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A B S T R A C T

We analyze the impact of Lévy-distributed stochastic fluctuations on the average switching time and voltage
drop across a current-biased long Josephson tunnel junction. We compare the system’s response for two spatial
configurations of time-dependent noise, i.e., homogeneous and distributed along the junction length. The
response of the Josephson junction is explored by varying the characteristic parameter of the Lévy source,
i.e., the 𝛼 stability index and the noise intensity. These findings offer an effective tool to characterize a Lévy
component possibly embedded in an unknown noise signal.
1. Introduction

Solitonic excitations, characterized by their localized and robust
nature, have captivated the interest of researchers across various scien-
tific disciplines [1]. In the realm of solid state physics, long Josephson
junctions (LJJs) emerge as a remarkable platform for the study of
solitons, particularly kinks and breathers [2–6]. The term ‘‘long’’ refers
to a mesoscopic device consisting of a thin insulating layer sandwiched
between two superconducting electrodes with one dimension on the
order of several Josephson penetration depths, i.e., the typical length
scale of the system [7]. This aspect promotes the emergence of various
solitonic phenomena [2–6]. Substantial experimental progresses have
enabled the direct observation and manipulation of solitonic excitations
in LJJs, and theoretical efforts supported by numerical simulations have
played a crucial role in elucidating the dynamics and stability of these
nonlinear modes [5,8].

Solitonic excitations in LJJs are not immune to the influence of
external random perturbations, i.e., noise. The latter, arising from
various sources such as thermal fluctuations and imperfections in the
system, introduces stochastic effects, which can significantly affect the
dynamics and stability of solitons. We note that random fluctuations
are always present in open systems, such as, for instance, biological
and ecological systems [9,10] and financial markets [11], and cannot
be therefore neglected in a faithful description of their dynamics. In
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particular, understanding the interplay between Josephson dynamics
and noise is crucial for comprehending, e.g., the solitons’ behavior
in realistic environments and designing robust applications [12–20].
Thus, noise-induced effects on Josephson devices represent a fertile
theoretical research topic in both short and long junction cases [21–30].

In this work, we examine the role of noise in LJJs, considering the
joint effect of two time-dependent noise contributions, i.e., Gaussian
and Lévy. Regarding Lévy noise, we compare two distinct cases: a spa-
tially distributed delta-correlated source and a spatially homogeneous
source. In a realistic device, i.e., an LJJ, the two types of noise sources
can have different physical origins: in the homogeneous case, from
fluctuations in the current generator, while in the distributed case, from
the array of independent small junctions connected in parallel to form
the LJJ.

The response of the device is found to be profoundly different for
the two types of fluctuations, inasmuch solitons are only formed in the
case of distributed sources. Conversely, in the case of a homogeneous
source, the overall switching dynamics consists of the entire ‘‘phase
string’’ overcoming the potential barrier that confines the system into
the superconducting state.

The fact that the two types of noise distributions differently affect
the switching dynamics is directly reflected in the behavior of both the
average lifetime of the superconducting state and the average voltage
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drop. The former quantity concerns the transition from the supercon-
ductive to the voltage state, while the latter describes the dynamical
regime established once a switching has occurred. Both responses are of
great practical relevance, as these two quantities can be experimentally
measured.

The paper is organized as follows. In Section 2 we present the
theoretical groundwork for the time evolution of the Josephson phase
in an LJJ, the statistical properties of the Lévy noise, and the method to
face the stochastic simulations. In Section 3, the results are discussed
and analyzed: in particular, we compare the noise-intensity dependence
of both the average switching time and the average voltage drop in
the case of a spatially distributed (see Section 3.1) and homogeneous
(Section 3.2) Lévy noise source. We also investigate in Section 3.3 the
responsivity of the device in these two cases and, finally, in Section 3.4
we look at the effects of the temperature at which the junction operates.
In Section 4, conclusions are drawn.

2. The theoretical framework

A Josephson tunnel junction is formed by sandwiching a thin in-
sulating layer between two superconducting electrodes. In the long
junction limit, one of the lateral dimensions,  and  , is greater than
the Josephson penetration depth, namely,  > 𝜆

𝐽
and  ≪ 𝜆

𝐽
, with

𝜆
𝐽

=
√

𝛷0
2𝜋𝜇0

1
𝑡𝑑𝐽𝑐

being the Josephson penetration length [7]. Here,
𝑡𝑑 = 𝜆𝐿,1 + 𝜆𝐿,2 + 𝑑 is the effective magnetic thickness (with 𝜆𝐿,𝑖 and
𝑑 being the London penetration depth of the 𝑖-the electrodes and the
insulating layer thickness, respectively), 𝜇0 is the vacuum magnetic
permeability, and 𝐽𝑐 is the critical current area density.

The setup considered in this work consists of an LJJ traversed by
two superimposed electric currents, that is 𝐼𝑏 and 𝐼𝑁 , a known bias
current drawn from a parallel source and a stochastic noise current,
respectively. The injected bias current, which is essential for charac-
terizing the stochastic component, is set below the critical value to
maintain the system in the superconductive metastable state. This al-
lows the noise to eventually push the system out of this state, inducing
a switch from the zero-voltage state to the finite-voltage ‘‘running’’
state. The running state results in a detectable non-zero voltage drop,
according to the a.c. Josephson relation 𝑉 = (𝛷0∕2𝜋)𝑑𝜑∕𝑑𝑡 [31,32],
where 𝜑 is the phase difference between the wave functions of the
superconducting condensates in the two electrodes and 𝛷0 = ℎ∕2𝑒 ≃
2 × 10−15 V s is the magnetic flux quantum. The escape mechanisms
driven by macroscopic quantum tunneling [33] can be neglected if
the working temperature is above the crossover value, that is, at
temperatures at which thermal escapes dominate.

The response of an LJJ can be described in terms of a partial
differential equation, i.e., the perturbed sine-Gordon (SG) equation, for
the phase 𝜑. In normalized units it can be written as [7,34]

𝛽
𝐶

𝜕2𝜑(𝑥, 𝑡)
𝜕𝑡2

+
𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
−

𝜕2𝜑(𝑥, 𝑡)
𝜕𝑥2

+ sin [𝜑 (𝑥, 𝑡)] = 𝑖𝑁 (𝑥, 𝑡) + 𝑖𝑏. (1)

The boundary conditions include the external magnetic field 𝐻ext

𝜕𝜑(0, 𝑡)
𝜕𝑥

=
𝜕𝜑(𝐿, 𝑡)

𝜕𝑥
= 2

𝐻ext(𝑡)
𝐻𝑐,1

, (2)

where 𝐻𝑐,1 = 𝛷0
𝜋𝜇0𝑡𝑑𝜆J

is the so-called first critical field of the junc-
tion [35]. In this work, however, the magnetic field is set to zero,
𝐻ext(𝑡) = 0. In the equations, we use dimensionless space and time
variables, 𝑥 and 𝑡, respectively, normalized to the Josephson pene-
tration depth 𝜆

𝐽
, and to the inverse of the characteristic frequency

𝜔𝐶 = (2𝑒∕ℏ) 𝐼𝑐𝑅 of the junction (here, 𝐼𝑐 is the critical current and
𝑅 is the normal-state resistance of the junction). Moreover, 𝛽

𝐶
= 𝜔𝑐𝑅𝐶

is the Stewart-McCumber parameter. Eq. (1) consists of different parts:
the Josephson elements at the left hand side, the external bias current
𝑖𝑏 = 𝐼𝑏∕𝐼𝑐 , and a noise source 𝑖𝑁 (𝑡) = 𝐼𝑁 (𝑡)∕𝐼𝑐 . In this work, the random
current is modeled as a mixture of a standard Gaussian white noise and
2 
Fig. 1. Cartoon of a LJJ biased by both a constant and a noise current, 𝑖𝑏 and 𝑖𝑁 ,
respectively. The bottom panels sketch the two spatial configurations of noise current
taken into account in this work: (a) many (infinite) independent, spatially distributed
Lévy noise sources, 𝑖𝐿(𝑥, 𝑡), and (b) a homogeneous Lévy noise source, 𝑖𝐿(𝑡), affecting
the whole system.

a stochastic Lévy process, and is obtained with the approximated finite
independent increments [36].

The SG equation supports a traveling wave solitonic solution, called
kink [5], i.e., a 2𝜋-phase twist that corresponds to a flux quantum 𝛷0
along the junction [3]. Thus, a kink is usually referred to as a fluxon or
Josephson vortex in this context. The fluxon has a width of the order
of 𝜆

𝐽
and is surrounded by a flowing supercurrent circulating around

it.
The Lévy noise statistics describes abrupt jumps and very rapid

variations, called Lévy flights. In fact, the heavy tails that characterize
the distribution of Lévy fluctuations cause the occurrence of large vari-
ations with non-negligible probability. Lévy flights are frequently used
to address transport phenomena across condensed matter systems and
practical applications [37–54]. For instance, the presence of Lévy fluc-
tuations was recently discussed in graphene [55–59]. For an extensive
bibliography on examples and applications, in which Lévy-distributed
fluctuations can be observed, see Refs. [28,29].

We first consider spatially distributed non-Gaussian noise fluctu-
ations, 𝑖𝑁 (𝑥, 𝑡); in other words, we assume an array of independent
delta-correlated noise sources, one for each element 𝛥𝑥 of the junction
length. In this case, the stiffness of the Josephson phase along the
system can play an important role in the noise-triggered switching
dynamics. In fact, although a Lévy flight can cause a phase fluctua-
tion large enough to ‘‘push’’ a single portion of the junction out of
the metastable superconducting state, a sufficiently large intensity is
required to overcome the phase rigidity and trigger kinks, thus inducing
the switching of the entire system. Otherwise, these fluctuations can
induce other types of small-amplitude excitations, which rapidly decay
(e.g., breather-like solutions) without causing the whole system to
switch. We compare the case of independent noise sources distributed
along the junction with the case of a homogeneous noise source, 𝑖𝑁 (𝑡),
applied to the entire phase string. In the uniform case, as already
mentioned, we expect the noise not to generate kinks.
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If we consider both Gaussian and Lévy noise sources, with ampli-
tudes 𝛾

𝐺
and 𝛾

𝐿
, respectively, the stochastic independent increment

reads

𝛥𝑖𝑁 = 𝛥𝑖𝐺+𝛥𝑖𝐿 ≃ 2𝛥𝑥𝛥𝑡
[√

2𝛾
𝐺
𝛥𝑥𝛥𝑡𝑁(0, 1) +

(

𝛾
𝐿
𝛥𝑥𝛥𝑡

)
1
𝛼 𝑆𝛼(1, 0, 0)

]

. (3)

ere, the symbol 𝑁(0, 1) indicates a Gaussian random variable, with
ero mean and unit standard deviation, while 𝑆𝛼(1, 0, 0) denotes a stan-
ard 𝛼-stable random Lévy variable. In general, the notation 𝑆𝛼(𝜎, 𝛽, 𝜆)
s used for indicating Lévy distributions [27], where 𝛼 ∈ (0, 2] is the
tability index, 𝛽 ∈ [−1, 1] is called asymmetry parameter, and 𝜎 > 0 and
are a scale and a location parameter, respectively. The stability index

haracterizes the asymptotic power law for the distribution, which for
< 2 is of the |𝑥|−(1+𝛼) type, while for 𝛼 = 2 is the Gaussian distribution.

n fact, the probability density function of a normal distribution 𝑁 (𝜆, 𝜎)
s equivalent to that of the stable distribution 𝑆2(𝜎∕

√

2, 𝛽, 𝜆). In this
ork, we consider exclusively symmetric (i.e., with 𝛽 = 0), bell-shaped,

tandard (i.e., with 𝜎 = 1 and 𝜆 = 0), stable distributions 𝑆𝛼(1, 0, 0), with
∈ [0.1, 2]. To model the Lévy noise sources, we use the algorithm

roposed by Weron [60,61] for the implementation of the Chambers
ethod [62]. The stochastic dynamics of the system is investigated by

ntegrating Eq. (1) with an implicit finite-difference method based on a
ridiagonal algorithm, using space and time integration steps equal to
𝑥 = 𝛥𝑡 = 5 × 10−2, and choosing 𝜑(𝑥, 0) = arcsin(𝑖𝑏) and 𝜕𝜑(𝑥, 0)∕𝜕𝑡 = 0

as initial condition.
Let us give some physical considerations on the parameter 𝛾

𝐺
in

Eq. (3). For the pure Gaussian noise case, i.e., 𝛾
𝐿
= 0 so that 𝐼𝑁 ≡ 𝐼𝐺,

he statistical properties of the current fluctuations, in normalized units,
re given by

E
[

𝑖𝐺(𝑥, 𝑡)
]

= 0,

E
[

𝑖𝐺(𝑥, 𝑡)𝑖𝐺
(

𝑥 + 𝑥̃, 𝑡 + 𝑡
)]

= 2𝛾𝐺(𝑇 )𝛿 (𝑥̃ ) 𝛿
(

𝑡
)

, (4)

where 𝐸[⋅] is the expectation operator and the amplitude of the nor-
malized correlator is connected to the physical temperature 𝑇 through
the relation [21]

𝛾
𝐺
(𝑇 ) =

𝑘𝐵𝑇
𝐸𝐽0

𝐿, (5)

where 𝐸𝐽0 =
(

𝛷0∕2𝜋
)

𝐼𝑐 . For a junction with 𝐿 = 10, 𝐼𝑐 = 1 𝜇A, and
𝑇 = 250 mK, the dimensionless noise intensity is 𝛾

𝐺
∼ 10−1.

In the following, we look in detail at how some key quantities,
i.e., the mean switching time, the average voltage drop, and the soliton
density, depend on different noise-source parameters, that is, the noise
intensity and the stability index 𝛼.

The mean switching time (MST) toward the resistive state, starting
from the metastable state identified by the washboard potential mini-
mum, is computed as a nonlinear relaxation time (NLRT) [23–25]. We
obtain the residence time of the phase 𝜑 within the relative maxima
𝜑𝐿

max and 𝜑𝑅
max to the left and the right of the minimum, i.e., 𝜑 ∈

[𝜑𝐿
max , 𝜑𝑅

max], imposing no absorbing barriers, so that within the
hole measurement time, 𝑡max, all possible temporary trapping events

contribute to the calculation of the residence time [63–67]. In the 𝑖th
numerical realization for the 𝑗th junction portion, the probability 𝑃𝑖𝑗
that 𝜑𝑗 ∈ [𝜑𝐿

max , 𝜑𝑅
max] is

𝑃𝑖𝑗 (𝑡) =
{

1
0

if 𝜑𝑗
∈
∉
[𝜑𝐿

max , 𝜑𝑅
max]. (6)

Summing 𝑃𝑖𝑗 (𝑡) over the total number 𝑁𝑐 = 𝐿∕𝛥𝑥 (here, 𝐿 is the
normalized junction length) of elements and over the number 𝑁exp
of realizations, the average probability that the entire string is in the
superconducting state at time 𝑡 can be computed as

𝑃 (𝑡) = 1
𝑁 𝑁

𝑁exp
∑

𝑁𝑐
∑

𝑃𝑖𝑗 (𝑡). (7)

exp 𝑐 𝑖=1 𝑗=1 d

3 
Finally, the MST ⟨𝜏⟩ is calculated as the time spent on average in the
uperconducting state. According to the definition of 𝑃𝑖𝑗 of Eq. (6), this

quantity is given by

⟨𝜏⟩ = ∫

𝑡max

0
𝑃 (𝑡)𝑑𝑡. (8)

he upper extreme of integration, i.e., 𝑡max, should be infinite for the
roper MST calculation [67]; obviously, in numerical calculations, this
imit is chosen finite but reasonably large, so as to capture the essential
ynamical aspects. The procedure is repeated varying the noise index
and intensity 𝛾

𝐿
to retrieve the behavior of the MST in the presence

f different sources of Lévy noise.
The response to the noise of an LJJ can be also analyzed through

he junction average voltage or by the noise-induced kink generation
ate. In this case as well, we perform a double average over ensemble
nd time. Thus, in the 𝑖th numerical realization, the average voltage
rop (normalized to 𝛷0𝜔𝐶 ) across the junction is given by

⟨𝑉𝑖⟩ =
1
2𝜋

1
𝑡max

1
𝐿 ∫

𝐿

0 ∫

𝑡max

0

𝑑𝜑𝑖(𝑥, 𝑡)
𝑑𝑡

𝑑𝑡𝑑𝑥

= 1
2𝜋

1
𝑡max

[

1
𝐿 ∫

𝐿

0
𝜑𝑖

(

𝑥, 𝑡max
)

𝑑𝑥 − arcsin(𝑖𝑏)
]

, (9)

where 𝜑𝑖(𝑥, 0) = arcsin(𝑖𝑏) represents the initial phase profile. Then, the
average voltage drop results from the average over the total number of
independent numerical realizations, 𝑁exp, that is

⟨𝑉 ⟩ = 1
𝑁exp

𝑁exp
∑

𝑖=1
⟨𝑉𝑖⟩ . (10)

The features shown by the voltage response of the device can be
grasped by looking also at the number of kinks generated along the
junction, which, in the 𝑖th realization, can be estimated as [68]

𝑁𝑖(𝑡) =
⌊

𝜑(𝐿, 𝑡) − 𝜑(0, 𝑡)
2𝜋

⌋

, (11)

here ⌊...⌋ stands for the integer part of the argument. Finally, the
verage kink density is obtained as

𝑛⟩ = 1
𝑁exp

𝑁exp
∑

𝑖=1

𝑁𝑖(𝑡max)
𝐿

. (12)

3. Results and discussions

In this section we analyze the response of an LJJ biased by a noise
current composed of many independent spatially distributed sources
(see Fig. 1a), and of a homogeneous source (see Fig. 1b). In the latter
condition, we stress again that the noise can only induce the uniform
rolling down of the phase along the potential profile, with no kink
generation.

The values of the average time ⟨𝜏⟩ and voltage ⟨𝑉 ⟩ are obtained
y setting a measurement time equal to 𝑡max = 104 and averaging over
exp ≃ 105 independent numerical repetitions. Moreover, we consider

n intermediate damping case, 𝛽
𝐶

= 1, a junction length equal to
= 20, and a bias current 𝑖𝑏 = 0.2. In Sections 3.1–3.3, we neglect

aussian thermal fluctuations (i.e., we set 𝛾
𝐺
= 0) to elucidate the role

f Lévy flights on the phase dynamics, while the study of the Gaussian
oise effects is postponed to Section 3.4.

.1. Case (a): distributed noise sources

In Fig. 2(a) we show how the MST, ⟨𝜏⟩, calculated through Eq. (8),
epends on the noise intensity and the stability index 𝛼 in the case of
patially delta-correlated noise sources, i.e., the case (a) in Fig. 1. Let
s first look at 𝛼 = 2 (i.e., the red curves), which is quite peculiar, since
he Lévy distribution coincides with the Gaussian noise. We observe

plateau at ⟨𝜏⟩ = 𝑡max, which is nothing but a numerical artifact
ue to an insufficiently long measurement time, below a certain noise
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intensity, which is marked by a black vertical long-dashed line. This
threshold value, 𝛾 𝑡ℎ

𝐿
, can be roughly estimated as the noise intensity at

which the measurement time matches the inverse of the escape Kramers
rate [69] from a potential barrier 𝛥𝑈 ,

𝛤 (𝑖𝑏, 𝛾) =
𝜔𝐴
2𝜋

𝑒
− 𝛥𝑈

𝑘𝐵𝑇 . (13)

We now assume that this confinement potential barrier coincides with
the activation energy for kink/antikink generation, the noise distribu-
tion being capable of inducing this type of excitation in this case; for
a long enough junction, 𝐿 ≳ 6, such an energy approaches the value
𝐿𝛥𝑈∕𝐸𝐽0 ∼ 8 [21]. In terms of the bias-tilted washboard potential

barrier height, 𝛥 (𝑖𝑏) = 𝛥𝑈 (𝑖𝑏)∕𝐸𝐽0 = 2
[

√

1 − 𝑖2𝑏 − 𝑖𝑏 arccos(𝑖𝑏)
]

, and

the normalized noise intensity defined in Eq. (5), the Kramers escape
rate becomes

𝛤(𝑎)(𝑖𝑏, 𝛾) =
𝜔𝑐
2𝜋

(

1 − 𝑖2𝑏
)

1
4 𝑒−

8𝛥 (𝑖𝑏 )
𝛾 , (14)

assuming the attempt frequency 𝜔𝐴 = 𝜔𝑐
(

1 − 𝑖2𝑏
)
1
4 of a single JJ. Thus,

the condition 𝑡max ≡ 𝛤−1
(𝑎) (𝑖𝑏, 𝛾

𝑡ℎ
𝐿
∕
√

2) [70] is satisfied by a noise intensity
f 𝛾 𝑡ℎ

𝐿
∼ 0.4 (see the black dashed line in Fig. 2).

The MST curves for a genuine Lévy flight, 𝛼 < 2, smoothly approach,
at low noise intensities, a plateau at ⟨𝜏⟩ ∼ 𝑡max, but the 𝛾

𝐿
value at

hich it is reached tends to decrease with 𝛼. The matching condition
etween the measurement time and the inverse escape rate, used to
btain 𝛾 𝑡ℎ

𝐿
for 𝛼 = 2, does not work when considering the escape rate

or 𝛼 < 2 (data not shown). Indeed, the power-law dependence [71,72]
or 𝛼 < 2, which gives rise to Lévy flights, entails also a non-vanishing
robability of escape even at times shorter than 𝑡max; moreover, the
onger the simulation time, the greater the probability of these rare
vents to occur. In other words, the threshold noise intensity, below
hich the curves for 𝛼 < 2 approach a plateau, changes with 𝑡max not

ust because of a longer measurement time, but also because the system
as more time to ‘‘incur’’ in a Lévy flight, as observed for short JJs [29].

As the noise intensity 𝛾
𝐿

grows, ⟨𝜏⟩ monotonically decreases. The
𝜏
(

𝛾
𝐿

)⟩

curves at different 𝛼 appear clearly separated and well
paced, in agreement with previous investigations of barrier crossing in
etastable potential profiles [72]. For 𝛾

𝐿
≲ 2, at a fixed noise intensity,

lower 𝛼 corresponds always to a faster escape, i.e., a smaller ⟨𝜏⟩,
ecause Lévy flights become more frequent. However, for 𝛼 ≳ 1 we
ote the formation of a sort of ‘‘knee’’ at ⟨𝜏⟩ ≳ 50. Looking at rather
igh noise intensities, 𝛾

𝐿
> 2, the MST versus 𝛼 at a fixed 𝛾

𝐿
shows a

on-monotonic trend.
In Fig. 2(b) we illustrate the behavior of the average voltage drop

𝑉 ⟩ as a function of the Lévy noise intensity 𝛾
𝐿
, for different values

f 𝛼. One immediately notices the opposite behavior of ⟨𝑉 ⟩ compared
o MST, i.e., at a given noise intensity, the lower 𝛼, the larger is the
ime derivative of the phase due to Lévy flights; as a consequence, ⟨𝑉 ⟩

ncreases.
Interestingly, at ‘‘low’’ noise intensities, i.e., for 𝛾

𝐿
≲ 𝛾 𝑡ℎ

𝐿
, the

ifferent ⟨𝑉 ⟩ versus 𝛾
𝐿

curves arrange, in a log–log scale, in well-distinct
arallel lines with a positive slope. This region of 𝛾

𝐿
values will be

xamined in more detail in Section 3.3.
It is evident that the 𝛼 = 2 data behave quite differently compared

o the others, see, e.g., the difference of several orders of magnitude
etween the Gaussian ⟨𝑉 ⟩ curve and that for 𝛼 = 1.9 in Fig. 2(b).
his is due to the absence of Lévy flights steering the phase evolution.
till looking at the 𝛼 = 2 case, we can again recognize two distinct
ehaviors, namely, above and below 𝛾 𝑡ℎ

𝐿
: at 𝛾

𝐿
< 𝛾 𝑡ℎ

𝐿
the phase stays

ounded inside the initial well, thus making ⟨𝑉 ⟩ very small, while at

𝐿
> 𝛾 𝑡ℎ

𝐿
noise-triggered escapes can occur, so that the phase can leave

he initial metastable state of the washboard potential, and a non-zero
verage voltage drop develops. Furthermore, for 𝛾

𝐿
> 𝛾 𝑡ℎ

𝐿
all curves for

> 1.3 seem to crowd around a common plateau.
4 
Fig. 2. Case (a), spatially distributed noise sources. (a) MST, ⟨𝜏⟩, (b) average voltage
drop, ⟨𝑉 ⟩, and (c) average soliton density, ⟨𝑛⟩, as a function of the Lévy noise intensity,
t different value of 𝛼 ranging from 𝛼 = 0.1 (purple curve) to 𝛼 = 2 (red curve). In panel
b), a gray shading indicates the region of noise intensity, within which the voltage
ncreases linearly, used to compute the responsivity. Other parameters: 𝑖𝑏 = 0.2, 𝐿 = 20,

𝐶
= 1, 𝑡max = 104, and 𝑁exp = 5 × 103. The lines are guides for the eye. The legend

in panel (a) refers to all panels. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Finally, we note that the behavior of the average voltage is tightly
intertwined with the density of noise-induced kinks; indeed, it is evi-
dent from Fig. 2(c) that the ⟨𝑛⟩ curves behave similarly to the ⟨𝑉 ⟩ ones,
i.e., they appear arranged in well-spaced parallel lines with positive
slope [73].

Overall, we have found in this subsection that the escape time diag-
nostics represents an effective tool for identifying the main parameters
of a distributed Lévy source applied to an LJJ.

3.2. Case (b): homogeneous noise source

In Fig. 3 we show how ⟨𝜏⟩ and ⟨𝑉 ⟩ depend on 𝛾
𝐿
, considering

𝛼 ∈ [0.1 − 2], when the junction is affected by noisy fluctuations
homogeneous across its length, i.e., the case (b) in Fig. 1.

Unlike the previous case of independent noise sources, the ⟨𝜏⟩ versus
𝛾
𝐿

curves cluster in a narrower bundle, see Fig. 3(a). Interestingly, as 𝛼
varies, three different regimes of noise intensities emerge: it is evident,
for instance, that the MSTs for 𝛼 = 2 (red curve) are significantly lower
than the others for intermediate noise intensities, i.e., 𝛾 ∈ (0.02 − 0.4).
𝐿
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Fig. 3. Case (b), homogeneous noise sources. (a) MST, ⟨𝜏⟩, and (b) average voltage
drop, ⟨𝑉 ⟩, versus Lévy noise intensity, at different value of 𝛼 ranging from 𝛼 = 0.1
purple curve) to 𝛼 = 2 (red curve). (c) MST versus 𝛼 at three different noise intensities
𝐿 = {0.01, 0.1, 1}. In panel (b), a gray shading indicates the region of noise intensity,

within which the voltage increases linearly, used to compute the responsivity. Other
parameters: 𝑖𝑏 = 0.2, 𝐿 = 20, 𝛽

𝐶
= 1, 𝑡max = 104, and 𝑁exp = 104. The lines are guides

for the eye. The legend in panel (a) refers to all panels. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

To clearly highlight the system response in these regimes, we look at
MST versus 𝛼 for 𝛾

𝐿
= {0.01, 0.1, 1}, see Fig. 3(c). In all these cases we

notice non-monotonic dependence of ⟨𝜏⟩ versus 𝛾
𝐿
, but with different

alues of 𝛼 in correspondence of local minima and maxima, caused by
aster and slower barrier crossing processes, respectively. In particular,
t low noise intensities (𝛾

𝐿
= 0.01), where the tails of the Lévy noise

istribution play a relevant role in the barrier crossing process [72],
e observe higher ⟨𝜏⟩, with a pronounced minimum, with respect to

he values obtained in the intermediate (𝛾
𝐿
= 0.1) and high (𝛾

𝐿
= 1.0)

oise intensity regimes. In other words, the index 𝛼 can be used as a
ontrol parameter to make the average lifetime of the superconducting
etastable state longer or shorter.

If we focus again on the MST curve for 𝛼 = 2, we observe that it
eaches a plateau at ⟨𝜏⟩ ≡ 𝑡max for noise intensities below a certain
hreshold, whose value is however much smaller than that in Fig. 2(a).
his behavior can be explained by observing that in the present sce-
ario, since no noise-induced kinks are expected, the activation energy
n practice is given by the washboard potential energy barrier, possibly
ilted by the bias current. Accordingly, Kramers rate, Eq. (14), can be
5 
Fig. 4. (a) Fitting parameter 𝑉𝛼 and (b) responsivity 𝛼 = |

|

|

𝛥𝑉𝛼∕𝛥𝛼
|

|

|

as a function of
𝛼 for: many noise sources distributed along the junction [case (a), diamonds, 𝑉 (𝑎)

𝛼 ]; a
omogeneous noise source affecting the whole junction [case (b), circles, 𝑉 (𝑏)

𝛼 ]. The
parameter 𝑉𝛼 is obtained by fitting the ⟨𝑉 ⟩ curves shown in the gray shaded region
n Figs. 2 and 3 with the function 𝑉𝛼 × 𝛾

𝐿
. The lines are guides for the eye. (For

nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

ecast as

(𝑏)(𝑖𝑏, 𝛾) =
𝜔𝑐
2𝜋

(

1 − 𝑖2𝑏
)

1
4 𝑒−

𝛥 (𝑖𝑏 )
𝐿𝛾 . (15)

Thus, the matching of the condition 𝑡max = 𝛤−1
(𝑏) (𝑖𝑏, 𝛾

𝑡ℎ
𝐿
∕
√

2) requires
𝛾 𝑡ℎ
𝐿

∼ 0.01, i.e., the black dashed line in Fig. 3(a,b).
What we have observed for the MST is also reflected in the behavior

of the after-switching phase velocity. Indeed, the ⟨𝑉 ⟩ versus 𝛾
𝐿

curves
still appear organized in parallel lines, which then tend to group around
a common plateau at high noise intensities, see Fig. 3(b). We can still
recognize a region of 𝛾

𝐿
values in which these curves grow linearly,

in a log–log plot, but the spacing between them is much smaller than
in the previous case. As we will see in the next section, the difference
between the two cases discussed so far can be further highlighted by
looking at numerical fits and an ad-hoc figure of merit.

3.3. Responsivity

In Figs. 2(b) and 3(b) we shade in gray the region of noise intensities
within which the voltage increases linearly; in other words, in corre-
spondence of these 𝛾

𝐿
values, the voltage shows a power-law trend,

evidenced by well-distinct parallel lines in a log–log scale. This is in
line with the power-law behavior of the MST in the presence of Lévy
noise, ⟨𝜏𝛼⟩ = 𝐶(𝛼)∕𝛾𝜇𝛼

𝐿
with 𝜇𝛼 ≃ 1, discussed in Ref. [72]. It has been

also shown that the average particle velocity in the presence of Lévy
noise, and thus the average voltage drop, is proportional to the inverse
of the MST, i.e., ⟨𝑉 ⟩ ∝ 1∕ ⟨𝜏𝛼⟩ [29]. Thus, the ⟨𝑉 ⟩ versus 𝛾

𝐿
curves in

Figs. 2(b) and 3(b) can be fitted with a function ⟨𝑉 ⟩ = 𝑉𝛼 × 𝛾
𝐿
, where

𝑉𝛼 is the fitting parameter.
Fig. 4(a) shows the behavior of the fitting parameters, 𝑉 (𝑎)

𝛼 and 𝑉 (𝑏)
𝛼 ,

as a function of 𝛼, calculated respectively from Figs. 2(b) and 3(b)
in the range of noise intensities 𝛾

𝐿
∈

(

10−4, 10−2
)

. For both spatially
distributed and homogeneous noise sources, the fitting parameters, 𝑉 (𝑎)

𝛼
and 𝑉 (𝑏)

𝛼 , respectively, tend to decrease with 𝛼. Furthermore, it can be
seen that for 𝛼 < 1.5 (𝛼 > 1.5) we find 𝑉 (𝑏)

𝛼 < 𝑉 (𝑎)
𝛼 (𝑉 (𝑏)

𝛼 > 𝑉 (𝑎)
𝛼 ), and also

that the slope of the curve 𝑉 (𝑏) is less than that of 𝑉 (𝑎). This aspect can
𝛼 𝛼



C. Guarcello et al.

L
t
(
T
c

b
t
w
F
𝛼
t
l
e

3

i
w
t
f
t
t

o
i
n
i
𝛾
f
F
v
d
i
t
w
d
w

4

t
b
t
c
i
m
i
d
d
s
n

l
d
s
c
i

⟨

t
m
g
j
s
t
a
l
a

t
I
c
t
a
d
a
n

G
T
l
t
i
v
n
t

t
o
t
c
f
t

C

i
g
F
v
D
M
&
D

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 187 (2024) 115421 
Fig. 5. Normalized average voltage drop as a function of the amplitude 𝛾
𝐿

of the
évy noise source, at 𝛼 = 1 and 𝑖𝑏 = 0.2, for: many noise sources distributed along
he junction [case (a)]; a homogeneous noise source affecting the whole junction [case
b)], in the presence of a Gaussian noise source with amplitudes 𝛾

𝐺
= {0.01, 0.1, 0.5, 1}.

he lines in the figure are guides for the eye. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

e quantified by the voltage responsivity, 𝛼 =
|

|

|

|

𝛥𝑉𝛼
𝛥𝛼

|

|

|

|

. The ‘‘sensitivity’’ to
he Lévy component, which is more pronounced at smaller 𝛼, increases
ith higher responsivity, as indicated by the average voltage drop. In
ig. 4(b) we illustrate the dependence of 𝛼 on the stability index
, for the two noise-source configurations discussed so far. It is clear
hat the responsivity tends to decrease with 𝛼 in both cases, but it is
arger considering many distributed noise sources (except for 𝛼 ≲ 2), as
xpected from the data of the MST versus 𝛾

𝐿
.

.4. Thermal noise effect

In this section, we assume that the whole system is also embedded
n a thermal-noise background. We expect that a Gaussian noise source
ith a non-negligible amplitude, i.e., 𝛾

𝐺
≠ 0 in Eq. (3), entails devia-

ions from the previously described linear behavior of the voltage as a
unction of the Lévy noise intensity. To understand in which regimes
he deviation occurs, it is sufficient to look at the voltage drop across
he device.

The ⟨𝑉 ⟩ vs. 𝛾
𝐿

curves shown in panels (a) and (b) of Fig. 5 are
btained in the cases (a) and (b), respectively, at a fixed Lévy noise
ndex 𝛼 = 1 and a bias current 𝑖𝑏 = 0.2, considering different Gaussian
oise intensities 𝛾

𝐺
. In accordance with what has been already shown,

t is evident that the curves in the case (b) appear more scattered. For

𝐺
≲ 0.01, thermal noise has, in both cases, no effects on ⟨𝑉 ⟩, which

ollows a linear behavior within the entire range of 𝛾
𝐿

values explored.
or 𝛾

𝐺
> 0.01, at low 𝛾

𝐿
values we observe a ⟨𝑉 ⟩ plateau, whose

alue increases with 𝛾
𝐺

. This plateau corresponds to a phase dynamics
ominated by Gaussian fluctuations. Comparing the panels in Fig. 5,
t is evident that the value reached in the plateau is little affected by
he type of Lévy noise distribution. However, the 𝛾

𝐿
threshold above

hich the Lévy-ruled regime is established depends on the Lévy noise
istribution. In particular, in the case (b) for Lévy noise to play a role
e need a larger 𝛾 than in the case (a).
𝐿
S

6 
. Conclusions

We have studied how stochastic Lévy-type fluctuations impact on
he switching dynamics of an LJJ. In particular, we have looked at the
ehavior of the average lifetime of the superconducting state, ⟨𝜏⟩, and
he average voltage drop across the device, ⟨𝑉 ⟩, as the noise intensity
hanges, at different values of the Lévy index 𝛼. The superconduct-
ng lifetime is obtained as the mean switching time from the initial
etastable state, i.e., a minimum of the tilted washboard potential, and

s calculated as a nonlinear relaxation time. We have illustrated the
ifferent evolutions of the system in two distinct cases, i.e., when the
evice is excited by: (a) a noise current consisting of many independent
ources distributed along the junction length or (b) a homogeneous
oise current.

Varying the Lévy noise intensity, both ⟨𝜏⟩ and ⟨𝑉 ⟩ exhibit a pecu-
iar behavior, which differs significantly from the Gaussian noise case
ue to the occurrence of Lévy flights. In particular, we observe well-
eparated curves (one curve for each value of the Lévy index 𝛼) in the
ase of a spatially-distributed noise, while they are more closely packed
n the case of a homogeneous noise source.

Moreover, in the homogeneous noise source case, the behavior of
𝜏⟩ versus 𝛼, at fixed noise intensities, shows peculiar non-monotonic
rends, which depend on the 𝛾𝐿 value. The occurrence of these non-
onotonicities could be attributed to the impossibility for the homo-

eneous noise to induce localized excitations, i.e., kinks, along the
unction. The analysis of the probability distribution functions of the
witching times could, in principle, give further insights to elucidate
he occurrence of non-monotonicities in the MST. Moreover, it might
lso be interesting to systematically explore the effect of the junction
ength on the phenomena illustrated here. We defer these additional
nalyses to a future work.

We have also shown that ⟨𝑉 ⟩ grows linearly, in a log–log scale, with
he Lévy noise intensity, with a slope that depends on the Lévy index 𝛼.
n other words, it would in principle be possible to identify this intrinsic
haracteristic of the noise source through a voltage-drop analysis. For
his application, we have conveniently defined the responsivity of such

‘‘detector’’, and we have also discussed which of the two noise
istributions, i.e., spatially distributed or uniform noise source, is more
dvantageous. Finally, we have discussed in which regimes thermal
oise may not influence or mask the effect of Lévy noise.

Our findings are particularly important to grasp the role of a non-
aussian noise affecting the out-of-equilibrium dynamics of an LJJ.
his point is relevant not only in the general framework of the nonequi-

ibrium statistical mechanics, but also to improve the performances of
his device if used as noise detector. In fact, we have proven that, even
n the case of an LJJ, the study of the statistics of switching times and
oltage drop can supply information on the non-Gaussian background
oise, but with an extra degree of freedom compared to short JJs [29],
hanks to spatially distributed excitations, i.e., kinks.

Another context where the presence of Lévy noise could con-
ribute to unveil interesting effects is the noise-controlled generation
f breathers [74–77]. In particular, it has been recently predicted
hat noise-induced generation and long-term maintenance of breathers
an be achieved by the interplay of a noise source and an oscillating
orce [78–80]: therefore, Lévy flights could be in principle used to
rigger breathers in LJJs.
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