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Abstract: A comparative analysis of geodetic versus seismic moment-rate estimations makes it pos-
sible to distinguish between seismic and aseismic deformation, define the style of deformation, and
also to reveal potential seismic gaps. This analysis has been performed for Egypt where the present-
day tectonics and seismicity result from the long-lasting interaction between the Nubian, Eurasian,
and Arabian plates. The data used comprises all available geological and tectonic information, an
updated Poissonian earthquake catalog (2200 B.C.-2020 A.D.) including historical and instrumental
datasets, a focal-mechanism solutions catalog (1951-2019), and crustal geodetic strains from Global
Navigation Satellite System (GNSS) data. The studied region was divided into ten (EG-01 to EG-10)
crustal seismic sources based mainly on seismicity, focal mechanisms, and geodetic strain charac-
teristics. The delimited seismic sources cover the Gulf of Aqaba-Dead Sea Transform Fault system,
the Gulf of Suez-Red Sea Rift, besides some potential seismic active regions along the Nile River
and its delta. For each seismic source, the estimation of seismic and geodetic moment-rates has been
performed. Although the obtained results cannot be considered to be definitive, among the delim-
ited sources, four of them (EG-05, EG-06, EG-08, and EG-10) are characterized by low seismic-geo-
detic moment-rate ratios (<20%), reflecting a prevailing aseismic behavior. Intermediate moment-
rate ratios (from 20% to 60%) have been obtained in four additional zones (EG-01, EG-04, EG-07,
and EG-09), evidencing how the seismicity accounts for a minor to a moderate fraction of the total
deformational budget. In the other two sources (EG-02 and EG-03), high seismic-geodetic moment-
rates ratios (>60%) have been observed, reflecting a fully seismic deformation.

Keywords: seismicity; GNSS data; seismic and aseismic deformation; seismic hazard; moment-
rates; Gulf of Aqaba; Gulf of Suez; Red Sea; Egypt

1. Introduction

For any seismic hazard assessment, earthquake occurrence rates represent an essen-
tial issue. Three types of data are available for the estimation of these rates: the historical
earthquake record, the geological slip rates of known active faults, and the geodetic de-
formation rates [1]. Each approach has its limitations and generally provides a different
perspective of the active tectonic forces, but in principle they should provide approxi-
mately similar estimates (see [1] for a general overview). In particular, estimations coming
from geologic data take into account only known faults and usually require long time
spans (e.g., 10* to 10° years). Estimations derived from geodesy include both elastic and
anelastic components of deformation and suffer from network geometry and time spans
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(e.g., >2.5 years, [2]), while those coming from the seismic release capture the contribution
of buried faults but only count the seismic component of deformation and largely suffer
from both the temporal length and the completeness degree of available catalogs. Because
of these different perspectives, the complementarity of the three approaches, along with
other independent observations can provide reliable constraints on achieved estimations,
therefore providing relevant insights for seismic hazard assessment and geological defor-
mation studies [3-7]. However, because of the lack of spatially dense estimation of geo-
logical slip-rates of active outcropping faults and the poor knowledge of buried faults,
earthquake occurrence rates and deformation budget comparisons are generally per-
formed by taking into account only geodetic and seismic observations [4,6-14]. Hence ge-
odetic and seismic moment-rates comparison has enabled identification of regions in
which the total deformation-rate budget is released completely by crustal earthquakes, or
in the case that there is an excess of the budget, it could be released either as aseismic slip
across faults or through large future earthquakes [7,9,11-13,15-17].

In the present study, an updated and Poissonian earthquake catalog for Egypt (his-
torical and instrumental data within the period between 2200 B.C.-2020 A.D.), focal mech-
anism solutions coming from previous publications, and novel strain-rate field data were
used to study the spatial patterns of seismic and geodetic moment-rates. The seismic mo-
ment-rates have been estimated by considering the truncated cumulative Gutenberg—
Richter recurrence relationship [18] together with the characteristic earthquake model [19]
when it was strictly required. The geodetic moment-rate was estimated by adopting the
Savage and Simpson [20] approach.

The comparison of the geodetic and seismic moment-rates for a country such as
Egypt with a relatively well-known historical seismic record and surrounding plate
boundaries will provide additional insights into the seismic hazard and the seismotecton-
ics of the region [7,21].

2. Tectonic Setting

The primary tectonic features of the surrounding plate boundaries of Egypt were
studied and discussed by several researchers [22-26]. The Nubian-Eurasian plate margin
in the north, and the Gulf of Suez—Red Sea plate margin, and the Gulf of Aqaba-Dead Sea
Transform Fault system in the east represent the three main tectonic features in the vicin-
ity of Egypt (Figure 1). On one hand, based on the analysis of fault systems, oceanic
spreading, and earthquake slip vectors, the global kinematic models by DeMets et al. [27]
show that across a wide zone in the Mediterranean Sea, both the Nubian and Eurasian
plates are converging. The Nubian plate is moving in a northerly direction relative to the
Eurasian plate at a rate of about 10 mm/year [27]. This form of closeness is translated in
the form of the Cyprian and the Hellenic Arcs along the Eastern Mediterranean region
(Figure 1). On the other hand, the Arabian plate is continuing to rotate away, in a north-
eastward divergent movement, from the Nubian plate along the Gulf of Suez—Red Sea Rift
[28-30] (Figure 1). This rift is considered one of the premier examples of the creation of a
new ocean and ongoing rifting. This rift system may extend further towards the north
beneath the Suez Canal area, but this possible extension is probably masked by the alluvial
Nile deposits [31]. Finally, the differential motion between the Nubian and the Arabian
plates (about 15 mmy/year) is thought to be taken up by the Gulf of Aqaba-Dead Sea Trans-
form Fault System [32]. This is a seismically active 1100 km long left-lateral strike-slip
transform boundary (Figure 1) that connects the northern Mediterranean triple junction
in the north to the Red Sea spreading center in the south [33]. Geological evidence suggests
that a pure strike-slip motion with slip rates between 5 and 10 mm/yr occurs along this
transform fault [34-36]. This left-lateral sense of motion was recognized by the minor pull-
apart in young sediments, cut and offset of man-made structures, and drainage lines [37-
42].
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Figure 1. Compiled global tectonic sketch for Egypt and its surrounding regions (the middle plot: after [43]), the Nile Delta
region (the left plot (a): after [44]), and the Sinai Peninsula and the Dead Sea regions (the right plot (b): after [45-47]).
Abbreviations for the geographic features, faults, and shear zones are included in the legend.

3. Preparation of an Updated and Unified Earthquake Catalog

As a first step towards the delimitation of areal seismic sources and the estimation of

relevant seismicity parameters, an earthquake catalog was compiled from the beginning
taking into account previous catalogs. A spatial region extending from 24° to 38° E longi-
tudes and from 21° to 34° N latitudes was considered, within the period starting from 2200

B.C.

until 2020. In the compilation, all shallow earthquakes (h <35 km) above magnitude

3.0 on any magnitude scale were gathered. Several catalogs, bulletins, and publications
were inspected and gathered to compile the dataset.

The Poissonian earthquake catalog by Sawires et al. [48] for Egypt was considered as
a priority since they considered both historical and instrumental earthquakes, cover-
ing large spatial (the whole territory of Egypt) and temporal extension (2200 B.C.—
2014). The final number of earthquakes gathered from this catalog was 22,054 events.
The local instrumental earthquake catalog of the Egyptian National Seismic Network
was published by Abd El-Aal et al. [49]. They considered the time period from 1997
to 2019. A number of 1,543 earthquakes from this reference (including magnitudes
equal to or greater than 3.0) was also included in our catalog.

An additional number of earthquakes (4885 events) were collected from the Israel
National Seismic Network (FDSN; https://www.fdsn.org/networks/detail/IS/; last ac-
cessed on 1 June 2021) in addition to other related publications (e.g., [50]).

The instrumental earthquake catalog developed by Deif et al. [51] for the Arabian
Peninsula was also considered, especially for the Red Sea region. Their catalog covers
the period between 1900 and 2015, and 974 earthquakes from it were considered to
be included in our database.

Besides these local bulletins and catalogs (for Egypt, Israel, and the Arabian Penin-
sula), data from regional and international bulletins were also gathered. Within the
period from 2014 until the present, a number of 393, 12, and 73 earthquakes in this
region have been collected from the International Seismological Centre (ISC;
http://www.isc.ac.uk/iscbulletin/search/; last accessed on 1 June 2021), the ISC-EHB
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bulletin (http://www .isc.ac.uk/isc-ehb/; last accessed on 1 June 2021), and the Na-
tional Earthquake Information Center, United States Geological Survey (USGS;
https://earthquake.usgs.gov/earthquakes/search/; last accessed on 1 June 2021), re-
spectively.

When merging the previously mentioned data (a total of 29,934 earthquakes), it was

crucial to avoid any possible duplication. The compiled dataset is described by the follow-
ing parameters for each specific earthquake: year, month, and day for the date; hour, mi-
nute, and second for the time; longitude and latitude for the geographic location; depth
value; and the reported magnitude(s) (body-wave “mb”, surface-wave “Ms”, moment
“Mw”, duration “MD”, and local “ML"” magnitudes). Duplicated earthquakes were iden-
tified, based on their geographic location and the date and time of their occurrence, and
removed from the compiled dataset. In order to unify the different magnitude scale of the
catalog into the moment magnitude one, the following magnitude-scaling relationships
have been used:

For those earthquakes compiled by Sawires et al. [48], ISC, EHB-ISC, and USGS bul-
letins, the same conversion relationships developed by these authors have been ap-
plied to convert macroseismic intensity values, mb, Ms, MD, and ML to Mw (Equa-
tions (1)—(5)).

For those events gathered from Deif et al. [51] catalog for the Arabian Peninsula, the
relationships by Sawires et al. [52] for developing a unified earthquake catalog for
the surroundings of the United Arab Emirates were used, by converting the mb, Ms,
and ML magnitudes to Mw (Equations (6)—(8)).

Finally, since the data collected from the Israel National Seismic Network are re-
ported in MD scale, the conversion relationship developed by Ataeva et al. [50] to do
the conversion to the Mw scale has been used (Equation (9)).

2
M ==(1936+048-1_ +0.0244-1"_)-10.70 )
3
M =-131+126-m, )
M =397-013-M_+0.08-M’ 3)
2
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3
2
M =—(145-MD +16.30) -10.70 (5)
3
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M_ =1.03-m, —0.06 @)
M, =0.76-ML+1.36 8)
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In a successive step, to properly estimate the seismicity parameters (activity rate, b-
value, and maximum expected magnitude), a declustering process of the catalog was per-
formed. This step allows erasing of earthquake swarms and sequences which generally
affect the activity rate and b-value estimations from the catalog. In this regard, the proce-
dure by Gardner and Knopoff [53] has been applied. Given a certain magnitude, a scan
within defined distance and time windows was performed for the whole unified catalog.
Throughout this inspection, an earthquake having the largest magnitude is considered the
mainshock or the independent one. Distance and time windows of 36 and 100 km and 100
and 600 days were applied for earthquakes with magnitudes Mw 4.0 and 8.0, respectively
[54]. As a result, a final catalog with 3,419 earthquakes was obtained covering the geo-
graphic region between 21° and 34° N latitudes, and between 24° and 38° E longitudes,
and within the period from 2200 B.C. to 2020, including both historical and instrumental
earthquakes.

The completeness periods were estimated for the entire catalog. This was done by
plotting the cumulative number of earthquakes for specific magnitude ranges against time
(Figure 2). From the completeness analysis (Table 1), it was found that the catalog is com-
plete for magnitudes above Mw 3.0, 4.0, 5.0, 6.0, and 7.0 broadly since the years 1995, 1980,
1925, 700 A.D., and 240 A.D., respectively. Some of the obtained completeness periods are
closely related to the establishment or the improvement of some local and international
networks. For instance, the years 1900, 1960, 1983, and 1993 are the approximates dates
for the establishment of the Helwan Observatory in Cairo, the deployment of the World-
Wide Standardized Seismograph Network (WWSSN), the installation of the Aswan Seis-
mological Network around Nasser’s Lake, and the installation of the Egyptian National
Seismic Network in Egypt after 12 October 1992, Mw 5.8 Cairo earthquake, respectively
[55,56]. The given completeness periods for the current catalog indicate that our catalog is
not as complete as could be desired. This is due mainly to the incomplete coverage of the
seismic stations during the early instrumental period. Thus, some biases, underestima-
tion, or overestimation for the seismicity parameters are expected during the computa-
tions.

Table 1. Completeness periods and their corresponding activity rates for the current unified and
declustered catalog. See Figure 2.

Magnitude Completeness Period Activity Rate (Events/Year)
Mw >3.0 1995-2012 111.0
Mw >3.5 19902012 26.2
Mw 24.0 19802020 11.0
Mw 24.5 1980-2020 4.14
Mw 25.0 1925-2020 0.909 (1 EQ by year)
Mw >5.5 1900-2020 0.249 (1 EQ every 4 years)
Mw 26.0 700-2020 0.0273 (1 EQ every 3540 years)
Mw >6.5 700-2020 0.00956 (1 EQ every ~100 years)
Mw >7.0 240-2020 0.00417 (1 EQ every ~240 years)

4. Seismicity of Egypt

Egypt is characterized by earthquakes of moderate magnitudes which mainly con-
centrate along the surrounding plate boundaries (the Gulf of Aqaba-Dead Sea transform
fault, the Gulf of Suez-Red Sea rift, and the Nubian-Eurasian plate boundary). Available
publications and catalogs of historical (pre-1900) earthquakes in Egypt [48,57-60] docu-
ment the occurrence of only 83 earthquakes in the Egyptian lands (Figure 3). In addition,
the population concentration along the Nile River and its delta creates imprecision in the
proper identification of the location and the possible damage effects of historical earth-
quakes. In Figure 3, the historical earthquakes that occurred in and around Egypt have
been imported mainly from Sawires et al. [48] earthquake catalog and were plotted in
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terms of the computed equivalent moment magnitude using the relationships shown
above. They documented the occurrence of about 230 earthquakes in and around Egypt
within the period between 2200 B.C. and 1899 A.D., and within the intensity range of III
to XI (MMI Scale) [48].
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Figure 2. Completeness analysis for the updated and declustered catalog. Completeness rates are also depicted.

On the other hand, regarding the instrumental events (1900-2020) (Figure 4), Egypt
shows relatively moderate seismicity in comparison to other regions all over the world.
However, it was affected by some damaging large earthquakes that originated mainly
along the Hellenic and the Cyprian Arcs, as well as those from Southern Palestine [59].
The following points can be deduced from the plotting of seismicity: (a) a higher concen-
tration for the instrumental seismicity appears on the northeastern parts of Egypt, espe-
cially along the triple junction of the Gulf of Suez, the Gulf of Aqaba and the Red Sea than
those in southern Egypt, (b) the shallow seismic activity is mainly focused in the sur-
rounding plate boundaries (the Gulf of Aqaba—-Dead Sea fault system and the Gulf of
Suez-Red Sea rift towards the east, and the Nubia—Eurasia plate boundary “the Hellenic
and the Cyprian Arcs” towards the north) as well as on other active seismic zones (south-
west Cairo, Cairo-Suez area, Abu Dabbab area on the Eastern Desert, offshore Delta re-
gion, west of Assiut and Sohag, and the surrounding of Nasser’s Lake), and (c) little dis-
persed seismicity could be noticed along the Western Desert of Egypt or on the southern
parts of the Eastern Desert. Examples of those large earthquakes that affected Egypt
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through previous decades are the 12 November 1955 (Mw 5.5) Abu-Dabbab, the 31 March
1969 (Ms 6.9) Shedwan, the 14 November 1981 (Mw 5.8) Aswan, the 12 October 1992 (Mw
5.8) Cairo “Dahshour”, the 22 November 1995 (Mw 7.2) Gulf of Aqaba, and the 28 May
1998 (Mw 5.5) Ras El-Hikma earthquakes [48].

A recent database of focal mechanism solutions (1951-2019) has been provided in
Rashwan et al. [61]. These focal mechanism solutions (Figure 5) have been used to study
the seismotectonics pattern of the investigated region as well as to define and delimitate
the studied seismic sources. Differentiation of the different faulting mechanisms based on
their rake angle was considered (Figure 5), i.e., pure normal-faulting (NF), normal-fault-
ing with strike-slip component (NS), pure strike-slip faulting (SS), pure reverse-faulting
(TF), and reverse-faulting with strike-slip component (TS).
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Figure 3. Historical earthquakes (2200 B.C.-1899 A.D.) of Egypt and its surroundings (after [48,61]).
Black lines refer to EGSA [62]. Polygons labeled from EG-01 to EG-10 refer to the delimited seismic
sources in the current work.

5. Geodetic Data

A recent update of geodetic velocities and horizontal strain-rates for Egypt has been
published by Rashwan et al. [61], therefore in the following, we refer to these results. The
geodetic velocity field has been derived from a set of episodic and continuous GNSS ob-
servations collected during the 1995-2005 and 2000-2018 time spans, respectively. GNSS
stations prevailing cover the eastern sector of Egypt, allowing measurement of the crustal
deformation related to the most relevant tectonic elements of the region. In particular,
Rashwan et al. In [61], it is evidenced that (i) the north-western coastal area and central
Egypt show a pattern in agreement with the rigid motion of the Nubian Plate, (ii) the
stations located along the western side of the Red Sea show a northward motion of ~1
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mm/yr, (iii) the stations located on the north-eastern Sinai Peninsula show an NNW mo-
tion with rates larger than 1.6 mm/yr, and (iv) the stations on the Nile Delta show a com-
plex pattern, both on the horizontal and vertical components, reflecting the general sub-
sidence of the area.

34°N —
:... et .C ) (Q
o, 3 .
- & ‘.o fMediterranean
p .'. ® 0 o oo .o. A
32°N . ..... L] ..
30°N [ 2
°
°
28°N [ o
< o
| >
m
=]
-
26°N [
24° N | Legend
e Mw<4.0
® 40<Mw=<5.0
® 50<Mws60 | , . °, o LS ... o3 5 .
o ] L oo °® 3 #
22°N| @ 60<Mw<7.0 e — e p—
@® Mw>7.0 SUDAN ‘0 125 250 375 500 km
) 1 1 X == . 1 X 1 20
24°E 26° E 28° E 30°E 32°E 34°E 36°E 38°E

Figure 4. Spatial distribution of declustered instrumental seismicity (1900-2020).

Rashwan et al. [61] also estimated the horizontal strain-rate field over a regular 0.5°
x 0.5° grid. Considering such a horizontal strain-rate field (Figure 6), values up to ~25
nstrain/yr can be observed along the Gulf of Aqaba-Dead Sea Transform Fault with ex-
tension along with the WSW-ENE orientation, passing to SW-NE attitudes along the Red
Seabasin. Along the region between the Nile Valley and the Red Sea, the strain field shows
a NNE-SSW attitude with rates progressively decreasing westward. The Gulf of Suez
shows values ranging from ~20 nstrain/yr (southward) to ~8 nstrain/yr (northward), while
on the northern sector of the Nile, the shortening strain axes show an E-W orientation
with values up to ~8 nstrain/yr.

6. Delimitation of Seismic Sources

Based on the geological and tectonic settings (Figure 1), the spatial distribution of
historical and instrumental seismicity (Figures 3 and 4), focal mechanism solutions and
their related style of faulting (Figure 5), and also considering the distribution of GNSS
data over the region, the studied region was subdivided into ten crustal seismic sources
(h <35 km), labeled from EG-01 to EG-10 (Figures 3-5). These sources are mainly covering
the potential shallow active regions along the Gulf of Aqaba—Dead Sea Transform Fault,
the Gulf of Suez—Red Sea Rift, and the Nile River and its delta. Some details about each
seismic source are given in the following paragraphs.
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Figure 5. Spatial distribution of lower hemisphere equal-area projection for the focal-mechanism
solutions dataset (after [61]). Black lines refer to the faults defined by the EGSA [62]. Sizes and colors
of the plotted focal mechanism are relative to their moment magnitudes and faulting types, respec-
tively. NF: normal-faulting, NS: normal with a strike-slip component, SS: strike-slip faulting, TF:
thrust faulting, TS: thrust with a strike-slip component, U: undefined.

6.1. Seismic Sources along the Gulf of Aqaba—Dead Sea Transform Fault System (EG-01 to EG-
04)

The Gulf of Aqaba—-Dead Sea Transform Fault (GoA-DST) can be divided into three
main sectors [63] (see Figure 1b). The southern one (Jordan Rift) comprises the area from
the junction of the Gulf of Aqaba with the Red Sea and extends through the Dead Sea and
the Jordan Valley (Figure 1b). It is characterized by the presence of N12° E to N20° E strik-
ing left-lateral strike-slip faults. The central sector (Lebanese Splays) is running through
Lebanon and southwest Syria (Figure 1b). It is characterized by about 200 km long NNE—
SSW striking restraining bend [64]. Finally, the northern sector (EI-Gharb Rift) of the GoA-
DST is characterized by the occurrence of two N-S striking faults bounding the Ghab Val-
ley and intersecting with both the East Anatolian Fault and the Cyprian Arc [42]. This
intersection corresponds to the Hatay triple junction (Figure 1) between the Arabian, Nu-
bian, and Anatolian plates [65].

The Gulf of Aqgaba (Figure 1) forms the southernmost segment of the GoA-DST. It
has experienced the largest recorded instrumental earthquake in Egypt (the 22 November
1995, Mw 7.2, earthquake). It comprises three elongated en-echelon basins transected by
longitudinal faults [66]. Several tectonic basins were originated as a result of this en-eche-
lon system, forming rhombic-shaped grabens (Figure 1b). These are the Tiran “Dakar”
(from the south), Dakar, Aragonese, and Elat “Aqaba” (from the north) basins. The com-
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plex deformation pattern along the Gulf of Aqaba is related to a left-lateral strike-slip mo-
tion which dominates parallel to the main axis of the gulf, and a minor normal-slip com-
ponent that dominates along the transverse faults [38,67-70].

In the current work, three main seismic sources (EG-01, EG-02, and EG-03; see Fig-
ures 3-5) were delimited along the GoA-DST, starting from the junction between the Gulf
of Agaba with the Red Sea (from the south) and reaching the northern latitude of 34° (from
the north). The first defined seismic source is the EG-01 Tiran zone, which lies at the south-
ern tip of the Gulf of Agaba. No historical earthquakes are available for this source (Figure
3). The focal mechanism solutions inside this source is characterized by an average nor-
mal-faulting mechanism with a minor strike-slip component (Figure 5). The 3 August 1993
(Mw 6.1) earthquake represents the largest recorded magnitude (Figure 4) for the instru-
mental period within this source (Table 1).

The second delimited seismic source (EG-02) covers the region extending from the
Aragonese Basin passing through the Aqaba “Elat” Basin (along the Gulf of Aqaba) to the
Arava Valley (to the north) (Figure 1b). The Gulf of Aqaba has been the focus of the largest
recorded earthquake in Egypt, the 22 November 1995 (Mw 7.2) earthquake. In addition,
paleoseismological investigations by Shapira and Jarradat [71] deduced that border-faults
of the Arava Valley could generate earthquakes bigger than Mw 6.0 for an average 1000—
3000 years return period. Three historical earthquakes (Figure 3) have been reported in
this source: the 18 March 1068 (felt intensity VIII, Mw 5.8), the 2 May 1212 (VII-IX, Mw
6.1), and the 4 January 1588 (VIII, Mw 5.8) earthquakes. The first one, in 1068, was reported
in northern Hejaz, causing huge destruction along northwestern Saudi Arabia, and killing
about 20,000 persons [59]. Available focal mechanisms show abundant strike-slip faulting
solutions (Figure 5), while some few mechanisms are characterized by strike-slip faulting
coupled with a minor normal component.

The third proposed source (EG-03; see Figures 3-5) was delimited to cover the seis-
micity along the Dead Sea Basin, Jordan Valley, Kineret-Hula Basin, and the Lebanese
Splay in the southern and central sector of the GoA-DST (Figure 1b). The Dead Sea Basin
is bounded by a double left-lateral strike-slip fault system, the Arava Fault (from the east)
and the Jordan/Jericho Fault (from the west) [72] (see Figure 1b). The Jordan Valley links
the Dead Sea Basin (from the south) and the Hula Basin (from the north) [23,38]. To the
north, the Hula “Shamir-Almagor Fault” and Kineret “Kineret-Sheikh Ali Fault” Basins
are located [73] (see Figure 1b). These two basins present seismic activity up to the Yam-
muneh Fault (Lebanese Splay). A number of 43 historical earthquakes, within the period
from 1020 B.C. to 1802 are reported within this source (Figure 3). The largest observed
historical earthquakes are the 746 (XI, Mw 7.7), 2 June 1201 (X-XI, Mw 7.4), and 30 October
1759 (X-XI, Mw 7.4) events (Figure 3). Most of the focal mechanism solutions within this
seismic source reflect left-lateral strike-slip faulting solutions (Figure 5). However, some
solutions also show normal-faulting mechanisms, reflecting the seismic activity along the
N-S striking longitudinal normal faults extending along the Dead Sea Basin [33,38,74].

EG-04 (Figures 3-5) was defined to cover the seismic activity within the central-east-
ern part of the Sinai Peninsula, as well as the activity along the Mediterranean Sea coast
of Palestine (see Figure 1). Among the active faults included in this source, there is the
Themed Fault (Ragabet El-Naam shear zone in Figure 1b), an E-W striking right-lateral
strike-slip fault, located in central Sinai [75]. It cuts the Tih Plateau in central Sinai, and
links the Suez Rift (from the east) and the GoA-DST (from the west) [45]. Towards the
north from the Themed Fault, a narrow ENE-oriented fault belt corresponds to Bartov et
al. [34] central Sinai-Negev shear zone (Minsherah-Abu Kandu shear zone in Figure 1b).
Although this source (EG-04) is located between the high seismic activity along the GoA-
DST (EG-02 and EG-03) and the seismicity along the Cyprian Arc in the Eastern Mediter-
ranean, it is characterized by relatively lower seismic activity than its surroundings. A
number of 35 historical earthquakes (between 1180 B.C. and 1546) are reported within the
boundaries of this source (Figure 3). The largest ones among them are the 748 (XI, Mw 7.7)
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and the 4 January 1034 (X-XI, Mw 7.4) earthquakes (Figure 3), in which the first one cor-
responds to the largest observed magnitude within the seismic record in this source (Fig-
ure 4). The focal mechanism solutions within this source are reflecting mostly strike-slip
faulting solutions with a minority of the normal-faulting style (Figure 5).

6.2. Seismic Sources along the Gulf of Suez—Red Sea Rift (EG-05 to EG-07)

The Gulf of Suez-Red Sea (GoS-RS) NW-trending rift (Figure 1) extends from the Gulf
of Aden (to the south) to the tip of the Gulf of Suez (to the north), for about 1900 km
between the uplifted shoulders of the Nubian and Arabian plates. The GoS-RS region
could be subdivided into four main zones, based on its morphology and structure, which
reflects specific stages in the creation of the spreading center [76]. They are the southern
Red Sea “active sea-floor spreading”, central Red Sea “transition zone”, northern Red Sea
“late-stage continental rifting”, and the active rifting zones. The first zone is located be-
tween 15° and 20° N latitudes and is characterized by a well-developed axial trough de-
veloped through the normal seafloor spreading during the last 5 Ma [77] or at about 9-12
Ma [78]. The second zone is situated between 20° to about 23°20’ N latitudes, in which the
axial trough of the rift becomes discontinuous and consists of a series of “deeps” alternat-
ing with shallow “inter-troughs” [79]. The third zone represents the northern Red Sea
(Figure 1). However, there are small isolated “deeps/depressions”, which consist of a
broad trough without a clear spreading center [76]. The last zone, that both could be added
to the first one or could be considered as a separate one, is the future line along which the
southern Red Sea is going to propagate through the Danakil Depression Afar (to the
south).

To the north, the Gulf of Suez (Figure 1b) acts as the NW-trending divergent plate
boundary between the Nubian plate (to the west) and the Sinai sub-plate (to the east) [80].
Together with the Gulf of Agaba and the Red Sea, it acts as one of the three arms of the
Sinai triple junction [31,63,81] (see Figure 1). The Gulf of Suez was interpreted by several
researchers [82,83] to be composed of three half-grabens separated by two accommoda-
tion zones: Gharandal and Morgan accommodation zones [84] (see Figure 1b). Both ac-
commodation zones show discrete normal, oblique, and strike-slip faults [85].

In the current work, the following seismic sources were delimited along the GoS-RS
rift. Seismic source EG-05 (Figures 3-5) covers the seismic activity concentrating on the
central Red Sea zone, as well as the dispersed seismicity on the Red Sea western coast and
the Abu Dabbab region, in the Eastern Desert of Egypt. This zone is characterized by a
relatively moderate seismic activity in comparison with the zones at the surroundings of
the Sinai Peninsula (along the two arms of both gulfs). Only three slightly damaging his-
torical earthquakes are reported to be located within this delimited source. They are the
997, 1887, and 1899 earthquakes (Figure 3). The largest observed magnitude within this
seismic source is the 12 November 1955 (mb 6.2, Mw 5.7) earthquake (Figure 4). The few
available focal mechanisms are characterized by prevailing normal-faulting features (Fig-
ure 5).

EG-06 covers the seismicity on the triple junction between the Red Sea, the Gulf of
Aqaba, and the Gulf of Suez (Figures 3-5). This source is characterized by relatively higher
seismicity than the previous one, which is mainly related to the juncture between these
two gulfs [23,86]. No historical earthquakes have been reported within this source (Figure
3), while the recent 16 June 2020 (Mw 5.5) earthquake represents the maximum recorded
magnitude (Figure 4, Table 1). Available focal mechanisms reflect both strike-slip and nor-
mal-faulting features (Figure 5). The first mechanism category may relate to earthquakes
that originated along the transform faults crossing the main rift (Figure 1b), while the sec-
ond one is related to those earthquakes that originated along the main rift itself [87,88].

EG-07 covers the seismic activity of the southern and central parts of the Gulf of Suez
(Figures 3-5) and represents the northward prolongation of the previous source. It is dis-
tinguished by intensive structural deformation and relatively higher seismic activity
[81,89]. This higher seismicity could be attributed to the crustal divergence between the
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Nubian plate (to the west), and both the Arabian plate and the Sinai sub-plate (to the east).
Ten historical earthquakes (between 1220 B.C. and 1879) are reported within this seismic
source (Figure 3). The largest ones among them are the 28 B.C. (VIII, Mw 5.8) and the 11
July 1897 (Mw 6.0) earthquakes. During the instrumental period (Figure 4), the largest
recorded earthquake within this source was the 31 March 1969 (Ms 6.6, Mw 6.8) Shedwan
Island earthquake (Table 1). Several researchers reported the occurrence of a seismic
swarm (mb 4.5-5.2) preceding this mainshock [22,80,90,91]. The focal mechanism solu-
tions for earthquakes located within this source mostly show normal-faulting behavior
(e.g., the 6 March, Mw 6.8, and the 31 March 1900, Mw 6.1 earthquakes) with a negligible
strike-slip component being parallel or sub-parallel to the main rift axis of the Gulf of Suez
[86,92]. However, few focal mechanism solutions show normal-faulting with a slight
strike-slip component to pure strike-slip faulting mechanisms (Figure 5). These solutions
are mainly closer to the accommodation zones (Figure 1b) between three gulf prov-
inces/half grabens [45,93].

6.3. Seismic Sources along the Nile Valley and the Nile Delta (EG-08 to EG-10)

The Nile Valley (Figure 1) is a N-S elongated Oligo-Miocene rift. Its origin is still a
subject of controversy. Some researchers [94] deduced an erosional origin, while others
[45,95] believe in its tectonic origin. Some of the supporting indicators for the latter origin
are the fault scarps bounding the valley and the focal mechanisms of recent earthquakes
[96,97]. From the structural point of view, both faults and joints are the dominant features
that can be observed along the cliffs bordering the main stream of the Nile River [95,98].
The main trends of these structural features strike NW-SE and NNW-SSE, however,
WNW-ESE, ENE-WSW, and NE-SW directions are also present. On the other hand, the
Nile Delta (Figure 1a) can be subdivided by the E-W trending hinge zone (Nile Delta
Hinge in Figure 1a) into two major structural sub-basins, the north and the south Nile
Delta basins/blocks [98] (see Figure 1a). Three main fault trends comprise the structural
pattern of the Nile Delta. They are the NW-SE Misfag—-Bardawil “Temsah” Fault (from
the northeast side), the NE-SW Qantara—Eratosthenes “Rosetta” Fault (from the north-
west side), and the E-W fault defining the Messinian salt basin [99] (see Figure 1a).

In the current study, the central part of the Nile Valley (to the north of latitude 25°
N) and the Nile Delta was divided into three major seismic sources (EG-08, EG-09, and
EG-10; see Figures 3-5). EG-08 covers the shallow crustal seismicity of the surroundings
of the northern Nile Delta block (Figures 3-5). This zone is located adjacent to the west of
the previous EG-04 seismic source. The southern boundary of this source is approximately
coincident with the E-W trending hinge zone (Figure 1a). EG-08 is characterized by mod-
erate seismic activity, located to the south of the active Eastern Mediterranean seismic
belts (Hellenic and Cyprian arcs). Such seismicity could be attributed to the continental
shelf and its associated deep faults, parallel to the Mediterranean coast [24,100]. Twenty-
five historical earthquakes (between 24 B.C. and 1886) were located within the boundaries
of this zone (Figure 3). The largest reported historical events correspond to the 15 Septem-
ber 951, and 31 August 1111 earthquakes, both with an estimated equivalent magnitude
of Mw 6.2. However, the maximum observed magnitude within this zone belongs to the
12 September 1955 (mb 6.5, Mw 6.4) Alexandria earthquake (Figure 4). Only two focal-
mechanism solutions are reported inside this source, belonging to 17 January 2013 (Mw
4.5) and 29 October 2016 (Mw 3.3) earthquakes (Figure 5), both exhibiting strike-slip fault-
ing with a minor normal component.

EG-09 covers the seismic activity of the northern tip of the Gulf of Suez, the southern
Nile Delta block, the Cairo-Suez region, as well as the west Cairo region (the epicentral
area of 1992 Dahshour, Cairo destructive earthquake) (Figures 3-5). This zone contains 68
historical earthquakes (Figure 3) within the time between 2200 B.C. and 1895. Addition-
ally, some significant instrumental events are located within this source, e.g., 29 April 1974
(mb 4.8, Mw 4.7) Abu Hammad, 29 March 1984 (mb 4.9, Mw 5.2) Wadi Hagul, 2 January
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1987 (mb 5.0, Mw 5.0) Ismailia, and 12 October 1992 (Ms 5.9, Mw 5.8) Dahshour earth-
quakes (Figure 4). Focal mechanism solutions for this seismic source show mostly normal-
faulting features with minor solutions with strike-slip faulting style (Figure 5). Abou
Elenean [93] concluded that an NW-SE to WNW-ESE trending normal-faulting mecha-
nism is dominant for the tip of the Gulf of Suez, which is, in general, in agreement with
emergent faults crossing the Eastern Desert towards the Nile Valley (Figures 3-5). Abdel-
Rahman and El-Etr [101] deduced that the Cairo-Suez region is affected by three main
normal fault trends: E-W, ENE-WSW, and NW-SE. Abou Elenean [102] computed the
focal mechanism solution of the 1992 Dahshour earthquake. He concluded that the nodal
planes are characterized by a normal-faulting mechanism with a large strike-slip compo-
nent (Figure 5).

EG-10 covers the seismicity along the Nile Valley between 25° and 29° N latitudes
(Figures 3-5). It lies to the west and adjacent to the EG-06 and EG-07 sources. Few histor-
ical and instrumental scattered earthquakes are located within the boundaries of this
source (Figures 3 and 4). Only nine historical earthquakes are reported here (felt intensi-
ties in the range V-VIII), during the period from 600 B.C. to 1850. The maximum observed
magnitude within the boundaries of this zone corresponds to the April 857 A.D. (VIII, Mw
6.2), and the 20 February 1264 A.D. (VIII, Mw 6.2) earthquakes (Figures 3 and 4). Different
faulting mechanisms (thrust, normal and strike-slip faulting) could be concluded from the
available focal mechanism solutions within this zone (Figure 5), which are mainly related
to the dominant structural fault trends.

Finally, despite the occurrence of seismicity at the southern parts of Egypt (e.g., in
the surroundings of Nasser’s Lake), the northwestern coast of Egypt, and the Western
Desert of Egypt, the lack of GNNS data in these regions prevent us from estimating a
reliable geodetic moment-rate. Hence, no further seismic sources were defined for these
regions.

7. Estimation of Seismicity Parameters and Seismic Moment-Rates

The magnitude-frequency recurrence relationship (Equation (10)) by Gutenberg and
Richter [18] describes the seismic activity within a certain seismic source.

log  N(m)=a-bm (10)

N(m) is the annual number of earthquakes equal to or greater than a specific magnitude
m, and a- and b-parameters characterize the seismicity within the source. The a-value in-
dicates the seismicity level during a certain period, while the b-value provides indications
about the low- to large-magnitude earthquakes ratio. The later parameter typically lies
between 0.6 and 1.5 [48,103,104].

In order to estimate the seismicity parameters, separate earthquake sub-catalogs
were created for each delimited source, considering only crustal earthquakes, i.e., earth-
quakes with depth less than 35 km. The seismicity recurrence parameters for the defined
sources were estimated by applying the linear least-square method, taking into account
the completeness period for each magnitude range [105] (Tables 1 and 2). This method, as
stated by the author, is the maximum likelihood estimation of the a- and b-parameters
extended to the case of events grouped in magnitude with each group observed over in-
dividual periods. Additionally, the maximum expected magnitude (mmax) and its variance
have been also determined following the Robson-Whitlock-Cooke methodology [106—
108] (Equations (11) and (12)). It is an optimal approach when seismicity data, as happens
to be the case for this region, are scarce or incomplete. Given an ordered set including n
recorded magnitudes, mi < ... < mn1 < Mmaxbs, maximum estimated magnitude (mmax) and
its uncertainty (o) are given by

m, =m" +05(m" —m ) (11)

max
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o(m_)=05 [30; + O.S(m:f:x -m_ )2 :| (12)

owm being the standard deviation of the maximum observed magnitude.

All estimated parameters for each seismic source and their associated uncertainties are
reported in Table 2. Depths D50 and D90, the depths above which 50% and 90% of the earth-
quakes occur, respectively, were also computed. To do that, depths that seem to be artificial
(equal to 0, 10, 30, and 33 km) were removed before the computation. Finally, D90 (in Tables
2 and 3) has been proposed as the seismogenic depth for each source. Concerning uncertainty
in the mmax value, when computing the model uncertainty given by Equation (12), it was con-
sidered conservatively that uncertainties (o)) are equal to 0.6 previously to the year 1900, 0.5
in the period 1900-1962, 0.3 in the period 1962-2002, and 0.2 since 2002 [109].

Two sources need some additional explanation. In the EG-10 source, the largest magni-
tude values, corresponding to the 857 A.D. and 1264, Mw 6.2, earthquakes, do not follow the
Gutenberg—Richter model (Table 2). Then, these two earthquakes have been considered as
characteristic earthquakes. To include them, a constant seismic rate equal to 0.001 earthquakes
by year (2 earthquakes every ~2000 years) in the magnitude interval m* — Am./2 <m <
m* + Am./2 [19] has been considered, being in this case m* equal to Mw 6.2, the biggest
recorded magnitudes in the source, and Am, equal to 0.6, the individual uncertainty for
earthquakes before 1900. The second source is the EG-02 zone, initially presenting the same
problem as the EG-10 one. In addition, the obtained b-value presents an odd high value, above
1.5, then providing an unrealistic seismic moment-rate. This is clearly due to the incomplete-
ness of the seismic catalog in this source. Then, a rough seismic moment-rate estimation has
been computed for this source by adding the individual seismic moment of earthquakes that
occurred in the last 50 years; a time interval that includes some of the largest earthquakes that
happened in this source, in addition to the biggest one, the 22 November 1995, Mw 7.2, earth-
quake. To compute it, the well-known relationship between seismic moment and moment
magnitude by Hanks and Kanamori [110] has been used:

logM,=c-m+d (13)

M, is the seismic moment, m is the moment magnitude, and ¢ and d are con-
stants equal to 1.5 and 9.1, respectively, when defining M, in N-m.

In order to compute the seismic moment-rate for the rest of the delimited sources
(EG-01, and from EG-03 to EG-09), the exact relationship by Youngs and Coppersmith [19]
has been used, rewritten as the following:

. _ﬂ(mmax ~Mmin )

M ==, () (N ) - )|

1- e’ﬂ(’”max*mmin)
\ (14)
M, (m” +Am, /2).N(m“ )(1 _ 107 )

c-In10-Am_

The first term in the equation corresponds to the contribution of the Gutenberg—Rich-
ter exponential magnitude recurrence relationship, while the second one belongs to the
characteristic earthquake model, considered uniformly distributed in the magnitude
range m* —Am./2 <m < m"* + Am./2. This second term is only considered for the
source EG-10, for which, as quoted previously, the two largest recorded earthquakes have
been considered as characteristic events. In order to compute this equation, b-value is ob-
tained from Equation (10), f =b-In10, ¢ comes from Equation (13), and m;,;, and
Mg, define the range in which the Gutenberg—Richter relationship is valid (Table 2), be-
ing my,;, the so-called threshold magnitude. In our assessment, m,,;;, has been set to
zero, being then N(mp,) = 10%. In addition, My(m) is estimated using Equation (13),
and N(m) is the annual rate for earthquakes exceeding magnitude m.

+
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Seismic moment-rate results from Equation (14) have been multiplied by the stochastic
correction factor proposed by Hyndman and Weichert [111], that considers the asymmetry
of the moment-magnitude relation, recognizing this as an important source of uncertainty.
Obtained results are tabulated in Table 2.

8. Geodetic Moment-Rates

As mentioned above in the following computation, we refer to the results recently
published by Rashwan et al. [61]. For each of the previously defined seismic source zones,
the geodetic moment-rate was estimated by adopting the Savage and Simpson [20] for-

mulation:

Mgeot = 21tH A[ Max |y, )] o
where p is the shear modulus of the rocks (a constant value of 3.0 x 101 N/m? for the
crustal rocks is used for all sources), Hs'A is the volume of the source zone with Hs repre-
senting its seismogenic thickness (D90, as stated before); ermax and emmin are the principal
horizontal strain-rates (Figures 6 and 7) as defined in Rashwan et al. [61], and Max is a
function returning the largest of the arguments. Strain-rates values are almost homogene-
ous for most of the seismogenic source zones; however, additional considerations are re-
quired for the EG-03, EG-08, and EG-10 zones. In particular, the strain-rate estimation for
EG-03 source is only concentrated on the western side of the region, while no estimations
are available for the eastern side. Besides, strain-rates values are not homogeneous for EG-
10 either, with values increasing southward. Due to this factor, the largest obtained strain-
rate value in each source has been considered in the geodetic moment-rate computation.
Furthermore, the north-western corner of EG-08 is characterized by large strain-rates,
which could represent a computational boundary effect (due to stations located in Cy-
prus), being these values larger with respect to the well-constrained ones of the southern
sector of the zone. Therefore, for this source, the largest strain-rate value used in the com-
putation has been estimated by excluding the values inferred for the north-western area.

Keeping in mind these considerations, geodetic moment-rates for the EG-03, EG-08,
and EG-10 sources should be considered with caution. Parameters and achieved results
are reported in Table 3. Estimated values range in the interval 2.64 x 107—4.93 x 108
N-m/yr, with high values inferred for EG-05 and EG-10 seismic source zones, while low
values were computed for sources EG-01 and EG-09.

4 4

gh min gH max + gh min

9. Seismic-Geodetic Moment-Rates Ratio

The seismic-geodetic moment-rate ratios (in percentages) for the proposed seismic
sources in Egypt are referred to herein as the “seismic coupling coefficient; SCC” [6,12].
The seismic moment-rate is a measure of the elastic unloading rate, and the geodetic mo-
ment-rate is a measure for both elastic and anelastic loading rates [6]. The resulting ratio
between the seismic and geodetic moment-rates (SCC) theoretically ranges between 0 and
100%. Closer percentages to 100% reflect that a large amount of the deformation budget
was released by earthquakes, however, lower percentages suggest either accumulating
strain not released by earthquakes or a significant proportion of aseismic deformation [6].
The SCC exceeds the 100% value when seismic moment-rate values are greater than the
geodetic ones, and is usually observed in areas where the seismic catalogs cover a rela-
tively short time and contain large earthquakes [12].
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Table 2. Number of earthquakes (Mw > 4.0), maximum recorded/observed magnitudes, D50 and D90 depth values, activity rates (XMw 4.0), and b-values of the Gutenberg—Richter
relationship, maximum expected magnitudes (mmax), and the estimated seismic moment-rates for the proposed seismic sources. See the text for more explanation.

Source n (Mw 24.0) Mmax Obs. (yyyy?::ril /dd) (]1215110) (]1219:) A (>4.0) b-Value Am @® Mmax @ Selsr?ll(c):li\/ll\lo.rl?j;:)-Rate
EG-01 37 Mw 6.1, mb 5.8 1993/08/03 6.0 18.0 1.05+0.16 0.81+0.11 3.5-6.1 6.50 +0.30 10.5
EG-02 51 Mw 7.2, mb 6.0 1995/11/22 11.0 23.0 3.46 +0.52 1.58+0.11® 4.0-6.1 6.25 +0.56 213.0
EG-03 96 XI, Mw 7.7 746/--/-- 11.0 22.5 1.04 +0.11 0.85+0.02 3.5-7.7 7.85 +0.56 69.2
EG-04 54 XI, Mw 7.7 748/--/-- 9.9 20.3 0.47 +0.06 0.81+0.04 3.5-7.7 7.85 +0.56 40.0
EG-05 37 Mb 6.2, Mw 5.7 1955/11/12 12.0 23.0 2.09 +0.36 1.35+0.116 4.0-5.7 5.85 +0.40 5.7
EG-06 44 Mw 5.5 2020/06/16 10.9 23.8 1.53+0.20 1.25+0.19 3.5-5.5 5.60 + 0.07 3.1
EG-07 68 Mw 6.8, MS 6.6 1969/03/31 14.4 25.0 1.49 +0.20 0.98 +0.04 4.0-6.8 7.15+0.26 19.5
EG-08 34 mb 6.5, Mw 6.4 1955/09/12 20.0 27.0 0.29 +0.05 0.92 +0.05 3.5-6.4 6.50 +0.39 2.1
EG-09 97 IX-X, Mw 6.7 1262/--/-- 9.6 25.0 1.14+0.13 1.05+0.04 4.0-6.7 6.75+0.54 7.4
EG-10 27 VIII, Mw 6.2 1;23%%%6 12.0 25.0 0.70+0.14 1.05+0.13 3.5-5.4 5.40 +0.54 2.2

1 Magnitude interval for which the Gutenberg-Richter relationship was fitted. 2 Estimated maximum expected magnitude for earthquakes that follow the Gutenberg—Richter relationship. 3
Overestimated b-values.
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Table 3. Area of the proposed sources, seismogenic thickness (D90) with 10% variation for both
lower and upper ranges, maximum strain (nanostrain/year), and their corresponding geodetic mo-
ment-rates. Seismic coupling coefficients (SCC %) estimated from the geodetic-seismic moment-
rates ratio are also included.

Source Area D90 Maximum Geodetic Moment-Rate SCC (%)
(100km?)  (km) Strain (ns/yr) (106 N-m/yr) ?
EG-01 1.65 18.0 19.8+1.1 35.3+1.96 29.8
EG-02 3.89 23.0 144 +1.2 774 +6.45 275.3
EG-03 4.20 22.5 8.6+1.7 48.8 +9.65 141.8
EG-04 5.24 20.3 12.8+1.3 81.7 + 8.30 49.0
EG-05 9.16 23.0 39.0+£0.9 493.0+114 1.2
EG-06 2.37 23.8 26.2+0.7 88.7 +2.37 3.5
EG-07 3.13 25.0 17.2+1.1 80.8 +5.17 24.1
EG-08 6.97 27.0 7.0+0.7 79.1+791 2.6
EG-09 4.10 25.0 43+0.9 26.4+5.53 27.8
EG-10 8.45 25.0 9.7+0.6 123.0 +7.60 1.8
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Figure 6. Geodetic strain-rate field (after [61]) overlain by the defined seismic sources. Color scale
range (from blue to red) in the background of the plot shows the areal change in the strain-rate field,
while the arrows refer to the maximum extensional (in red) and maximum contractional (in blue)
horizontal strain-rates.
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Figure 7. Comparison between the estimated values of the geodetic and seismic moment-rates.

The completeness period of the used seismic catalog, as well as its temporal span,
may affect seismic moment-rate estimations for a studied region [1]. In other words, to
estimate reliable seismic moment-rates, the average earthquake recurrence interval
should be shorter than the duration of the catalog [9,12]. Available historical datasets for
Egypt highlight the occurrence of large earthquakes (M 2 6.0) since 590 B.C. that could be
considered to be complete for the same magnitude since the year 700 (0.0273 events/year;
see Figure 2 and Table 1). Taking into consideration that the earthquake occurrences and
their statistics are not steady-state over the entire time of the studied catalog, and being
familiar that the truncated Gutenberg—Richter law allows the consideration of possible
incompleteness of the used catalog [1], our seismic moment-rates for most of the defined
source could be considered as reliable estimations. Regarding the geodetic moment-rate
estimations, the GNSS measurements sample a relatively large spatial region, so that the
data are not significantly affected by the local strain accumulation on any individual fault.
Also, they cover a long enough temporal period, so that the uncertainties have a minimal
effect on the velocity estimations, and hence they sample seismic, aseismic, and long-term
deformation transients [6]. Recently, Sasajima et al. [112] observed an increase of the sub-
sidence rate in the forearc region during the late period of the Mw 9.0 2021 Tohoku earth-
quake, therefore evidencing possible temporal variation of crustal deformation rates dur-
ing the interseismic period of very large earthquakes. Moreover, Hussain et al. [112],
pointed out that strain-rates derived from geodetic measurements around major trans-
form faults are constant during the interseismic period, except for the ~10 years period
following an earthquake. These observations suggest that significant temporal variations
of crustal deformation rates would occur in fast convergent tectonic settings where very
large earthquakes are expected, while in other tectonic settings, such as the one considered
in this study, short-term geodetic observations can provide realistic contributions to long-
term seismic hazard assessment.

In the following paragraphs we are going to discuss, compare and frame our results
carefully with available geological and geophysical data.
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The obtained seismic-geodetic moment-rates ratios (SCC%) are depicted in Figure 8
and tabulated in Table 3. Based on the estimated SCC results, we could consider three
principal ratio ranges in the current study. Four delimited seismic sources are character-
ized by lower SCC values (less than 20%). They are the EG-05, EG-06, EG-08, and EG-10
seismic sources. They cover the seismicity along the central Red Sea region, the triple junc-
tion between the Gulf of Suez, Gulf of Aqaba, and the Red Sea, the northern Nile Delta
block, and the central part of the Nile Valley, respectively (Figure 8). Such a result suggests
that in these sectors, deformation occurs prevailingly in an aseismic mode. As mentioned
above, moment-rates estimations for EG-08 and EG-10 must be considered with caution,
being the computed strain-rates not homogeneously distributed within the seismic zones.
Since the moment-rates estimations have been performed by taking into account the larg-
est strain-rate values for both zones, we performed an additional computation by consid-
ering the average strain-rate value. Achieved results do not significantly alter the previous
considerations, being the new SCC values increasing of a factor of 1.3 and 2.2 for the EG-
08 and EG-10 zones, respectively.
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Figure 8. Seismic coupling coefficient (SCC) is depicted as percentage of the seismic-geodetic mo-
ment-rate ratio.

Another ratio range is observed for the sources EG-01, EG-04, EG-07, and EG-09 (Fig-
ure 8), characterized by moderate SCC values (between 20% and 60%). They defined the
seismic activity along the southern Gulf of Aqaba, northeastern Sinai and eastern Medi-
terranean coast, the southern and central parts of the Gulf of Suez, and the Cairo-Suez
district and northern Gulf of Suez, respectively (Figure 8). Therefore, these moderate SCC
values are suggesting that these areas account for only an intermediate seismic fraction
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from the total budget of the deformation rate. Some of these seismic regions are charac-
terized by well-known active faults that frequently generate moderate seismic activity
such as in the Cairo-Suez district, the southern and central half-grabens of the Gulf of
Suez.

Finally, the highest SCC values (actually >100%, labeled as >60% in Figure 8) have
been reached in the current study for the EG-02 and EG-03 seismic sources. Both zones
are located along the GoA-DST which extends in the NE-SW direction. Such results sug-
gest that the crustal deformation is mostly released through seismic activity. As men-
tioned above, strain-rate estimation for EG-03 concentrated only on the western side of
the source, while no estimations are available for the eastern side. The high SCC value
(Table 3) in this source points to an underestimation of the geodetic rates or an overesti-
mation of the seismic ones, as discussed previously. The high seismic rate is well con-
strained because of the long-time interval covered by the catalog as well as the occurrence
of some M 6.0 earthquakes (since 590 A.D.). Moreover, an underestimation of geodetic
rates could be possible because of the existence of very few stations within the seismic
zone, which therefore would not be enough to properly constrain the deformation pattern
of active faults. Regarding the EG-02 source, seismic moment-rate, as explained previ-
ously, was computed from individually recorded earthquakes in the last 50 years. This
implies that the obtained result must be also considered with care.

10. Summary and Conclusions

Although the comparison between the seismic and geodetic moment-rates implies
several assumptions and approximations, it provides important insights into the seismic
hazard of potential active tectonic regions. Despite the different approaches operated by
several authors for different studied regions worldwide, their estimations and compari-
sons enabled the achievement of valuable results which sometimes document the agree-
ments between geodetic and seismic moment-rates, and other times the larger values of
the geodetic moment-rates against the seismic ones.

In the current work, an updated and Poissonian earthquake catalog (2200 B.C.—2020
A.D.) for Egypt, focal mechanism solutions (1951-2019) coming from previous publica-
tions, and the original GNSS data were used to study the spatial and temporal seismic and
geodetic moment patterns. An attempt has been made to compare the seismic and geo-
detic moment-rates in order to provide a statistical estimation for the deformation budget
in the surroundings of Egypt and therefore to give more insights into the seismic hazard
of the studied region. Considering the geological and tectonic settings of the studied re-
gion as well as the previously mentioned data (seismicity, focal mechanisms, and GNSS
data), ten broad shallow crustal seismic sources (EG-01 to EG-10; h <35 km) have been
delimited. These zones mainly cover the potential shallow active seismic regions along
the GoA-DST, the Gulf of Suez-Red Sea Rift, and the Nile River and its delta. The lack of
GPS data in other regions (e.g., Aswan region, northwestern coast, and the Western Desert
of Egypt) prevent us from estimating the geodetic moment-rate, hence no further seismic
sources were defined for these regions. The different seismicity parameters (average an-
nual activity rate, maximum observed magnitude, seismogenic depth, b-value, and maxi-
mum expected magnitude) were estimated for the proposed sources both for the Guten-
berg-Richter and the characteristic earthquake models, when necessary, taking into ac-
count the completeness period for each magnitude range. The seismic and geodetic mo-
ment-rates have been computed, using the previously mentioned algorithms, for the de-
limited seismic sources.

The estimation of such rates was challenging for several reasons. The heterogeneous
coverage of the GNSS data in some regions (e.g., strain-rate estimation for EG-03, EG-08,
and EG-10 sources), the incompleteness of the earthquake sub-catalog (e.g., unexpected
high b-values for EG-02 and EG-05 zones), and the own computation of seismic moment-
rate for some sources (EG-02 and EG-10) were the most difficult problems in this work.
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Keeping in mind these considerations, geodetic and seismic moment-rates for some
sources should be considered with caution.

Based on the computed seismic-geodetic moment-rate ratio (seismic coupling coeffi-
cient “SCC”) for the studied sources, three main categories were differentiated according
to their seismic behavior in and around Egypt. The first region/category comprises a large
sector of the delimited sources: the Red Sea, the Gulf of Agaba, the Nile Delta, and the
Nile Valley (EG-05, EG-06, EG-08, and EG-10 sources). They are characterized by low SCC
values (<20%), evidencing the aseismic deformation behavior. The second region, charac-
terized by moderate SCC values (between 20% and 60%), comprises the southern Gulf of
Agaba, northeastern Sinai and the Eastern Mediterranean coast, the Gulf of Suez, and the
Cairo-Suez district (EG-01, EG-04, EG-07, and EG-09 sources). Such moderate SCC values
confirm that the crustal earthquake activity for this region accounts only for a moderate
fraction of the total budget of deformation. Finally, the third region that has higher SCC
values extends along the GoA-DST (EG-02 and EG-03 sources). These values highlight a
fully seismic deformation behavior in this region.

In conclusion, the results obtained in the current study provide the basis of the eval-
uation of the completeness periods of the earthquake catalog, guide the spatial delimita-
tion, definition, and characterization of the potential seismic active sources for future seis-
motectonics and probabilistic seismic hazard assessment studies, and motivation for the
integration of geodetic data with the seismic data for seismic hazard studies.
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