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Abstract: Resolving linguistic ambiguities is a task frequently called for in human communication. In many cases,
such task cannot be solved without additional information about an associated context, which can be often
captured from the visual scene referred by the sentence. This type of inference is crucial in several aspects of
language, communication in the first place, and in the grounding of language in perception. This paper focuses
on the contextual effects of visual scenes on semantics, investigated using neural computational simulation.
Specifically, here we address the problem of selecting the interpretation of sentences with an ambiguous
prepositional phrase, matching the context provided by visual perception. More formally, provided with a
sentence, admitting two or more candidate resolutions for a prepositional phrase attachment, and an image that
depicts the content of the sentence, it is required to choose the correct resolution depending on the image’s
content. From the neuro-computational point of view, our model is based on Nengo, the implementation of
Neural Engineering Framework (NEF), whose basic semantic component is the so-called Semantic Pointer
Architecture (SPA), a biologically plausible way of representing concepts by dynamic neural assemblies. We
evaluated the ability of our model in resolving linguistic ambiguities on the LAVA (Language and Vision
Ambiguities) dataset, a corpus of sentences with a wide range of ambiguities, associated with visual scenes.

1 INTRODUCTION

In recent years, a number of different disciplines have
begun to investigate the fundamental role that context
plays in different cognitive phenomena. The problem
of context spans from the abstract level of semantics
down to the level of neural representations. It has in-
creasingly been studied also for its role in influenc-
ing mental concepts and, more specifically, linguistic
communication has been the area of study that has
traditionally explored these issues. The term context
is not easy to define: it is something that cannot be
specified independently of a specific frame and it may
play quite different roles within alternative research
paradigms. In wider terms, as stated by Goodwin and
Duranti (1992), we can define the context as a ”frame
that surrounds the event and provides resources for its
appropriate interpretation”. However, in order to ob-
tain a more complete understanding of what context
stands for, it is necessary to investigate how it inter-
acts with cognitive phenomena at three different lev-
els: the linguistic, the cognitive and the neural level
(Plebe and De La Cruz, 2020).

There is a long tradition in linguistics and prag-
matics which invokes context to help account for as-
pects of meaning in language that go beyond the

scope of semantics. The main elements of context
has roots that dates back to the past, and regards the
degree to which truth-functional semantics depends
on context. Gottlob Frege raised the point in his un-
completed 1897 volume Logik, and though he was not
explicitly using the term context, he underlined how
for many expressions, fixing their truth value requires
supplemental information, coming from the circum-
stances, the ”frames”, in which such expressions are
pronounced. The first clear elucidation of the depen-
dence of language on context was proposed by Searle
(1978). He takes up Frege’s idea that a word has
meaning only if related to the meaning of the whole
sentence and if its meaning is perceived by both in-
terlocutors, speaker and listener. At a cognitive level
the issue regards concepts and the degree to which
they are dependent on context. Barsalou (1983) has
been one of the first to underline how difficult it is
to conceive them as stable subjective entities, while
it appears more appropriate to think of categories as
dynamically constructed and tailored to specific con-
texts, or as ad hoc categories. A recent review of stud-
ies of the cognitive perspective on the linguistic issue
of context can be found in (Airenti and Plebe, 2017).
Just as in the strictly linguistic domain, they find in the
wider cognitive view a variety of positions, some that



minimize the destabilizing effect context has on con-
cepts, such as that of Machery (2015), or others that
assume a more intermediate position such as. that of
Mazzone and Lalumera (2009), that while acknowl-
edging the fundamental. role context might play in
concepts, sustain that a characterizing stable nucleus
of mental concepts is also a part.

On the other hand, cognitive neuroscience is now
starting to consider in a systematic way how context
interacts with neural responses (Stark et al., 2018).
The way context drives language comprehension de-
pends on the effects of context on the conceptual scaf-
folding of the listener, which in turn, is the result of
his neural responses in combination to context.

The kind of ambiguity addressed in this paper is
the canonical case of structural ambiguity, technically
known as Prepositional Phrase Attachment, where a
sentence includes a prepositional phrase that can be
attached to more than one higher level phrases (Hin-
dle and Rooth, 1993). The attachment resolution is
context dependent, we deal specifically with the case
when depends on the visual context.

Specifically, provided with a sentence, admitting
two or more candidate interpretations, and an image
that depicts its content, it is required to choose the
correct interpretation of the sentence depending on
the image’s content. Thus we address the problem of
selecting the interpretation of an ambiguous sentence
matching the content of a given image.

This type of inference is frequently called for in
human communication occurring in a visual environ-
ment, and is crucial for language acquisition, when
much of the linguistic content refers to the visual sur-
roundings of the child (Bates et al., 1995; Bornstein
and R.Cote, 2004).

This kind of task is also fundamental to the prob-
lem of grounding vision in language, by focusing on
phenomena of linguistic ambiguity, which are preva-
lent in language, but typically overlooked when using
language as a medium for expressing understanding
of visual content. Due to such ambiguities, a super-
ficially appropriate description of a visual scene may
in fact not be sufficient for demonstrating a correct
understanding of the relevant visual content.

From the neurocomputational point of view, our
model is based on Nengo (https://www.nengo.ai),
the implementation of Eliasmith’s Neural Engineer-
ing Framework (NEF) (Eliasmith, 2013). The basic
semantic component within NEF is the so-called Se-
mantic Pointer Architecture (SPA) (Thagard, 2011),
which determines how the concepts are represented
as dymanic neural assemblies. The model works by
extracting the three involved entities from the input
sentence and identifying the categories involved.

Early experimental results show that the presented
computational model achieves a reliable ability to dis-
ambiguate sentences.

1.1 A Framework for Neural Semantics

The two main requirements we seek in the identifi-
cation of a suitable neural framework to be adopted
all along this work is the biological plausibility and
the possibility of modeling at a level enough abstract
to deal with full images and with words in sentences.
The two requirements are clearly in stark contrast.

Today the legacy of connectionism has been taken
up by the family of algorithms collected under the
name deep learning. Unlike the former artificial neu-
ral networks, deep learning models succeeds in highly
complex cognitive tasks, reaching even human-like
performances in some visual tasks (VanRullen, 2017).
However, the level of biological plausibility of deep
learning algorithms is in general even lower than in
connectionism, these models were developed with en-
gineering goals in mind, and exploring cognition is
not in the agenda of this research community (Plebe
and Grasso, 2019). In our model we will also include
a very simple deep learning component, but only for
the low-level analysis of the images. This choice
makes the model simpler, by exploiting the ease of
deep learning model in processing visual stimuli. It
would have been easy to solve also the crucial part
of our problem, the semantic disambiguation, through
deep learning, but this would have been of little value
as a cognitive model.

Currently, the neural framework that can simu-
late the widest range of cognitive tasks, by adopting a
unified methodology with a reasonable degree of bi-
ological plausibility, is Nengo (Neural ENGineering
Objects) (Eliasmith, 2013). The idea behind Nengo
dates back to 2003, thanks to the former NEF (Neu-
ral Engineering Framework) (Eliasmith and Ander-
son, 2003), which defines a general methodology for
the construction of large cognitive models, informed
by a number of key neuroscientific concepts. In brief,
the three main such concepts are the following:

• The Representation Principle: neural representa-
tions are defined by the combination of nonlinear
encoding of spikes over a population of neurons,
and weighted decoding over the same populations
of neurons and over time;

• The Transformation Principle: transformations of
neural representations are functions of the vari-
ables represented by neural populations. Trans-
formations are determined using an alternately
weighted decoding;



• The Dynamic Principle: neural dynamics are
characterized by considering neural representa-
tions as state variables of dynamic systems. Thus,
the dynamics of neuro-biological systems can be
analyzed using control theory.
According to the listed principles, the basic com-

putational object in Nengo is a population of neurons
that collectively can represent a multidimensional en-
tity. The meaningful entity is retrieved from the neu-
ral activation by the equation (Eliasmith, 2013):

~x =
N

∑
i=1

M

∑
j=1

e−
t−ti, j

τ ~di (1)

where N is the number of neurons in the population,
and M is the number of spikes that happen in the time
windows of the computation; ti, j is the time when the
i-th neuron in the population has fired for the j-th
time; ~di is the i-th row of the N×D decoding matrix ~D
with D the dimension of the entity to be represented;
τ is the time constant of decay of the postsynaptic ac-
tivation. The activity of the neurons in a population
depends from the encoding of their input that can be
multidimensional with a dimension different from D.

A fundamental extension of the general neural
population, ruled by equation (1), is the the Semantic
Pointer Architecture (SPA), used when representing
entities at higher cognitive level, i.e. conceptual and
linguistic. In addition to the encoding and the decod-
ing features, SPA structures allow a number of high
level operations, that may correspond to conceptual
manipulation, with some degree of biological plausi-
bility. The foundation of these conceptual operations
is in the mathematics of holographic representations,
as theorized by Plate (2003). One of the basic opera-
tions is the binding of two SPA, computed by circular
convolution (Eliasmith, 2013):

~x~~y = F−1 (F (~x) ·F (~y)) (2)

where F is the discrete Fourier transform and F−1

is its inverse, and · is the element-wise multiplication.
Informally, SPA together with its associated opera-
tions, can be thought as a neural process that com-
presses information in other neural processes to which
it points and into which it can be expanded when
needed, providing shallow meanings through symbol-
like relations to the world and other representations,
and expanding to provide deeper meanings with rela-
tions to perceptual, motor, and emotional information,
support complex syntactic operations. They also help
to control the flow of information through a cognitive
system to accomplish its goals. Thus semantic point-
ers have semantic, syntactic, and pragmatic functions,
just like the symbols in a rule-based system, but with
a highly distributed, probabilistic operation.

2 THE AMBIGUITY TESTBED

The testbed of our study is the LAVA (Language and
Vision Ambiguities) corpus, recently introduced by
Berzak et al. (2015).

Such corpus contains sentences with linguistic
ambiguities that can only be resolved using exter-
nal information. The sentences are paired with short
videos that visualize different interpretations of each
sentence. Such sentences encompass a wide range of
syntactic, semantic and discourse ambiguities, includ-
ing ambiguous prepositional and verb phrase attach-
ments, conjunctions, logical forms, anaphora and el-
lipsis.

Overall, the corpus contains 237 sentences, with
2 to 3 interpretations per sentence, and an average of
3.37 videos that depict visual variations of each sen-
tence interpretation, corresponding to a total of 1679
videos. Each sentence involves two or more entities
in one among four categories (person, bag, telescope
and chair).

In their paper Berzak et al. (2015) also addressed
the problem of selecting the interpretation of an am-
biguous sentence that matches the content of a given
video. In our case also, the road to solve the ambigu-
ities is in pairing sentences with images that visualize
the corresponding scene. In order to simplify the task,
we limited on sentences where exactly three distinct
entities belonging to three distinct categories are in-
volved (among person, bag, telescope and chair).

For instance, given the sentence ”Sam approached
the chair with a bag”, three different categories in-
volved: person (Sam), chair and bag. In addition two
different linguistic interpretations are plausible: the
first interpretation assumes that Sam has the bag while
approaching the chair, while the second one assumes
that the bag is on the chair while Sam is approaching.

In addition, in this preliminary work, the ambigu-
ous phrases examined by the system are limited to the
preposition “with”: the system is able to solve the am-
biguity thanks to the given image and therefore to un-
derstand who the proposition refers to.

For example in the following sentence

“Dany approached the chair with a yellow bag”

the system is able to recognize to whom it refers
“with” and specifically if Dany brings a yellow bag
while approaching the chair or if the bag is on the
chair while Dany is approaching them.

Our corpus contains 81 sentences, with 2 to 3 in-
terpretations per sentence.



3 METHOD

Without restricting the general case we can assume
that the world is populated by objects that are grouped
into categories C = {C1,C2, · · ·}. The small world
of LAVA is populated with a limited number of cate-
gories, whose instances can appear in images, corre-
sponding to scenes viewed by the agent. Images are
matrices I of pixels in two dimensions. Inside an im-
age I it is possible to cut submatrices B(C)

x,y with centers
at coordinates x,y, and size suitable to contain objects
of category C. The submatrices B(C)

x,y bear a resem-
blance with foveal images captured during saccadic
movements gazing over different portion of the visual
scene, with the purpose of recognizing each single ob-
ject. Unlike natural saccades, in our model the cen-
ters of the detailed views are not driven by top-down
mechanisms, are instead sampled at fixed regular in-
tervals, scanning the whole image:

X = 〈x1,x1 +∆x, · · · ,x1 +N∆x〉 , (3)
Y =

〈
y1,y1 +∆y, · · · ,y1 +M∆y

〉
. (4)

The visual component of the model is made by a set
of deep convolutional neural networks, tuned to rec-
ognize one of the categories C ∈ C . Each network
is a function f(C)(·) estimating the probability of an
object of category C to be inside a submatrix Bx,y:

f(C)() : R×R→ [0..1] (5)

By applying the deep convolutional neural network
fC(·) to all the submatrices of an image, a vector ~p(C)

of probabilities to find an object of category C in the
discrete horizontal positions X is constructed. An el-
ement p(C)

i of ~p(C) is computed as:

p(C)
i = max

y∈Y

{
f(C)

(
B(C)

xi,y

)}
(6)

The rationale behind equation (6) is that in an interior
environment the displacement of objects – therefore
their spatial relationship – appears mainly in the hori-
zontal dimension of the retinal projection of the scene.
It is therefore possibly to capture the probabilistic lo-
cations of objects as vectorial representations corre-
sponding to scanning the scene horizontally along X .
We can now compose equation (6) into a family of
functions φ (C)(·) that, given and image I, return prob-
ability vectors ~p(C):

φ
(C)() : R×R→ [0..1]N (7)

Let us move on the linguistic part of LAVA and
of the stimuli to the model. The full set of sen-
tences in LAVA use words from a closed lexicon L ,
and within this lexicon there are two subsets rele-
vant for our model. One is the lexicon of words

W ⊂L = {W1,W2, · · ·} used to name objects of the
categories in C . In the case of LAVA we can assume
a deterministic reference function:

c(W ) : W → C (8)
associating every word W to a category C. There is
then a smaller lexicon of prepositions, the grammat-
ical category responsible for the contextual ambigui-
ties: P ⊂L = {with, · · ·}.

A sentence in the LAVA is an ordered set S , with
elements Si ∈L , from which a simple preprocessing
extracts three key words:

S →


WP noun under the head of S

W ′ first noun possible head of S

W ′′ second noun possible head of S

(9)

The noun WP is easily found by searching in S
the first element Si ∈P , and then searching the first
element S j with j > i such that S j ∈W . The other two
nouns W ′ and W ′′ are the only two possible elements
Sl,k ∈W with l 6= j,k 6= j. Let us call WH ∈ {W ′,W ′′}
the correct head of the prepositional phrase.

The three key words WP,W ′,W ′′ find a correspon-
dence in the model in terms of three Nengo SPA
items: ~VP, ~V ′ and ~V ′′. The processed sentence S is
linked with an image I in which the objects of cate-
gories referred by WP, W ′ and W ′′ are searched:

~pP = φ
(c(WP))(I), (10)

~p′ = φ(c(W ′))(I), (11)

~p′′ = φ(c(W ′′))(I). (12)
These vectors, expressing probabilities of locations
of the three categories along the horizontal view of
the agent, are bind to the corresponding Nengo SPA
items, using NEF ~ operator, introduced in equation
(2). We can express the binding in our case as a func-
tion b(·) : RN → RN :

b
(
~VP

)
= ~VP ~~pP, (13)

b
(
~V ′
)

= ~V ′~~p′, (14)

b
(
~V ′′
)

= ~V ′~~p′′, (15)

and the disambiguate item~V ∗ is selected as following:

~V ∗ = arg min
~V∈{~V ′,~V ′′}

{
ζ

(
b
(
~VP

)
,b
(
~V
))}

(16)

where ζ

(
~V1,~V2

)
is a measure of similarity between

the two Nengo SPA items ~V1 and ~V2. Therefore, the
predicted head of the prepositional phrase W ∗H is the
lexical item associated with ~V ∗.

The combined deep convolutional and Nengo SPA
neural processes are sketched in Fig. 1.
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Figure 1: Sketch of the neural model.

4 RESULTS

We evaluated the performance of our neural model,
described in the previous section, on the LAVA
dataset. In this section we report our main prelim-
inary results. Each sentence and its associated pic-
ture in the dataset was processed, predicting the lexi-
cal item that most likely is the head of the ambiguous
propositional phrase. We recall that in this prelim-
inary work, the ambiguous phrases examined by the
system are limited to the preposition “with”. The code
we used for constructing the neural model and com-
puting our experimental results is available for down-
load at http:www.github.com/alex-me/nencog.

Here we will present first a set of qualitative re-
sults useful for illustrating the neural processes per-
formed by the model, and then the quantitative results
of the disambiguation task.

Fig. 2 illustrates few qualitative results of
the intermediate stage of the process, when the
vectors ~p(C) of probabilities to find an object of
category C in the discrete horizontal positions X
are computed. Vectors are generated by applying
the deep convolutional neural network fC(·) to
all the submatrices of a given image according to
equation (6). Fig. 2 include the following 6 examples:

LAVA ID code sentence

22-9570-9660 Danny approached the chair with a yellow bag
22-18590-18700 Danny left the chair with a yellow bag
22-22420-22510 Danny left the chair with a green bag
22-54050-54160 Danny approached the chair with a blue telescope
22-55780-55850 Danny approached the chair with a blue telescope
29-24110-24210 Danny looked at the chair with a blue telescope

The vectors of the kind shown in Fig. 2 that are
relevant in the sentence, are then associated with the
three Nengo SPA units ~VP, ~V ′, ~V ′′ by means of equa-
tions (13), (14), (15). All SPA units are populations of
spiking neurons, which vectors evolve in time follow-
ing equation (1). This evolution is shown in Fig. 3 for
a small number of examples. All plots show the evo-
lution in time of the three vectors related with Nengo
SPA units ~VP, ~V ′, ~V ′′. The crucial aspect for the pur-
pose of the disambiguation is that the final shape of
the vectors is such that between ~V ′ and ~V ′′ the most
similar to ~VP will be the SPA unit associated with the
correct word WH. This final similarity can be appreci-
ated in the four examples of Fig. 3.

Table 1 presents the quantitative results of the
model over all the processed LAVA sentences.
The total set of sentences has been divided into
two categories, those with WP=bag and those with
WP=telescope. In the first set the possible correct
heads of the prepositional phrase WH can be person
or chair, while in the second set the possibilities are
bag, person, and chair. For each of the sets the ma-
trix of errors is reported, showing the fractions of lex-
ical element that the model has predicted as head of
the prepositional phrase, given the correct head word.
The overall accuracy of the model is good, over 80%,
and slightly lower when WP=telescope.

As in the case of the experiments by Berzak et al.
(2015), the most significant source of failures are poor
object detection. Objects in the LAVA corpus are of-
ten rotated and presented at angles which turns out to
be difficult to recognize.
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00022-54050-54160 00022-55780-55850 00029-24110-24210

Figure 2: The vectors ~p(C) of probabilities to find an object of category C ∈ { person, bag, telescope, chair } in the
discrete horizontal positions X computed for 6 different images of the LAVA corpus. Vectors are generated by applying the
deep convolutional neural network fC(·) to all the submatrices of a given image according to equation (6). Images are labeled
with their corresponding codes in the LAVA corpus.

00022-9570-9660
WP =bag, WH =person

00022-22420-22510
WP =bag, WH =chair

00022-54050-54160
WP =telescope, WH =chair

time [msec]

0
2

4
6

8
10 horiz.

 sp
ace [pixe

l]

100
200

300
400

500
600

pr
ob

ab
ilit

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

bag
person
chair

time [msec]

0
2

4
6

8
10 horiz.

 sp
ace [pixe

l]

100
200

300
400

500
600

pr
ob

ab
ilit

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

bag
person
chair

time [msec]

0
2

4
6

8
10 horiz.

 sp
ace [pixe

l]

100
200

300
400

500
600

pr
ob

ab
ilit

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

telescope
person
chair

Figure 3: Evolution in time of the Nengo SPA neural populations associated with the three key words in the disambiguation
tasks. In the example in the left the noun under the head of the preposition is bag, and the head of the prepositional phrase
is person, it is visible how at the end of the evolution the SPA vector associated with bag become more similar to the vector
associated with person, with respect to the vector associated with chair. Exactly the opposite happen in the example in the
center, where this time the noun under the head of the preposition, bag has chair as head of the prepositional phrase. The
scenes corresponding to the three examples can be seen in Fig. 2.



Table 1: Overall and detailed accuracy obtained by the
model when tested on the LAVA dataset. The results are
grouped for the two possible WP, and for each one the ma-
trix of errors is shown, with the true WH as rows, and the
predicted W ∗H as columns. The overall accuracy is of 0.81.

WP =bag

WH \ WH person chair

person .73 .27

chair .00 1.00

accuracy 0.87

WP =telescope

WH \ WH bag person chair

bag .25 .75 .00

person .00 .96 .04

chair .07 .20 .73

accuracy 0.77

It turns out moreover that some object classes, like
the telescope and the bag, are much more difficult to
be recognized. It can be observed in Fig. 2 that ob-
jects of the classes bag and telescope are the most
difficult to be recognized due to their small size and
to the fact that hands tend, in most cases, to largely
cover them. Conversely objects of the classes person
and chair are generally well detected and generate a
much more accurate probability vector. We have as-
sessed this source of error by evaluating the pure vi-
sual recognition accuracy, which is of 80% for person
objects, of 79% for chair object, of 67% for the bag
object, and as low as 60% for telescope.

Note that we deliberately avoided to include in
the model a state-of-the-art deep learning model that
would have easily achieved better recognition rates,
but loosing biological plausibility.

Moreover, with our model we have been able to
evaluate the disambiguation performances that takes
into account uncertainty in the visual process. As
seen in the performances shown in Table 1, disam-
biguation is more reliable that the pure visual object
recognition.

5 CONCLUSIONS

We described a biologically plausible neural cognitive
model able to resolve linguistic ambiguities in a sen-
tences by selecting the interpretation of an ambiguous
sentence matching the content of a given image. The

model has been based on Nengo, using SPA for rep-
resenting concepts.

The component of our model dealing with vi-
sual object recognition is based on deep convolutional
networks, which are less biological plausible than
Nengo. This solution is motivated by the marginal
significance of object recognition in our objectives,
and by the well known performances of deep convo-
lutional networks.

Our neural model has been evaluated on the subset
of sentences in the LAVA dataset, in which the prepo-
sition with is responsible for the contextual ambigui-
ties.

Our model achieve an ability to resolve linguist
ambiguities of the kind described, in the LAVA
dataset, over 80%. It turns out that the most signif-
icant source of failures is poor object detection, as
in the case of Berzak et al. (2015), however, the ob-
tained disambiguation accuracy is greater that the vi-
sual recognition error.
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