripe formation’’
self-organising pattern, we verified that it naturally emerges, at least at
a qualitative level, in all models. A more quantitative study is left for
a future work.
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Appendix A. Stripe formation in experiments and models

In Fig. A.24 we show some situations in which pedestrians are
clearly self-organised in stripes. Fig. A.24(a) shows a frame from the
experiments (colours are edited to show clearly which pedestrians
belong to which stream, and to suggest the presence of the ‘‘clusters’’),
while Fig. A.24(b) and Fig. A.24(c) show, respectively, frames from
simulations using the Full Circular and Full Elliptical models. Although
all frames are obtained using the same initial density condition 𝜌𝐼 = 1.5
ped/m2, they are extracted from different experiment repetitions. The
full simulation video corresponding to the results of Fig. A.24(b) may
be found at Zanlungo (2022a) while that corresponding to the results
of Fig. A.24(c) may be found at Zanlungo (2022b).

Appendix B. Notation

Let us start with some general definitions that will prove to be
useful.

The cardinality of a set 𝑆 is defined as #(𝑆). Vectors are denoted
by boldface, such as 𝐚. The standard Euclidean inner (scalar) product
etween vectors 𝐚 and 𝐛 is given by

(𝐚,𝐛), (B.1)

and the Euclidean norm by

𝑎 = (𝐚, 𝐚)
1
2 . (B.2)

As we always deal with 2D vectors, we may consider their vector
product as a scalar (given by its projection on the right-handed normal
to the plane). Namely, given an arbitrary right handed frame, we define

⟨𝐚,𝐛⟩ ≡ (𝐚 × 𝐛)𝑧 = 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥. (B.3)

If we are only interested in the absolute value of ⟨𝐚,𝐛⟩, we need not
to worry about the right-handedness of the frame.

In our analysis of empirical observables, we considered only pedes-
trians that, at a given time 𝑡, were located inside a tracking area,
which is defined as an 𝐿 times 𝐿 square (𝐿 = 3.4 m), adding a 0.2 m
border on the sides of the pink area in Fig. 1, to take into account the
absence of hard walls (as discussed by Zanlungo et al. (2022)) and as
a consequence has an area 𝐴 = 𝐿2. For each pedestrian 𝑖 located inside
the tracking area (at a given tracking time 𝑡) we define the position
vector 𝐫𝑖 as the vectorial distance from the origin (e.g., located in the
centre of the crossing area). The distance between two pedestrians is
defined as

𝐫𝑖,𝑗 = 𝐫𝑗 − 𝐫𝑖. (B.4)

At each time 𝑡, we also define 𝑓 1(𝑡) and 𝑓 2(𝑡) as the subset of
(tracked) pedestrians belonging, respectively, to flow 1 and 2. Since
these sets correspond to tracked pedestrians, they formally depend
on tracking time 𝑡, although such a dependence is shown only when
needed. Their union is the set of tracked pedestrians

𝑇 (𝑡) = 𝑓 1(𝑡) ∪ 𝑓 2(𝑡). (B.5)

Each flow belongs to a corridor, whose axis direction (oriented as
the marching direction of the pedestrians, i.e., their goal) is defined
through the normalised vector 𝐣𝑘, 𝑘 = {1, 2}. We also define the
orthogonal normalised vectors as 𝐢1 = −𝐣2, 𝐢2 = −𝐣1. It should be noted
that, through this definition, {𝐢𝑘, 𝐣𝑘} are not necessarily right-handed
(see Figs. 2, 3).

Furthermore, for each corridor 𝑘, we define a reference frame using

𝑘 𝑘 𝑘 𝑘
𝑎𝑥 = (𝐚, 𝐢 ) 𝑎𝑦 = (𝐚, 𝐣 ), (B.6)
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Fig. A.24. Frames showing in a qualitative and visual way stripe formation under the 𝜌𝐼 = 1.5 ped/m2 initial condition. (a): experiments with subjects, (b) Full Circular model
simulation, (c) Full Elliptical model simulation. Pedestrians in green move from top to bottom, those in purple from left to right. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
(𝑎𝑘𝑥,𝑦 being the components of an arbitrary vector 𝐚 in frame 𝑘) and for
each pedestrian 𝑖, we define the function

𝐹 (𝑖) =

{

1, if 𝑖 ∈ 𝑓 1

2, if 𝑖 ∈ 𝑓 2.
(B.7)

An empirical probability distribution14 of an observable 𝑂 is computed
by defining a bin size

𝛥𝑂 =
𝑂max − 𝑂min

𝑛𝑏
, (B.8)

where 𝑛𝑏 is the number of bins, and 𝑂min, 𝑂max define the interval in
which we study the observable distribution.

The number of observations belonging to a bin 𝑗 is then defined as

𝑛𝑂𝑗 = #( observations 𝑘 with value 𝑂𝑘

such that 𝑗𝛥𝑂 + 𝑂min ≤ 𝑂𝑘 < (𝑗 + 1)𝛥𝑂 + 𝑂min)
(B.9)

and the empirical probability distribution of 𝑂 is

𝑃 (𝑂) = 𝑃
((

𝑗 + 1
2

)

𝛥𝑂 + 𝑂min

)

≡ 𝑃𝑗 =
𝑛𝑂𝑗

∑

𝑙 𝑛
𝑂
𝑙

. (B.10)

All empirical probability distributions considered in this work are
computed by using 𝑛𝑏 = 40 bins.

For each experimental condition we performed 𝑛𝑒 independent rep-
etitions. In graphs, we compare averages and standard errors over all
independent repetitions.

Namely, if 𝑃 𝑘
𝑗 is the value assumed by the 𝑗th bin of a given

observable with an experimental condition in the 𝑘th independent
repetition, graphs will show average values and standard errors

⟨𝑃𝑗⟩ ± 𝜖𝑗 , (B.11)

defined according to

⟨𝑃𝑗⟩ =

∑𝑛𝑒
𝑘=1 𝑃

𝑘
𝑗

𝑛𝑒
, (B.12)

and

⟨(𝑃𝑗 )2⟩ =

∑𝑛𝑒
𝑘=1(𝑃

𝑘
𝑗 )

2

𝑛𝑒
,

𝜖𝑗 =

√

⟨(𝑃𝑗 )2⟩ − ⟨𝑃𝑗⟩
2

𝑛𝑒 − 1
.

(B.13)

Appendix C. Detailed description of computational models

14 The term ‘‘distribution’’ is used since observables are theoretically con-
tinuous, although from an empirical point of view they are computed over
discrete bins. In general, in figures we normalise them in such a way that
their integral equals 1, although in EMD computations they are normalised in
such a way that the sum over bins equals 1.
18
C.1. Details in the implementation of the long range module

We start with a detailed description of the long range module,
focusing in particular on the differences with the model as introduced
Zanlungo et al. (2011). We recall that all the models used in this work
are based on the long range module, and thus the properties of the
latter are relevant to all models.

The model has been formalised by Zanlungo et al. (2011), although
it was introduced in a preliminary version by Zanlungo (2007b,a). Fur-
thermore, while (Zanlungo et al., 2011) dealt with pedestrian motion in
a large environment (absence of non-human obstacles), the model was
updated to deal with obstacles by Zanlungo et al. (2017b). Moreover, a
new term is added in this work to better describe the density/velocity
relation in high density crowds. Basically, we may consider the model
to consist of 3 terms, the inter-pedestrian collision prediction term 𝐅𝑝, the
obstacle collision prediction term 𝐅𝑜, and the step overlap term 𝐅𝑠. The sum
of these terms provides an ‘‘interaction social force’’

𝐅𝑙𝑜𝑛𝑔 = 𝐅𝑝 + 𝐅𝑜 + 𝐅𝑠, (C.1)

namely an acceleration that pedestrians perform in order to change
their velocity based on their perception of the environment.15 We recall
that according to the Social Force Model paradigm, the pedestrians’
decision process determines their acceleration as

𝐫̈ = −𝑘𝑣𝑝 (𝐫̇ − 𝐯𝑝) + 𝐅𝑙𝑜𝑛𝑔 . (C.2)

Here 𝐯𝑝 is the preferred velocity of the pedestrians, given by

𝐯𝑝 = 𝑣𝑝𝐠̂, (C.3)

where the preferred speed 𝑣𝑝 is assumed to be constant in time for each
pedestrian (although it may obviously be different between pedestri-
ans), while the preferred goal direction 𝐠̂ may be a function of position
and time. 𝑘𝑣𝑝 is a parameter of the model and has the dimension of 𝑡−1.

C.1.1. Inter-pedestrian collision prediction term
The basic idea of the CP model is the following: for each pedestrian

𝑖 with position 𝐫𝑖 and velocity 𝐯𝑖 ≡ 𝐫̇𝑖, we define as usual the relative

15 In Helbing and Molnar (1995) the Social Force Model was introduced as
the sum of terms involving purely physical dynamics (body contact) and terms
concerning pedestrian decisional dynamics. Since the action of physical forces
obviously depends on pedestrians’ masses, the latter were explicitly present
in the model. When, as in the current work, the SFM framework is used to
describe only decisional dynamics, it is tacitly assumed that pedestrians will
apply a force that determines their wanted acceleration, and the term ‘‘force’’ is
interchangeable with ‘‘acceleration’’. This could be formalised by multiplying
all acceleration terms by the pedestrian’s mass, but since we never write
equations mixing physical and decisional dynamics, such a formalisation is left
implicit. For further details on the relation between ‘‘force’’ and ‘‘acceleration’’
(second order) models, see Adrian et al. (2019).
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position and velocity with respect to another pedestrian 𝑗 respectively
s

𝑖,𝑗 = 𝐫𝑗 − 𝐫𝑖, (C.4)

nd

𝑖,𝑗 = 𝐯𝑗 − 𝐯𝑖. (C.5)

e define 𝑗 to be visible to 𝑖 (𝑗 ∈ 𝑉 𝑝
𝑖 ) if

𝐯𝑖, 𝐫𝑖,𝑗 ) > 0, (C.6)

nd approaching (𝑗 ∈ 𝐴𝑝
𝑖 ) if

𝐫𝑖,𝑗 , 𝐯𝑖,𝑗 ) < 0. (C.7)

inally, we define a pedestrian as colliding (𝑗 ∈ 𝐶𝑝
𝑖 ) if

⟨

𝐫𝑖,𝑗 ,
𝐯𝑖,𝑗
𝑣𝑖,𝑗

⟩

|

|

|

|

|

< 𝑑𝑒𝑥𝑡. (C.8)

This latter condition means that, assuming linear motion, 𝑖 and 𝑗 will
reach a distance smaller than a threshold 𝑑𝑒𝑥𝑡, i.e., the maximum
distance at which an interaction is expected (not necessarily related
to body size). These conditions are slightly different from those used
by Zanlungo et al. (2011) and take advantage of the introduction of
hard-core potentials of Zanlungo et al. (2017b) (see Eq. (C.13)).

For all pedestrians 𝑗 satisfying all three conditions we then compute
the time 𝑡𝑖,𝑗 at which the minimum distance between 𝑖 and 𝑗 will be
reached, assuming both will keep a constant velocity, namely

𝑡𝑖,𝑗 = −

(

𝐫𝑖,𝑗 ,
𝐯𝑖,𝑗
𝑣2𝑖,𝑗

)

. (C.9)

e then define the time of next closest approach to a pedestrian
𝑝
𝑖 = min

𝑗∈(𝑉 𝑝
𝑖 ∩𝐴

𝑝
𝑖 ∩𝐶

𝑝
𝑖 )
𝑡𝑖,𝑗 , (C.10)

nd, again assuming linear motion at constant velocity, we compute,
or all visible pedestrians 𝑗,
𝑚𝑖𝑛
𝑖,𝑗 = 𝐫𝑗 (𝑡) − 𝐫𝑖(𝑡) + (𝑡𝑝𝑖 − 𝑡)𝐯𝑖,𝑗 , (C.11)

i.e., the difference between the (predicted) position of the (moving,
i.e., pedestrian) obstacle 𝐫𝑗 and the one of the pedestrian 𝐫𝑖 at 𝑡𝑝𝑖 .

Such ‘‘future distance’’ 𝐫𝑚𝑖𝑛𝑖,𝑗 is then used to define the collision
voidance term of a velocity dependent specification of the social force
odel as

𝑝
𝑖,𝑗 = −

𝑣𝑖
max(𝑡𝑝𝑖 , 𝛥𝑡)

𝑓 (𝑟𝑚𝑖𝑛𝑖,𝑗 )
𝐫𝑚𝑖𝑛𝑖,𝑗

𝑟𝑚𝑖𝑛𝑖,𝑗
. (C.12)

The term 𝑣𝑖∕max(𝑡𝑝𝑖 , 𝛥𝑡) is dimensionally an acceleration and it is
ntroduced assuming that the desired acceleration must be roughly
nough for the pedestrian to stop in a time 𝑡𝑝𝑖 , unless such time is
maller than the ‘‘reaction time’’ 𝛥𝑡 (the integration step of the be-

havioural model). As a result, 𝑓 should be dimensionless, and of order
1.

While in Zanlungo et al. (2011), for historical reasons, the choice
of 𝑓 resembled the one of Helbing and Molnar (1995), just replac-
ing current with future positions, following the analysis of Zanlungo
(2007b,a), Zanlungo et al. (2017b) in the current work we use hard
core potentials

𝑓 (𝑟) =

⎧

⎪

⎨

⎪

⎩

𝐶 if 𝑟 ≤ 𝑑𝑖𝑛𝑡,
𝐶 𝑑𝑒𝑥𝑡−𝑟

𝑑𝑒𝑥𝑡−𝑑𝑖𝑛𝑡
if 𝑑𝑖𝑛𝑡 < 𝑟 ≤ 𝑑𝑒𝑥𝑡,

0 if 𝑟 > 𝑑𝑒𝑥𝑡.

(C.13)

being a dimensionless constant and 𝑑𝑖𝑛𝑡, 𝑑𝑒𝑥𝑡 distance thresholds.
Finally, the interaction force in Eq. (C.1) due to the interaction with

he other pedestrians is
𝑝
𝑖 =

∑

𝑝 𝑝
𝐅𝑝
𝑖,𝑗 , (C.14)
19

𝑗∈(𝑉𝑖 ∩𝐶𝑖 )
where the sum is performed over all visible and colliding pedestrians 𝑗
(i.e., including also non-approaching ones).

C.1.2. Obstacle collision prediction term
Obstacles (walls) are handled using the approach of Zanlungo et al.

(2017b). In that work, intended for a robot application, obstacles are
expressed as ‘‘a cloud of points’’, and the force generated by such an
obstacle is given by an average over all ‘‘cloud points’’. This choice
in Zanlungo et al. (2017b) was motivated by the fact that obstacles
are perceived by robots as sets of scan points from a sensor (although
obviously algorithms to extract higher level information are available).
Although here we are dealing with human behaviour, using the same
kind of approach appears as a way to express the long range behaviour
with respect to obstacles (averaged interaction with the whole obstacle,
and not with an explicit collision point).

In detail, we repeat the operations performed above for the inter-
action of pedestrian 𝑗 with every other pedestrian in the environment
also on a set of ‘‘obstacle points’’.16 Defining 𝐫𝑖,𝑗 as the relative distance
between the pedestrian 𝑖 and the obstacle point 𝑗, and assuming the
velocity of the obstacle equal to zero, we define 𝑗 to be near (𝑗 ∈ 𝑁𝑜

𝑗 )
f

𝑖,𝑗 < 𝑅𝑚𝑎𝑥, (C.15)

n the front (𝑗 ∈ 𝐴𝑜
𝑗 ) if

𝐫𝑖,𝑗
𝑟𝑖,𝑗

,
𝐯𝑖
𝑣𝑖

)

>

√

2
2

, (C.16)

nd colliding (𝑗 ∈ 𝐶𝑜
𝑗 ) if

⟨

𝐫𝑖,𝑗 ,
𝐯𝑖
𝑣𝑖

⟩

|

|

|

|

|

< 𝑑𝑒𝑥𝑡. (C.17)

These conditions assure that the collision avoidance process is,
although defined as ‘‘long range’’, still of a local nature, i.e., it accounts
only for obstacles close in space and collision time. The distance
threshold 𝑅𝑚𝑎𝑥 was chosen to be equal to 3 m, so that, in general, a
pedestrian is interacting with a single obstacle (or very few obstacles)
and it is meaningful to use an average of the grid points. The short
range model, on the other hand, deals with obstacles as polygons, and
computes explicit collision points. The on the front condition is stricter
than the visible one (𝑗 ∈ 𝑉 𝑜

𝑗 ), namely Eq. (C.6), to allow pedestrians to
be able to walk close to a wall if needed.

For all near, colliding and on the front points, we can compute again

𝑡𝑖,𝑗 =

(

𝐫𝑖,𝑗 ,
𝐯𝑖
𝑣2𝑖

)

. (C.18)

and define the time of next closest approach to an obstacle

𝑡𝑜𝑖 = min
𝑗∈(𝑁𝑜

𝑗 ∩𝐴
𝑜
𝑗∩𝐶

𝑜
𝑗 )
𝑡𝑖,𝑗 . (C.19)

Then, for all near and visible obstacles (the set of visible obstacles 𝑉 𝑜
𝑖

s computed in analogy with Eq. (C.6))
𝑚𝑖𝑛
𝑖,𝑗 = 𝐫𝑗 (𝑡) − 𝐫𝑖(𝑡) − (𝑡𝑝𝑖 − 𝑡)𝐯𝑖, (C.20)

nd

𝑜
𝑖,𝑗 = −

𝑣𝑖
max(𝑡𝑜𝑖 , 𝛥𝑡)

𝑓 (𝑟𝑚𝑖𝑛𝑖,𝑗 )
𝐫𝑚𝑖𝑛𝑖,𝑗

𝑟𝑚𝑖𝑛𝑖,𝑗
. (C.21)

Finally, we compute

𝐅𝑜
𝑖 =

1
#(𝑁𝑜

𝑖 ∩ 𝑉 𝑜
𝑖 )

∑

𝑗∈(𝑁𝑜
𝑖 ∩𝑉

𝑜
𝑖 )
𝐅𝑜
𝑖,𝑗 . (C.22)

The presence of the threshold 𝑅𝑚𝑎𝑥 prevents this average from yielding
a very low value due to the sum of many small contributions.

16 Specifically, we replace walls with a regular grid of points with a 0.05 m
lattice step.
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C.1.3. Step overlap term
It has been suggested (Curtis and Manocha, 2014) that models based

on prediction of collisions are ‘‘too efficient’’, as they typically present
too high speeds at high densities. Indeed, the CP model would allow, in
the noiseless limit, a crowd of pedestrians with the same goal direction
to move with their preferred speed regardless of their densities, or at
least up to the maximum density compatible with physical constraints.
This is due to the fact that in such a condition, since all pedestrians
have the same velocity, no collision is predicted17 and there is no need
of changing velocity.

This is clearly unrealistic, because pedestrians are not 2D rigid
bodies. When a uni-directional, single flow motion is considered, the
most important correction to the ‘‘2D rigid body’’ assumption amounts
to taking into consideration the swing of the legs. As a first order
assumption, we proceeded as follows.18

To each pedestrian we associate an elliptical19 ‘‘leg swing space’’,
with semi-axes 𝐴𝑙 and 𝐵𝑙. 𝐴𝑙 is given by half of the pedestrian maxi-
mum linear extension (for a circular body with radius 𝑅, 𝐴𝑙 = 𝑅; for an
elliptical body with semi-axes 𝐴 > 𝐵, 𝐴𝑙 = 𝐴), while 𝐵𝑙 is a parameter
of the model that represents half of the leg swing length. Such an
elliptical space is centred at the body centre of mass (elliptical body
centre), and oriented in such a way that the 𝐵𝑙 axis overlaps with the
velocity direction.20 For each pedestrian pair {𝑖, 𝑗}, and time 𝑡, assuming
∈ 𝑉 𝑝

𝑖 , the set of visible (i.e., located on 𝑖’s front) pedestrians, we verify
using again the method based on Foulaadvand and Yarifard, 2013) if
heir ‘‘leg swing space’’ overlap, and in case they do, we evaluate ‘‘how
uch they overlap’’ in the following way. We scale both ‘‘leg swing

paces’’ of a linear factor 𝑠 (i.e., we replace the semi-axes with 𝑠𝐴𝑙 and
𝐵𝑙), and define 0 ≤ 𝑠𝑓𝑖,𝑗 < 1 as the maximum 𝑠 such that the two ellipses
o not overlap.

Finally, if we add the following extra force term to the interaction
erm 𝐅𝑙𝑜𝑛𝑔 acting on pedestrian 𝑖

𝑠
𝑖 = −min

⎛

⎜

⎜

⎝

𝑘𝑠
⎛

⎜

⎜

⎝

∑

𝑗∈(𝑉 𝑝
𝑖 )

′

(

1 − 𝑠𝑓𝑖,𝑗
)
⎞

⎟

⎟

⎠

, (𝛥𝑡)−1
⎞

⎟

⎟

⎠

𝐯, (C.23)

here (𝑉 𝑝
𝑖 )

′ is the set of visible pedestrians for which the overlapping
ondition is satisfied.

This term is a velocity-dependent ‘‘friction’’ term (parameter 𝑘𝑠
aving dimension 𝑡−1) which is caused by the overlapping of the
edestrians’ ‘‘leg swing spaces’’. The minimum with respect to the
nverse of the time step is taken to be sure that, after a decision step, the
edestrian is slowed down, but not pushed into the opposite direction
see Section 4.3 for a discussion of the meaning of the time step 𝛥𝑡 in
his model).

.2. ‘‘Path-finding’’ and randomness

All proposed models include the ‘‘preferred velocity’’ term −𝑘𝑣𝑝 (𝐫̇ −
𝑝), so it is important to specify how the preferred velocity direction is
omputed.

The geometry of the crossing corridor is very simple, so that, as
ong as pedestrians are located inside the borders of their own corridor,
heir preferred velocity should be directed as their walking direction
𝐹 (𝑖), which in the following discussion we may assume to be given by
0, 1) (i.e., we describe it according to the simulated pedestrian’s own
rame of reference as defined in Eq. (B.6)). In this model, we include

17 More precisely, 𝑡𝑝𝑖 → ∞.
18 The proposed term can hardly be regarded as ‘‘long range’’, but we include

t in this section because it is considered as part of the ‘‘basic’’ model.
19 A rectangular shape could be used to decrease computational time.
20 This means that, for an elliptical body, the body minor axis 𝐵 is not

necessarily aligned with 𝐵𝑙, since we allow body direction and velocity
20

direction to differ. a
the ‘‘unpredictability’’ of human behaviour by defining the goal vector
as

𝐠̂ =
𝐠
𝑔
, 𝐠 = (𝑁1(𝜎𝑔), 1 +𝑁2(𝜎𝑔)), (C.24)

𝑁𝑚(𝜎) being independent realisations of a Gaussian random variable
with zero mean and 𝜎 standard deviation.

As a result of collision avoidance, simulated pedestrians may be
temporally located in the other stream’s corridor, and this situation has
to be managed by goal assignment. We verified that using a ‘‘minimum
path’’ approach caused overcrowding around the corridors’ corners,
which did not appear to be qualitatively similar to human behaviour.
We thus adopted the following ‘‘ad hoc’’ procedure. Let us identify the
positions of the crossing areas’ 4 corners in each simulated pedestrian’s
own frame of reference with coordinates

𝑐𝑥 = ±𝐿
2
,

𝑐𝑦 = ±𝐿
2
.

(C.25)

Here, 𝐿 is the width corridor, and the origin of the reference frame
is the centre of the crossing area. Since in each pedestrian’s frame
the walking direction is identified with the 𝑦 axis, we assume the
pedestrians to be located out of their own corridor if the following
applies for the pedestrian’s position 𝐫 = (𝑥, 𝑦):

𝑥| ≥ 𝐿
2
− 0.5m, −𝐿

2
≤ 𝑦 ≤ 𝐿

2
. (C.26)

The 0.5 m term concerning the 𝑥 position is introduced assuming that
pedestrians prefer to keep some distance from the corridor’s wall.

When such a condition is attained, pedestrians are assumed to re-
enter the corridor by walking towards the corner identified by the
position

𝐜 =
(

sign(𝑥)
(𝐿
2
− 0.5

)

, 𝐿
2

)

≡ (𝑐𝑥, 𝑐𝑦). (C.27)

Nevertheless, to avoid overcrowding around the corner, we assign
a stronger weight to the 𝑥 direction (walking back into the correct
corridor) with respect to the 𝑦 direction (walking towards the goal)
defining the goal vector as

𝐠̂ =
𝐠
𝑔
, 𝐠 = (2(𝑐𝑥 − 𝑥 +𝑁1(𝜎𝑔)), 𝑐𝑦 − 𝑦 +𝑁2(𝜎𝑔)). (C.28)

As stated above, this is definitely an ‘‘ad hoc’’ solution to the
roblem, but we are not aware of any quantitative studies regarding
edestrian path choices under such conditions. Nevertheless, we believe
hat, given the purpose of this work, it was important to adopt a
elatively simple approach common to all computational models. For
ractical applications and future works, it may be interesting to try a
achine learning approach aimed also at reproducing pedestrian path

hoices.

.3. Parameters

The ‘‘long range’’ model (with the addition of the step overlap term),
s characterised by the following parameters (assuming the body size
f the pedestrian as given by ellipse semi-axes 𝐴 ≥ 𝐵, with 𝐴 = 𝐵
epresenting the circular case): 𝐶 (dimensionless), 𝑑𝑖𝑛𝑡 (length), 𝑑𝑒𝑥𝑡
length) (Eq. (C.13)), the mean 𝜇𝑣 and standard deviation 𝜎𝑣 of the

preferred velocity 𝑣𝑝 distribution (assumed to be normally distributed),
𝑘𝑣𝑝 (Eq. (C.2), inverse of time), the threshold under which walls are
considered in collision avoidance 𝑅𝑚𝑎𝑥 (length), the size of the leg
swing space 𝐵𝑙 (length), 𝑘𝑠 (Eq. (C.23), inverse of time), and the ‘‘goal
noise’’ standard deviation 𝜎𝑔 (Eq. (C.24)). In this work we assumed,
following (Zanlungo et al., 2011) 𝑘𝑣𝑝 = 1.52 s−1, and fixed 𝑅𝑚𝑎𝑥 = 2
m, leaving the 8 parameters 𝐶, 𝑑𝑖𝑛𝑡, 𝑑𝑒𝑥𝑡, 𝜇𝑣, 𝜎𝑣, 𝐵𝑙, 𝑘𝑠 and 𝜎𝑔 to be
alibrated.

A further parameter is the integration step 𝛥𝑡, that was fixed to
.05 s. The equations governing the behavioural dynamics (collision
voidance) of pedestrians are written as differential equations but
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Table C.6
Summary of parameters.

Parameter Definition Calibrated Model FE value FC value

𝐴 (major axis) Section 4.4 No All 0.225 m 0.15 m
𝐵 (minor axis) Section 4.4 No All 0.1 m 0.15 m
𝐶 Eq. (C.13) Yes All 0.126 7.599
𝑑𝑖𝑛𝑡 Eq. (C.13) Yes All 0.5498 m 0.09154 m
𝑑𝑒𝑥𝑡 Eq. (C.13) Yes All 1.2084 m 0.11154 m
𝜇𝑣 Mean of vel. distr. Yes All 1.764 m/s 1.729 m/s
𝜎𝑣 Standard deviation of vel. distr. Yes All 0.1133 m/s 0.1454 m/s
𝑘𝑣𝑝 Eq. (C.2) No All 1.52 s−1 1.52 s−1

𝑅𝑚𝑎𝑥 Eq. (C.15) No All 2 m 2 m
𝐵𝑙 Appendix C.1.3 Yes All 0.5478 m 0.9807 m
𝑘𝑠 Eq. (C.23) Yes All 5.194 s−1 1.98 s−1

𝜎𝑔 Eq. (C.24) Yes All 0.296 0.
𝛥𝑡 Sec 4.3 No All 0.05 s 0.05 s
𝑘𝑣𝜃 Eq. (2) Yes Elliptical 0.6329 s−1

𝑘𝜔 Eq. (3) Yes Elliptical 8.135 s−1

𝑘𝜔𝜃 Eq. (3) Yes Elliptical 5.867 s−1

𝛾 Eq. (7) Yes Full 6.747 10
𝜏1 Eq. (4) Yes Full 0.7759 s 1 s
𝜏2 Eq. (4) Yes Full 1.7759 s 1.2681 s
e
e
u
t
b
t
t
a
u
o

r

⟨

a

𝜀

i
c

a

implemented as difference equations, by discretising through an Euler
scheme. The integration step is common to all behavioural modules
(including the short range ones described below), and assumes that
pedestrians take decisions at regular time steps and act based on them.
Using a Euler scheme with a time step comparable to human reaction
times is thus not an issue, as long as, as described in Section 4.3,
physical dynamics is resolved at a finer scale.

The Elliptical models use also the following parameters related to
angle dynamics: 𝑘𝑣𝜃 (inverse of time), 𝑘𝜔 (inverse of time) and 𝑘𝜔𝜃
(inverse of squared time). Finally the ‘‘short range’’ module introduces
3 parameters: 𝛾 (dimensionless), 𝜏1 (time) and 𝜏2 (time) (Eqs. (2)–(8)).

In Table C.6 we summarise all parameters, specifying where they
are defined, which models use them, if they are calibrated or not,
and providing values assumed in two high performing solutions of the
Full Elliptical and Full Circular models, while with the code shared
in Zanlungo (2022c) we provide all parameters for each model and GA
solution. We would like to stress that these solutions are calibrated to
specifically reproduce the pdfs of the observables that we defined to
analyse our experiments in a cross-flow setting, and do not necessarily
generalise to different and more complex scenarios. Anyway, the dif-
ferent solutions and models provided may hopefully be a starting point
for such generalisations.

C.4. Constraints

All terms explained until now are considered to be the results
of pedestrian decisional processes, and as such they should provide
velocities and accelerations that are compatible with realistic pedes-
trian behaviour. For this reason, in case after computing the discrete
equations, the values of |𝐯̇| and 𝜔̇ are higher than thresholds 𝑎𝑚𝑎𝑥 = 5 m
s−2 and 𝜔̇𝑚𝑎𝑥 = 2𝜋 s−2, the final acceleration and angular accelerations
are scaled (i.e., preserving their direction and sign) to such maximum
values. In an equivalent way, thresholds 𝑣𝑚𝑎𝑥 = 3 m s−1 and 𝜔𝑚𝑎𝑥 = 2𝜋
s−1 are applied to speed and angular velocity.

Appendix D. Statistical analysis of observables

In this appendix we provide a definition of some recurrent statistical
terms used in this work.

We assume that 𝑂 is an observable whose value is measured over 𝑛
repetitions, assumed statistically independent, of an experiment. Here,
both the term ‘‘observable’’ and ‘‘experiment’’ are used in a very broad
sense. ‘‘Observable’’ may refer not only to those defined in Section 3,
but also to the values assumed by the evaluation metric defined in
Appendix E. By ‘‘experiment’’, we may refer to the actual experiments
with human pedestrians, to the simulations using the same initial
21

𝛾

conditions of a given experiment repetition, or even to an ‘‘experiment
with pedestrians-simulation’’ pair in which the simulation uses the
same initial conditions as the experiment.

The ‘‘𝑛 independent repetitions’’ are assumed to share some common
xperimental condition (e.g., the initial density 𝜌𝐼 ) or a set of common
xperimental conditions (e.g., initial density and model specification
sed in simulation). Given these assumptions, we use some statistical
ools to understand what our experiments tell us about the expected
ehaviour under these conditions and about its statistical variation. All
hese tools are quite basic and are intended to provide some quantita-
ive tool for comparison, without any claim to ‘‘prove’’ or ‘‘disprove’’
nything (although terms like ‘‘statistically significant’’ are sometimes
sed in our manuscript when the evidence appears to be compelling, or
n the other hand, when we want to stress the lack of such evidence).

Given these premises, writing the value assumed by 𝑂 in the 𝑘th
epetition as 𝑂𝑘 we define the mean of the observable as

𝑂⟩ =
∑𝑛

𝑘=1 𝑂𝑘

𝑛
, (D.1)

its standard deviation as

𝜎 =

√

∑𝑛
𝑘=1 𝑂

2
𝑘

𝑛
− ⟨𝑂⟩

2, (D.2)

nd its standard error as

= 𝜎
√

𝑛 − 1
. (D.3)

When comparing results between two different conditions (e.g., when
comparing the evaluation metric values attained by different models),
which we may call condition 𝐴 and 𝐵, a possible rule of thumb is to
say that 𝑂 assumes a different value under the two conditions provided
that

|⟨𝑂⟩

𝐴 − ⟨𝑂⟩

𝐵
| ≫

√

2max(𝜀𝐴, 𝜀𝐵). (D.4)

This rule of thumb is obviously related to the 𝑡 test 𝑝 values reported
n the text. When comparing results between 2 different conditions,
orresponding to 𝑛𝐴 and 𝑛𝐵 repetitions, if we define the difference

between their averages as

𝛿𝑂 = ⟨𝑂⟩

𝐴 − ⟨𝑂⟩

𝐵 , (D.5)

nd the degree of freedom as

= 𝑛𝐴 + 𝑛𝐵 − 2, (D.6)
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and assume, as a null hypothesis, both samples to follow the same
Normal distribution, the random variable

𝑍 = 𝛿𝑂
√

(

𝜎2𝐴
𝑛𝐵 +

𝜎2𝐵
𝑛𝐴

)

𝑛𝐴+𝑛𝐵
𝛾

(D.7)

will follow a 𝑡 distribution (Ash, 2011), and the probability of having
such random variable assuming an absolute value larger than the
observed one can be computed numerically (Press et al., 1988) and
provides the reported 𝑝 value.

Let us see how this relates to the rule of thumb for standard errors.
Let us assume, as usual in our comparisons

𝑛𝐴 = 𝑛𝐵 = 𝑛 ≫ 1. (D.8)

We have

𝑍 ≈ 𝛿𝑂
√

𝜀2𝐴 + 𝜀2𝐵

, (D.9)

and, according to the central limit theorem (Ash, 2011), the distribution
of this random variable can be approximated by a Normal one with
average 0 and variance 1 (whose cumulative function we may name
𝛷(𝑥)), and thus the corresponding 𝑝 value will be approximated (𝐹
being the observed value of 𝑍) by

𝑝 ≈ 2∫

+∞

𝐹
𝛷(𝑥) d𝑥, 𝐹 ≫ 1 ⇒ 𝑝 ≪ 1, (D.10)

justifying the rule of thumb Eq. (D.4).
The value of the ratio in Eq. (D.7) increases with the number of

observations, but it may be useful to use also an estimator that does not
depend on such number. In this work, we also use effect size, defined
as

𝛿 =
⟨𝑂⟩

𝐴 − ⟨𝑂⟩

𝐵

𝜎
,

𝜎 =

√

(𝑛𝐴 − 1)(𝜎𝐴)2 + (𝑛𝐵 − 1)(𝜎𝐵)2

𝑛𝐴 + 𝑛𝐵 − 2
.

(D.11)

While a 𝑝-value tells us about the significance of the statistical
difference between two distributions, the difference may often be so
small that it can be verified only if a large amount of data are collected.
But if we have also 𝛿 ≈ 1, then the two distributions are different
enough to be distinguished also using a relatively reduced amount of
data.

Appendix E. Earth Mover’s Distance

The Earth Mover’s Distance (EMD, Cohen and Guibasm, 1999) may
be used to compare probability distributions. The EMD process can be
visualised as filling holes by moving piles of dirt. Assume that 𝑃 and
𝑄 denote two pdfs, and that a proper metric, named ground distance is
defined to measure the distance between the bins 𝑖 and 𝑗.21 Suppose
lso that a flow 𝑓 (𝑖, 𝑗) is applied to morph 𝑃 to 𝑄, namely a (signed)
uantity is subtracted from 𝑃 (𝑖) and added to 𝑄(𝑗) in the process of
aking the 𝑃 and 𝑄 distributions more similar.

In this contest, EMD can be formulated and solved essentially as a
ransportation problem. Namely, EMD aims at finding the amount of
low 𝑓 that minimises the overall cost of morphing 𝑃 to 𝑄. Explicitly,
he work required to morph 𝑃 to 𝑄 (or vice versa) given an explicit flow

is,
∑

𝑖

∑

𝑗
𝑓 (𝑖, 𝑗)𝑑(𝑖, 𝑗), (E.1)

21 It is common practice to use the Euclidean distance from 𝑖 to 𝑗 as the
ground distance. Namely, in the 1D case this reduces to |𝑖 − 𝑗|.
22
where 𝑓 (𝑖, 𝑗) and 𝑑(𝑖, 𝑗) are respectively, the flow and the ground
distance between 𝑃 (𝑖) and 𝑄(𝑗). By solving for the optimal flow and
ormalising it with the total flow, EMD is described as,

𝑀𝐷(𝑃 ,𝑄) =
min𝑓

∑

𝑖
∑

𝑗 𝑓 (𝑖, 𝑗)𝑑(𝑖, 𝑗)
∑

𝑖
∑

𝑗 𝑓 (𝑖, 𝑗)
. (E.2)

The normalisation operation in the above equation yields the aver-
age distance travelled by unit weight under the optimal flow.

When computing the EMD between two discrete histograms defined
on the same array of bins 𝑖 = 0,… , 𝑁 −1, the following algorithm may
e used
EMD0 = 0,

EMD𝑖+1 = 𝑄𝑖 − 𝑃𝑖 + EMD𝑖,

EMD =
∑𝑁

𝑖=1 |EMD𝑖|

𝑁
.

(E.3)

In the last step, we normalise dividing by the number of bins 𝑁 .
In this work, the comparison is performed between observables

averaged over independent repetitions of experiments according to
Eq. (B.12).
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