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Enhancing Computational Fluid Dynamics with Artificial Intelligence: an
AI-based Smoothed Particle Hydrodynamics (SPH) Emulator for Lava Flow

Modeling

by Eleonora AMATO

The combination of Computational Fluid Dynamics (CFD) and Artificial Intelli-
gence (AI) expands the scope of fluid modeling, providing high fidelity and fast sim-
ulations. A variety of Eulerian CFD methods integrated with AI has been already
successfully presented (e.g., for weather forecasting); on the other hand, the combi-
nation of AI and Lagrangian methods remains less consolidated. Smoothed Particle
Hydrodynamics (SPH) is a Lagrangian mesh-less CFD numerical method, highly
reliable for the simulation of complex fluids. Nevertheless, SPH models exhibit lim-
itations in high-resolution real-time simulations of physical phenomena, due to the
high computational costs involved. Specifically, SPH simulations of lava flows are
well representative of the difficulties in modeling highly complex fluids. Lava is
a fluid with a high physical complexity, generating viscous flows, dependent on
temperature and rheology, and it may have significant impacts on the surrounding
environment. Thus, it is important to monitor lava flows with accurate and timely
forecasting of their spatio-temporal evolution. Here, I present an emulator derived
from CFD physics-based models, in which AI algorithms join the equation-based
mathematical representation of physics, to solve fluid dynamics problems in shorter
times. I developed an AI-based emulator for SPH method, in which the conserva-
tion of momentum equation is substituted by an Artificial Neural Network (ANN),
which learns from SPH simulations. The ANN is trained to estimate SPH particles
interaction forces exploiting as input the state of the particles (position, velocity, den-
sity). I verified the reliability of the AI-based emulator to remain as faithful as pos-
sible to the SPH reference model. Applications to different kind of fluids are shown,
starting from an inviscid fluid, up to the study of a viscous fluid with a thermal com-
ponent, to finally move towards the description of a lava flow evolution, exploiting
the potential of the combined use of numerical and AI models. Simulations and em-
ulations have been compared for each step, reaching a high degree of fidelity, and
demonstrating the generalizability of the AI-based emulator, tested over problems
with varying levels of complexity, and its robustness to different spatial resolutions.
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Introduction

Mathematical modeling is the process of theoretically describing real-world phe-
nomena in mathematical terms, with equations capable to describe their spatio-
temporal evolution (to its best approximation). A model is a representation of the
reality, and a mathematical model is composed of a finite set of equations that de-
scribes a finite set of variables. Models are idealization of the real phenomena, with
some limitation, they can be continuous or discrete, and they can be formulated
using exact conservation laws, empirical conservation laws (that depend on the spe-
cific physical phenomenon), or hypothetical laws (based on qualitative rules, for
example of assumptions that are not based on quantitative laws) (Edwards and
Hamson, 1989; Fowler, 1997). Especially for physical phenomena, a mathemati-
cal model must be composed of governing equations, sub-models for specific cases
(defining and constitutive equations) and relative assumptions and constraints (ini-
tial and boundary conditions, classical constraints and kinematic equations). The
idea is thus to follow a process in which a problem is identified (with specific vari-
ables and constants), a modeling procedure is selected, and a model is formulated.
It is then solved to give an answer to the initial physical process, finally verifying it
(Meerschaert, 2013).

Throughout mathematical history, the mathematical modeling have been ap-
plied to solve several problems in various fields such as biology, chemistry, physics,
astrophysics, nuclear physics, and geophysics (Velten, 2009). In all these fields, it is
possible to study the mechanics of the fluids that characterize them and the branch
of fluid mechanics that studies the behavior of fluids in movement is fluid dynamics.
In it, motion and interactions between fluids are studied, with the aim to describe
their natural behavior (McCormack, 2012).

The fluid physical aspects are governed by three fundamental principles, that
are, the Newton’s second law, F = ma, with F force, m mass and a acceleration,
the principle of mass conservation, and the principle of energy conservation. These
principles can be expressed in terms of mathematical governing equations, that can
describe and model a system and its evolution (thus, often they are ordinary or par-
tial differential equations or integral equations). The governing equations for fluid
dynamics are the Navier-Stokes equations (Temam, 2001).

Navier-Stokes equations completely describe any fluid flow, including the tur-
bulent behavior. Correlated by initial and boundary conditions, in specific cases,
they give the fluid velocity field as solution, from which to obtain other quantities
that characterize the fluid flow. In the general case, they are composed of five scalar
partial differential equations and twenty variables. Due to their complexity and non-
linearity, the Navier-Stokes equations almost never admit an analytical solution (i.e.,
an exact solution). Therefore, a fundamental problem is to develop a mathematical
theory to understand and analyze these equations, determining whether they are
well-posed, and finding the analytical closed form solution in the general case. In
the context of the Clay Mathematical Institute millennium problems (Carlson, Jaffe,
and Wiles, 2006), this represents of them (Lemarié-Rieusset, 2018).
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Focusing now in the specific Navier-Stokes solvable cases, however, they are
complex to be solved, both in terms of resources and calculation times. A way to
overcome this problem is to discretize the analytical equations under stability, con-
vergence and consistency conditions (Anderson and Wendt, 1995; Chung, 2002), ob-
taining a numerical formulation of the same model, that can be solved with less
computational costs. Computational Fluid Dynamics (CFD) is the modeling branch
to numerically solve fluid dynamics models, recently in great development for the
study of fluids.

CFD, therefore, can be used to simulate complex fluids, with high viscosities,
thermal components and vorticity. An example of this kind of fluid is lava. Vary-
ing physical and rheological parameters, and considering different topographies on
which the lava fields evolve, they may travel long distances, overcoming barriers
and cooling, and becoming destructive for inhabited areas. Some volcanoes have
highly urbanized areas nearby, therefore, it is important to monitor lava flows, fol-
lowing their behavior in space and time. Physical-mathematical models can be used
to make accurate predictions of the lava flows evolution reducing in field risks linked
to direct analysis, and helping in monitoring and mitigating damages linked to erup-
tions. However, lava is characterized by complex physical and rhelogical properties,
which make it difficult to faithfully simulate in near real-time its flow with analytical
models. In cases like this, the use of CFD helps in studying complex flow progress in
real-time, predicting possible evolution, and deepening the understanding of phys-
ical phenomena.

Moreover, CFD models place limits in high-resolution real-time simulations for
complex physical phenomena, due to the high computational costs required. In-
deed, increasing the complexity of the system to be simulated, the discretization of
analytical models produces highly complex numerical models, with a large num-
ber of operations to process and variables to take into consideration. Currently, the
development of approaches that combine advantages of physics-based numerical
models with intelligent techniques are pushing forward the frontiers of traditional
CFD, increasing their fields of application, and opening up to new forms of detailed
analysis (Kochkov et al., 2021; Morita et al., 2022).

Artificial Intelligence (AI) (Goodfellow, Bengio, and Courville, 2016; Bonaccorso,
2017) is the branch of computer science that studies systems that learn from huge
volume of data, becoming capable of reasoning and solving tasks autonomously.
Artificial Intelligence is mainly divided into two classes, Machine Learning (ML)
(Bonaccorso, 2017) and Deep Learning (DL) (Goodfellow, Bengio, and Courville,
2016). In ML, the model learns from structured data, in which data features are se-
lected and extracted during the input feature engineering phase, to be opportunely
representative of the real phenomenon. In DL, the model learns from unstructured
data, as raw images, exploiting the spatial and/or temporal relationships between
neighboring data to automatically extract the features useful to describe the phe-
nomenon under analysis. Therefore, DL is a subset of ML. In both cases, the input
data are analyzed, extracting some basic information, which is then passed on to
the next training step, which elaborates them in a deeper way, extracting significant
information about the data. The use of AI models, therefore, allows data to be ana-
lyzed in a semi-automatic or fully automatic fashion. After an initial training phase
of the ML and DL models, these become capable of identifying patterns or relation-
ship within the processed data, extrapolating useful information for data analysis.
The use of AI is widely spreading in every field of research, in particular in those
that involve the analysis of a great amount of data in a short time, favoring their
automatic processing.
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Here, I exploit knowledge in CFD and AI fields to build emulators (Bortnik and
Camporeale, 2021; Sofos et al., 2022). They are derived from physics-based models,
based on CFD, capable to reproduce their behavior generally by learning a particu-
lar dynamic from their simulated data. Their aim is to describe the spatio-temporal
evolution of a physical phenomenon with better performances. Emulators open to
new levels of analysis (Raissi, Perdikaris, and Karniadakis, 2019; Ummenhofer et
al., 2019), advancing functionalities (Vinuesa and Brunton, 2022), and allowing to
deepen the understanding of physical phenomena (Mohaghegh et al., 2022). A gen-
eral way to implement an emulator is to start with a CFD model, in which some
blocks of the numerical approach are substituted by or joined with an AI model,
trained to learn the CFD behavior, remaining as faithful as possible to the CFD
formulations and speeding-up the simulation times (Kasim et al., 2021). To de-
velop these models, I set myself two preliminary objectives. Emulators must show
completeness and correctness, reproducing the studied phenomenon in a physically
faithful manner, and they must produce fast reproductions of the phenomenon with
respect to the analytical reference models, opening up to simulations of phenomena
that are not always accessible.

Therefore, I present a CFD emulator, derived from the Navier-Stokes equations,
developing its architecture, and validating and testing it over different case studies
aimed, finally, at application in the volcanic field. As numerical method, I chose the
Smoothed Particle Hydrodynamics (SPH), a particle-based, Lagrangian and mesh-
free CFD method, that allows high fidelity simulations of complex fluids (Mon-
aghan, 2005). Due to the heavy computational costs of the SPH method, I combined
it with an Artificial Neural Network (ANN), an AI model capable of appropriately
approximating any kind of functions, well generalizing to unknown cases. In or-
der to finally reproduce lava flows, particular attention has been paid to fluids with
viscous and thermal components. Starting from analytical equation-based SPH sim-
ulations, that discretize the Navier-Stokes equations, a set of reference simulated
data is sampled, used to train the ANN model. Thus, the AI-based SPH emulator is
ready to be used to emulate the SPH fluid system, describing and reproducing the
dynamics of the physical phenomenon.

The general pipeline of emulator development follows a three-step approach.
Considered a physical problem whose dynamics must be described, the first step
involves the SPH formulation of the problem, to understand limits and where to
intervene. Therefore, the second step implies the analysis of Artificial Intelligence
techniques, to understand in what they can be of support and, therefore, how to
intervene. Putting together the knowledge obtained, finally, in the third step, CFD
and AI are combined together in the concept of the emulator, to provide a solution
to the complexity problems that have been discussed.

The product of the physics-based model is a simulation, i.e., an equation-based
reproduction of the dynamics of a fluid; the product of an emulator is an emulation,
i.e., an AI-CFD-based reproduction of the dynamics of a fluid. Therefore, a simula-
tion is the reproduction of a real phenomenon totally based on the governing laws
that model the phenomenon itself, and it is produced by a discretized version of
them; an emulation is the reproduction of a phenomenon, still based on an analyti-
cal or numerical model that reproduce it, but in which a part of them is made up of
an intelligent model, capable of learning to replicate the governing laws and extrap-
olating specific laws. The final object is therefore always a representation of reality,
and in the first case this takes into account the original physical governing laws, in
the second case it comes from their reproduction.

I will apply this approach to different kinds of fluids, validating the capability
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of the emulator to reproduce their complex dynamics. I will begin with a study of a
Newtonian, inviscid and isothermal fluid, and I will progressively increase its com-
plexity. In particular, I will add the viscous component and, then, the thermal model.
For all these cases, a study on the feasibility of the problem will be conducted (Is it
possible to emulate a phenomenon with these characteristics?), simulating the fluid using
equation-based models and, subsequently, reproducing it with the emulator, com-
paring the results. The ability to generalize for cases never seen during the model
construction phase and for changes in the model resolution will also be verified.
Moreover, studies on some specific features will be conducted, such as the repro-
duction by the emulator of boundary conditions, and the management of different
topographies. Finally, moving towards lava flows simulations, a complex case study
will be addressed, that is a look toward an emulator capable of reproducing a highly
viscous fluid with thermal behavior typical of lava flows (Giordano and Dingwell,
2003).

Such an approach opens the way to analyzing the dynamics of complex fluids,
following their progress in time and space, and considering their interactions with
the surrounding environment. Therefore, the combined use of CFD models and AI
can enrich the panorama of modeling tools that allow a reliable and fast analysis.
This leads going into the study of phenomena that cannot be considered with other
methods, better understanding the physics of certain natural events. As mentioned
before, applications can be found in different research fields, including the volcanic
studies, in which it is important to have reliable and timely simulations, to be able
to manage a crisis in time, minimizing damages to people and infrastructures.

This thesis is organized as follows. After this Introduction, Chapter 1 presents
mathematical models for fluid dynamics, based on observations or on the governing
laws, with the analytical and numerical formulation. Thus, Computational Fluid
Dynamics is treated, and the Smoothed Particle Hydrodynamics CFD technique is
explored, with possible applications and limits. Chapter 2 presents the Artificial
Intelligence models, with the description of some properties, specific components
and different techniques. Then, a brief excursus on the state-of-the-art models is
shown, with some applications to real data (in particular in the volcanic context), for
extrapolating input parameters of the mathematical models using AI and data from
Space. Chapter 3 presents the combination of CFD and AI models in the emulators.
A brief state-of-the-art of the AI-CFD models is followed by the definition of the
AI-based SPH emulator here developed, with the specific technical characteristics.
Chapter 4 shows the results of the developed and tested emulator, discussing them.
In particular, each case study is analyzed, comparing simulations and emulations
and verifying the generalizability of the emulator, laying the foundations for future
developments. Finally, in the Conclusion, I sums up all the study, commenting on
the results obtained. In addition, two appendices have been included. Appendix A,
linked to Chapter 1, shows more in detail the theoretical basis of the SPH method, in
particular the mathematical derivation of the SPH approximation and of the spatial
gradients discretization, and some attributes are indicated, as kernel choice and SPH
initial and boundary conditions setting. Appendix B, linked to Chapter 2, delves into
the data feed to AI models to extrapolate the input parameters of the mathematical
models.
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Chapter 1

Modeling

1.1 Mathematical models for fluid dynamics

Physics is highly complex. Due to the intricate nature of physical phenomena, math-
ematical models are a key factor for the development of many scientific and techno-
logical fields, from fundamental research to applied sciences, helping with accurate
predictions of the physical systems evolution.

Nowadays, various mathematical models have developed (Velten, 2009), and
one of the widespread and complex field of research in mathematical physics is fluid
dynamics. It is the field of physics interested in motion and interactions between flu-
ids (McCormack, 2012), with the aim to describe and reproduce their natural behav-
ior, giving predictions under specific initial and boundary conditions (Dym, 2004;
Basmadjian, 2003).

All the physics-based dynamical models require several input parameters to tune
the simulations based on models, with respect to the observed natural phenomena
in space and time. The data fed to the model can be sampled with experiments in
laboratory, with measurements in field or using the remote sensing techniques, that
include the use of aircraft, drones, and satellites images from Space. Depending on
the final aim of the physical simulations, different kinds of models can be used, from
analytical to numerical ones. Models of the first type describe in detail the theoret-
ical dynamics of a system, in a continuous space, and they produce exact solutions.
They are not always solvable, making necessary the use of different kinds of mod-
els. Therefore, models of the second type discretize in a more simplified version
the physical space of the system, obtaining approximations of the exact solution.
Approximately in the middle, there are the empirical models, derived from obser-
vations, very fast but less accurate. In addition, to monitor a physical phenomenon,
the models can be classified also as physics-based or data-driven (Bortnik and Cam-
poreale, 2021). The first area includes analytical or numerical models that are totally
based on the physical laws that describe the system, and they require as input the
physical parameters to build the model. On the other hand, the second area includes
all the models based on the data, and they are built by fitting the data given in in-
put (with statistical or intelligent models), that represent the relative phenomenon,
extracting information from them to describe it. Between the physics-based and the
data-driven models, there are the combined-ones, that incorporate the physical mod-
els with the sampled data and the artificial intelligence to describe a phenomenon.
All these models differ in term of accuracy and speed, so that if one increases the
other decreases.

In modern times, with the improvement of computer hardware and software,
numerical modeling has progressed greatly and it has become widespread for com-
puter simulations. The class of numerical techniques in fluid dynamics is the Com-
putational Fluid Dynamics (CFD) (Anderson and Wendt, 1995). This is the branch
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of fluid dynamics to numerically solve the relative constitutive equations, and CFD
models are able to produce faithful simulations of the fluids behavior. Its downside
is that, being very reliable, therefore resorting to advanced calculation techniques,
CFD has high computational costs. The balance in level of accuracy and description
of the results and in execution times should be selected according to the purpose of
the study.

Complex fluids: the lava case study An example of a complex fluid, with a high
physical complexity and several impacts on human life, is lava (Sigurdsson et al.,
1999).

This complex fluid has the ability to reach inhabited areas. The growing urban-
ization of areas near a volcano increases the threats linked to the lava flows. They
have, usually, slow flows and they do not threaten human lives directly. With the
variation of the main parameters that characterize the eruption (as rheology and ef-
fusion rate), and considering different topographies on which the lava fields evolve,
they may travel long distances, overcoming barriers and cooling, with the formation
of channels and tunnels. In these cases, this fluid may become destructive for in-
habited areas, harming people and infrastructures (Del Negro et al., 2020). For these
reasons lava flows need to be studied. However, lava is characterized by several fac-
tors determining its behavior, including specific properties of the fluid, such as very
high viscosities, thermal components, a non-Newtonian rheology, and solidification
processes, and specific properties of the flow such as topography, effusion rate, with
the presence of a fixed inlet with variable flow rate, solid-fluid interactions, phase
transitions and free-surface flows (Giacomelli and Scandone, 2004). Because of the
complex physics of lava and the importance to monitor its progress in space and
time, physical-mathematical models can be used to make accurate predictions of
the lava flows evolution, helping to monitor hazards and mitigate damages with-
out in field risks. In detail, in volcanic field and in lava fields studies, high fidelity
simulations can help on two fronts, to estimate volcanic hazards and to mitigate
damages (Cordonnier, Lev, and Garel, 2016). For the first scope, simulations can
help in building forecast scenarios of the possible extension and flooded areas with
the connected dangers, without in field risks. For the second one, these scenarios
can guide the planning of mitigating actions, in order to manage and reduce the
damages. Some of the main input parameters are the topography of volcanic area,
the eruptive initial and boundary conditions, the lava thermal conditions, and the
physical properties of the lava flow (Cordonnier, Lev, and Garel, 2016), and one of
the increasingly widespread data acquisition techniques is the use of remote sens-
ing sensors on board drones or satellites (Harris, 2013). Different techniques can
be used to process this kind of data (to extract physical parameters linked to the
volcano activity), as automatic models, that automatically analyses data and extract
information; for more details, see Chapter 2.

Many modeling approaches can be used to simulate lava flows, and fluids in gen-
eral, with the basic idea of having a model capable of reliably simulating fluids in the
shortest time possible, thus obtaining accurate and fast predictive scenarios. To mon-
itor a physical phenomenon, as the volcanic activity, therefore, the techniques can be
more physics-based or totally data-driven, or a combination of the two approaches.
Here, different types of models will be presented, from the more physics-based up
to data-driven models, described in the following chapter, through which the phys-
ical input parameters can be extracted or volcanic quantitative analysis can be done.
The combined models will be seen in the following chapters, finally obtaining fluids
simulations.
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This chapter, therefore, will present empirical, analytical, and numerical models
for fluid dynamics.

1.2 Physical models

In this section, the different types of physical models, from the ones based on ob-
servations, to the one with accurate physical meaning and higher computational
costs (high accuracy, low speed), and the ones with high calculation speeds and low
physical completeness (low accuracy, high speed), to be chosen based on the fields
of application, will be discussed.

1.2.1 Empirical models

An empirical model is a model derived from data observations, measurement and
practical experience, so only on experimental data, looking for relationships between
the final results and the initial and boundary conditions, without a priori informa-
tion about the system (Velten, 2009). Empirical models are simplified version of the
analytical ones, sometimes losing in the detailing of the system, not always being
able to take into account all those real phenomena that require a high descriptive
accuracy of the fluid. They are, however, representative of the system and easy to be
resolved, with low computational costs.

An example of this kind of models for the volcanic case study seen before is the
empirical model for the maximum distance of a lava flow (L), in Eq. 1.1

L = 3.11 E0.47, (1.1)

with L the final length of the single channel-fed flow [m] and E the mean dis-
charge rate [m3 s−1] averaged for the whole time of an individual active flow (Cal-
vari and Pinkerton, 1998). This model was calibrated using data related only to the
Mt.Etna volcano (Sicily, Italy). An improved version of this model is the following
one, Eq. 1.2

L = 1.747 E0.47 t0.29 α0.26, (1.2)

with t the total emplacement time of the flow [s], and α the mean ground slope
[rad] (Calvari and Pinkerton, 1998).

Clearly, a similar model can be obtained for each volcano worldwide, calibrating
the parameters with specific data. Nevertheless, this can not be generalized to a
theoretical case.

1.2.2 Analytical models

An analytical model is a quantitative representation of the reality, based on princi-
ples or theory, thus on mathematical formulas that are solved using classical meth-
ods, such as calculus or algebra. In this case, the system behavior can be theoretically
studied, obtaining a related analytical formulation (governing laws) and (when pos-
sible) an exact solution, expressed in terms of well-known functions (Velten, 2009).
An ordinary or partial differential equation of order n ∈ N, under specific con-
ditions, admits one and only one solution (Cauchy Problem and Cauchy-Kowalevski
theorem, (Bers, John, and Schechter, 1964; Petrovsky, 2012)). Models like these need
much work to be developed and solved.
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Cauchy problem (simple formulation) Let f : R × R −→ R be a function, f is an
analytic function in a neighborhood of the point (x0, y0) ∈ R × R,

dy
dx

= f (x, y(x)) (1.3)

with

y(x0) = y0, (1.4)

initial condition, then ∃! y(x) that satisfies Eqs. 1.3 and 1.4 in some neighborhood
of x0. 2

Cauchy problem Let Eq. 1.5 be a set of partial differential equations of unknown
functions u1(t, x1, ..., xn), ..., uN(t, x1, ..., xn),

∂ni ui

∂tni
= fi

(
t, x1, ..., xn, u1, ..., uN , ...,

∂kuj

∂tk0 ∂xk1
1 ...∂xkn

n
, ...

)
(1.5)

with i, j ∈ N, i, j ∈ [1, N], k0 + k1 + ... + kn = k ≤ nj, k0 < nj. For t = t0, let Eq.
1.6 be the initial conditions,

∂kui

∂tk = ϕ
(k)
i (x1, .., xn) (1.6)

for k ∈ N, k ∈ [0, ni − 1], with ϕ
(k)
i prescribed in the same region of the space

(x1, ..., xn) in which the equation solutions must be found, the Cauchy problem
allows to find the unknown functions u1(t, x1, ..., xn), ..., uN(t, x1, ..., xn) that satisfy
Eqs. 1.5 and 1.6 (Petrovsky, 2012). 2

Cauchy-Kowalevski theorem If all the fi functions are analytic in some neigh-
borhood of (t0, x0

1, ..., ϕ0
j,k0,k1,...,kn

, ...) and if all the ϕ
(k)
j functions are analytic in some

neighborhood of (x0
1, ..., x0

n), then the Cauchy problem has a unique analytic solution
in some neighborhood of (t0, x0

1, ..., x0
n) (Petrovsky, 2012). 2

At the basis of analytical models there are the governing equations, that describe
how some state variables vary in relation to other variables. For fluid dynamics, the
governing equations are the Navier-Stokes ones (Temam, 2001).

Looking in detail at a classic set of equations for fluid dynamics, the continuity
equation, which expresses the law of conservation of mass, is the following Eq. 1.7

Dρ

Dt
= −ρ∇ · u⃗, (1.7)

where ρ is the density, t is the time, and u⃗ the velocity. The operator D
Dt is the

Lagrangian or material (total) derivative,

D
Dt

=
∂

∂t
+ u⃗ · ∇.

The conservation of momentum is expressed by the Navier-Stokes equation that,
for incompressible fluids ( Dρ

Dt = 0), is the following Eq. 1.8

ρ
Du⃗
Dt

= −∇P + µ∇2u⃗ + G⃗, (1.8)
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with ∇ · u⃗ = 0, that can be also written as

ρ
Du⃗
Dt

= −∇P +∇ · (µ∇u⃗) + G⃗, (1.9)

when the viscosity is not homogeneous, and it can spatially variate.
Finally, the Navier-Stokes equation for the conservation of momentum for com-

pressible fluids is the following Eq. 1.10

ρ
Du⃗
Dt

= −∇P + µ∇2u⃗ +
1
3

µ∇(∇ · u⃗) + G⃗ (1.10)

The pressure P, obtained from the density and not from the Poisson equation,
derives from the Cole’s equation of state (Cole, 1948), and it can be expressed as Eq.
1.11

P(ρ) = c2
0

ρ0

γ

((
ρ

ρ0

)γ

− 1
)

, (1.11)

where c0 is the speed of sound, ρ0 is the reference density of the fluid at rest, and
γ is the polytropic constant.

The fluid thermal evolution is described by the heat equation, as in Eq. 1.12

DT
Dt

=
1

cpρ
∇(κ∇T), (1.12)

where T is the temperature [K], cp the specific heat at constant pressure [J kg−1

K−1], and κ the thermal conductivity [W m−1 K−1].

Rheology Rheology concerns the study of the deformation and flow behavior of
materials, linked to the fluids stress–strain behavior (Velten, 2009; Zago, 2019). The
strain rate γ̇ [s−1] is defined as

γ̇ =
1
2
[∇u⃗ + (∇u⃗)T], (1.13)

and the shear stress τ [Pa] is defined using the linear stress constitutive equation
1.14,

τ = λ(∇ · u⃗)⃗I + 2µγ̇, (1.14)

with λ ̸= 0 bulk viscosity, and µ dynamic viscosity (Lamé parameters) (Zago,
2019). Here, incompressible fluids are treated, with ∇ · u⃗ = 0. If the shear stress and
the strain rate have a linear proportionality (with µ constant of proportionality), the
fluid will be named Newtonian (e.g., the water behavior). Otherwise, the fluid will
be named non-Newtonian, and, in this case, it is possible to define τ = f (γ̇), with f
a generic non linear function (e.g., blood, toothpaste, or lava).

An example of non-Newtonian case is the Herschel–Bulkley rheology (Hérault
et al., 2011), in which

γ̇ = 0, if τ < τ0

τ = τ0 + kγ̇n, if τ ≥ τ0
(1.15)

with τ0 the yield strength [Pa], k a consistency index [Pa sn], n the flow index
(Zhu, Kim, and De Kee, 2005; Hérault et al., 2011).

From these relationships, the following fluids classification is obtained:
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• τ0 = 0, n = 1 =⇒ Newtonian fluid;

• τ0 = 0, n ̸= 1 =⇒ Power-law fluid: if n > 1, Dilatant, if n < 1, Pseudo-plastic;

• τ0 ̸= 0, n = 1 =⇒ Bingham fluid.

Some non-Newtonian fluids can be restricted to a subset, named generalized
Newtonian fluids, in which it is possible to define an effective viscosity function
µe f f , which can then be explained in the Navier-Stokes equations, as µe f f = µe f f (γ̇),
such that τ = µe f f (γ̇)γ̇. For this type of fluids the same form of the Navier–Stokes
equations can be still applied.

A Herschel–Bulkley fluid can be traced back to a generalized Newtonian rhe-
ology, for example using the regularization in (Zhu, Kim, and De Kee, 2005), and
defining an effective viscosity in the following way

µe f f = µe f f (γ̇) =
τ0

|γ̇| + k|γ̇|n−1, for|τ| > τ0

|γ̇| =
√
[γ2

xx + γ2
yy + γ2

zz + 2(γ2
xy + γ2

xz + γ2
yz)]/2.

(1.16)

1.2.3 Numerical models

A numerical model is based on a discretization of the analytical model, for which
numerical processes are used to solve a set of equations, applying different itera-
tive numerical algorithms to reach the approximated solution for a specific set of
parameter values (Velten, 2009). They are an approximation of complex analytical
models, and they could require expensive and complex software and hardware to
be developed for complex simulations.

Analytical models are not always solvable (sometimes it is difficult, for exam-
ple, to define the boundary conditions). An example is the case of the millennium
problems (Carlson, Jaffe, and Wiles, 2006), seven mathematical problems (one of
which has already been solved) brought to the attention of mathematicians by the
Clay Mathematical Institute, awarded a prize of one million dollars for their solu-
tion. One of these, for example, involves the Navier-Stokes equations; the problem
is precisely to develop a mathematical theory that allows to understand and analyze
these equations, determining whether they are well posed and finding the analyti-
cal solution in closed form in the general case (Lemarié-Rieusset, 2018). Then one
way to solve some analytical problems may be to solve them numerically, discretiz-
ing them under specific conditions, which may however require high computational
costs. Discretizing the system, under the hypotheses of existence and uniqueness of
the analytical solution, the numerical solution can be determined, if the model ful-
fills the conditions of Consistency, Convergence and Stability (Anderson and Wendt,
1995; Chung, 2002). Briefly,

• Consistency condition involves that the discrete operator tends to the differen-
tial operator as the discretization step tends to zero;

• Convergence condition involves that the approximate solution tends to the
true solution as the discretization step tends to zero;

• Stability condition involves that, considered two different solutions ua and
ub of the problem, obtained by considering two different initial vectors u0a

and u0b , it exists δ ∈ R, δ > 0, δ ∈ [0, δ0] (δ0 > 0) such that ∥ua − ub∥ ≤
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δ∥u0a − u0b∥, that is the system is robust to perturbations (of the initial state),
thus, the effect of a perturbation is limited in the solution.

If fluid dynamics is the analytical physics field interested in motion and interac-
tions between fluids (Batchelor, 1967; Lamb, 1994[1932]; McCormack, 2012), Com-
putational Fluid Dynamics (CFD) is the numerical branch of fluid dynamics to sim-
ulate the behavior of fluids using numerical techniques (Anderson and Wendt, 1995;
Chung, 2002). With the continued diffusion and growth of computers, in the last
decades, CFD has opened to great advancements in the study of fluids.

Classification of numerical models

The numerical models can be classified as Eulerian or Lagrangian, mesh-free or
mesh-based, based on the type of discretization (interpolation points) applied, as
follows.

Eulerian The observed object (interpolation point) is a specific part of the domain,
fixed in space, through which the system evolves. Therefore, the Eulerian methods
discretize the simulation domain into volumes (cells), which remain fixed in space
(Batchelor, 1967; Lamb, 1994[1932]) (see Fig. 1.1).

This approach is good for modeling diffusion systems, and examples are the
Finite Volumes (FV), or Finite Differences (FD).

Lagrangian The observed object (interpolation point) is a single portion of the
fluid, so the nodes of the discretizations moves in space over time. Therefore, in
Lagrangian methods the fluid is discretized into small volumes which can move in
space, tracking their state in time (Batchelor, 1967; Lamb, 1994[1932]) (see Fig. 1.1).

This approach is good for modeling deformable complex surfaces and an exam-
ple can be the Finite Element Method (FEM).

Mixed Eulerian-Lagrangian Arbitrary Lagrangian–Eulerian methods (ALE) com-
bine the two approaches, so that it can be possible to handle large deformations (like
for pure Lagrangian methods) with higher resolution (like Eulerian methods) (Hirt,
1974; Donea et al., 2004). In this case, for example, the fluid can have an Eulerian
treatment and the solid domain a Lagrangian one (Legay, Chessa, and Belytschko,
2006), or, for liquid-gas interactions, the flow of the gas mixture can discretized in an
Eulerian way, and the liquid-droplet system in a Lagrangian one, reducing the com-
putational resources linked to the resolution of each droplet (Melnikova, Epikhin,
and Kraposhin, 2021).
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FIGURE 1.1: Sketch of an Eulerian and a Lagrangian numerical
method. Source: (Shadloo, Oger, and Le Touzé, 2016)

Mesh-free/Mesh-based Another way to classify numerical methods involves the
use of grids or meshes to discretize the space. A mesh is an ordered list of node
coordinates, with information about the connectivity between nodes. To make this,
a list of nearest neighbors nodes of the central one is built. In case of governing
equations to be solved, the mesh is constructed to fill the entire domain over which
these equations have to be applied, for their spatial discretization (Mavriplis, 1996).

A subset of the mesh-free (or mesh-less) methods is composed by the particle
methods, that discretize the fluid with a finite set of particles, following the changes
in their state (i.e., position, velocity, density, temperature) (see Fig. 1.5). Examples
can be the Molecular Dynamics (MD), and the Smoothed Particle Hydrodynamics
(SPH).

Eulerian and Lagrangian numerical methods can thus be mesh-based or mesh-
free. For mesh-based cases, in Eulerian methods, the mesh is fixed in space (see Fig.
1.2). Grids are very usable in this case, but it is difficult to track free surfaces and
other complex interfaces. Also the computational load is high, due to the need to dis-
cretize the whole domain with the grid. In Lagrangian case, the mesh is fixed to the
simulated body and follows it during the simulation, re-adapting itself to the body
deformations (see Fig. 1.4). This case is largely applied for boundary conditions on
the surface or any fluid fronts. However, it is difficult to track very distorted geome-
tries and large deformations, since a frequent re-meshing is necessary. Mesh-free
methods, therefore, overcome these limitations. They are based on the absence of
any mesh or grid, exploiting the interactions between each node of the discretized
system and all its neighbors. For Eulerian case, this setting is typical of fluid me-
chanics. It is applied when tracking averaged properties over a control volume of
the fluid is need, without a fixed grid. An example is the Eulerian SPH (Lind and
Stansby, 2016; Nasar et al., 2021; Chang, 2023), in which the particles assume the role
of simple fixed quadrature points (see Fig. 1.3). Thus, the method remains mesh-less
(there are no strict requirements on node (particle) connectivity or ordering), and
particle distributions uniform. In addition, high accuracy and computational sav-
ings are available. For Lagrangian methods, in which it is frequent to simulate large
deformations or changing surfaces, mesh-free methods are based on units free to
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move, and the absence of a mesh allows to avoid the frequent re-meshing, reducing
simulation times and approximation errors. Therefore, mesh-free Lagrangian meth-
ods are good for modeling large deformations. An examples can be the Discrete
Element Method (DEM).

FIGURE 1.2: Example of an Eulerian mesh-based numerical method.
Source: here

FIGURE 1.3: Example of an Eulerian mesh-free numerical method.
Source: (Lind and Stansby, 2016)

https://la.mathworks.com/matlabcentral/fileexchange/46637-a-simple-finite-volume-solver-for-matlab
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FIGURE 1.4: Example of a Lagrangian mesh-based numerical
method. Source: here

FIGURE 1.5: Example of a Lagrangian mesh-free numerical particle
method. Source: here (Rakhsha, Kees, and Negrut, 2021)

1.2.4 A Lagrangian mesh-free method: Smoothed Particle Hydrodynam-
ics

Computational Fluid Dynamics (CFD) is an approach that uses numerical techniques
to solve fluid dynamics problems. Also in this case, it is possible to classify Eulerian
or Lagrangian, mesh-free or mesh-based methods. Between others, the Lagrangian
mesh-free methods are efficient for complex dynamics. Specifically, the Lagrangian
nature allows an accurate treatment of flow interfaces, including free surfaces, and
interactions with complex geometries. The absence of any grid allows an efficient
management of highly dynamics flows undergoing strong mixing (Zago et al., 2018).
A largely used CFD Lagrangian mesh-free method is the Smoothed Particle Hydro-
dynamics (Monaghan, 2005).

Smoothed Particle Hydrodynamics Between the different CFD approaches, Smoothed
Particle Hydrodynamics (SPH) is a Lagrangian mesh-free computational particle
model to simulate fluids, based on a discrete approximation of the Navier-Stokes
equations, using smoothed kernels to weigh interactions between particles. It was

https://danielpeter.github.io/rays.html
https://www.mdpi.com/2311-5521/6/12/460
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introduced firstly by Gingold and Monaghan and Lucy in 1977 (Gingold and Mon-
aghan, 1977; Lucy, 1977) in astrophysics fields and, subsequently, widely used in
fluid dynamics (Monaghan, 1992; Monaghan, 2005). It is especially used for com-
plex fluids and free-surface flows simulations (Zago et al., 2017; Zago et al., 2021),
because the Lagrangian properties allow a good representation of the changing ir-
regular shape of the flows, interfaces and free surfaces, and the absence of a mesh
gives the possibility to manage large deformations while fluid flows, without fre-
quent re-meshings and consequent extra time and approximations of the volume.
Therefore, SPH produces high fidelity simulations of complex fluids, as lava flows,
catching the kinematic and thermal details of the fluid, and dealing well with flow
interfaces and high deformations. It is highly parallelizable, executable on GPUs
(Graphics Processing Units), and it is capable to solve viscous and thermal effects
(Zago et al., 2017). SPH can have different formulations (Bilotta et al., 2022b; Bilotta
et al., 2022a), in different spatial dimensions and with specific physical properties.
It can include numerical corrections (Vila, 1999; Zago et al., 2021; Molteni and Cola-
grossi, 2009; Saikali et al., 2020), chosen according to the characteristics of the sim-
ulated fluid and problem and the level of abstraction adopted with respect to the
simulated physics.

Next, the SPH formulation in fluid dynamics and the integration scheme used
will be presented.

SPH formulation in fluid dynamics SPH formulation is largely applied in fluid
dynamics systems, to numerically simulate the fluid behaviors. It can be developed
in different space dimensions, as 1D case (Price, 2008), 2D case (Bilotta et al., 2022a),
and 3D case (Zago et al., 2017). It is important to underline that the general SPH
formulation is the same, while the definition of the kernel and the definition of the
mass vary as the spatial dimension varies (the kernel because it follows the normal-
ization property in Eq. A.2, the mass because of its dependence on volume, surface,
or similar, as the dimension varies).

Different variants of the SPH discretizations exist (Oger et al., 2007). Here, the
following one was chosen (Zago et al., 2018), which is one of the most widespread.
The equation of the mass conservation (equation of continuity) is written as

Dρi

Dt
= ∑

j
u⃗ij · x⃗ijFijmj + ξhc0 ∑

j
ΨijFijmj, (1.17)

with x⃗i, y⃗i position coordinates, u⃗i velocity, mi fixed mass, ρi density, Vi = mi
ρi

volume and Pi pressure, for a particle i. Then, x⃗ij = x⃗i − x⃗j and u⃗ij = u⃗i − u⃗j.
Moreover, c0 is the speed of sound, h is the smoothing length, defined using the
smoothing factor as s f = h

∆p , with ∆p spatial resolution of the approximation (par-
ticle size) and, typically, s f = 1.33 (Zago et al., 2018). Wij = W(

∣∣⃗xi − x⃗j
∣∣, h), with

∇jWij = x⃗ijF(|⃗xij|) = x⃗ijFij (see Appendix A). The second term on the right hand
side of Eq. 1.17 stands for the density diffusion correction (Molteni and Colagrossi,
2009; Antuono, Colagrossi, and Marrone, 2012), improving the pressure and stability
of the numerical simulation (especially for quasi-static flows).

Here, the density diffusion formulation of (Antuono, Colagrossi, and Marrone,
2012) was chosen, with ξ density diffusion coefficient, typically ξ = 0.1, and with

Ψij =

{
2
(

ρj
ρi
− 1
)

if |Pi−Pj|
ρi g⃗|⃗yi−y⃗j| > 1

0 otherwise.
(1.18)



Chapter 1. Modeling 16

The discretization for the inviscid equation of the momentum conservation (with
artificial viscosity) is written as

Du⃗i

Dt
= −∑

j

(
Pi

ρ2
i
+

Pj

ρ2
j
+ Πij

)
x⃗ijFijmj + g⃗, (1.19)

where g⃗ = (0,−9.81)T is the gravity vector and Πij is the artificial viscosity term
(Monaghan, 2005), which helps reducing numerical high frequency components of
the velocity field (helping in numerical stability), defined as

Πij =

{
− α h c0

ρj

(
u⃗ij ·⃗xij

|⃗xij|2+ϵh2

)
if (u⃗ij · x⃗ij) > 1

0 otherwise,
(1.20)

with ϵ = 0.01, added to avoid a singularity when |⃗xij|2 → 0 (Monaghan, 2005).
An equivalent kinematic viscosity ν is obtained defining the artificial viscosity

coefficient α (Monaghan, 2005) in the following way

α =
cα ν

h c0
, (1.21)

with cα = 8 in 2D, and cα = 10 in 3D (Monaghan, 2005).
The discretization for the viscous equation of the momentum conservation (with

physical viscosity) is written as

Du⃗i

Dt
= −∑

j

(
Pi

ρ2
i
+

Pj

ρ2
j

)
x⃗ijFijmi + ∑

j

2µij

ρiρj
u⃗ijFijmi + g⃗, (1.22)

where µij is a parameters for the viscosity (that can be the viscosity of a single
particle, or the arithmetic or harmonic mean of two nearby particles).

The pressure P is obtained from the density, using the Cole’s equation of state
(Eq. 1.11); if c0 is at least an order of magnitude higher than the maximum velocity
of the flow (hydrostatic velocity, that is uh =

√
2∥g⃗∥h, with h the maximum height

of the fluid (Torricelli, 1644)), a weakly-compressible fluid is obtained.

Integration scheme Once the spatial derivatives have been evaluated according
to Eq. A.8, the Partial Differential Equations (PDEs) are reduced to Ordinary Dif-
ferential Equations (ODEs) with derivatives over time. These are then integrated
adopting a second order predictor-corrector integration scheme (Zago et al., 2021),
described by the following steps.

1. Compute accelerations and density derivatives at instant n:

(a) a⃗(n) = a⃗(x⃗(n), u⃗(n), ρ(n)),

(b) ρ̇(n) = ρ̇(x⃗(n), u⃗(n), ρ(n)).

2. Compute half-step intermediate positions, velocities and densities (predictor):

(a) x⃗(n∗) = x⃗(n) + u⃗(n) ∆t
2 ,

(b) u⃗(n∗) = u⃗(n) + a⃗(n) ∆t
2 ,

(c) ρ(n∗) = ρ(n) + ρ̇(n) ∆t
2 .

3. Compute corrected accelerations and density derivatives:

(a) a⃗(n∗) = a⃗(x⃗(n∗), u⃗(n∗), ρ(n∗)),
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(b) ρ̇(n∗) = ρ̇(x⃗(n∗), u⃗(n∗), ρ(n∗)).

4. Compute new positions, velocities and densities (corrector):

(a) x⃗(n+1) = x⃗(n) + (u⃗(n) + a⃗(n∗) ∆t
2 )∆t,

(b) u⃗(n+1) = u⃗(n) + a⃗(n∗)∆t,

(c) ρ(n+1) = ρ(n) + ρ̇(n∗)∆t.

The time step ∆t is computed starting from the one for each particle i, ∆ti, re-
quiring to fulfill the CFL-like (Courant-Friedrichs-Lewy) stability conditions (Mon-
aghan, 1992), determined by the acceleration magnitude, the speed of sound and the
viscosity term (Eq. 1.23),

∆ti ≤ min

{
0.3

√
h

||⃗ai||
, 0.3

h
c0

, 0.125
ρ0h2

µi

}
, (1.23)

with ρ0 the initial material density [kg/m3], so that ∆t = min ∆ti (Zago et al.,
2018).

The theoretical basis of the SPH model, in particular the mathematical derivation
of the SPH approximation and of the spatial gradients discretization, and the kernel
choice and SPH initial and boundary conditions setting are shown in Appendix A.

1.2.5 Numerical applications to lava flows and limits

Mathematical modeling can help in improving lava flow behaviors knowledge, delv-
ing into aspects related to spatio-temporal thermal and viscous evolutions. The com-
plex nature of the fluid, make simulation of lava flows an extremely challenging task
for CFD. Various computer codes have been developed to reproduce and predict
lava flow dynamics, differing in physical implementations, numerical accuracy, and
computational costs.

As already seen, lava flow mathematical models and numerical simulations must
have a lot of input parameters, that are topography or slope, eruptive input con-
ditions (volume effusion rate, vent geometry and effusion temperature), thermal
boundary condition at the top and the bottom of the flow, and physical properties of
the lava: density, thermal conductivity, rheology (Cordonnier, Lev, and Garel, 2016).

In the modeling of lava flow hazards (Cappello, Vicari, and Del Negro, 2011; Del
Negro, Cappello, and Ganci, 2016), different approaches aim to simplify the model-
ing complexity, in terms of implementations and higher performances, with reduced
dimensionality approaches (Fernández-Nieto et al., 2016), simplified thermal or dy-
namic models, or using stochastic approaches with little or no physical modeling
(Costa and Macedonio, 2005), making possible real-time forecasting, risk mitigation,
the production of long-term scenarios (Scifoni et al., 2010).

Mesh-based methods

In the following subsections, a description of the main mesh-based lava flows simu-
lation methods are shown (Cordonnier, Lev, and Garel, 2016).
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Channelled models Channelled models implement 1D problems, in which the
fluid is confined and the flow advances downwards, only in one direction. They
manage a quite complex thermal model, crystallization rate, and rheology models,
and the velocity of the flow depends on the channel dimensions and on the rheology
of the lava. The main example of 1D channelled lava implementation is FLOWGO
(Harris and Rowland, 2001), that models finite amounts of moving lava between
stagnant levees. It has no mechanically continuous roof, the moving lava top repre-
sents a free surface open to the atmosphere, and its sides and bottom are in contact
with levee walls and the emplaced flow base. Thermal aspects, the heat lost, is man-
aged by radiation and convection phenomena at the surface and conduction at the
base, and the rheology is computed from its crystal- and temperature-dependence.
Therefore, the flow along the channel is stopped when the lava cools down and its
rheological properties equal that of a solid.

Models like this are fast and easy to implement, but some limitations arise from
the 1D assumption, forcing the local channel width to directly correlate with ground
slope.

Cellular Automata The cellular Automata (CA) is a discrete computational model,
composed by a regular grid of cells with specific cells state. Selected a central cell,
a set of neighborhood is defined, that influence the state of the central one and the
system advances according to fixed updating rules (generally, a mathematical func-
tion) that determines the new state of each cell in terms of the current state and the
states of the neighborhood cells (Schiff, 2011).

Examples of CA implementations for model lava flow emplacement are MAGFLOW
(Cappello et al., 2016), SCIARA (Rongo et al., 2016) and FLOW-FRONT (Young and
Wadge, 1990).

Using Cellular Automata, the computational domain is discretized with a 2D
grid of cells, in which cells are characterized by specific volcanic properties as alti-
tude, lava height and temperature, and lava flow advance. The cooling process is
implemented with the evolution of cell properties. The flow of lava from one cell to
another depends on the low density and on the slope (difference between two adja-
cent cells altitudes) and it is stopped with plastic rheology model or following the
solidification process.

Models like this are fast and easy to implement. Limitations are encountered in
their absence of a detailed vertical description of the lava flow, important in cou-
pling surface and basal heat losses to the bulk rheology evolution, or to model the
formation of phenomena like lava tubes.

Depth-averaged models Depth-averaged methods are simplified models that act
on spatial dimensionality reduction, using the shallow-water equation (SWE) (Sadourny,
1975), assuming that the horizontal dimension is greater than the vertical one, giv-
ing homogeneous properties throughout the fluid section. In volcanic context, from
Newtonian to Bingham rheology models can be implemented, with constant vis-
cosity value along the vertical profile. This is a limitation in the rheology aspects
into flow dynamics. Depth-averaged codes for volcanological applications include
(Macedonio, Costa, and Longo, 2005), VOLCFLOW (Kelfoun and Vargas, 2016) and
RHEOLEF (Saramito, 2022). Models like this have an easy implementation, reducing
simulation times (Fernández-Nieto et al., 2016).
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Nuclear based models Nuclear based models owe their name to his first applica-
tion in the field of nuclear plants, simulating and optimizing the spreading phase of
melted substance in case of nuclear reactor meltdown (Greiner, Maruhn, et al., 1996).
They are an evolution of the Cellular Automata, adding the third dimension, that is
a discretization of the height of each cell. In volcanic context, LavaSIM (Proietti et al.,
2009) is an example for lava simulations. Free surfaces has not been modeled yet,
making this a limitation for lava simulations.

CFD OpenFOAM Open Field Operation And Manipulation (OpenFOAM) (Jasak,
Jemcov, Tukovic, et al., 2007) is an open-source software package based on finite Vol-
umes, produced by OpenCFD Ltd, and it is applied to solve problem of continuum-
mechanics problems, including CFD problems. It is applicable to different fields, as
complex fluids, chemical reactions, turbulence, and heat transfer. It is easy to imple-
ment and fully parallelized. In particular in volcanic field, specific feature of lava
are easy to be implemented, adding equations, solvers and specific applications.

CFD Flow3D Flow3D (Duguay, Lacey, and Gaucher, 2017) is a commercial soft-
ware, with engineering and Computational Fluid Dynamics applications, distributed
by Flow Science Inc. It is based on Volume-of-Fluid algorithms, combined with Level
Sets, to model interface tracking feature, making suitable simulation of free surface
flows, as lava flows. Limits are that it is slow and it has a high price.

Mesh-free methods

Smoothed Particle Hydrodynamics (SPH) method is largely used to simulate com-
plex fluids and free-surface flows simulations, as lava flows (Zago et al., 2017; Zago
et al., 2021), for its Lagrangian mesh-free nature. Catching kinematic and thermal
details of the lava, with viscous and thermal effects, and dealing well with flow in-
terfaces and high deformations, it is largely used in volcanic context. It is also highly
parallelizable (Zago et al., 2017). An example is GPUSPH (Bilotta et al., 2016), with
applications on the evolution of surface temperature and solidification, managing to
get velocity and temperature profiles (Hérault et al., 2011). Limits to this approach
are the heavy computational costs, in terms of time and computing resources.
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Chapter 2

Artificial Intelligence

In the era of constant production of information and signals, new researches are
increasingly turning towards a massive use of the Artificial Intelligence (AI) ap-
proaches to analyze this great quantity of data.

AI is the branch of computer science technology that simulates the human intel-
ligence processes using machines, especially computer systems, reproducing com-
mon human tasks and going beyond. In this way, intelligent systems, capable of
reasoning and solving problems, are produced. As for humans, that learn from
experience or examples and through mistakes, these systems learn from data and
through experience and not through models or corrections superimposed (Goodfel-
low, Bengio, and Courville, 2016).

Artificial Intelligence is mainly divided into Machine Learning (ML) (Bonac-
corso, 2017) and Deep Learning (DL) (Goodfellow, Bengio, and Courville, 2016).
In the first one, the model learns from structured data, composed by vectors of fea-
tures representative of the input state, for example using a list of pixels of an image,
exploiting the spectral characteristics of the object captured there (Amato, 2022). In
the second one, the model learns from unstructured data, as raw images, automat-
ically extracting the features useful for the relative purpose (ground-truth), exploit-
ing spectral, spatial and/or temporal characteristics of the input data (Amato et al.,
2023a). Briefly, in ML, human experts determine the hierarchy of features to under-
stand the differences between data inputs, usually requiring more structured data to
learn ("feature engineering" process), in DL the model can ingest unstructured data
in its raw form (e.g., text or images), and it automatically determines the hierarchy of
features which distinguish different categories of data from one another. Therefore,
DL is a subset of ML.

In both cases, the input data are analyzed, extracting some basic characteristics,
which are then passed on to the next training step, that elaborates them in a deeper
way, extracting ever more general information about the data. This process is in
perfect analogy with the human elaboration of concepts through the transition from
particular and easy to understand cases to more general and abstract one.

The learning process in ML and DL is the phase in which the model uses tech-
niques to learn an analysis scheme for the system under examination, automatically
extrapolating from data a model to describe it. It is divided into three cases, rein-
forcement, supervised, and unsupervised learning. The first one is based on the use
of an agent, that learns by trial and error using feedback and experience in an inter-
active environment. The external environment provides the initial sets of data and
evaluates the final result, with a reward if that result is correct and a penalty if it
is not. The learning then proceeds with successive tests and it is based on subse-
quent corrections of the work, through reinforcements of the more efficient process.
The main aim of reinforcement learning is thus to find a suitable action model, to
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maximize the total cumulative reward of the agent. It is mainly diffuses in gam-
ing, robotics, and similar fields (Wiering and Van Otterlo, 2012). In the supervised
learning, the model is trained using a set of data, the training set, labeled with the
relative results, typically called the ground-truth, the targets linked to the real mean-
ing of each data. In this case, the model adjusts their parameters exploiting a series
of typical characteristics automatically extrapolated from the couple data-label, min-
imizing the difference between predicted values and real ones, i.e., the loss function.
Thus, the learning process in based on the correlation between data and ground-
truth. In the unsupervised learning, in contrast, the training data are not labeled
and the model searches patterns and schemes directly in the data, without having
any ground-truth data. This is very useful for dataset that can not be characterized
a priori. In data analysis, the main approaches are the supervised and unsupervised
learning (Amato et al., 2021a).

Both ML and DL models can have two main tasks (Bonaccorso, 2017), i.e., classi-
fication and regression one. In the first case, the aim is to divide the data into classes,
or clusters, determined by intra-classes similarities, that measure the homogeneity
of a cluster, and inter-classes dissimilarities, that measure the distance between two
clusters (Corradino et al., 2021b; Corradino et al., 2022; Torrisi et al., 2022a; Cariello
et al., 2023). Therefore, the output of the model is a discrete number, linked to the
class membership. In the second case, the purpose is to find a model that in a better
way fits the input data, interpolating them, and that can predict future trends, for
data never seen in the training set. Thus, the output is a continuous numeric data
(Malik et al., 2021).

In order to conduct a balanced and not polarized analysis, the input dataset is
divided into three independent subsets, i.e., a train set, a validation set and a test set,
randomly distributing the data in each set. The train set is used to train the model,
the second one to validate the results in the train phase and to fit the hyperparam-
eters (parameters that directly control the structure, function, and performance of
the model), and the last set is used to test the model with data never seen during in
the training phase, calculating the predictive performances of the model. The learn-
ing process is composed of different data processing cycles, called epochs, for each
of which the model analyzes the data and extrapolate a function that can fit them
in an increasingly precise way, calculating an error between the prediction and the
target data. Therefore, during the training phase, the model feeds training and vali-
dation data and, for each epoch (iteration), processes the data. The learning process
is stopped according to different stopping criteria, such as after a predefined num-
ber of epochs or if the error is less than a predefined tolerance (here, in the following
applications, for the first reason, i.e., after a predefined number of epochs), and the
final error is used as a reference for the goodness of the training phase. One of the
learning hyperparameter is the learning rate, a tuning parameter that determines the
step size at each iteration while moving toward a minimum of a certain loss func-
tion, an objective function to learn the analysis scheme. The error is calculated also
for the validation set, to verify the capability of the model to learn for data not used
during the training phase. Finally, the test set is used to calculate the accuracy of
the model, through the test error. If the model has poor performance on training
data, i.e., it is not capable to capture the relationship between the data themselves
or the data and the targets, the underfitting phenomenon will be showing up. If the
model performs well on training data, and not on testing data, i.e., the model stores
data it has analyzed during the training phase and it is not capable to generalize for
data never seen before, the overfitting phenomenon will be showing up (Bonaccorso,
2017).
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Deep learning needs more data to build a robust model than machine learning.
The goodness of an AI model is calculated over the test set with several perfor-

mance indices, that compare the model prediction with the real values of the data
labeled to evaluate the model. For the classification task, examples of performance
indices can be the accuracy index (Eq. 2.1), the precision index (Eq. 2.2), the recall
index (Eq. 2.3) and the F1 score (Eq. 2.4), then calculated as percentages (James et al.,
2013).

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

F1score =
2 · TP

2 · TP + FP + FN
= 2 · Precision · Recall

Precision + Recall
(2.4)

where TP (True Positives) are the data correctly predicted to belong to class 1
that actually belong to class 1, TN (True Negatives) are the data correctly predicted
to belong to class 0 that actually belong to class 0, FP (False Positives) are the data
incorrectly predicted to belong to class 1 that actually belong to class 0, and FN
(False Negatives) are the data incorrectly predicted to belong to class 0 that actually
belong to class 1. The total number of samples in the test set is given by the sum of
TP, TN, FP and FN (James et al., 2013). For the regression task, other performance
indices exist, such as the Mean Squared Error (MSE) (Bonaccorso, 2017), defined as
follows.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.5)

with N number of samples, yi real value, and ŷi predicted value.
Another important aspect in AI is the model explainability, which is the prop-

erty of an AI model that can be explained. The branch of AI that deals with this
is called Explainable AI (XAI) (Xu et al., 2019), and the idea is to make possible for
the human operator to be able to grasp the reasons behind the automatic decisions
or predictions of the model. In many real-world applications affected by AI deci-
sions (medical applications, business decision, process optimization, for example)
AI models explainability and transparency is essential to make models reliable and
truly usable.

On a practical level, the AI techniques used can be the most varied, clustering
techniques, i.e., mathematical models that group data with similar characteristics
(Xu and Wunsch, 2005), decision trees, that are graphs in which, starting from an in-
put, the relative output can be predicted using if-else conditions over the data (Shaik
and Srinivasan, 2019), random forests, that are groups of decision trees, and prob-
abilistic models, which are based on the probability that, given an input, a specific
output will emerge (Ghahramani, 2015), all of these in a context of machine or deep
learning.

In the following section, an overview of the principal state of the art AI models
is presented.
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2.1 AI models

An AI model is a mathematical representation of a specific problem, obtained auto-
matically relating input to output data, finding patterns and making predictions. It
can be used for different problems, as data classification or value regression and it
can be built using different approaches, as ML or DL. Each model can have a dif-
ferent architecture (structure, functional form) and, using a specific algorithm (pro-
cedure), an entire automatic framework can be created, that feeds the input data,
recognizes patterns or schemes, and extracts information to make decisions.

More rigorously, let X⃗ ∈ Rp be the input space, with p = 1, 2, ... the number
of independent input variables, and Y⃗ ∈ Rd the output space, with d = 1, 2, ... the
number of dependent output variables. Denoting x⃗ the vector of components (xi)i∈N

in the input space, and y⃗ the vector of components (yi)i∈N in the output space, the
AI model is a function f (Eq. 2.6) that links the independent variable or input x⃗ ∈ X⃗
with the dependent variable or output y⃗ ∈ Y⃗, with an error component ε⃗ = (ε i)i∈N ∈
R, such that

f : X⃗ → Y⃗
x⃗ → y⃗ = f (x⃗) + ε⃗

(2.6)

with f (x⃗) = ˆ⃗y the predicted value, y⃗ the real value, and ε⃗ = (ε i)i∈N the error,
such that its components are supposed to be independent and identically distributed
with zero expected value, constant variance and with covariance between two of the
components equal to zero, regardless of the chosen variables. This describes the
error made in predicting the values of x⃗ with y⃗ via the function f , i.e., the difference
between the predicted and the real value of the output data (⃗ε = y⃗ − ˆ⃗y) (Bonaccorso,
2017).

The Eq. 2.6 is a simplified formulation of the AI models, by way of example.
A list of common AI models is shown in the following subsections, with different
architectures, applicable to various contexts.

2.1.1 Unsupervised Machine Learning

k-Means This is an unsupervised ML approach. The k-Means (kM) algorithm is a
clustering method (Ahmed, Seraj, and Islam, 2020) in which the goal is to divide the
elements into k homogeneous groups or classes, identified as clusters, i.e., a collec-
tion of data points aggregated together because of certain similarities. The number k
of classes must be set a priori. There are two approaches to cluster the data, the par-
titional method, i.e., a first random division of the elements is carried out, and then
the elements are slowly moved within the clusters, obtaining the final class, and the
agglomerative hierarchical method, i.e., all the elements are considered as a single
cluster and gradually merge or divide them into the various clusters. For each class,
it is possible to calculate the centroid ("means" because the aim is to average the data,
that is, finding the centroid), i.e., the class center, as the mean value calculation on
datasets with known classes. Starting with a first group of randomly selected cen-
troids, which are used as the beginning points for every cluster, the model performs
iterative calculations to optimize the positions of the centroids, then allocating every
data point to the nearest cluster (in the partitional method, for example). The algo-
rithm is stopped when there is no changes in the centroid positions, or the defined
number of iterations has been achieved. Clustering technique is an unsupervised
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approach, that does not consider the reference class or label. This is due to an a pri-
ori lack of the reference targets for the data or because the aim is to obtain that ones
for a subsequent supervised task.

x-Means This is a ML unsupervised model, that is an efficient version of the k-
Means algorithm. The x-Means (xM) efficiently searches the space of cluster loca-
tions and number of clusters to optimize the Bayesian Information Criterion (BIC) or
the Akaike Information Criterion (AIC) measure. A threshold is then automatically
set based on a specific pixel feature similarity, in terms of their Euclidean distance
from each computed centroid (Pelleg, Moore, et al., 2000).

2.1.2 Supervised Machine Learning

Linear regression Considering the model in Eq. 2.6, if p = 1 and d = 1, then
the model is the linear regression (LR). This is one of the simplest supervised ML
models. For each sample, that is a couple (xi, yi)i∈N, the model is the following one:

yi = µ(xi) + ε i, (2.7)

where µ represents an unknown function to be estimated, and the variables ε i ∈
R the error component.

Support Vector Machine This is a supervised ML approach. The aim of the Sup-
port Vector Machine (SVM) is to find an hyperplane in an N-dimensional space
(N ∈ N is the number of features), that classifies the data points. The hyperplane
chosen must have the maximum margins, i.e., the maximum distance between data
points of both classes, to efficiently classify the data. Data points falling on either
side of the hyperplane can be attributed to different classes. SVM algorithm have
three parameters. The first one is the kernel type, that is a transformation to bring
the data in the required form, the second parameter is γ, that is the spread of the
kernel (i.e., the decision region, how far the influence of a single training example
reaches), and the third is the cost C, that is the inverse of the maximum margin (i.e.,
the trade-off between smooth decision boundary, namely the hyperplane, and clas-
sifying training points correctly) (Noble, 2006).

Random Forest This is a supervised ML approach. It is based on the decision tree
algorithm, a model based on simple decision rules inferred from input features dur-
ing the training phase, to classify the data or make predictions. Random Forest (RF)
is made by a number of decision trees, that must be set a priori. Each decision tree
is trained independently using samples of the original training dataset and their re-
sults are combined to get the final RF outcome, based on the majority voting (Belgiu
and Drăguţ, 2016) or averaging them, if the task is classification or regression. Dur-
ing the training phase, RF learns from data the best decision rules to minimize the
error between target and model output.

Minimum Distance This is a supervised ML approach. The Minimum Distance
(MD) classifier is a method that classifies the data using the shortest distance be-
tween the input sample and all the centroids of the classes, assigning the data to the
class with the shortest distance. It is mostly used in classification problems. The
distance is defined as an index of similarity so that the minimum distance is iden-
tical to the maximum similarity. The distances applied can be different, such as the
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Euclidean, Normalized Euclidean, Manhattan, or Mahalanobis distance (Zhao et al.,
2012).

Classification and Regression Trees This is a supervised ML approach. The Clas-
sification and Regression Trees (CART) classifier is based on a decision tree algo-
rithm that can be used for classification or regression predictive problems. This is
composed by a binary tree, with input nodes for the input variables, and the if-else
rules to analyze the data, assuming that the variables are numeric. The final nodes
of the tree contain an output variable, to make a prediction. As for decision trees, to
fit a CART model the input data are fed and split following the rules to minimize a
cost function. Tree construction ends using a predefined stopping criterion, such as
a minimum number of splits or a minimum numbers of nodes (Breiman, 2017).

Artificial Neural Network One of the most used ML models is the Artificial Neu-
ral Network (ANN) (Wang and Wang, 2003; Bonaccorso, 2017), that mimics the hu-
man brain structure and the way to extract information analyzing input data. ANN
is composed by a number of nodes called artificial neurons, to simulate the natural
neurons of the brain, and a number of weighted connections between nodes, the
edges. The NN is the only example of architecture that can have supervised or un-
supervised learning, analyzing data and labels in the first case and automatically
clustering similar data in the second one.

For NN with unsupervised tasks (Becker, 1991), different learning process are
applicable. One can be the competitive learning. In this approach, the nodes are put
in competition to find the one for which the weight vector is closest to the input vec-
tor. Calculating all the distances between the data, the one with minimum distance
is chosen. The output neuron with the minimal distance is called the winner-takes-
all, and, during the learning process, only its weights are updated. A similar for-
mulation, based on spatial proximity between nodes, is the Kohonen one (Dekker,
1994), in which the maps are created, taking into account the location of the nodes.
Therefore, considering any node, the nearby ones are their neighborhood, and they
are arranged on a square map by associating a function which indicates how much
distance that node from the others. Thus, nodes close to each other will specialize
in recognizing similar inputs. This leads to the concept of bubbles, i.e., n subset of
nodes representing the clusters. This allows to better manage the variability between
elements, and, in addition, respect to use the other techniques, in this case the num-
ber of clusters can be decided afterwards. These networks are based on the behavior
of topological maps in the cerebral cortex of the brain.

In cases of NN for supervised tasks (Hush and Horne, 1993), it can be composed
by a single neuron, a perceptron, with a number of nodes, and a single or binary out-
put. The learning process is an iterative process. For each epoch (iteration, i.e., up-
date cycle in which the training set is presented to the network and the error between
the prediction and the target data is calculated), the nodes process the information,
the edges connect the nodes, summing-up and passing the information, as synapses
do, and storing the knowledge in the weights during the learning process. Compar-
ing the prediction with the real value or the similarity between them, the weights
are updated. At the end of the process, the information passes through an activa-
tion function, which activates or not the neuron (Goodfellow, Bengio, and Courville,
2016). It is possible to (fully) connect a number of perceptrons (neurons), obtaining a
multilayer perceptron (MLP), used for supervised aims and commonly named neural
network. It was demonstrated that the standard multilayer feed-forward networks,
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with at least a sufficiently wide hidden layer of neurons, can approximate any kind
of functions with any accuracy. Therefore, the neural networks can be considered as
universal approximators (Hornik, Stinchcombe, and White, 1989) of each kind of func-
tions, in the regression task. The multilayer perceptron is organized in consecutive
layers with related activation functions. The first layer is named input layer, and it
has the same dimensions of the input data. The last layer is the output one, with
the dimensions of the output (not necessarily binary). Between input and output
layer, each layer of nodes is connected with the previous and next one, composing
the hidden layers. The dimensions of each hidden layer varies depending on the
NN architecture, with a larger NN (higher number of nodes in the hidden layers)
to extract features from more complex data. The number of hidden layers (network
depth) again depends on the complexity of the data and of the task. From the layers
point of view, thus, the learning process is based on a process of sending informa-
tion between layers. Each layer extracts simpler features from the data, moved then
to the next layers to be processed and used in an higher level. The training fol-
lows the backpropagation process (Hecht-Nielsen, 1992), in which the information
is processed in the forward direction, from the input to the output. Subsequently,
an error between the prediction and the reality is calculated and that error rate is
propagated backwards through the neural network layers to update and fine-tune
the weights. Each node computes its output from the input by using the activation
function (Goodfellow, Bengio, and Courville, 2016).

Recurrent Neural Network Recurrent Neural Networks (RNN) are NN in which
the neurons are not only connected from the input to the output, but they also follow
a cycle, (closed loops, "feedback connections"), in which the output depends on the
prior elements and on the future information of the sequence (Medsker and Jain,
2001). They are characterized by the capacity to take information from prior inputs
to influence the current input and output, so for their "memory" over the data, and,
for this capacity, they are largely used for sequential data, for example for language
translation and speech recognition tasks.

One of the main problem of RNNs is the vanishing gradient problem (Basodi
et al., 2020). A neural network updates its weights at each iteration, proportionally
to the partial derivative of the error function to be minimized. This problem occurs
when the gradient becomes small, vanishing to zero. In cases like this, the weights
can not be updated, sometimes stopping also the training process.

2.1.3 Deep Learning

Convolutional Neural Network This is a DL approach. The architecture of a Con-
volutional Neural Network (CNN) (Goodfellow, Bengio, and Courville, 2016) is sim-
ilar to the one of the multilayer perceptron, with some developments. The idea is
to mimic the connectivity pattern of neurons in the human brain and the DL ap-
proaches were inspired by the organization of the Visual Cortex. Individual human
neurons respond to stimuli only in a restricted region of the visual field known as
the Receptive Field. A collection of such fields overlap to cover the entire visual area.
An artificial CNN takes as input a data, often an image, assigns importance (learn-
able weights and biases) to various features, capturing spatial and temporal depen-
dencies through the application of relevant filters, sweeping and covering the entire
data. Compared to an ANN, a CNN has an higher complexity in terms of neural
architecture and, thus of data that can be processed. Belonging to the deep learn-
ing class of algorithms, the CNN takes directly the unstructured data as input and
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autonomously calculates the features within the data and segment them. Two new
types of layers are present, the convolutional and the pooling ones. The first one gen-
erates a feature map by sliding a convolutional kernel (i.e., a filter) over the input
data (e.g., an image) and recognizing patterns in them; the second one downsamples
the feature map, calculating some statistics on neighboring samples (e.g., the maxi-
mum or the average value of the region), from the input overlapped by the kernel.
This is done to reduce overfitting processes, introducing translation invariances of
the samples. The number of layers and the kinds of filters must be set a priori (Li
et al., 2021).

Generative Adversarial Network A Generative Adversarial Network (GAN) is a
model in the context of Generative AI, that is the branch of AI capable of generating
data (Goodfellow et al., 2014). GANs are composed by two NN, i.e., a Generator (G)
and a Discriminator (D). Given a train set, G has the task of generating data with the
same probability distribution as those of the train set, maximizing the probability of
misleading D. On the other hand, considered a sample, D has the task of discriminat-
ing whether it comes from the real train set or whether it was instead generated by
G, maximizing the probability of correctly classifying real data and data generated
by G.

Since neural networks are universal approximators (Hornik, Stinchcombe, and
White, 1989), GANs are asymptotically consistent, that is, if an infinite amount of
data is considered, the estimator will give the correct result for the parameter being
estimated (in this case, the sample to be discriminated) (Goodfellow, 2016).

Long short-term memory network Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) are RNN, which do not suffer of the vanishing
gradient problem. They are NN with a new block, capable to learn when to remem-
ber and when to forget information. Due to this block, these networks are capable
to process information with a long-term time dependence. They are largely used to
process time series, for example, for Natural Language Processing (Chowdhary and
Chowdhary, 2020).

LSTM are composed by a cell and three gates, i.e., an input gate, an output gate,
and a forget gate. The cell stores information over a determined interval of time, re-
membering the values also for several iterations. The input gate defines which new
information must be fed to the network to be processed, the output gate evaluate
which processed information must be selected for the network output, and, finally,
the forget gate decides which information to discharge. All the three gates manage
these processes giving a 1 value to the positive assignments (e.g., add new input or
output information, discharge values) and a 0 value otherwise. LSTM units partially
solve the vanishing gradient problem, because they allow gradients to flow also un-
changed. They, however, do not solve the exploding gradient problem, that is the
opposite problem of the vanishing one, i.e., when the gradient tends to infinity (it
"explodes") (Calin, 2020).

Transformer A transformer is a very recent DL architecture (Lin et al., 2022), largely
used in sequential processing (e.g., words or audio sequences). Input sequences are
fed to the model, that splits them into adjacent blocks encoded as tokens, and con-
verted in vectors. Each token contextualized in the sequence via a parallel multi-
head attention mechanism (Vaswani et al., 2017), with the others (unmasked) tokens.
This allows to amplify the signal for key tokens and reduce the one of the others.
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All this process makes possible to process very long sequences, maintaining the
general context and meaning of the sequence.

2.2 AI for extrapolating mathematical models input parame-
ters: initial and boundary conditions

In modeling, one of the most delicate aspects is the search of parameters to input
to the model. Therefore, also for fluid dynamics models, the initial and boundary
conditions are needed to make the mathematical problem uniquely solvable (Velten,
2009). Moving to CFD, i.e., dicretizing the system, under the hypotheses of exis-
tence and uniqueness of the solution, the numerical solution can be determined. In
this context, however, every discrete scheme must respect the conditions of Con-
sistency, Convergence and Stability (Anderson and Wendt, 1995; Chung, 2002), to
make sense. Also in this case, initial and boundary conditions must be set.

In the volcanic field, monitoring is referred to both following the manifestations
of the eruption once it has started, as well as forecasting the areas potentially threat-
ened by lava in an effusive scenario. Different aspects can be monitored, e.g., the
current state of the activity, the probable evolution of the lava flow field, and the
potential impact of lava flows for surrounding areas. Different CFD models can be
applied to monitor lava flows, reproducing the flow behavior and making predic-
tions and possible scenario. These models need initial and boundary conditions to
be implemented, that can be obtained with on field observations and remote sensing
techniques, as satellite data. This great quantity of data must be processed to extract
information linked to a volcanic phenomena, for example vent position, effusion
rate of the lava eruption, or extension of the lava field, i.e., initial and boundary
conditions of the phenomenon. To process data more easily, automatic artificial in-
telligence techniques can be implemented. These techniques reduce data processing
times, obtaining results in near real-time, they are also well usable with images (for
example, satellite data), also taking advantage of cloud computing.

To monitor a physical phenomena, as the volcanic activity, the techniques are dif-
ferent, from more physics-based to totally data-driven, and each technique requires
different data inputs. The physics-based techniques include model-based monitor-
ing. These models can be analytical or numerical, they are totally based on the phys-
ical laws that describe a system and they require as input the physical parameters to
build the model. The data-driven ones include all the models based on the data, and
they are built fitting the data given in input, that represent the relative phenomenon,
extracting information from them to describe it. The data fed to the model can be ob-
tained with laboratory experiments, with measurements on field or using the remote
sensing techniques, that include the use of aircraft, drones, and, mainly, satellites im-
ages (Harris, 2013). The first subdivision of the volcanic applications is, therefore,
between Near Real-Time (NRT) models, for a time sensitive analysis (e.g., for active
lava flow, ongoing), and Not Time-Critical (NTC) ones, for analysis that not need to
be fast (e.g., for cooled or in cooling lava flow).

The increasing availability of open-source satellite data and current develop-
ments in cloud computing and data-driven approaches have made the monitoring
of volcanic hazards from Space more feasible for volcano observatories. Various
forms of geospatial datasets are constantly accumulated and captured by the differ-
ent forms of sensors and devices and managing such an enormous dataset is becom-
ing a challenge. Automated techniques have been designed to process geospatial
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datasets with minimal human interference, exploiting the potential of the AI tech-
niques. In the specific context of AI applied to satellite images, ML model takes as
input the spectral intensities of the pixels, exploiting the spectral characteristics of
the monitored area under investigation, in the different spectral bands (e.g., three-
bands RGB images or multispectral ones). In contrast, DL models take as input the
entire image, exploiting not only the spectral response of the pixels, but also spa-
tial and/or temporal relationships between data, to automatically extract significant
features.

Satellite data inputs for ML approaches can be used to classify or to segment the
objects. In the first case, for each given input is assigned a label (e.g., 1 or 0) indicat-
ing the class it belongs to; in the second case, the object is divided with respect to the
background, identifying its contours and assigning a semantic meaning, also linked
to spatial features. In cases of satellite data, it is also possible to combine the two
approaches. In the first step, to classify the pixels of a satellite image with machine
learning, a pixel-based approach is applied. The pixel-based approach (Zerrouki and
Bouchaffra, 2014) is founded on the classification of each pixel of the image under
analysis one after the other, deciding which class each pixel belongs to. In cases like
this, the model uses as input the specific features of the pixels, i.e., the spectral re-
sponse of the portion of the object acquired in that pixel, contained in the bands of
the pixels. In the pixel-based algorithms, a scene-by-scene classification approach
(Corradino et al., 2021a) is often applied, based on the use of a single image to apply
the model, dividing it for the training and test phase. A part of the entire image (a
set of pixels) is used to train the model, and the model becomes capable to classify
all the rest of the pixels of the image. In this way, finally, the objects of the scene
are also segmented, because the satellite image pixels are georeferenced, thus the
classified pixels are repositionable in their original place of the scene, obtaining an
image where each pixel is classified and the objects are all divided respect to the
background, following the spectral characteristics and the spatial position, and with
defined contours. Therefore, they are segmented. As opposed to the scene-by-scene
approach, it is also possible to feed to the model the entire image, classifying the
whole scene as a single input. This is mostly used in deep learning approaches, for
which the segmentation is also possible, again using the entire image as input and
a mask with each object of the scene divided as target, exploiting not only the pixel
spectral features, but also the spatial characteristics of the scene (Bonaccorso, 2017;
Goodfellow, Bengio, and Courville, 2016). Therefore, AI models can be applied for
extrapolating initial and boundary parameters of the mathematical models. In par-
ticular, in the context of volcanic eruptions monitoring, the combined use of AI and
cloud computing can help to process satellite data, extracting spatial and spectral
characteristics of the lava flows. Moreover, analytical models can be applied to ex-
trapolate some volcanic quantitative parameters, as the area and volume of a lava
flows.

Extracting lava flow information by combining field observations, satellite data,
analytical and intelligence models and cloud computing has immediate applications
to the real-time monitoring of eruptions using numerical modeling, exploiting them
to extract the mathematical models initial and boundary parameters. The following
subsections will show applications of AI for extrapolating these parameters. Ap-
pendix B will show some additional technical details of the satellite data used.
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2.2.1 Model inputs from satellite and ML

Different kinds of input can be extracted by satellite data using ML or DL models,
to be given in input to the physical-mathematical models. Examples are the spectral
data, as the spectral response of the lava, the spatial data, as the map of the lava
flows, or a binary index for the presence or not of volcanic anomalies. The following
subsections will show these input data.

Spectral data as input

The spectral data given in input to a physical-mathematical, but also ML model
for volcano monitoring, is the spectral response. I exploited the theoretical basis of
physical-mathematical models that describe the spectral responses of the surfaces
and the satellite optical images (from visible to infrared bands), acquired by ESA
Sentinel-2 MSI satellites, to investigate the behavior of the spectral response of lava
flows (Amato et al., 2023b).

In general, the spectral response (Blackett, 2017; Head, Maclean, and Carn, 2013)
is the absolute reflectance or radiance of an object as a function of solar radiation
wavelength under specific environmental conditions. Reflectance spectroscopy is
the technique used to analyze spectral data in the visible and infrared region of the
spectrum, to identify different materials based on their reflectance characteristics.
Thus, in volcanic area, a deeper knowledge about properties of lava flows can be
inferred by investigating this spectral measure. Moreover, the growing number of
satellite images available, with different spatial, temporal, and spectral resolutions,
allows to explore the spectral characteristics of lava flows from Space (Harris, 2013).

The spectral response of surfaces covered by lava flows acquired by satellite sen-
sors is affected by several factors, that are exogenous, mostly associated to the passing
of years, like weathering, with revegetation and oxidation processes, and endoge-
nous, like lava chemical composition and physical characteristics. In particular, old
basaltic lava flows have a higher value of reflectance compared to the younger ones.
This is mostly due to weathering and vegetation recovery (e.g., lichen and moss), ox-
idative processes, water reflectance and soil coverage (i.e., tephra fall-out) (Spinetti
et al., 2009; Corradino et al., 2019a). Physical properties, as the different lava tex-
tures due to the slope changes in the lava path, the thickness, temperature, grain
size, roughness of the lava flows and viscosity, may also affect the measured spec-
tral response of a lava flow (Li et al., 2015; Rogic et al., 2022). Lava flows also differ in
chemical composition. It is possible to chemically classify the lava in term of weight
percent of silica (SiO2), i.e., the relative percentage in 100 g of compound, in macro
areas, that are ultrabasic lava (37 to 45 wt% of SiO2, e.g., foiditic case), basic lava (45
to 52 wt% of SiO2, e.g., basaltic case), intermediate lava (52 to 63 wt% of SiO2, e.g.,
andesitic case) and acid lava (63 to 77 wt% of SiO2, e.g., rhyolitic case) (Le Bas, 2000).
It is questionable whether changes in physics and chemical composition of the lava
flows affect the spectral response.

All objects emit electromagnetic radiation if their temperature is above 0 K. The
intensity of the radiation is dependent on some properties of the object, as the sur-
face temperature and the emissivity. Hence, if the radiation emitted is known, the
surfaces can be characterized from that one. Satellite sensors typically measure up-
welling electromagnetic radiation in terms of spectral radiance L [W m−2sr−1m−1]
based on pre-launch or in-orbit calibration. The dependence of the overall spectral
radiance L on wavelength λ [µm] and temperature T [K] is given by the Planck’s
formula (Planck, 1901), in Eq. (2.8)
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L(λ, T) =
2hc2

λ5(exp( hc
λkT )− 1)

, (2.8)

with h = 6.6256 · 10−34 J s the Planck constant, c = 2.9979 · 108 m s−1 the light
speed and k = 1.38 · 10−23 J K−1 the Boltzmann gas constant. The Eq. (2.8) is related
to a blackbody, i.e., a body that totally emits the energy absorbed; in contrast, a real
body emits only a portion of the total absorbed energy. The ability of a real surface
to emit energy is given by the emissivity, Eq. (2.9)

ϵ(λ) = 1 − ρ(λ). (2.9)

The emissivity can also be defined as the ratio of the energy radiated from an
object’s surface to the energy radiated from a blackbody at the same temperature
(i.e., the emitting ability of a surface), with the following Eq. (2.10)

ϵ(λ) =
L(λ, T)

LBB(λ, T)
, (2.10)

with L(λ, T) the real object spectral radiance, and LBB(λ, T) the blackbody spec-
tral radiance.

The reflectance ρ(λ) (Eq. 2.11) is the ratio between energy (solar radiation) re-
flected and incident a body,

ρ(λ) =
πL(λ, T)d2

ESUNλ sin θ
, (2.11)

with d the distance between Earth and Sun (in astronomical unit), ESUNλ the
solar irradiance in [W m−2m−1], and θ the sun elevation, in degrees. ρ(λ) ∈ [0, 1], in
general, and ρ(λ) = 0, for a blackbody (Harris, 2013).

In absence of terrestrial heat sources, any observations of the Earth surface at
low wavelengths are dominated by the reflected component. Depending on the sur-
face reflectivity properties, different surfaces reflect different amounts of solar irra-
diance in the spectrum generating specific spectral responses (Harris, 2013; Blackett,
2017). Satellite remote sensors measure the Top of Atmosphere (TOA) radiance or
reflectance of a surface at different wavelengths.

I investigated a variety of lava flows from different volcanoes worldwide using
satellite data from visible to infrared bands, conducting a triple analysis, temporal-,
physical-, and chemical- based, to search for specific patterns and determine more
closely the factors affecting their spectrum (Amato et al., 2023b).
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FIGURE 2.1: Volcanoes (a-f) and white box S2-MSI images in visible
bands (a’-f’), map pin for the points (red: lava, yellow: background).

All the images are obtained via Google Earth Engine.

The selected volcanoes are Mt.Etna, in Sicily (Italy), Cumbre Vieja, in La Palma
(Canary Islands, Spain), Geldingadalir, in Reykjanes Peninsula (Iceland), Volcán de
Colima, between Colima and Jalisco (Mexico), and Puyehue-Cordón Caulle volcano
(Chile), to compare the spectral response of different kinds of lava. Figure 2.1 shows
the volcanoes under examination (Fig. 2.1 a-f), with an example of S2-MSI image
used for each case study (Fig. 2.1 a’-f’), with a visualization in the visible bands (S2
bands: red "B4", green "B3", blue "B2") of the white box portion of the volcano, red
map pins for the points chosen for the lava case and yellow ones for the background
case.

The data used for the analysis are the images acquired by the Sentinel-2 satellites
(S2) from the European Space Agency (ESA) Copernicus mission, composed by a
couple of identical satellites launched in 2015 and 2017 (S2A, S2B). As a reminder,
the S2 MultiSpectral Instrument (MSI) has a good temporal resolution (2 - 5 days)
and spectral resolution (13 spectral bands) and an high spatial resolution (10 - 60 m).
I analyzed the S2-MSI Top of Atmosphere (TOA) reflectance data, a dimensionless
measurement that describes the ratio between reflected and incident solar radiation
on a given surface. All the spectral responses are collected via Google Earth Engine
(GEE), a cloud-based platform capable to visualize and analyze satellite data in a
rapid and efficient way (Gorelick et al., 2017).
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FIGURE 2.2: Volcanoes under analysis, with the dates of the events
and the S2-MSI images used, and properties of the lava analyzed.
(Del Negro et al., 2004; Cappello et al., 2019; Amato et al., 2021a; Am-
ato, 2022; Carracedo et al., 2022; Corradino et al., 2022; Zierenberg
et al., 2021; Savov, Luhr, and Navarro-Ochoa, 2008; Heap et al., 2014;

Magnall et al., 2019)

FIGURE 2.3: Flow chart of the spectral response analysis methodol-
ogy

I captured the spectral response of the points for the S2-MSI TOA reflectance
bands between the visible and the infrared, i.e., blue, green, red bands (B2, B3, B4,
with spatial resolution 10 m), red-edge bands (B5, B6, B7, B8A, with spatial reso-
lution 20 m), and Near InfraRed band (B8, with spatial resolution 10 m). Figure 2.2
shows a table with the volcanoes used as case studies, the relative dates of the events
and of the S2-MSI images processed, and the properties of the relative lava analyzed.
A flow chart giving a telling insight into the methodology adopted for this study is
shown in Fig. 2.3.

For each volcano investigated, I considered two regions of interest, the area cov-
ered by recent lava flows (i.e., "lava") not superimposed by subsequent lava flows,
and the surrounding older volcanic rocks (i.e., "background"), as control points. Af-
ter I have picked a point for each region of interest (see Fig. 2.1), considering a neigh-
borhood of radius 20 m of the point for the analysis, I have monitored the evolution
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of the spectral response for each sample. Firstly, I conducted a temporal analysis
focusing on lava spectral changes in time (years), investigating the basaltic lava flow
erupted at Mt.Etna on 27 October 2002 from a lateral fissure (see Fig. 2.2). Secondly,
I conducted a physical analysis comparing the eruptions occurred in 2021 at volca-
noes with same chemical composition (basic) and different physical properties, i.e.,
Mt.Etna (23 October 2021 eruption), Cumbre Vieja (19 September 2021 eruption), and
Geldingadalir (19 March 2021 eruption). More in detail, the lava chemical composi-
tion of the Cumbre Vieja 2021 eruption is basanite, ranging from ultrabasic to basic
(Castro and Feisel, 2022) (see Fig. 2.2). Finally, I analyzed the spectral response in
time of lava flows with different chemical composition, i.e., basic, intermediate, and
acid one, with samples from basaltic Etna (27 October 2002 eruption), andesitic Col-
ima (22 February 2002 eruption) and rhyolitic Cordón Caulle (04 June 2011 eruption)
volcanoes (see Fig. 2.2).
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FIGURE 2.4: Spectral response of the lava (left) and background
(right) points referred to the S2-MSI TOA reflectance images. a, a’)
Basic Mt.Etna 2002 lava flow, from 2016 (lower color gradation) to
2021 (higher color gradation), with growing lava spectral trend. b, b’)
Intermediate Colima 2002 eruption, from 2017 (lower color gradation)
to 2021 (higher color gradation), with decreasing lava spectral trend
(note that b graph is differently scaled to avoid squashed lines). c, c’)
Acid 2011 Cordón Caulle eruption, from 2019 (lower color gradation)
to 2021 (higher color gradation), with decreasing lava spectral trend.
All the data are obtained via Google Earth Engine, with reflectance

scaled by 10000. Figure taken from (Amato et al., 2023b).

Temporal changes of the spectral response of the basic lava flow emplaced at
Mt.Etna in 2002 are shown in Fig. 2.4 (a, a’). In this case, it is possible to see that
the spectral response of Etnean basaltic lava increases significantly with over time
(years) and a similar trend is not present in the background. A second analysis was
conducted comparing different lava chemical compositions, searching for possible
different trends (e.g., for example different trends over time) that may be linked to
this different composition. Moving to the intermediate and acid case, I found that
the lava spectral response has an opposite trend, decreasing over time. Indeed, for
the andesitic case, the spectral response of the 2002 Colima lava decreases in time
and a specific trend is not present in the background (Fig. 2.4 b, b’). Also for the
rhyolitic case, the spectral response of the 2011 Cordón Caulle lava decreases over
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time (years) and a specific trend is not present in the background (Fig. 2.4 c, c’).

FIGURE 2.5: Spectral response of the lava (a) and background (a’)
points referred to the S2-MSI TOA reflectance images of Etna, Cumbre
Vieja and Geldingadalir volcanoes, with narrower ranges of variabil-
ity for lava case. All the data are obtained via Google Earth Engine,
with reflectance scaled by 10000. Figure taken from (Amato et al.,

2023b).

In addition, a physical analysis was conducted to investigate the changes of the
spectral response of recent lava erupted in 2021 from ultrabasic-basic volcanoes (i.e.,
Mt.Etna, Cumbre Vieja and Geldingadalir), placed in different locations and with
different physical features (e.g., medium thickness: Etna ∼ 2 m (INGV weekly bul-
letins at www.ct.ingv.it), Cumbre Vieja ∼ 12 m (Carracedo et al., 2022), Geldingadalir
∼ 30 m (Pedersen, 2016)). Figure 2.5 highlights the lava and background spectral re-
sponses for these volcanoes. For the lava case (Fig. 2.5 a), the reflectance curves are
confined to a narrower range than the background one (Fig. 2.5 a’), with an average
difference between maximum and minimum for all the bands of 330 for lava and
1130 for background.

Some points can be discussed. Temporal analysis of basaltic lava flows in the
case of Mt.Etna (Fig. 2.4 a, a’) highlights that the spectral response increases signifi-
cantly over time, showing an ascending order of the reflectance curves of the years,
and a random trend for the background control point (to confirm that the specific
lava trends depend only on the properties of the lava, they are not present in the
background cases). Comparing this result with (Spinetti et al., 2009), that shows
similar results, the "young" lava of my research shows the same growing trend in
time, with a peak at ∼ 780 nm. The differences at lower wavelengths with respect to
(Spinetti et al., 2009) depend on the different type of sensor adopted thereby, namely
the active higher spatial resolution LiDAR sensor. Changing the lava chemical com-
position, going toward an acidic composition, I found that the spectral response
pattern is completely opposite, with a decreasing lava trend in time (Fig. 2.4 b, b’, c,
c’). When I consider lava flows with similar silica content and amount of time from
the emplacement (Fig. 2.5), I can neglect the temporal and chemical dependencies
and I can focus only on the different physical properties. The trends are similar and
they remain in a narrow range across all the bands. The lava case presents reduced
variability (Fig. 2.5 a), due to similar chemical composition (ultrabasic to basic one),
respect to the background points (Fig. 2.5 a’), for which the larger range of varia-
tion is probably due to greater variability of background properties. In particular,
results show that the variability of lava from different geographic areas is negligible,
whereas the higher variability of the surrounding volcanic rocks (background) can
be done by the different geographic location and consequently characteristic climate
of each site. For each case study, uncertainty in the measured satellite reflectance due
to the instruments used could affect measured spectral responses; this is the reason

www.ct.ingv.it
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why I have considered for each map pin also its neighborhood of radius 20 m for the
analysis.

To sum up, I have characterized changes occurring in the lava spectral response
trends over time and with different physical and chemical characteristics, in the
visible-infrared portion of the spectrum. The results were obtained using solely
satellite observations and exploiting the theoretical physical-mathematical and chem-
ical models that describe the spectral responses of the surfaces.

Work in progress Future works could bring to an extension of the study to lava
flows with chemical composition which were not here analyzed, e.g., ultrabasic lava
flows with the passing of years, and to a physical analysis, described here for the
basic case, also for other intermediate and acid cases in comparison with each other.

Spatial data as input

The spatial data given in input to a volcanic monitoring model may be several,
linked to the area extension of the lava flow, the vent position, the maximum length
or altitude reached, and so on. In cases of volcano monitoring, a spatial informa-
tion linked to the areal extension of the lava flow may help to quantify the hazard
linked to an eruption, and this map can be inferred by a ML algorithm. The infor-
mation linked to the state of the volcano is another important input for the models.
In volcanic context, a satellite image can be classified via a DL approach, detecting
the elements inside, e.g., the possible volcanic thermal anomalies in the scene, and
giving a prediction of the volcanic activity.

I have developed two algorithms to reach these aims. The first approach allows
to spatially map the lava flow field, obtaining the areal extension and a quantifica-
tion of the lava flow area for a given eruption. To do this, I developed some ML
models depending on different parameters, so as to be able to have a lava flow map-
ping in all the weather and eruptive conditions. The second approach exploits the
advantages of a DL model to automatically detect the presence or not of volcanic
anomalies, classifying an entire satellite image. These models can thus be used to-
gether, in a unique framework, starting from the second approach. Indeed, with the
DL model, the volcanic anomalies can be detected and, subsequently, mapped using
the ML approaches. These models are detailed below.

Mapping with ML A thermal anomaly may be referred to as a hotspot when it has
a relatively high temperature in comparison to a reference value, e.g., its surround-
ings area in the scene. Hotspot detection algorithms exploit spectral and spatial
differences with respect to the background areas, analyzing the image with statis-
tical or fixed-threshold approaches (i.e., a priori setting of a threshold or statistical
models), or data-driven ones (i.e., machine or deep learning).

Threshold-based approaches compare the input data with a range of value, set a
priori with a preliminary study over a group of data (Genzano, Pergola, and March-
ese, 2020), or statistically selected, calculating mean and standard deviation for each
image (Coppola et al., 2016). These kinds of techniques, computationally light, do
not allow generalization to different test cases (e.g., mapping lava flows from other
volcanoes), because the thresholds are strictly dependent on the dataset used to ob-
tain them and they are not applicable to cases other than those present in the original
dataset or similar. To overcome problems like this, machine learning techniques are
recommended. I have developed a framework to track in space and time lava flows
behavior using ML approaches.
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General mapping framework Mapping lava flows means spatially identifying the
areal extension of the lava field, obtaining a map of the lava field. This brings also
to a quantitative estimation of the relative area. To have a final approach applicable
to different weather and eruptive conditions, I have developed a set of ML models,
interchangeable and capable to return a map of the hotspots in different conditions.
I have initially considered the Random Forest (RF), a totally data-driven model to
classify data, exploiting if-else conditions over the samples with high generalization
performances in classification tasks. It is trained over a set of images, exploiting
visible to infrared spectral features, relevant in detecting volcanic anomalies, to map
the anomalies in the scene and segment the lava flows and the background. I have
demonstrated this ability sampling the training data from a set of S2-MSI satellite
images and testing the model over different images. An approach like this returns
an automatic pretrained model, capable to detect subtle/low to intense anomalies,
and ready to be used when a new image is available, from all the volcanoes around
the world (Corradino et al., 2022).

In cases in which the RF approach is not applicable, for the specificity of the erup-
tive phenomena under analysis, e.g., when the lava flow is cooled and the RF model
is not capable to detect it for the absence of thermal anomalies, or when there are not
S2 data available for that eruption (S2 model is actually trained only over S2 data), I
have applied a different approach. In particular, scene-by-scene ML approaches are
more usable respect to the precedent one. They are trained over a set of pixels of the
satellite image and classify the remaining part, using, for example, K-Means, SVM,
MD, and CART models, to exploit the specific characteristics of the specific scene
under analysis (Amato, 2022).

In addition, when also these ML approaches are not applicable, because of bad
weather conditions or lack of satellite data, I have developed a cumulative approach
or a best fitting model, to obtain an estimation of the areal extension of the lava flows
(Amato, 2022). In the first case, I have used a combination of images related to a tem-
poral range in which different eruptions happened, accumulating a number of lava
field in a unique high-spatial resolution satellite image. The other approach is the
best fitting one, in which high-temporal resolution satellite images are considered,
extracting a parameter linked to the radiant power of the lava field. This parameter
is linked to the areal extension of the field. Therefore, a best fitting model can be
applied to extract the value of the area that in a better way fit the temporal series of
data.

Incidentally, a more in-depth lava flow spectral analysis may allow to construct
a unique model for hotspot and cooled lava flow mapping, collecting a range of
spectral values for different volcanic features and cases. In this way, it could be
possible to develop a model capable to analyze the specific spectral response of each
element in the scene and classify the data in each condition. This is one of the future
development of the mapping approaches.

Some additional details of the developed framework will be provided in the fol-
lowing paragraphs.

Mapping with a pretrained model I developed a pretrained model, i.e., an algo-
rithm trained over a limited number of volcanic satellite images, that becomes ca-
pable to classify pixels and segment images never seen before. This model was ap-
plied to different volcanoes around the world, that are Cumbre Vieja, in La Palma
(Canary Islands, Spain), Mt.Etna and Stromboli, in Sicily (Italy), Geldingadalir, in
Reykjanes Peninsula (Iceland), and Pacaya, in Guatemala, classifying pixels with
anomalies and background. This supervised classifier exploits spectral information
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provided by S2-MSI satellite images to learn discriminating information between
thermal anomalies (class 1, named "thermal anomaly") and background (class 0,
named "background"), being able to detect also lower intensities changes, and dif-
ferent background spectral features, e.g., vegetation, snow, buildings, and/or clouds
(Corradino et al., 2022).

The RF is trained over ESA S2-MSI Level-1C TOA reflectance images. The TOA
reflectance measurement is converted to radiance in [W m−2sr−1µm−1], to consider
how much radiation is emitted by a thermal anomaly, and not how much solar irra-
diation is reflected by the body, and six-band images are fed to the classifier as input
data. In detail, two different classifiers have been developed and compared; the
first one (RF1) with a input feature vector composed by three bands (red B4, SWIR1
B11, and SWIR2 B12), and three normalized indices, defined as Normalized Hotspot
Indices (NHI) (Genzano, Pergola, and Marchese, 2020), that are NHI(SWIR1, NIR),
NHI(SWIR2, SWIR1), and NHI(SWIR2, NIR), with

NHI(x, y) =
x − y
x + y

. (2.12)

The second classifier (RF2) takes as inputs images composed by three visible
bands, one NIR band and two SWIR bands (blue B2, green B3, red B4, NIR B8A,
SWIR1 B11, SWIR2 B12), better discriminating volcanic anomalies with respect to
heterogeneous backgrounds through the spectral response of the surfaces. The tar-
get labels have been obtained with a manual inspection of the high-resolution satel-
lite images. 100 trees are chosen to compose the two RFs, that is a good trade-off
between complexity and performances of the model. I used three performances in-
dices to quantify the goodness of the models, i.e., accuracy (Eq. 2.1), precision (Eq.
2.2), recall (Eq. 2.3). In addition, I conduct a feature importance analysis, that is a study
to understand how much a variable is discriminative for the classification task of the
RF model. For this analysis the features are selected with Gini impurity or informa-
tion gain and each feature decreases the impurity of the split (Breiman, 2001; Menze
et al., 2009). The feature with the highest degrowth is selected for the internal node.
This degrowth can be measured, obtaining an average value over all the trees, that
is the final value of importance (Menze et al., 2009).

I tested the model over different eruptions, 21st of February 2021 Mt.Etna erup-
tion, 27th of July 2019 Stromboli eruption, 25th of September 2021 Cumbre Vieja
eruption, and 31st of October 2020 Pacaya eruption, and compared the results of the
two RF (RF1 and RF2) and with a traditional threshold-based algorithm (Marchese
et al., 2019). Fig. 2.6 and 2.7 show the outputs over the test set of the fixed-threshold
model (FT), RF1 and RF2. I also calculated the average performances indices, com-
paring the results of FT, RF1 and RF2, as it is shown in the Table 2.1.
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FIGURE 2.6: S2-MSI False RGB (B12-B8A-B5) image, used as test case.
Comparison between fixed-threshold, RF1 and RF2 outputs for 21st
of February 2021 Mt.Etna eruption (a-d), and 27th of July 2019 Strom-
boli eruption (e-h). All the images are captured via Google Earth En-

gine. Figure taken from (Corradino et al., 2022)
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FIGURE 2.7: S2-MSI False RGB (B12-B8A-B5) image, used as test case.
Comparison between fixed-threshold, RF1 and RF2 outputs for 25th
of September 2021 Cumbre Vieja eruption (a-d), and 31st of October
2020 Pacaya eruption (e-h). All the images are captured via Google

Earth Engine. Figure taken from (Corradino et al., 2022)

TABLE 2.1: Average performance indices comparison between fixed-
threshold (FT), RF1 and RF2 outputs

FT RF1 RF2

Accuracy 0.83 0.90 0.91
Precision 0.99 0.92 0.91
Recall 0.79 0.87 0.89

Comparing the results of the RF1 and RF2 models with each other and with re-
spect to the FT one, the RFs performs better than threshold-based models. In terms
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of performances indices, RF2 is better than RF1, because the use of visible bands
helps in recognizing the background pixels spectral response, differentiating them
respect to the anomalies pixels, especially when reflected radiance become domi-
nant, for example for low emitted radiance. In term of feature importance, the RF1
features are almost all equal important; in contrast, in RF2 the infrared bands (NIR,
SWIR1, SWIR2) are more important than the others, in recognizing the anomalies.

Mapping with scene-by-scene models and fitting If RF is not applicable to map
anomalies, due to extremely low thermal anomalies (i.e., in cooling or cooled lava
flows) or lack of S2 data, a scene-by-scene ML approach can be applied. I devel-
oped several models of this type, that are the unsupervised K-Means, and the super-
vised SVM, MD, and CART, training them to classify pixels and segment lava and
background in every satellite image, exploiting the specific spectral responses of the
pixels of the scene under analysis.

The different ML models are applied to classify each pixel of the scene in two
classes, i.e., "lava" and "background", finally segmenting the scene. These models are
trained with different types of high-spatial resolution satellite data (TOA reflectance
images), with different sensors, e.g., Sentinel-1 SAR and -2 MSI, Landsat 8 OLI/TIRS,
and Terra ASTER images, due to the relative availability. Also the number of bands
used can be variable, based on need and availability, as each model is trained on a
Scene-by-Scene (SbS) basis. Therefore, different combinations of bands are used, 3D
images (e.g., NIR, SWIR1, SWIR2 bands) or 6D images (blue, green, red, NIR, SWIR1,
SWIR2), with a combination of different bands also using mathematical operations
between bands to combine the information (Corradino et al., 2021a) or the NHI in-
dices (see Eq. 2.12). As for the RF model, the target data are obtained manually
drawing polygons over the image, choosing the pixels with the aim to emphasize
specific features of the relative classes.

The models are applied over the 2020-2021 Mt.Etna paroxysmal summit sequence.
The output maps obtained were compared with the relative ones published for each
event in the INGV weekly bulletins (at https://www.ct.ingv.it/), and a good agree-
ment was found. In Fig. 2.8 the maps of the test events are shown.

https://www.ct.ingv.it/
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FIGURE 2.8: Upper block: events of 14 December 2020 (a), 22 Decem-
ber 2020 (b), 17 January 2021 (c), 18 January 2021 (d), 16 February 2021
(e), 18 February 2021 (f), 21 February 2021 (g), 23 February 2021 (h),
24 February 2021 (i), 28 February 2021 (l), 02 March 2021 (m). Middle
block: events of 19 May 2021 (a), 21 and 22–23 May 2021 (b), 24 May
2021 (c), 30 May 2021 (d), 02 June 2021 (e), 12 June 2021 (f), 14 June
2021 (g), 16 June 2021 (h), 17 June 2021 (i), 19–27 June 2021 (l). Bottom
block: events of 01 July 2021 (a), 04 July 2021 (b), 06 July 2021 (c), 08
July 2021 (d), 14 July 2021 (e), 20 July 2021 (f), 31 July 2021 (g), 08 Au-
gust 2021 (h), 29 August 2021 (i), 21 September 2021 (l), 23 October

2021 (m). Figure taken from (Amato, 2022)
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Due to its extreme flexibility, such an approach is applicable both to cases of hot
thermal anomaly, and cases of cooling or already cooled lava, with different weather
and eruptive conditions. The only cases in which this approach is not applicable
are when there are no satellite images available for that event, or when the images
are completely covered by clouds. In cases like these, a cumulative approach can be
applied. An example of cumulative approach is the one applied for the lava fields
between the 19 and the 27 June 2021 (Amato et al., 2021a). In that period, the adverse
weather conditions made it impossible to use the satellite images, because totally
covered by clouds, making indistinguishable the different lava flow field for each
event. I have however estimated the total areal coverage of the lava flows of this
period with a cumulative approach. In detail, the ratio between two SAR images,
fused with a Sentinel-2 image of the 23 June 2021 (with the NI index for the bands
used), an ASTER image of the 25 June, and a Landsat 8 image of the same date
(with the NI index for the bands used) have been used to emphasize the specific
characteristics and increase the information available (Corradino et al., 2021a). The
bands of the image obtained have been normalized in the same range and some
filters were used to improve the performances of the segmentation, finally obtaining
the cumulative map for the entire period.

Detecting with DL The state of a volcano is a fundamental parameter in volcano
monitoring. Therefore, detecting whether high temperature volcanic features are
present in a scene can be an important model input parameter to recognize the vol-
canic behavior.

I developed an automatic monitoring system, based on a DL model, to detect
the presence of volcanic thermal anomalies associated with eruptive activity, linked
to active flows (such as lava flows, pyroclastic flows, warm lahars) and erupting
vents (such as lava lake, lava fountains, hot fumaroles). In particular, I explored the
potential of a DL Convolutional Neural Network (CNN), giving in input polar high-
spatial resolution satellite data in the infrared bands (i.e., NIR, SWIR1, SWIR2) and
applying advanced learning techniques to reduce the training times and improve the
accuracy of the model (Amato et al., 2023a). I applied the transfer learning approach,
that is a learning technique based on the concept to transfer the knowledge of a
pretrained model to a new domain. By exploiting the fine-tuning approach of the
parameters using new images, it is possible to readjust the model to a new domain
with the same task, without wasting time or computational resources (Yang et al.,
2020). I have also applied an ensemble learning, another learning approach in which
multiple models are combined together, to achieve better predictive performances
than when using a model alone (Lin et al., 2017).

I have chosen the SqueezeNet CNN model (Iandola et al., 2016); this is a com-
pact and fast CNN, largely applied for classification tasks. Its principal repeating
module, the "fire" module, is sequentially composed by a "squeeze" convolutional
module (with three 1 × 1 convolution filters), a ReLU activation function, an "ex-
pand" module (with four 1 × 1 convolution filters and four 3 × 3 convolution fil-
ters), a ReLU activation function. At the end of the architecture, a Softmax function
is used for the classification. The SqueezeNet most famous version is already trained
over ImageNet dataset, composed of around 14 million annotated images belonging
to 1000 different classes (http://www.image-net.org/, (Deng et al., 2009)). Thus, I
downloaded a pretrained SqueezeNet version over this dataset from the SqueezeNet
website (https://github.com/forresti/SqueezeNet, model 1.0 for this study) and re-
trained it with the transfer learning technique to readjust the parameters of the net-
work to the new image dataset.

http://www.image-net.org/
https://github.com/forresti/SqueezeNet
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For this reason, I created a new volcanic dataset. I built the volcanic dataset by
sampling 135 images from the Sentinel-2 satellite and 65 images from the Landsat
8 satellite, balancing about the same number of images from each sensor between
class 1 and class 0. The images belong to the 9 different volcanoes, Cumbre Vieja,
Mt.Etna, Pico do Fogo, Fuego, Geldingadalir, Kilauea, Klyuchevskaya, Pacaya and
Stromboli, acquired between 2013 and 2022, divided into two classes. The first class
is related to the presence of volcanic thermal anomalies and it is defined as "Yes
Anomaly", containing images with lava flows and active vents; the second one is
linked to the absence of anomalies and it is defined as "No Anomaly", containing
images with volcanoes at rest. A total of 100 images have been sampled for the first
class and a total of 100 images for the second class. Generally speaking, a CNN
needs a balanced training datasets of images to differentiate into classes by the pres-
ence or absence of volcanic thermal anomalies. This is why I have chosen the same
number of images for the two classes. For representativeness of the scenes, I choose
images for class 0 with different characteristics, e.g., presence of clouds, snows, sea
in the scene, or building areas. I have assigned every image to the correct class by
carefully analyzing the eruptive activity of each volcano both using the volcanolog-
ical bulletins (e.g., from Smithsonian Institution, Global Volcanism Program, avail-
able online: https://volcano.si.edu/, or from INGV National Institute of Geophysics
and Volcanology, available online: https://www.ct.ingv.it/) and manually inspect-
ing the scenes. Similarly, I have defined the "ground truth" labels (i.e., the real labels
of the scenes) either examining the volcanological bulletins or manually inspecting
the scenes. The complete dataset used for the transfer learning approach is avail-
able at the link: https://zenodo.org/record/7944343.ZGSp8HZBy5c, with the doi:
10.5281/zenodo.7944343.

Once the dataset is built, the first step in the classification process is to convert
the TOA reflectance S2 and L8 images into the .png format (in the 0–255 scale) to
feed the SqueezeNet model. Subsequently, the volcanic dataset is randomly divided
into three independent subsets: a train set, a validation set and a test set and the
pretrained model is then trained again over the training and validation set, with a
small number of epochs and a limited number of images (with a learning rate alpha
of 0.001, a batch size of 25 and 5 epochs for the fine-tuning (Goodfellow, Bengio, and
Courville, 2016)). Finally, the SqueezeNet model is run 10 times over the test set (Fig.
2.9), combining the 10 outputs to obtain the final ensemble model. For each image
of the test set, this ensemble model gives as output the mode of the 10 outputs of
the 10 SqueezeNet models combined, improving the performances of the process.
The goodness of the final ensemble model is quantified calculating the accuracy (Eq.
2.1), the precision (Eq. 2.2), the recall (Eq. 2.3) and the F1-score (Eq. 2.4) over the
test set. The ensemble model reaches an accuracy of 98.3%, with a unique image
misclassified over the total 60 images in the test set, a precision of 100.0%, a recall
of 95.7%, and a F1 score of 97.8%, indicating a high-fidelity of the results. I chose
the accuracy index as a representative index to compare the different SqueezeNet
models, and the Fig. 2.10 shows the accuracy of the 10 different SqueezeNet models.

https://volcano.si.edu/
https://www.ct.ingv.it/
https://zenodo.org/record/7944343#.ZGSp8HZBy5c
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FIGURE 2.9: List of the images contained in the test set, with date,
satellite, volcano, and ground truth activity. Figure taken from (Am-

ato et al., 2023a)

FIGURE 2.10: Accuracy of the 10 SqueezeNet models, retrained over
the volcanic dataset. Figure taken from (Amato et al., 2023a)

The Fig. 2.11 shows examples of text images, misclassified by some of the singles
SqueezeNet models, but classified in the correct way by the final ensemble one. In
particular, Fig. 2.11 (b/e) is the unique image that remains misclassified also by the
ensemble SqueezeNet, the others have been correctly classified.
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FIGURE 2.11: Examples of test case images, misclassified by three
different fine-tuning runs: R1 case (a,b), images labeled as class 1,
classified as belonging to class 0; R2 case (c,d), images labeled as class
0, classified as belonging to class 1; R3 case (e), image labeled as class
1, classified as belonging to class 0 and (f), image belonging to class
0, classified as belonging to class 1. All the images were downloaded

from GEE. Figure taken from (Amato et al., 2023a)

In addition, I compared the result of the DL CNN SqueezeNet model with other
traditional or ML approaches. The Squeezenet (SN) model has been compared with
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a fixed-based threshold method (Marchese et al., 2019; Genzano, Pergola, and March-
ese, 2020), a statistical threshold method (Coppola et al., 2016), an unsupervised X-
Means ML model (Bonaccorso, 2017), and a supervised Random Forest ML model
(Corradino et al., 2022). Fig. 2.12 shows a comparison between the capability to
detect an anomaly for the different models. In detail, when an anomaly is present
in the scene under analysis, the ground truth dark red bar is present for that spe-
cific day; in contrast, when the anomaly is absent, that bar is absent. Moreover,
when a model detects an anomaly, the bar with the color related to that model ap-
pears in the graph, otherwise, it is absent. Therefore, a good performance of each
model analyzed is reached when the dark red ground truth bar is surmounted by
all of the five light and dark green, orange, yellow, blue bars related to the outputs
of the five models analyzed (i.e., fixed threshold, statistical threshold, X-Means, RF,
SqueezeNet), e.g., 19 July 2019 and 10 November 2020 cases. Similarly, a good per-
formance is also obtained when there are no bars related to a specific date, e.g., 19
May 2013 and 29 June 2018 cases. All other cases present some misclassifications.

Fig. 2.13 shows a comparison between the accuracy of each model analyzed,
calculated over the same test set (Fig. 2.9), using Sentinel-2 and Landsat 8 data (ac-
curacy percentages here rounded to the unit for ease of analysis). It is worth noting
that the RF model was trained only over S2 data, thus only a comparison between
the S2 data is possible. Fig. 2.13 (a) makes in comparison Sentinel-2 data. The
SqueezeNet (blue bar) has an accuracy of 100%, the fixed threshold method (light
green bar) of 98%, the statistical threshold method (dark green bar) has a lower ac-
curacy of 74% and the X-Means (orange bar) of 60%. The RF model (yellow bar),
in this case, has the same accuracy of the SqueezeNet one. However, the proposed
model is readily available for S2 and L8 data, allowing for the detection of ther-
mal anomalies reducing the processing dead times and taking advantage of the first
available acquisition between the S2-MSI and L8-OLI. Fig. 2.13 (b) makes in compar-
ison Landsat 8 data. The SqueezeNet (blue bar) has an accuracy of 94% (only one L8
image misclassified), the fixed threshold method (light green bar) and the statistical
threshold method (dark green bar) have a lower accuracy (respect to the S2 case) of
94% and 71% and the X-Means (orange bar) has an higher accuracy of 65%, respect to
the S2 case. Fig. 2.13 (c) compares all the data, that are Sentinel-2 and Landsat 8. The
SqueezeNet (blue bar) has an accuracy of 98% (only one L8 image misclassified), the
fixed threshold method (light green bar) and the statistical threshold method (dark
green bar) have an accuracy of 93% and 73% and the X-Means (orange bar) has an
accuracy of 62%, respect to the S2 case.

Therefore, the SqueezeNet model has the highest accuracy (100%) with Sentinel-
2 images and almost the maximum accuracy (94%) with Landsat 8 images, similar to
the fixed threshold method. However, the SqueezeNet model has the advantage of
be used with both Sentinel-2 and Landsat 8 data indifferently (satellites with sensors
with similar spatial and spectral resolution), reaching the highest accuracy (98%)
compared to the other methods in that case.
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FIGURE 2.12: Comparison between the detection capability of the
DL SqueezeNet model (blue bars), and the fixed-based (light green
bars) and statistical (dark green bars) thresholds, the unsupervised
(X-Means, orange bars) and supervised (RF, yellow bars) machine
learning techniques. The Ground Truths are shown with dark red
bars. Underlined data are related to Landsat 8 images used for those
cases; otherwise, Sentinel-2 images are used. Figure taken from (Am-

ato et al., 2023a)

FIGURE 2.13: Accuracy comparison between DL SqueezeNet model,
and threshold-based and ML models. Figure taken from (Amato et

al., 2023a)

Summing up, with the DL SqueezeNet model, it is possible to detect thermal
anomalies with high accuracy in less time, taking the first image available between
the Sentinel-2 and Landsat 8 data, without the need to wait for the temporal step
between two acquisitions for a single satellite (Sentinel-2 or Landsat 8).

2.2.2 Model inputs from satellite and analytical models

Collaterally to the estimation of volcanic input data from satellite using AI, it is pos-
sible to extract some other quantitative parameters linked to eruptive activity, to
combine them with the first ones mentioned, using analytical models. In this way,
several quantitative parameters can be extracted by satellite data using analytical
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methods, obtaining values to be given in input to the physical-mathematical mod-
els. Examples are the volume and area estimation of the lava fields. The following
subsections will show these techniques.

Volume estimation from satellite data

I exploited the Volcanic Radiative Power (VRP) satellite product (Harris, 2013; Wooster
et al., 2005) and the Time-Averaged Discharge Rate (TADR) (Coppola et al., 2013),
from satellite, and analytical methods, to obtain the volume of the lava flows (Amato
et al., 2021b). The VRP describes the radiative heat power emitted by an incandes-
cent surface, for instance fire or volcanic lava. The TADR is an index that represents
the lava extrusion rate, namely the amount of lava erupted during an eruption, av-
eraged over a given time period. I considered the VRP satellite product directly
obtained from the Space Agencies and I applied an analytical method to estimate
this parameter. Satellite data can be processed to obtain it (e.g., see (Corradino et
al., 2019b; Vicari et al., 2011), with the MIR method (Wooster, Zhukov, and Oertel,
2003)), exploiting for example the Spinning Enhanced Visible and InfraRed Imager
(SEVIRI) sensor, which is placed in Meteosat Second Generation (MSG) satellites.
From the VRP, the TADR can be then calculated. This is, subsequently, useful to es-
timate the volume of erupted lava, multiplying it to the entire temporal range of the
event. Some details are now given.

The VRP (in watt) is defined as in the Eq. 2.13

VRPtrue = ϵσApixel ∑
i

piT4
i , (2.13)

where Apixel is the pixel size (4.5 106 m2 for the resampled SEVIRI pixels), pi
is the portion of the pixel at temperature Ti (in K), ϵ is the emissivity and σ is the
Stefan-Boltzmann constant (5.67 10−8 W m−2K−4).

Exploiting the Eq. 2.13 and the following one, the Eq. 2.14,

VRP = ϵσ(T4
sur f − T4

a )A, (2.14)

using the Stefan cooling problem for Tsur f (Harris, 2013; Ganci et al., 2012; Wooster,
Zhukov, and Oertel, 2003), it is possible to write

t =

(((
Th − Ta

ϵσ(T4
sur f − T4

a ) + hc(Tsur f − Ta)
− RcRr

Rc + Rr

)
k

)
1000
2λ

)2
1
κ

, (2.15)

with A the areal extension, Rc = 1
hc

and Rr = Th−Ta
ϵσ(T4

h−T4
a )

, ϵ = 0.98 emissivity,

σ = 5.670367 10−8 Wm−2K−4 Stefan-Boltzmann constant, hc = 50 Wm−2K−1 con-
vective heat transfer coefficient, Ta = 298.15 K ambient temperature, Th = 1273.15
K initial temperature of lava, k = 1 Wm−1K−1 thermal conductivity, λ = 0.421,
κ = 0.5 mm2s−1 thermal diffusivity.

To have a solution, I wrote the Eq. 2.15 in the biquadratic formulation Eq. 2.16

aT4
sur f + bTsur f − c = 0, (2.16)

with
a = ϵσ,

b = hc,
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c =
(ϵσT4

a + hcTa)(2λ
√

κt(Rc + Rr) + 1000kRcRr) + (Th − Ta)1000k(Rc + Rr)

2λ
√

κt(Rc + Rr) + 1000k(RcRr)
.

The acceptable real and positive analytical solution that I have calculated is the
following Eq. 2.17

Tsur f = −1
2

√
α

β
− γ

α
+

1
2

√√√√ 2b

a
√

α
β − γ

α

− α

β
+

γ

α
, (2.17)

with

α =
3
√√

3
√

256a3c3 + 27a2b4 + 9ab2,

β =
3
√

2 3
√

9a,

γ = 4 3

√
2
3

c.

With this formulation, I can calculate the punctual values for the Eq. 2.14.
The TADR (in m3s−1) can be calculated following the Eq. 2.18

TADR =
VRP
crad

, (2.18)

with crad = 6.45 1025

X10.4
SiO2

, XSiO2 silica lava content, for example XSiO2 = 47.9 wt% for

the Mt.Etna case.
According to (Coppola et al., 2013), the strong effects that the bulk rheology has

on the spreading and cooling processes of active lava must be taken into account in
the calculation of the crad. Therefore, an uncertainty of ±50% crad must be consid-
ered. The final TADR thus is as in Eq. 2.19

TADR =
TADRmin + TADRmax

2
, (2.19)

with
TADRmin =

VRP
cradmin

,

TADRmax =
VRP
cradmax

,

and cradmin = 0.5 crad and cradmax = 1.5 crad.
Finally, I estimated the volume following the procedure composed by the follow-

ing Eqs. 2.20, 2.21 and 2.22:

TADRmean =
TADRi + TADRi−1

2
, (2.20)

Vi = TADRmean · ∆t, (2.21)

Volume = ∑ Vi, (2.22)

with TADRk the TADR at time t = k, and ∆t the temporal range between two
observations. All the results have to be incremented of a 30% in order to have the
values for bulk and air bubbles.
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Area estimation from satellite data

Once obtained the map of the lava field with ML approaches, it is also possible to cal-
culate the area of the lava flow. The algorithm that I have developed to reach this aim
consists of three steps. Considering the ML classification of the pixels, that returns
a reference number which indicates whether the pixel belongs to the "background"
or "lava" class (i.e., 0 or 1), I masked only the "lava" pixels, respect to the other ones.
After calculating the area of a single pixel of the satellite image under analysis (con-
sidering the spatial resolution of the relative satellite sensor), I then summed the
number of pixels classified as "lava" and multiplied this numerical value by the area
of the single pixel, obtaining a final estimation of the total area of the lava field (Am-
ato, 2022).

When no images are available, it is not possible to extract a map for the lava flow
using the ML techniques. In cases like this, a best fitting approach is a possible alter-
native way to have an estimation of the area of the lava field. In detail, geostationary
high-temporal resolution satellite sensors, as the ESA EUMETSAT SEVIRI, follow a
part of the terrestrial globe acquiring images with a temporal resolution in order of
minutes. From these data, it is thus possible to extract parameters capable to follow
the volcanic phenomenon. One of these is the VRP, fed as input to the best fitting
model. The SEVIRI spectral radiance data in the Middle Infrared (MIR) at 3.9 µ m
and Thermal Infrared (TIR) at 12.0 µ m, are processed to obtain this parameter (Cor-
radino et al., 2019b; Vicari et al., 2011), calculated using the MIR method (Wooster,
Zhukov, and Oertel, 2003). The VRP (in watt) is defined as in Eq. 2.13.

Thus, it is possible to consider the VRP physical formulation in Eq. 2.13, con-
sidering only the effect of the thermal anomalies (using Ahot and Thot, to identify
the hotspot pixels area and their temperature). It is also necessary to add the back-
ground contribution, that should be subtracted for real remote sensing data. In this
way, it is possible to write VRP = QA, with Q = ϵσ(T4

sur f − T4
background), where Tsur f

is computed with the Stefan Cooling Problem methodology (Ganci et al., 2012; Har-
ris, 2013). Therefore, using the VRP product obtained and processed starting from
the SEVIRI measurements, that is the VRPSeviri, the best fitting algorithm is defined
like in Eq. 2.23

min
Ahot

1
m

(
m

∑
i=1

(Qi Ahot − VRPSevirii)

)2

, (2.23)

minimizing the function inside the parenthesis to obtain the best area Ahot for the
reference data (VRPSeviri), with m the number of data in the final vector to minimize.
The input vector of measurements is composed by the data belonging to the cooling
curves associated with the eruptive (paroxysmal) event, i.e., the data between the
pick value of VRP during the eruption and the values of VRP near to the zero (Ganci
et al., 2012). Minimizing this quantity, it is possible to finally estimate the better area
for that specific set of data, i.e., the area of the lava field for that eruption (Amato,
2022).

Thickness estimation from satellite data

Considering volume and area estimations, the average thickness of the lava flow can
be obtained (Amato et al., 2021a) as in Eq. 2.24

Thickness =
Volume

Area
. (2.24)
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To sum up, combining satellite images, machine learning techniques and analyt-
ical formulations, the volume, area, and thickness of lava fields can be estimated,
and used as input to the model for the volcano monitoring.

2.2.3 Incorporated results

Combining these different techniques and results, I have shown some incorporated
results for the 2020–2021 paroxysmal summit events of Mt.Etna (Italy), with a list of
quantitative parameters and maps (Amato, 2022).

Starting from the quantitative parameters, for example, I have considered two
Mt.Etna eruptions, occurred on 18th February 2021 and 2nd March 2021. For the
first one, I have found a volume estimation of 3.1 106 m3 and an area estimation of
1.8 106 m2. Combining these values, the lava field under analysis has a thickness of
1.7 m. For the second one, I have found a volume estimation of 2.0 106 m3 and an
area estimation of 1.2 106 m2. Combining these values, the lava field under analysis
has a thickness of 1.7 m. These results are in agreement with the known estimations
(using the weekly INGV bulletins, available at https://www.ct.ingv.it/), i.e., for the
18th February 2021, an area estimation of 2.0 106 m2, and a volume estimation of
4.0 106 m3, obtained imposing a thickness of 2.0 m. For the 2nd March 2021, the
values are an area estimation of 1.2 106 m2, and a volume estimation of 1.8 106 m3,
obtained imposing a thickness of 1.5 m.

Moreover, Fig. 2.14 shows a list of the 2020–2021 paroxysmal summit events of
Mt.Etna (Italy), of the satellite used for obtaining the maps or the area estimation, of
the algorithm chosen to obtain the areal extension and the relative outputs (shown in
Fig. 2.8). In detail, ML models, the cumulative approach and the best fitting model
have been used.

Finally, the 2020-2021 summit sequence of Mt.Etna eruptions produces a great
quantity of lava fields, many of which overlapped one another. To demonstrate
this statement, I created a lava flows map, overlapping all the maps obtained with
the ML techniques. The different shades of grey indicate the number of lava flows
overlapped, using a greyscale from black (that indicates a 0 value, no lava in the
pixel) to white (that indicates a 26 value, so 26 lava flows overlapped in that pixel).
It is worth noting that computing the area of all the events overlapped, without
considering the thickness of each event and the region with more lava flows, the
result is 5.40 km2. In contrast, summing all the areas for the same ML maps events
(see Fig. 2.14 for the single areas), the area is 21.53 km2, confirming the idea that
more events are overlapped. In addition, a map like this can be seen as a risk map,
highlighting the volcanic areas most affected by lava inundation.

https://www.ct.ingv.it/
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FIGURE 2.14: 2020–2021 paroxysmal summit events of Mt.Etna
(Italy), of the satellite used for obtaining the images, of the algorithm
chosen to obtain the areal extension and the relative results (rounded

to the second decimal digit). Figure taken from (Amato, 2022).
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FIGURE 2.15: 2020–2021 paroxysmal summit events maps of Mt.Etna
(Italy) overlapped (between December 2020 and October 2021, except
for the 19 February, the period between 04 March and 01 April, 25
May, 28 May, 04 June and 28 June 2021 events). Greyscale from black
(i.e., 0 value, no lava in the pixel) to white (i.e., 26 value, so 26 lava

flows overlapped in that pixel). Figure taken from (Amato, 2022).

Work in progress Future researches will bring to the production of a quantitative
risk map, using these methodologies, estimating the inundated areas and their prob-
ability, to an integration of different other satellite sensors, with greater spatial or
temporal resolution, to improve the analysis, and to an applications of these gener-
alized approaches to other volcanoes.
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Chapter 3

Emulators

Numerical simulations of fluids are of great importance to study the dynamics of
the physical systems and predict their possible evolution. Among all the Computa-
tional Fluid Dynamics (CFD) models, SPH is a consolidated Lagrangian mesh-free
CFD method for the high fidelity in the numerical simulations of complex fluids. The
Lagrangian property allows a good representation of the changing irregular shape of
the flow, and an easy treatment of interfaces, including free surfaces. The mesh-free
characteristic makes possible to manage large fluid deformations (e.g., of lava while
flowing), which would require frequent re-meshing (i.e., the reconstruction of the
mesh to follow the dynamics of the fluid), with consequent extra time and approx-
imations of the volume. However, SPH simulations are computationally expensive
and highly accurate simulations require long execution times and a high demand for
computational resources. Simulations must be reliable and fast to be operationally
useful.

Speed-ups of the simulations could be obtained in two ways, by simplifying the
model, defining reduced problems and setting, or boosting the computational re-
sources, improving the hardware and software support. Simplified models are typ-
ically adopted for real-world applications. In cases like this, the downside is the
need to simulate complex physical dynamics with highly simplified models, losing
in the reproducibility of real phenomena. Otherwise, wanting to follow the second
way to speed up the models, with a computational resources boosting, the neces-
sary resources are not always available, or not always it is possible to follow this
way. A new point of view is then discussed, substituting the simplification of the
models and the constantly upgrading of the hardware with the use of AI to reduce
the amount of computations, maintaining the high-fidelity of the results.

Nowadays, there is a growing interest in the use of Artificial Intelligence (AI)
(Winston, 1984) to push forward the frontiers of CFD, allowing new forms of analy-
sis (Bortnik and Camporeale, 2021; Ummenhofer et al., 2019) and improving the per-
formances of solvers (Kim et al., 2019). The speed-up of the simulations has, there-
fore, the final aim to enhance physics knowledge of natural phenomena. The use of
highly accurate numerical methods to simulate a phenomenon poses the problem
of slow processing, which makes the use of these methods complex for the study
of highly complex phenomena in real-time. Hence, the need to combine models
like these with AI, to improve their performance. On the other hand, the increasing
widespread use of AI-CFD combined approaches makes necessary to rigorously val-
idate the outputs of these combined models, with a deeper analysis of the reliability
of the use of AI models in physics simulations.

Some solutions have been recently proposed, introducing the combined use of
CFD models and AI to simulate fluids (Bortnik and Camporeale, 2021). Machine
(ML) and Deep Learning (DL) models can be trained over CFD models, e.g., SPH,
to learn how to estimate the forces between particle pairs, replacing or joining the
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physical models. In this way, it is also possible to efficiently reproduce the dynamics
of a physical system with far less computations.

Eulerian models already give very reliable and advanced results, e.g., Deep Emu-
lator Network SEarch (DENSE) model for weather predictions (Kasim et al., 2021) or
MeshGraphNet for fluid dynamics simulations (Tobias Pfaff, 2021). The Lagrangian
ones, especially for the lack of grids, are less consolidated, requiring to fill the ab-
sence of pre-established connections between nodes (Alexiadis, 2023). In addition,
some of these approaches use simplified "vanilla" CFD models while others reach
high-fidelity qualitative but not quantitative results, that are not the main scope.
SPH technique is a Lagrangian good mesh-free method that gives high fidelity nu-
merical simulations of complex fluids and, for this reason, can be used as reference
for this kind of models (Zago et al., 2017; Zago et al., 2019).

A class of architecture largely used in fluid dynamics implementations are the
Physics-Informed Neural Networks (PINN) (Raissi, Perdikaris, and Karniadakis,
2019; Cai et al., 2021). These NN are capable to efficiently learn from the data, ex-
ploiting physical-based formulations in the training or validation phase to validate
the fitted models. In detail, the physical laws can be integrated in the networks archi-
tectures or in the loss functions, combining the error minimization with the physical
constraints (Beucler et al., 2021). In this way, it is possible to solve forward and
inverse fluid dynamics formulations through the pattern or scheme present in the
data, also following the physical bases of the phenomena under analysis ("Physics-
Informed"). In cases like this, so, the physical models are used with the AI in a way
in which the models are seen as constraints of the neural networks (Li et al., 2023).

An alternative approach to reduce the computational cost of the simulations is
the use of Reduced Order Models (ROM) (Lassila et al., 2014; Dar, Baiges, and Co-
dina, 2023), that approximate large-scale systems with smaller ones, maintaining a
high-fidelity in the reproduction of the physical phenomena. In the context of mesh-
based models, for examples, this approach can be followed using a coarser grid; in
contrast, for other kind of models, a larger time step or the use of projections can
help to reduce the dimensionality of the problem. Generically speaking, the aim of
the ROMs is to find a latent low-dimensional space to represent the original Full
Order Model (FOM) dynamics, in an offline phase, and to solve the system in this
reduced space, in an online phase. The first phase is computationally heavy but it is
implemented once. The second phase can be repeated and it is lighter that the first
one. Galerkin projections and Singular Value Decomposition (SVD) are examples of
the projections (Dar, Baiges, and Codina, 2023). Therefore, in physics-based meth-
ods the idea is to follow the mathematical or physical meaning of the underlying
model (looking at the governing equations). In contrast, in data-driven models, the
input-output data relationship is exploited to construct an accurate ROM to repre-
sent the underlying system. An example of approach linked to this idea can be the
Hypercomplex or Quaternion MultiLayer Perceptrons (HMLPs or QMLPs) (Arena
et al., 1994), that are neural networks applied in the context of the Quaternion Al-
gebra (H), reducing the overall number of model parameters and the consequent
computational load. Thus, a HMLP is a multilayer perceptron (MLP) in which in-
put, output, weights and biases are quaternions, and the functions in the NNs are
quaternion-valued sigmoidal functions. In addition, HMLPs with one hidden layer
are considered universal interpolators in H, for this reason they can be largely used
for real word applications (Hornik, Stinchcombe, and White, 1989; Buscarino et al.,
2023). Another model capable to reduce the scale of the system can be found in
the Autoencoders, that are models capable to learn an efficient coding of unlabeled
data (in the concept of unsupervised learning), based on a dimensional bottleneck
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between input and output (Kramer, 1992). They were firstly introduced as a non-
linear generalization of principal components analysis (PCA) (Kramer, 1991). This
kind of models are composed by two blocks, an encoder and a decoder. The encoder
compresses the input data, mapping them in a reduced space with a specific codifi-
cation for this transformation. The decoder reconstructs the data from the encoded
representation, learning and exploiting the precedent codification. They have mul-
tiple aims, dimensionality reduction, feature learning, and also data generation or
anomaly detection. A famous example of autoencoder is the U-Net, composed by
a contracting part and an expansive part, which gives it the U-shaped architecture
(Ronneberger, Fischer, and Brox, 2015).

Artificial Intelligence can also be used to "emulate" part of the simulation process
(Bortnik and Camporeale, 2021). In detail, the idea is to start from a totally physics-
based model, based on CFD numerical schemes (e.g., SPH method), where some
blocks of the numerical approach are joined or substituted by AI models, that can
learn from the CFD simulated data a particular dynamic and reproduce the behavior
of the system. A typical ML model for combined AI-CFD Lagrangian models to
emulate the physical ones is the one based on the Artificial Neural Networks (ANN),
algorithms that mimic the human brain structure and the way to analyze data to
extract information. Models obtained with such approach are then called emulators,
e.g., DENSE for weather predictions (Kasim et al., 2021). In particular, an emulator
can take in input the state of the cells or particles obtained from the CFD model and
can learn how to estimate simulation quantities, as forces or densities, speeding-
up the simulations while maintaining the same physical descriptive accuracy of the
phenomenon.

A NN approach for Lagrangian cases is based on the Graph NN (GNN), mod-
els to process data using graphs to compensate the lack of a spatial structure in
the dataset. They are largely used in fluid dynamics, e.g., the Lagrangian Fluid
Graph Networks (FGN) (Li and Farimani, 2022), in which particles are the nodes
and the interactions between them are the edges. Similarly, it is possible to define
an Encoder-Processor-Decoder approach, based of GNN, to learn an operator, i.e.,
the Graph Network-based Simulator (GNS), to simulate the dynamic of a physical
system (Sanchez-Gonzalez et al., 2020). A downside of the GNN is the need for
re-meshing after large deformations, that is a computationally expensive job.

Another group of AI-CFD Lagrangian models uses Convolutional Neural Net-
works (CNN). These take into account the spatial distribution of the Lagrangian
nodes by performing spatial convolutions over restricted neighborhoods, with (con-
volutional) kernel functions. CNN are basically designed to work with structured
data divided in grids, as the nodes of an Eulerian numerical method or the image
pixels. Therefore, their application to Lagrangian mesh-free methods is not pain-
less, and needs specific expedients. One is to replace the process of iterating over
the neighboring particles, typical in SPH simulations, with the convolutions of the
network. Using the convolutions, these models exploit the global position of the
particles, with a strong dependence on the spatial features of the data used for the
training. This aspect influences the quality of the results and the generalization abil-
ities of the model.

Finally, another AI-CFD model is the one that acts as a local emulator, that is, at
the level of the particles, or over particle-pairs interactions. In this case, the model
learns how to reproduce part of the physical law of the system, substituting part of
the numerical approach with some AI model. To consider the spatial distribution
of the particles, the model exploits the nearby particles at each iteration, as in the
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classical SPH technique. Therefore, the network plays the same role of the refer-
ence equations and the spatial distribution of the particles is handled with iterations
over neighbors. Different AI architectures are already be used to locally emulate the
interactions of the physical-mathematical models between particles.

In (Ladickỳ et al., 2015), a Random Forest (RF) model is employed to estimate
(extrapolate) the particle state (position, velocity) from the one at the precedent time
step, speeding-up the simulations. In detail, this RF takes as input a feature vector
that represents the setting of the system, composed by pressure, viscosity, and sur-
face tension terms, and incompressibility constrains. The aim is to speed-up SPH
simulations, so the model learns and reproduces the behavior of each particle over
time steps longer than those utilized in simulation phase. The output is the updated
particles state relative to the time step presented at training, with a good speed-up
of the method with real-time performances. In this work, three different integration
schemes are explored, reaching a good level of qualitative results. The RF archi-
tecture is known for the inference speed, however, one of the main problem is the
common limit of these models for regression tasks, i.e., it is not capable to extrap-
olate the model far outside the data observed during training, that is linked to the
consistency and generalization ability of the model (Graw, Wood, and Phrampus,
2021). To overcome this problem, the use of ANN is advised. In (Alexiadis, 2023),
an ANN is used to reproduce the particle-particle interactions. This takes in input
the state of the particle (composed by relative position, relative velocity, and the
density of two particles, made for each couple of particles) and it is trained to re-
produce the behavior of the fluid. In this case, the network works on particle pairs,
therefore the global spatial distribution of the particles in the training dataset is not
fully considered, as it is for CNN. The emulator reproduces the reference equations.
In (Alexiadis, 2023) work, three different CFD approaches are explored to obtain
the reference data (SPH, Molecular Dynamics, and Discrete Element Method). All
the three approaches reach a good fidelity of the simulations and a good general-
ization ability, but they are based on a simplified version of the CFD models, with
little physical meaning (the so called "vanilla" versions), that limits the reproducibil-
ity of complex fluids. Moreover, a model inversion application is shown, training
the ANN to estimate particle interaction forces, while only knowing total forces per
particle. However, the main aim of this work is not the speed-ups of the simulations.

I decided to work on the use of an emulator capable to reproduce the behavior
of different kind of fluids, faithfully reproducing the physics of the natural phe-
nomenon under analysis. In the first instance, the aims of my work are twofold,
to have a physically correct and complete model, aimed at faithfully reproducing
physical phenomena, and to speed-up the simulations, to obtain them in a short
time. By unifying the two purposes, therefore, the ultimate goal of this study is to
improve knowledge of the physics behind natural phenomena, combining physical-
mathematical models with artificial intelligence. This approach is based of the use
of CFD techniques, in particular the SPH model, where the reference model is in line
with SPH formulations adopted in practical applications, coupled with a specific AI
architecture, i.e., the ANN, developed for physically consistent and fast simulations,
to obtain an emulator that works at the level of the particles (the local one). This
approach emphasizes the design aspects that have a strong impact on the physical
fidelity to the reference CFD model. For the universal approximators theorem (Hornik,
Stinchcombe, and White, 1989), it is demonstrable that the standard multilayer feed-
forward networks, with at least a sufficiently wide hidden layer of neurons, can
approximate any kind of functions with any accuracy. For this and the precedent
observations, thus I decided to use this architecture. The idea is to demonstrate that
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whit this approach is possible to remain as faithful as possible to the reference physi-
cal model, so to have completeness and correctness of the physics, and to reduce the
simulation times, in order to have a faster fluid simulation respect to the classical
numerical techniques.

In the following sections, the proposed idea and the specific technical details are
given, delving into the models used, the innovations introduced from a conceptual
and practical point of view and the frameworks developed.

3.1 Fluid simulations with SPH and AI

An AI-based Computational Fluid Dynamics (AI-CFD) emulator is a model that
combines the use of CFD approaches with the Artificial Intelligence techniques to
simulate fluids, improving the performances of the numerical models and their
power of reproduction, and therefore in the study, of physical phenomena. In the
CFD techniques, as SPH, part of the numerical code is combined with an AI algo-
rithm, that can join an equation-based CFD model or replace parts of it, emulating
the relative behavior. The AI model is trained over the CFD data to learn a way to
reproduce the fluid dynamics of the system. Thus, emulators mimic CFD models
with explicit mathematical laws, which represent the emulated entity. This is in con-
trast to generic data-driven approaches, where the data can be experimental and the
physical laws unknown (Torrisi et al., 2022b; Amato et al., 2023b). For emulators, re-
gression applications of AI are generally used, as the aim is to generate continuous
quantities to simulate a physical phenomenon.

3.1.1 AI-CFD model

The general pipeline that I have structured for this approach is the following one.
Firstly, an equation-based SPH simulation is conducted, using the analytical model
that discretizes the Navier-Stokes equations. From this simulation, a set of reference
simulated data are sampled, to feed to the ANN model. The AI-based SPH emu-
lator is, then, trained over the sampled data, learning how to reproduce the fluid
behavior. Finally, the trained AI-CFD model is used to emulate the SPH fluid sys-
tem, reproducing the dynamics of the physical phenomenon. The following Fig. 3.1
is for illustrative purposes, only to highlight these steps.

FIGURE 3.1: Pipeline of the proposed approach

More in detail, in this study I followed a 2D SPH formulation applied to complex
fluids, and I substituted the conservation of momentum equation with an Artificial
Neural Network (ANN, multilayer perceptron), training the latter to reproduce in-
dividual particle-particle interactions (Zago et al., 2023b). This emulator has a dual
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aim, to reach the completeness and correctness of the physics and to reduce the sim-
ulation times. To obtain this, the ANN is trained using a feature vector that which
can well represent the interactions between particles, therefore composed of the rela-
tive position and velocity between them and their densities. The output of the ANN
is the estimated particles forces. Incidentally, in the SPH context, so often "force"
replaces the term "acceleration", using them indistinctly, as they are related by the
particle density, which is a known quantity.

Briefly, in the equation-based simulation, for each simulation step, the state of
the particles is considered, building the particle neighbors list for each particle and
obtaining the feature input vector, from which the force is calculated by the equation-
based SPH formulations and integrated to have the new positions. Fig. 3.2 shows a
scheme of the SPH process. In the emulator, the derivative calculation of the momen-
tum equation is substituted by the ANN. The simulations advance over time with
step ∆t, named the time step, repeating each computation to derive and integrate.
Clearly, ∆t directly affects the duration of a simulation. Computing derivatives is
typically the slowest part of the simulation, as it involves a large amount of com-
putations. A smaller ∆t (that improves the simulations) produces more simulation
steps, thus longer simulation times. Therefore, the combination of CFD approaches
and AI (in the emulator) could be a way to reproduce the fluid behavior reducing
the computational load of the simulation.

FIGURE 3.2: SPH process scheme

ANN architecture

In the developed emulator, I choose an Artificial Neural Network (ANN, multilayer
perceptron) as AI model.

In cases like the one presented here, the relationship between inputs and output
data is known in the specific analytical equations that govern the fluids (Eq. 1.19,
which recalls Eqs. 1.11 and 1.20). Looking at the equations, it is clear that the input
to the network must include particle positions, velocities and densities. In general,
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the first two quantities are 2D vectors, while input variables of the ANN should
be scalars. Therefore, I derived the scalar quantities from the variables of interest,
following also how these variables figure in the reference equations (Amato, Zago,
and Del Negro, 2024). Then, I used three input variables, i.e., the relative position
between two particles (xij), the normal component of the relative velocity (uni j), and
the product of the two densities (ρi · ρj). Indeed, in the case of an inviscid fluid (Eq.
1.19), the pressure component of the Navier-Stokes equation is proportional to the
relative position and the artificial viscosity is proportional to the normal component
of the relative velocity. The first two quantities have the same shape of (Alexiadis,
2023); in contrast, the third one substitutes the individual densities used in that case,
following the way in which the densities appear in the reference equations. In this
way, the computational load is reduced, due to the less number of input features,
and their maintain the symmetry of the particles interactions, the independence of
the model from the local configuration of the particles, and the high fidelity to the
original SPH formulation, allowing to exactly use some classical SPH features, e.g.,
the boundary models. The output estimated vectors are by construction oriented
as the vector of relative position between the interacting particles, which is known.
Therefore, the network will produce in output the module of the acceleration vector,
subsequently multiplied by the unit vector of the relative position. The structure
of the NN has been empirically defined, with the use of three hidden layers with,
respectively, input-output dimensions of 9 − 27, 27 − 27, 27 − 9 neurons, wide and
deep enough to handle the high complexity of the physics represented in the dataset.
The activation function used is the Exponential Linear Unit (ELU) function (Clevert,
Unterthiner, and Hochreiter, 2015).

The emulator presented here has two main advantages respect to the examples
already presented in the state of the art. Firstly, the use of the ANN, considered as an
universal approximator with the capability to extend the learned behavior beyond
the interval presented during training, allows to increase the generalization ability;
secondly, the choice of the features in a spatial independent way, allows the model
to learn the values of particle-particle interaction without any dependence on local
particles configurations, considering only the specific values and not directly mod-
eling the spatial behavior of the fluid. In this way, the emulator learns to reproduce
the numerical relationships between the variables in the reference model, predict-
ing interactions of particles without a predominant direction, namely there are no
anisotropy effects in the model training. Therefore, when the emulator is used to gen-
eralize, as long as the values of the variables are in ranges where they hold physics
similar to that learned from the reference simulation, the emulator should be able to
produce physically meaningful results, without the need to use a large number of
training samples to satisfy all the possible geometric configurations that may arise.

I used the predictor-corrector integration scheme (see subsection 1.2.4), and I
have noticed that training the network with input SPH quantities sampled during
the predictor phase of the integration (see subsection 1.2.4), and using the SPH refer-
ence outputs sampled during the corrector phase of the integration (see subsection
1.2.4), improves the emulator stability. This could be explained thinking about the
similarity of this approach to an implicit integration scheme. Although this proce-
dure introduces a deviation from the reference integration scheme, it is possible that
this deviation is negligible with respect to the achieved benefit in terms of stability
(Amato, Zago, and Del Negro, 2024).
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Training phase

The ANN learns how to approximate the relationship between input features and
output presented by the training dataset. It is important that this dataset is rep-
resentative of the type of physics that the emulator will handle. The dataset for
the training is thus generated by simulating an inviscid dam break. This choice is
due to two factors. Firstly, it is a classic benchmark case for SPH, widely used in
simulations for methodological and application purposes, therefore it represents an
easy-to-use case study to compare SPH-based results. In addition, the dam break
presents a wide range of flow conditions, evolving from the initially violent flow of
the transient, toward a static steady state; therefore, this training dataset is represen-
tative for the different flow conditions. The reference simulation is discretized with
around 3420 particles, evolving for 50.0 s, sampled at 0.5 s, totally sampling around
3.42 million of data points (in case of spatial step ∆p = 0.75 m).

For the entire simulation, all the particles states and particle-particle interaction
forces are sampled and collected in different arrays. The particles states array for
the entire simulation is fed to the network as input, the particle-particle interaction
forces are used as reference output.

The network is trained in order to minimize a total loss function, composed by
the sum over all the neighbor lists for all the particles and time steps, namely of all
the single Li losses (see Eq. 3.1, that is, the loss for a single particle and neighbor
list for a single time step) (Alexiadis, 2023). This loss function was chosen to adjust
the estimate of the particle-particle interaction forces so that their summation for a
particle equals the reference (target) total force on the particle.

Li = ∑
i
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, (3.1)

with Ftarget
i the reference total force simulated with the SPH equation-based for-

mulation for the i-th particle, and f ANN
ij the single particle-particle force estimated

by the ANN.

Look-up table As in (Alexiadis, 2023), to reduce the execution time of the emu-
lator during runtime, the technique to map the ANN outputs over a look-up table
has been adopted (Groeneveld et al., 2007). The table is constructed only once at
the end of the training phase by mapping the input-output relationship of the ob-
tained model across a predefined set of values, and storing the corresponding out-
puts. During the emulation phase, the values of the ANN output are reconstructed
directly from this table, with a linear interpolation. Although this process introduces
some errors in the estimation of the output, it can reduce the execution time of the
emulated part, and keep it independent from the complexity of the ANN (Amato,
Zago, and Del Negro, 2024).

Boundary Conditions

For the simulation, I have adopted the Dynamic boundary model (Crespo, Gómez-
Gesteira, Dalrymple, et al., 2007) (see Appendix A), in which density is treated
equally to fluid particles, and velocity is set to zero. Some parallel layers of extra
boundary particles are placed along analytical boundaries, spaced at intervals of
∆p, obtaining an analytical boundary. The number of extra particle layers should be
enough to complete the support of the smoothing kernel when it is centered on the
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out-most fluid particle. With the Dynamic boundary model, the no-slip conditions
are obtained.
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Chapter 4

Results and Discussion

Various fluids have been studied, relating to different theoretical and application
contexts, with related results and discussions.

The goal is to demonstrate the applicability of an approach like this, validating
the physical goodness of the model and the ability to generalize to cases not seen
during the study, and showing the speed of the simulations, greater than traditional
methods.

4.1 Validation and Generalization

To train and validate the model and to test the generalization capability, I firstly
used a classical SPH benchmark as test case, that is the inviscid or the viscous dam
break and compared results obtained with the equation-based SPH model (hereafter
simulations) and the AI-based SPH emulator (hereafter emulations). The dam break
flow was chosen because it is an easy-to-use case study to compare results, and as
it presents a wide range of flow conditions, that make it representative to train the
network and emulate very different scenarios.

4.1.1 Validation: inviscid dam break

The first test case taken into consideration is the inviscid dam break (Amato, Zago,
and Del Negro, 2024), with artificial viscosity coefficient α = 0.01. The physical pa-
rameters used are density ρ = 1.00 kg/m3, polytropic constant γ = 1, and artificial
speed of sound c0 = 560.29 m/s, that is 20 times higher than the hydrostatic velocity,
c0 = 20

√
2∥g⃗∥h, with h the maximum height of the fluid (Torricelli, 1644). The fluid

is set in a box which is 90 m long and 80 m high, and the fluid has an initial shape
of width 30 m and height 40 m. The particles are discretized by using a spatial step
of ∆p = 0.75 m (which will be referred to as Medium Resolution, MR), with 3423
particles. To verify the generalization capability of the approach, two other spatial
steps are also used, ∆p = 0.5 m (High Resolution, HR) and ∆p = 1.0 m (Low Res-
olution, LR), resulting in 6681 and 2151 particles, respectively. The initial density
is set by using an inversion of the state equation (Equation 1.11) and considering a
hydrostatic pressure profile. The fifth order Wendland smoothing kernel was used
(Wendland, 1995) (see Appendix A).

In order to incorporate a high quantity of training information for the flow re-
producibility, 50.0 s of fluid evolution are simulated, sampling the whole particle
set, composed by fluid and boundary particles, every 0.5 s. Of these, an 80% is used
for the training phase, and the remaining part for the validation one. It is possible to
notice that, including boundary particles within the dataset, the quality of the results
are improved in terms of particle disorder. This is likely due to a better representa-
tiveness of surface particles.
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The model was trained over 10000 epochs, with a learning rate α in the order
of 10−4 (Goodfellow, Bengio, and Courville, 2016). The Adam optimizer and the
Mean Squared Error (MSE) loss function (Eq. 3.1) are used, with a final training and
validation loss in the order of 10−3.

The momentum equation is emulated, i.e., substituted with the ANN, emulat-
ing thus also the computation of the kernel and the equation of state. The learned
parameters (as the ∆p, the smoothing length, or the speed of sound) are fixed for
the emulator and a new model needs to be created when they need to be changed,
retraining the network.

In Fig. 4.1 a simulation (equation-based SPH reproduction of the dynamics of
the fluid) and an emulation (AI-CFD emulator reproduction of the dynamics of the
fluid) of an inviscid fluid with a medium resolution is shown. The fluid is posed in a
box with a regular topography and the frame shown is at time t = 3.5 s. The particles
are colored by velocity magnitude [m/s]. A good agreement is found between the
simulation and the emulation, within the resolution of the method (that is of the
order of the dimension of the particle, i.e., the ∆p).

FIGURE 4.1: Simulation (a) and emulation (b) of an inviscid fluid with
medium resolution (MR, ∆p = 0.75 m) in a box with regular topogra-
phy at time t = 3.5 s. The particles are colored by velocity magnitude

[m/s].

In Fig. 4.2 other frames of the simulation and emulation are compared, noting
that all the major flow features evolving over time in the original simulation (first
row) are present also in the emulation (second row). Some expected discrepancies
are shown in the different content of flow details, that is, the major features are
present, some minor detail, especially in the case of chaotic elements as droplets
or splashes, get lost.
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FIGURE 4.2: Simulation (first row) and emulation (second row) of an
inviscid fluid with medium resolution (MR, ∆p = 0.75 m) in a box
with regular topography at time t = 8.5 s, t = 10.5 s, t = 14.5 s, and
t = 21.5 s. The particles are colored by velocity magnitude [m/s].

Figure taken from (Amato, Zago, and Del Negro, 2024).

To quantify the goodness of the model, I compared the dam break fronts in time
in the SPH simulation and in the AI-based emulation, measuring the position of the
rightmost particle of fluid over time (Fig. 4.3, with SPH reference in blue solid line,
and emulator one in orange dashed line). In addition, the relative local particles
configuration was shown (Fig. 4.4, with SPH simulation particles in blue, and AI-
based emulation particles in orange). The two Figures show a good match between
the fronts, compatible with the scale of the particle size, and a very strong agreement
of the overall profile of the flow.
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FIGURE 4.3: Inviscid MR dam break fronts comparison over time.
SPH model is shown with blue solid line, emulator with orange
dashed line. Figure taken from (Amato, Zago, and Del Negro, 2024).

FIGURE 4.4: Inviscid MR dam break relative particles configuration
at time t = 2.2 s. SPH simulation is shown with blue particles, AI-
based emulation with orange particles. Figure taken from (Amato,

Zago, and Del Negro, 2024).
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4.1.2 Generalization

When considering AI models, it is important to analyze their robustness to changes
in some parameters and their ability to generalize reproducing problems which they
have not been trained on.

In the first place, a preliminary study has been conducted, shown in Fig. 4.5.
Starting from the top left block and moving clockwise, I firstly simulated a dam
break in a larger regular topography (box dimension 160 m × 80 m, fluid dimension
60 m × 30 m), with the equation-based SPH formulation (Fig. 4.5 a). The data were
sampled and given in input to the ANN, to train the model and reproduce the same
problem (Fig. 4.5 b). The trained model has then been used to emulate the same fluid
problem in a different topography, with the presence of bumps, obtaining very good
results (Fig. 4.5 c). Finally, to verify the ability of the model to be used in problems
different respect to the one used in the training phase, I simulated with classical
SPH formulation the same setting with bumps, obtaining a good agreement with
the emulated case (Fig. 4.5 d).

FIGURE 4.5: Inviscid MR dam break generalization capability. (a)
Equation-based SPH simulation of the inviscid dam break in a larger
regular topography, (b) AI-emulation of the dam break in regular to-
pography, using the model trained with the same problem, (c) AI-
emulation of a different problem, i.e., the inviscid dam break in an
irregular topography with bumps, (d) equation-based SPH simula-
tion of the same problem, i.e., the inviscid dam break in an irregular
topography with bumps, to compare the results. The particles are col-

ored by velocity magnitude [m/s].

After this test, to strengthen the analysis, I tested the ability of the model to gen-
eralize and resolve the formation of flow features, considering different spatial reso-
lutions and different problem settings.

Testing for different spatial resolution: lower and higher resolution

To test the robustness respect to the spatial resolution changes, I repeated the same
framework also with different spatial resolutions, repeating the entire process (i.e.,
equation-based SPH simulation, training, and AI-based SPH emulation) for each
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resolution. This kind of resolution influences the fidelity of the emulator, because
the flow features can become comparable to the particle size, and therefore to the
intrinsic errors (numerical and/or approximation). More in detail, in case of lower
resolutions, the particle size becomes more important within the domain because it
is comparable to the scale of flow features, making them particularly subject to er-
rors; in case of higher resolution, more sensitive flow details are generated, enforcing
the chaotic nature of the flow, which becomes thus particularly sensitive to errors.

Following this analysis, simulation and emulation outputs are in accordance
both in the two cases, with the formation of the major flow features, like the ini-
tial advancement of the fluid front, and the interaction with the walls (formation
of a vortex). Some discrepancies between the simulated and emulated results, that
have been founded, are always compatible with the sensitivity of the model (∆p).

Fig. 4.6 shows the comparison between Lower Resolution (LR), with ∆p = 1.0
m (Fig. 4.6 a), Medium Resolution (MR), with ∆p = 0.75 m (Fig. 4.6 b), and Higher
Resolution (HR), with ∆p = 0.5 m (Fig. 4.6 c), for three significant times, t = 9.5 s,
t = 10.0 s and t = 17.5 s. Some features can be found in the comparison between LR,
MR and HR. Even if minor flow features are not always replicated changing the res-
olution, especially with its reduction, major features, as the impinging jet formation
after the dam break reaches the wall, are in general maintained, and each difference
in the flow is dissipated moving towards the final steps (e.g., t = 17.5 s), when also
the chaotic features disappear.
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FIGURE 4.6: Time series of an inviscid dam break flow, comparison
LR (a) vs MR (b) vs (c) HR. The particles are colored by velocity mag-
nitude [m/s]. Figure taken from (Amato, Zago, and Del Negro, 2024).
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Generalizing for different flow complexity: still fluid and flow with waterfalls

To test the generalization capability of the model also for different problem settings,
I used the model trained over the inviscid dam break in a rectangular box for new
problems, with the same physics of the original one, but with different levels of
complexity. In particular, two new geometries have been set, with lower and higher
complexity respect to the reference training set. The first one, with a lower complex-
ity, is composed by a still volume of fluid in a greater tank. This test is necessary
because the model has been trained over fluid in motion, but must also be able to
deal with fluid at rest. The fluid in this case is with different dimensions, it is a
90 m × 15 m domain of fluid (Fig. 4.7), with the same physical and simulation
properties of the training fluid, and I used the emulator previously trained over the
dam break to reproduce 200.0 s of evolution. In addition, I also simulated the same
problem with the original equation-based SPH model, comparing the results. Even
if individual particles assume a different configuration, the overall behavior of the
fluid is consistent with the expectations (it remains stationary) (4.8).

FIGURE 4.7: Initial inviscid still fluid simulation setup with particles
colored by density [kg/m3], with a minimum value around 0.99997
[kg/m3] and a maximum value around 1.00049 [kg/m3], not visible

in the legend.
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FIGURE 4.8: Emulation of an inviscid still fluid at time t = 0.0 s (a),
and t = 200.0 s (b). Particles are colored by density [kg/m3].

The second one, more complex than the original problem, is composed by a dam
break in an elevated shelf, therefore forced to produce waterfalls during the ini-
tial phase, starting the motion from an higher elevation. In this case, the box has
a 150 m × 80 m dimension, and the fluid has the same dimension of the original
dam break used for the training (Fig. 4.9). 50.0 s of evolution have been simulated.
Also in this case, the simulation and emulation are in agreement (Fig. 4.10), and the
sequence of major flow dynamics is preserved, despite some different details. The
Fig. 4.10 shows this simulation and emulation of the inviscid dam break with wa-
terfalls at medium resolution. The droplets are strongly chaotic phenomena, which
therefore can not coincide between simulation and emulation; conversely, the global
behavior is well reproduced by the emulator.

FIGURE 4.9: Initial inviscid dam break with waterfalls simulation
setup with particles colored by density [kg/m3], with a minimum
value around 0.993 [kg/m3] and a maximum value around 1.042

[kg/m3], not visible in the legend.
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FIGURE 4.10: Simulation (a) and Emulation (b) of an inviscid fluid
with medium resolution (∆p = 0.75 m) in a box with regular topog-
raphy and an elevated shell, producing waterfalls. Simulation at time
t = 4.6 s. The particles are colored by velocity magnitude [m/s]. Fig-

ure taken from (Amato, Zago, and Del Negro, 2024).

In addition, I have combined the two tests, repeating the generalization process
at different resolutions. In this way, it is possible to prove the robustness to changes
in the spatial resolution for the generalization still fluids and waterfalls problems.
The different problems maintain the good agreement between simulation and emu-
lation. One limitation encountered when increasing flow complexity is the presence
of some instabilities at the impact of jets or drops, occurring when also the spatial
resolution is increased. However, these limitations are inherently conservative, be-
cause they primarily influence the numerical execution of the simulation and do not
lead to physically unrealistic results.

Therefore, the model is capable to generalize over problems never seen during
the training phase. This is realistically due to its independence from local spatial
features.The peculiarity of using an emulator is that it reproduces particle-particle
interactions, rather than directly modeling the spatial behavior of the fluid, thus the
numerical relationships between the variables in the reference model. Therefore, as
long as the values of the variables are in ranges where it holds the same physics
learned from the reference simulation, the emulator should be able to generalize,
producing physically meaningful results.

Reproducibility of Boundary Conditions

Boundary Conditions is one of the main SPH open problems, to make SPH a mature
method (see the SPH "Grand Challenges" here (Vacondio et al., 2021)). Therefore, I
proved the capacity of the emulator to reproduce the boundary conditions as in the
reference SPH model (Amato, 2023). Using as reference the a simulated dam break,
it is possible to notice that accurate boundaries allow to produce the same features
during simulation and emulation. Fig. 4.11 shows simulation and emulation of an
inviscid classic dam break fluid in a box with regular topography at time t = 2.0
s, with the reproduction of significant features also by the emulator in a laminar
structure. In addition, when some non-linearity (as the onset of a vortex at time
t = 16.0 s) is triggered in the fluid by the presence of the box walls, also in this case
the matching of simulation and emulation persists, as Fig. 4.12 shows. Thus, the
matching of simulation and emulation persists up to the production of consistent
non-linear features, in a swirling structure. Therefore, I demonstrated the ability
of the emulator to reproduce the SPH boundary conditions, catching also the non-
linearity of the fluid behavior.

https://www.spheric-sph.org/grand-challenges
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FIGURE 4.11: Simulation (a) and emulation (b) of an inviscid fluid
with medium resolution (∆p = 0.75 m) in a box with regular topog-
raphy at time t = 2.0 s with a laminar structure. The particles are

colored by velocity magnitude [m/s].

FIGURE 4.12: Simulation (a) and emulation (b) of an inviscid fluid
with medium resolution (∆p = 0.75 m) in a box with regular topog-
raphy at time t = 16.0 s with a swirling structure. The particles are
colored by velocity magnitude [m/s]. Non-linearities (as vortices) are

triggered in the fluid by the box walls

Therefore, this emulator is capable of faithful reproducing traditional SPH simu-
lations and of generalizing to different problems with varying levels of complexity.

4.1.3 Validation: viscous dam break

After a first validation for inviscid fluids, I applied and validated the emulator for
simulations of viscous fluids.

Also in this case, a 2D weakly compressible SPH formulation based on the Navier-
Stokes equations is used (Rogers et al., 2020; Bilotta et al., 2022b; Zago et al., 2023a).
The reference equations are the same of the inviscid case, with the equation of the
conservation of the mass as in Eq 1.17 (that recalls the Eq. 1.18), and the density
obtained with an inversion of the Cole’s equation of state for the pressure (Eq. 1.11),
considering a hydrostatic pressure profile. The equation of the conservation of the
momentum, in this case, presents also the viscous term, as in Eq. 1.22. Also in this
case, the equation of momentum is substituted by the ANN in the emulator.
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The physical parameters used for the simulations are the same of the inviscid
case, i.e., density ρ = 1.0 kg/m3, and artificial speed of sound c0 = 560.29 m/s (20
times higher than the hydrostatic velocity, c0 = 20

√
2∥g⃗∥h, with h the maximum

height of the fluid (Torricelli, 1644)), with a physical viscosity µ = 15.0 Pa s. The
fluid box dimensions are 90 × 80 m, and the fluid has an initial shape of 30 × 40
m. The particles are discretized by using a spatial step of ∆p = 0.75 m (Medium
Resolution, MR), with 3423 particles. Also in this case, the Wendland kernel was
used (Wendland, 1995) (see Appendix A).

A new training is necessary, to teach the network the new behavior of the vis-
cous fluid. To make this, 50.0 s of fluid evolution are simulated and sampled every
0.5 s (fluid and boundary particles together), obtaining a dataset with around 3.42
millions of particle data (with ∆p = 0.75 m). An 80% of this is used for the train-
ing phase, while the remaining part for the validation one. The training involves
10000 epochs, with a learning rate α in the order of 10−4 (Goodfellow, Bengio, and
Courville, 2016), the use of the Adam optimizer and the Mean Squared Error (MSE)
loss function (Eq. 3.1). Also in this case, a final training and validation loss in the
order of 10−3 was obtained.

In Fig. 4.13 the simulation (equation-based SPH reproduction of the dynamics
of the fluid) and emulation (AI-CFD emulator reproduction of the dynamics of the
fluid) is shown. The fluid is in a box with regular topography and the frame show
is at time t = 2.5 s. The particles are colored by velocity magnitude [m/s]. A good
agreement is found between the simulation and the emulation, to the level of sen-
sitivity of the instrument (∆p), reproducing in a good way the main features of the
simulation.

FIGURE 4.13: Simulation (a) and emulation (b) of a viscous fluid with
medium resolution (∆p = 0.75 m) in a box with regular topography
at time t = 2.5 s. The particles are colored by velocity magnitude

[m/s].

Work in progress I am currently working on an extension of the ANN for the vis-
cous case. Until now, the force to be estimated has been the vector with the com-
ponent of the acceleration, by construction oriented as the vector of relative position
between the interacting particles. Therefore, the output of the NN has been the mod-
ule of the acceleration vector, multiplied in the following step by the unit vector of
the relative position. The idea is to extend the network, using the same architec-
ture for the input and hidden layers, and changing only the output layer, adding a
second component for the acceleration. In this way, it will be possible to estimate
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the two parts of the acceleration obtained via the conservation of momentum equa-
tion, that are the one linked to the pressure term and the second one linked to the
velocity component. Therefore, the network will give in output two terms for the
accelerations (for the viscous case), i.e., f̂ija , f̂ijb , the first one equal to the actual case,
so oriented as the vector of relative position between the interacting particles, the
second one oriented as the vector of relative velocity between particles. Therefore,
the final output of the ANN will be two-dimensional, and it will be element-wise
multiplied by a vector composed by the unit vector of the relative position and the
unit vector of the relative velocity. The aim is to consider also the contribution of the
velocity in the accelerations estimation, which in the viscous term of the momentum
equation takes on a fundamental role for the calculation of accelerations. A possible
second aim could be to exploit this considerations to make an inverse analysis. In
detail, the idea is to extrapolate the viscous term of the acceleration of a set of data
from the ANN and, considering its theoretical formulation (see Eq. 1.22), to invert
this term and obtain the viscosity µij of the relative fluid.

To obtain an estimation of the pressure and viscous term of the forces, I changed
also the second input feature to the NN for the viscous case, the one linked to the ve-
locity component, searching for a more representative feature for the viscous term. I
analyzed the single components of the relative velocity vector, i.e., the tangential and
normal component (utij , unij ). With the utij , the advancement of the front is closer to
the real one, but there is more disorder; with the unij , the global shape of the emu-
lated flow is more similar than the simulated one, but the position of the simulated
and emulated particles does not match over time. In order to consider the two be-
haviors together, I used the module of the relative velocity

∥∥u⃗ij
∥∥, to consider the

dependence to the entire velocity vector in the conservation of momentum equation
for the viscous term. With this new feature, the behavior is better than using the sin-
gle components, even if the emulation front advances more slowly over time than
the simulation one and the emulation is disordered (see Fig. 4.14).

FIGURE 4.14: Simulation (a) and emulation (b) of a viscous fluid with
medium resolution (∆p = 0.75 m) in a box with regular topography at
time t = 2.5 s and the estimation of the two acceleration components.

The particles are colored by velocity magnitude [m/s].
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4.1.4 Towards generalization to a complex case: the lava flow

Moving towards lava flows reproductions, I conducted an exploratory study emu-
lating a viscous fluid with thermal component (numerically treated) over an irreg-
ular topography, that can recall a volcano flank. I used the model trained over the
viscous dam break with a regular topography in the box (see Fig. 4.15), also testing
the generalization capabilities of the viscous model.

Thermal model

In order to take into account also the temperature of the fluid particles, the thermal
evolution is described by the heat equation, as in Eq. 4.1:

DT
Dt

=
1

cpρ
∇(κ∇T), (4.1)

with T temperature [K], cp the specific heat at constant pressure [J kg−1 K−1],
and κ the thermal conductivity [W m−1 K−1].

So, I added the SPH discretization of the thermal equation in the implementation
(Zago et al., 2018), as in the Eq. 4.2. Currently this term is only numerically treated,
namely the temperature is considered as a tracker, as a fluid property, without any
coupling with other terms.

DTi

Dt
= − 1

cpρi
∑

j

2mjκijTij

ρj
Fij, (4.2)

with Tij the relative temperature between particles. The following physical pa-
rameters are used, cp = 1000.0 J kg−1 K−1, κij = 500.0, value chosen to accentuate
the heating dynamics (very conductive fluid), Tf luid = 293.15 K the temperature of
the fluid and Twall = 273.15 K the temperature of the boundaries.

The time step ∆t has been calculated so far to fulfill the CFL-like (Courant-
Friedrichs-Lewy) stability conditions (Monaghan, 1992), determined by the accel-
eration magnitude, the speed of sound and the viscous term (see Eq. 1.23). Adding
the thermal term, it is necessary to add also the respective stability condition, as in
Eq. 4.3

∆ti ≤ min

{
0.3

√
h

||⃗ai||
, 0.3

h
c0

, 0.125
ρ0h2

µi
, 0.1

ρ0cp h2

κ

}
. (4.3)

In Fig. 4.15 is shows the same simulation and emulation of the viscous fluid case
(Fig. 4.13), now numerically tracking also the temperature of the particles, starting
with Tf luid = 293.15 K and Twall = 273.15 K. The particles are so colored by temper-
ature [K].
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FIGURE 4.15: Simulation (a) and emulation (b) of a viscous fluid with
medium resolution (∆p = 0.75 m) in a box with regular topography
and thermal component at time t = 2.5 s. The particles are colored by

temperature [K].

Fig. 4.16 shows the results of the emulation using a model trained over a different
problem respect to the one emulated, i.e., over SPH viscous simulation with a regular
topography in the box. The Fig. 4.16, thus, shows a viscous fluid with medium
resolution (∆p = 0.75 m) in an irregular topography at time t = 12.0 s. The particles
are colored by temperature [K].

FIGURE 4.16: Emulation of a viscous fluid with medium resolution
(∆p = 0.75 m) in a box with irregular topography and thermal com-
ponent at time t = 12.0 s. The particles are colored by temperature
[K]. The model used here was trained over SPH viscous simulation

with a regular topography in the box.

Work in progress I am currently working on the viscosity-temperature coupling.
Fluids have a characteristic behavior, which links viscosity to temperature. An ex-
ample of this behavior is found in lava fluid, in which the viscosity is linked to the
temperature in a way that when temperature decreases, viscosity increases. The aim
of my recent studies is therefore to implement this behavior, through a function that
links the two components, and to train the network (with specific representative fea-
tures) to reproduce it. To do this, the followed steps are to define a function (Eq. 4.4)
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to model the particle viscosity (µ) with the temperature (T) changes, that is governed
by the thermal equation (Eq. 4.2), coupling the two parameters.

µi(Ti) = f (Ti). (4.4)

Subsequently, it is necessary to search for a characteristic input feature of the NN,
linked this behavior, to train the network to emulate it.

Modeling this coupled behavior, starting with an experimental case, in with the
viscosity is linearly dependent to the temperature, I numerically coupled tempera-
ture and viscosity defining the Eq. 4.5,

µi(Ti) = αTi, (4.5)

with α ∈ R, here α = 1.5 to have a behavior in which when temperature de-
creases, viscosity decreases (behavior hereafter called direct).

The viscosity calculated via the Eq. 4.5 is then fed to the conservation of mo-
mentum equation (Eq. 1.22), coupling temperature and viscosity. At this point,
it is already possible to simulate this behavior with the SPH formulation with a
temperature-dependent viscosity, thus not constant.

FIGURE 4.17: Simulation of a viscous fluid with medium resolution
(∆p = 0.75 m) and direct viscosity-temperature dependence in a reg-
ular box, at (a) time t = 3.0 s, and (b) time t = 24.0 s. The particles

are colored by temperature [K].
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FIGURE 4.18: Simulation of a viscous fluid with medium resolution
(∆p = 0.75 m) and direct viscosity-temperature dependence in a reg-
ular box, at (a) time t = 3.0 s, and (b) time t = 24.0 s. The particles

are colored by viscosity [Pa s].

Fig. 4.17 and Fig. 4.18 show the simulation of the viscous fluid with medium
resolution (∆p = 0.75 m) and direct viscosity-temperature dependence in a regular
box, at time t = 3.0 s (Figs. a), and time t = 24.0 s (Figs. b), with the particles
colored by temperature [K] (Fig. 4.17) and viscosity [Pa s] (Fig. 4.18). In this case,
the temperature of the fluid is set to Tf luid = 293.15 K, and the temperature of the
wall to Twall = 273.15 K. As it is possible to see, in this case the fluid cools down the
wall, and it flows faster, due to the specific functional dependence of viscosity and
temperature, that is, when temperature decreases, viscosity decreases. The viscosity,
in this case, has a minimum value around 409.7 Pa s and a maximum value around
439.7 Pa s. In addition, the boundaries represent the unique cooling mechanism, and
so they have an effect in the fluid near them.

I also simulate an opposite and more realistic case, an example case in which
when temperature decreases, viscosity increases (behavior hereafter called inverse).

I numerically coupled temperature and viscosity defining the Eq. 4.6,

µi(Ti) = c0e
1
Ti , (4.6)

with c0 = 438.41, a constant of proportionality between the initial viscosity at
temperature T0 = 293.15 K in case of exponential inversion (µ0 = 1.5 · T0 = 439.73
Pa s) and linear coupling (µ0 = e1/T0 = 1.00 Pa s).

The viscosity calculated via the Eq. 4.6 is used with the same procedure of the
precedent case.
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FIGURE 4.19: Simulation of a viscous fluid with medium resolution
(∆p = 0.75 m) and inverse viscosity-temperature dependence in a
regular box, at (a) time t = 3.0 s, and (b) time t = 24.0 s. The particles

are colored by temperature [K].

FIGURE 4.20: Simulation of a viscous fluid with medium resolution
(∆p = 0.75 m) and inverse viscosity-temperature dependence in a
regular box, at (a) time t = 3.0 s, and (b) time t = 24.0 s. The particles

are colored by viscosity [Pa s].

Fig. 4.19 and Fig. 4.20 show this case, that is the simulation of the viscous fluid
with medium resolution (∆p = 0.75 m) and the inverse viscosity-temperature de-
pendence in a regular box, at time t = 3.0 s (Figs. a), and time t = 24.0 s (Figs.
b), with the particles colored by temperature [K] (Fig. 4.19) and viscosity [Pa s] (Fig.
4.20). As it is possible to see, in this case the fluid cools down the wall and when tem-
perature decreases, viscosity increases, due to the specific functional dependence of
viscosity and temperature.

Moving toward a more complex case, more representative, for example, of the
lava behavior, I implemented a functional form for the viscosity similar to (Zago et
al., 2018), as in Eq. 4.7

µi(Ti) = 10
(
−5+ 4000

Ti−610

)
. (4.7)
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In this case I used a boundary model considered as thermal source (see A.3),
i.e., the boundary has a specific temperature and it remains constant for the entire
simulation or emulation.

The viscosity calculated via the Eq. 4.7 is fed to the conservation of momentum
equation (Eq. 1.22), coupling temperature and viscosity. In addition, I compared
this case with a case representative of a fluid with independent temperature and
viscosity.

FIGURE 4.21: Simulation of a viscous fluid with medium resolution
(∆p = 0.75 m) and viscosity-temperature dependence (similar to lava
case) in a box with bumps, at time t = 30.0 s. The particles are colored

by temperature [K] (a) viscosity [Pa s] (b).

Fig. 4.21 shows the case with viscosity temperature-dependent, following the
Eq. 4.7, with the temperature of the fluid set equal to Tf luid = 1100.0 K, and the
temperature of the wall to Twall = 290.0 K. The density is set as ρ = 100.0 kg m−3.
The particles are colored by temperature [K] (Fig. 4.21 a) and viscosity [Pa s] (Fig.
4.21 b). As it is possible to see, in this case, when temperature decreases, viscosity
increases, in an inverse behavior, typical of lava flows. In this way, the flow of lava
is also reduced as the viscosity increases.
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FIGURE 4.22: Simulation of a viscous fluid with medium resolution
(∆p = 0.75 m) and viscosity-temperature independence in a box with
bumps, at time t = 30.0 s. The particles are colored by temperature

[K] (a) viscosity [Pa s] (b).

Fig. 4.22 shows, in contrast, a case with viscosity temperature-independent. The
temperature of the fluid and of the wall are equally set to Tf luid = Twall = 1100.0 K.
The density is set as ρ = 100.0 kg m−3. The particles are colored by temperature
[K] (Fig. 4.22 a) and viscosity [Pa s] (Fig. 4.22 b). As it is possible to see, in this
case, temperature and viscosity are constant and the flow of lava is faster then the
precedent case (Fig. 4.22).

The work I am currently conducting aims to modify the ANN in order to train it
to emulate this behavior. One of the first steps is the addition of a new input feature,
as well as to the relative position between particles, the normal component of their
relative velocity and the product of their densities, which can provide information
about the thermal term and better characterize this behavior. One candidate is the
temperature of the particles, directly extracted by Eq. 4.2. I also noticed that, as
for the choice of the other features, looking at the equation to emulate (Eq. 1.22), the
viscosity term appears. Thus, I could used the viscosity feature as fourth feature, that
could be more representative than the temperature of the dynamics of the system
and in a better way it could provide the correct information to the network to learn
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this dynamics.

4.2 Speed-up

Reducing the computational load of the numerical equations, substituting them with
the ANN and the use of the look-up table (see Subsection 3.1.1), the time to estimate
the forces is halved.

Existing some limits in the reduction of the computational load of the numerical
part, I also acted in removing computational load in time. For the emulated block,
it is possible to use a longer time step than that used in the reference simulation by
training the ANN to predict the force with the ground truth reference over a longer
time step. Thus, I have trained the NN in this way, with the aim to learn how to
use a longer time step than that used in the reference simulation for the emulated
predictions. Formulating the ANN estimator as follow (Eq. 4.8)

at+k∆t
ij = ANN(xt

ij, ut
nij

, ρt
i · ρt

j), (4.8)

I used a k = 5 times larger step for the training. In this way, the results are stable,
obtaining a gain in term of simulation time.

It is important to notice that using a two-step predictor-corrector integration
scheme (see Subsection 1.2.4), that being a double-step approach is more accurate
and stable (Anderson and Wendt, 1995; Chung, 2002), it was possible to reach and
implement this larger step.

Multiplying the two speed-up contributions just discussed here, I have actually
obtained a total speed-up of the emulated block equal to 10 times.

Work in progress I am currently working on a further speeding-up of the model,
modifying the code from a technical and conceptual point of view. The first ideas are
to move all the code on GPU (and not just the training block) and to continue with
the code optimization process. In addition, I am trying to act directly on the im-
plementation of some parts of the model, improving the choices of parameters and
hyperparameters to simplify the learning process. In addition, I am also working
on an extension of the simulated sampled data, including older time samples and
further points to extend the estimate to longer time steps. The stability limits of such
models are linked to the propagation of information (see Eq. 4.3). By widening the
time step or considering sampled data more distant in space or time (so the propa-
gation of information can be better followed), it should be possible to better follow
the evolution of these systems.
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Conclusion

Following the evolution in time and space of complex fluids is a hard task for fluid
dynamics models. I have exploited the combined knowledge in CFD and AI fields
to build an emulator, that learns from CFD simulations the behavior of the CFD ref-
erence model, solving fluid dynamics problems with higher fidelity and in shorter
times, preserving the physical consistence to the reference model (both correctness
and completeness). Therefore, I validated the AI-CFD-based emulator, comparing
emulations with equation-based simulations, using different case studies, from in-
viscid flows to highly complex fluids, such as lava.

The spatio-temporal evolution of lava flows depends on its properties, as non-
Newtonian rheology, thermal dependence and solid-fluid interactions, and the to-
pography over which the lava can flow. The complexity of lava makes difficult to
faithfully describe it in near real-time using CFD models. This is, therefore, one of
the exemplary cases that motivates the use of combined AI-CFD models to follow
the spatio-temporal dynamics of a fluid.

Starting from the CFD Smoothed Particle Hydrodynamics (SPH) formulation of
an analytical fluid dynamic problem, the numerical equation of momentum conser-
vation has been substituted by an Artificial Neural Network (ANN), trained to ex-
trapolate the behavior of this numerical equation. In detail, ANN has been trained
to estimate the SPH particles interaction forces exploiting as input the state of each
particle, which includes relative position of nearby particles, their relative velocity,
and their densities. I have chosen the SPH method because it allows high fidelity
simulations of complex fluids, and I have combined it with an ANN, because it is
capable of appropriately approximating any kind of functions, well generalizing to
unknown cases. I started with an inviscid and isothermal fluid, finally arriving at
the development of an emulator capable of modeling complex highly viscous fluids,
with a thermal component that varies following the behavior of the lava fields.

I conducted a study in AI and modeling state-of-the-art, testing specific appli-
cations, highlighting their advantages and limits. I explored different mathematical
models in fluid dynamics, and their relative discretized version, increasing the ac-
curacy of the numerical representation and, as a counterpart, their computational
costs. I also studied several AI techniques to automatic analyze huge quantity of
data. I applied different ML and DL techniques to analyze volcanic data from Space,
deriving information on active lava flows, as areal extension and volume of lava
erupted, obtaining eruptive parameters to feed as input to the mathematical models
for volcano monitoring.

The limits in numerical modeling, mainly due to the high computational costs,
and the need to deeply investigate physical phenomena, led to design an emula-
tor that leverages on the combination of SPH and AI models. The AI-based SPH
emulator has been constructed to ensures symmetric particle interactions, to be in-
dependent from local particles configurations and to allow an exact use of classi-
cal SPH formulations, including boundary conditions. I validated and tested the
emulator, showing and discussing different study cases. Firstly, I analyzed invis-
cid and isothermal fluids, verifying that the emulator takes well into account the
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reproducibility of major features and of boundary conditions. Simulations and em-
ulations have been compared, showing a good agreement. I reached a speed-up of
the emulated block of one order of magnitude with respect to the numerical model.
Moreover, I demonstrated the generalizability of the AI-based emulator, testing the
model over problems with varying levels of complexity, and the robustness to dif-
ferent spatial resolutions, reproducing the entire procedure (simulation, training,
emulation) with different resolutions. I progressively added the viscous and ther-
mal models, to eventually simulate lava flows. Also in these cases, simulations and
emulations have been compared for each step, obtaining a high degree of fidelity,
and demonstrating the capacity to reproduce the main features and to generalize to
new cases out of the training set.

The emulator presented here is capable to faithfully reproduce SPH simulations
in shorter times with the use of an ANN. It is applicable to fluids with different
viscosity and thermal properties, managing different resolutions and being capable
to generalize to problems with different complexity. It exploits the potential of the
combined use of numerical and AI models, enhancing CFD simulations and opening
to a deeper understanding of physical phenomena.
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Appendix A

SPH method

In this Appendix the theoretical basis of the SPH are presented, starting from the
mathematical derivation of the SPH approximation and of the spatial gradient and
second order derivative discretization, up to the kernel choice and the SPH initial
and boundary conditions setting.

A.1 Mathematical derivation of the SPH approximation

The mathematical derivation of the SPH approximation will be shown.

A.1.1 SPH field discretization

Considering a field f defined on a domain Ω, and defining a Dirac’s delta distribu-
tion δ, the value assumed by f at any location x⃗∗ ∈ Ω, according to Dirac’s delta
sampling property, can be the following one

f (x⃗∗) =
∫

Ω
f (x⃗)δ(x⃗ − x⃗∗)dx⃗. (A.1)

Considering a family of functions W(·, h) (smoothing kernels), that use h > 0
(smoothing length) to be parameterized, these functions can approximate the Dirac’s
delta, in such a way that ∫

Ω
W(x⃗ − x⃗∗, h)dx⃗ = 1, (A.2)

limh→0W(x⃗ − x⃗∗, h) = δ(x⃗ − x⃗∗), (A.3)

with the limit in the sense of distributions.
Using this formulations, the SPH field is obtained as follows,

f (x⃗∗) ≈
N

∑
i=1

f (x⃗i)W(x⃗i − x⃗∗, h)Vi, (A.4)

approximating the integral with a summation over a finite set of points, that are
the i particles, with i ∈ N, 1 < i < N, at positions x⃗i, with a fixed mass mi, a
density ρi, and then a volume Vi =

mi
ρi

. In addition, the smoothing kernel W(·, h) is
chosen to have a compact support; in this way, the summation is only over a small
neighborhood of the central particle x⃗∗ (Liu and Liu, 2003).

Eq. A.4 shows that SPH formulation approximates Dirac’s delta with the smooth-
ing kernels; this approximation vanishes for h → 0. In addition, Eq. A.4 discretizes
the domain using a finite set of particles, controlled by the average inter-particle
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spacing ∆p and this approximation vanishes for ∆p → 0. Finally, to ensure the con-
sistency for the method, it is necessary to impose the following property, that is that
∆p must tend to zero faster than h, with a constant ratio, typically h

∆p ∈ [1.3, 1.5] (Liu
and Liu, 2003).

A.1.2 SPH spatial gradient discretization

To discretize the spatial gradient of the field f , it is necessary to use a smoothing
kernel with a radial symmetry, W(r, h), with r = |⃗x − x⃗∗|. With this in mind, it is
possible to approximate at any given point the field gradient ∇ f by convolving it
with a smoothing kernel,

∇ f (x⃗∗) ≈
∫

Ω
∇x⃗ f (x⃗)W(|⃗x − x⃗∗|, h)dx⃗. (A.5)

Applying the Green’s theorem at Eq. A.5, with Σ = ∂Ω, the Eq. A.6 is obtained,

∇ f (x⃗∗) ≈
∫

Σ
f (x⃗)W(|⃗x − x⃗∗|, h)⃗ndΣ −

∫
Ω

f (x⃗)∇x⃗W(|⃗x − x⃗∗|, h)dx⃗, (A.6)

with n⃗ the normal of the domain.
Starting from this equation, the SPH approximation of the gradient is then ob-

tained as in Eq. A.7, because the first integral in the right part of the Eq. A.6 is equal
to zero if x⃗∗ is far from the boundary, in the second integral, −∇x⃗W(|⃗x − x⃗∗|, h) =
∇x⃗∗W(|⃗x − x⃗∗|, h) for symmetry (Zago et al., 2018), and the integrals are discretized
using summations over N neighbors particles, for i ∈ N.

∇ f (x⃗∗) ≈
N

∑
i

f (x⃗i)∇x⃗∗W(|⃗xi − x⃗∗|, h)Vi. (A.7)

This formulation allows to calculate an approximation of the spatial gradient of
the field f , knowing only the gradient of the smoothing kernel, instead of the field
gradient (Zago, 2019).

In the SPH formulation, the relationship between a central particle and all its
neighbors is analyzed. Thus, the Eq. A.7 can be applied to a particle j in such a way,

∇ f (x⃗j) ≈
N

∑
i
( f (x⃗i)− f (x⃗j))∇jW(

∣∣⃗xi − x⃗j
∣∣, h)Vi, (A.8)

symmetrized with the − f (x⃗j) term.
The gradients are calculated as the sum of the properties on neighboring parti-

cles, weighted by the kernel gradient, so the latter can be written as in Eq. A.9 (for
the radial symmetry), defining x⃗ij = x⃗i − x⃗j and Wij = W(

∣∣⃗xi − x⃗j
∣∣, h),

∇jWij =
x⃗ij

|⃗xij|
∂W(r, h)

∂r

∣∣∣∣
r=|⃗xij|

, (A.9)

and it is possible to set the analytical expression A.10

F(r) =
1
r

∂W(r, h)
∂r

, (A.10)

such that ∇jWij = x⃗ijF(|⃗xij|) = x⃗ijFij.
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A.1.3 SPH spatial second order derivative discretization

The discretization of the second order derivative can be done exploiting the first or-
der derivative of the kernel (Brookshaw, 1985; Zago, 2019), and not applying two
times the process applied for first derivatives, due to the sensitivity to particle dis-
order and being very noisy.

Firstly, a Taylor approximation of the field f can be done, as follows

f (x⃗i) = f (x⃗j) +∇ f
∣∣∣∣

x⃗j

(x⃗i − x⃗j) +
1
2

∂2 f
∂x⃗l∂x⃗m

(x⃗i − x⃗j)l(x⃗i − x⃗j)m +O(x⃗i − x⃗j)
3, (A.11)

with xi, xj positions of i and j particles and l and m first and second component of

the position vector. Eq. A.11 is multiplied by x⃗ij∇jWij
|⃗xij| and integrated over the domain

Ω. In this way, the first order term is equal to zero, due to the spherical symmetry of
W, and the second order term is equal to δlm. Then,

∇2 f
∣∣∣∣

x⃗j

≈ −2
∫

Ω

f (x⃗j)− f (x⃗i)

|⃗xij|2
x⃗ij∇jWijdx⃗3

i ,

in which the integral can be discretized with the sum over i, and the term dx⃗3
i

with the volume Vi =
mi
ρi

(in 3D), obtaining, the SPH formulation as in Eq. A.12

∇2 f
∣∣∣∣

xj

≈ −2 ∑
i

f (x⃗j)− f (x⃗i)

|⃗xij|2
x⃗ij∇jWij

mi

ρi
= −2 ∑

i

f j − fi

|⃗xij|2
x⃗ij∇jWij

mi

ρi
, (A.12)

with ∇2 f
∣∣∣∣

x⃗j

= 0, if f constant.

Similarly,

∇ · (Q(xi)∇ f (xi)) ≈ −2
∫

Ω

(Qj + Qi)( f j − fi)

|⃗xij|2
x⃗ij∇jWijdx⃗3

i ,

has an SPH formulation as

∇ · (Q∇ f ) ≈ −2 ∑
i

(Qj + Qi)( f j − fi)

|⃗xij|2
x⃗ij∇jWij

mi

ρi
= −2 ∑

i
(Qj + Qi)( f j − fi)Fij

mi

ρi
,

(A.13)
with Q that may show a spatial variation, and Fij =

∇jWij
x⃗ij

, (Monaghan, 1992;
Brookshaw, 1985).

A.2 SPH kernels

As for the choice of the different schemes in the finite difference methods, in SPH
the kernel choice is fundamental. Different types of kernel are available, and each
of these must satisfy Eqs. A.2 and A.3. In addition, it must be positive and defined
on a compact support, monotonically decreasing with the increase of distance away
from the particle, it must be even and sufficiently smooth. Let be δ ∈ N, defining a
cut-off radius R, R = δ · h, with h smoothing length, and a variable q = |⃗xij|/R, 0 ≤
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q ≤ δ, different SPH smoothing kernels can be defined. The kernels depend on the h
parameter, that is the smoothing length, defined using the smoothing factor as s f =

h
∆p , with ∆p spatial resolution of the approximation (particle size) and, typically,
s f = 1.33 (Zago et al., 2018).

A first example of kernel is the Lucy one (Lucy, 1977), with radius δ = 1, defined
as in Eq. A.14 and Eq. A.15,

W(q) =
α

h2 (1 + 3q)(1 − q)3, (A.14)

F(q) =
α

h
3cl1 − 3cl2(1 + 3q)

qh
, (A.15)

in 2D, with α ≈ 1.592 Lucy constant, and

cl1 = cl2(1 − q),

cl2 = (1 − q)2.

One of the most used SPH kernel is the Wendland one (Wendland, 1995), which
has been observed to be beneficial for free-surface simulations (Macia Lang et al.,
2011). It has radius δ = 2, and it is defined as in Eq. A.16 and Eq. A.17,

W(q) = cw1(1 − 0.5q)4(1 + 2q), (A.16)

F(q) = cw2(q − 2)3, (A.17)

with

cw1 =
7

4h2π
,

cw2 =
35

32h4π
,

in 2D, and

cw1 =
21

16h3π
,

cw2 =
5cw1

8h2 ,

in 3D.
Finally, another kernel is the Gaussian one (Monaghan, 1992), with radius δ = 3,

as in Eq. A.18 and Eq. A.19

W(q) =
1

cg1
e−q2 − e−δ2

, (A.18)

F(q) = − 1
cg2

e−q2
, (A.19)

with



Appendix A. SPH method 92

cg1 = h2π(1 − e−(1+δ2)),

in 2D,

cg1 = h3π(
√

πEr f (δ)− 2
3

e−δ(3+2δ2)),

in 3D (Er f () is the error function), and

cg2 = h2 cg1

2
.

A.3 Initial and boundary conditions

In modeling, the initial and boundary conditions are the setting of all the initial
and at borders states and parameters, to make the mathematical problem uniquely
solvable (Velten, 2009). In SPH initialization phase, the problem is implemented,
creating the set of particles for the fluid and the walls.

The initial values of each particle is assigned, to define the initial state of the
variables (position, velocity, acceleration, density, temperature, viscosity). Also the
physical parameters are set, as the gravity, the speed of sound, the topography, the
initial viscosity and temperature, and the numerical parameters, as the spatial reso-
lution of the simulation, the number of particles used for the discretization, the time
step, and the kernel used. Finally, the chosen boundary conditions are applied.

In physics, mechanical boundary conditions (BC), i.e., those implemented impos-
ing a value to the velocity and the pressure, can be of several types, as the no-slip
and free-slip (Velten, 2009; Zago, 2019). In the first case, the boundary velocity is
set to be zero, and this condition is obtained assigning a zero normal velocity and
a physical sliding tangential velocity at the boundary (sometimes equal to zero). In
the second case, the free-slip BC, the flow is free to slip over the boundaries, and
this condition is obtained imposing a zero tangential shear stress along the bound-
aries. In an SPH context, boundary conditions are typically assigned by means of
boundary particles, which act on the velocity and pressure of the nearby fluid par-
ticles. The boundary particles are used to complete the support of the smoothing
kernel and to apply BCs; for example, for a smoothing kernel of radius δ = 2 and a
smoothing factor s f = 1.33, three layers of particles are necessary.

In addition, generically speaking, a boundary layer is a layer of fluid in the im-
mediate vicinity of a boundary, that can be altered by the presence of it (in particu-
lar its viscosity) (Schlichting and Gersten, 2016). In the SPH context, the boundary
layer is often smaller than δp (Cleary and Monaghan, 1993), so it is studied with
semi-analytical models (Ferrand et al., 2013), adding a corrective viscosity term that
models it.

The way in which the properties of the boundary particles are set, determines
the boundary models, i.e., the specific SPH configurations of the BCs. Examples
of SPH boundary models are the Dummy (Adami, Hu, and Adams, 2012) and Dy-
namic boundary models (Crespo, Gómez-Gesteira, Dalrymple, et al., 2007). In the
first case, the density is computed to achieve a pressure that matches the Shepard
averaged pressure of the neighboring fluid (Eq. A.20), and the velocity is obtained
by adding to the wall velocity (u⃗w) the opposite of the Shepard-averaged velocity of
the neighboring fluid (Eq. A.21).
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Pi =
∑j PjWij + g⃗ ∑j ρj x⃗ijWij

∑j Wij
. (A.20)

u⃗i = u⃗w −
∑j u⃗jWij

∑j Wij
, (A.21)

For the second case, the dynamic boundary models, the boundary density is
treated equally to the fluid particles one, and the velocity is defined in a specific
way, for example equal to zero (obtaining, thus, no-slip boundary conditions). Due
to the implementation of the density, in this last case, the transition from a dry to
wet states can leads to a phenomenon in which the increasing in density brings the
fluid to "lift" the boundary, and, conversely, the fluid impinging on a boundary and
subsequently flowing away brings to a reduction of the density. This phenomenon
is known as instability (or transition) dry-wet or wet-dry (Zago et al., 2018). In addition,
fluid particles could penetrate the walls. Other kinds of BC can be the Periodic ones,
to reproduce infinitely extended domains, in a way in which when a particle arrives
near a periodic boundary it crosses it, disappears and reappears on the opposite
side of the periodic domain, maintaining the same state; also the neighbors search
suffers the periodic properties of the domain, applying it also on the opposite side
of it. Another type of BC is the Open Boundary (OB) or Non-Reflective conditions
(Ferrand et al., 2017), used to add to the simulation domain a region not real but that
can exchange matter and information with the actual implemented domain (waves
propagation, with a wall that absorbs mass and wave), for example for fluid inlet.
Generalized Riemann Invariants (Ferrand et al., 2017) are computed from the pre-
scribed boundary conditions and they are used to extrapolate information from the
inside of the domain, avoiding spurious reflections, and maintaining a continuity
between the two sides of the periodic domain.

Moving to thermal boundary conditions, a first case is the thermal source, that is,
the entire boundary domain D maintains the same temperature Ta in the entire sim-
ulation time, and any heat exchanges are not constrained, i.e., T(x⃗, t) = Ta, ∀x⃗ ∈ D,
∀t ∈ R (Zago, 2019). An alternative is the adiabatic one, i.e., ∇T · n⃗ = 0, with n⃗

the vector normal to the boundary region D, thus Ti =
∑j Tj(xj−xi)·⃗nFijVi

∑j(xj−xi)·⃗nFijVi
is the tem-

perature to be assigned to the wall particle i (Zago, 2019). Finally, another case is
the sponge layer (a thermal open boundary), that is an absorbing boundary, i.e., the
boundary is considered a body in which the heat of the fluid propagates, therefore
it must be thick enough to propagate it during the simulation. In this case, thus,
T(0, 0) = T0, and T(−H, t) = T0, with T0 the initial temperature, and H the thick-
ness of the boundary, and 4κwtend

ρwcpw H2 < 1 (CFL-like condition), with κw the wall thermal
conductivity, tend the end of the simulation, ρw the wall density, cpw the wall specific
heat at constant pressure (Hérault, 2008).
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Appendix B

Volcano monitoring from Space

B.1 Satellite general aspects

The changes in surface of the Earth (a natural or anthropomorphic event that modi-
fies its appearance, e.g., a landslide or eruption, or the introduction of a new human
construction) and, in particular, volcanic activity in even the most isolated areas can
be observed via the satellite data, providing spectral estimations for the Earth’s sur-
face features without the risks linked to reach an area potentially threatened by an
eruption.

Satellites are divided into geosynchronous and polar ones (Harris, 2013). Satel-
lites in geosynchronous orbits (GEO) circle the Earth from West to East, following
Earth’s rotation (taking about 24 hours) by traveling at exactly the same rate as the
Earth. This makes GEO satellites to be "stationary" over a fixed position. In order to
perfectly match Earth’s rotation, the speed of GEO satellites should be about 3 km
per second at an altitude of 35786 km. They are so much farther from Earth’s surface
compared to many other satellites. A geostationary satellite is a geosynchronous
satellite orbiting with zero inclination to the equatorial plane. In contrast, satellites
in polar orbits usually travel the Earth from North to South, passing roughly over
the Earth’s poles. Satellites in polar orbits do not have to pass the North and South
Poles precisely; even a deviation within the range [20◦ - 30◦] is still classified as a po-
lar orbit, and they have low Earth orbit, with an altitudes between 200 to 1000 km.
Sun-synchronous orbit is a particular kind of polar orbit which allows the satellite
to be synchronous with the Sun, this means that the satellite always visits the same
spot at the same local time.

Different kinds of resolution are defined in satellite remote sensing images (Har-
ris, 2013), that are:

• spectral resolution, which is the ability of a sensor to discern among wave-
lengths;

• spatial resolution, which is the size of an image pixel, representing an area on
the Earth’s surface;

• temporal resolution, which indicates how frequently a satellite can provide ob-
servation of the same area on the Earth (satellite revisit time is the time elapsed
between observations of the same point on Earth by a satellite);

• radiometric resolution, which is the amount of information in each pixel, i.e.,
the number of bits that represent the recorded energy.

The theoretical background of the satellite acquisition is based on the spectral
response of the surfaces. All the objects with a temperature above 0 K emit elec-
tromagnetic radiations. Satellite sensors will be differentiate to be passive or active
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sensors, if they do not emit radiation themselves, or if they emit radiations (Harris,
2013). Examples are the multispectral or hyperspectral active sensors and the LiDAR
or RADAR passive sensors. A blackbody is an ideal object that absorbs all incident
radiation and emits energy following Planck’s law (Planck, 1901).

B.1.1 Examples of satellites

In a geophysical context, the satellites most used are classifiable respect to the tem-
poral and spatial resolution. In general, the most common satellites have an inverse
proportionality between spatial and temporal resolution (Harris, 2013).

High temporal and low spatial resolution Starting from satellite data with high
temporal resolution and low spatial one, used for near real-time analysis, the Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI) is the most used in European
zones. It is on board the geostationary Meteosat Second Generation (MSG) satellites
(from ESA EUMETSAT) and it measures radiations in 12 spectral bands, from the
Visible (VIS) to the InfraRed (IR) part of the spectrum. Its spatial resolution depends
on the distance from the sub-satellite ground point (thus, latitude, longitude) and on
viewing zenith angle. It is down to 1 km for the High-Resolution Visible channel and
of 3 km at sub-satellite point for standard channels. In a volcanic context, it is possi-
ble to extract a parameter for the monitoring of volcanic activity, that is the Volcanic
Radiative Power (VRP), a parameter that describes the quantity of heat emitted by
a volcanic product, measured using a combination of the spectral radiance (Planck,
1901) in the Middle Infrared (MIR) (at 3.9 µm) and Thermal InfraRed (TIR) (at 12.0
µm).

High spatial and low temporal resolution Satellites with high spatial resolution
and low temporal one are many, e.g., Sentinel-1 and Sentinel-2 from ESA, Landsat-8,
Landsat-9 and Terra from NASA.

Sentinel-1 (S1) and Sentinel-2 (S2) satellite polar missions are part of the Coper-
nicus programme of the European Space Agency (ESA). The S1 constellation con-
sists of two identical satellites both equipped with C-band Synthetic Aperture Radar
(SAR) instruments (frequency 5.405 GHz, wavelength ∼ 5.55 cm), providing data in
dual or single polarization. Also S2 consists of a constellation of two identical satel-
lites. S1 sensors acquire images with a spatial resolution of 10 m to 40 m (according
to the operational mode), in C-band Wide swath (IW) mode, with a temporal resolu-
tion of 12 days, with a 6-day exact repeat cycle at the equator, and greater at higher
latitudes. S2 satellites are equipped with MultiSpectral Instrument (MSI) with 13
bands in the Visible, Near InfraRed (NIR), and ShortWave InfraRed (SWIR) part of
the spectrum, and with "Aerosols", "Water vapor", "Cirrus" bands, at spatial resolu-
tions of 10, 20 and 60 m, and they have a revisit frequency for each satellite of 10
days, resulting in a revisit frequency of 5 days for the constellation.

Landsat 8 (L8) and Landsat 9 (L9) are twin polar satellites launched in the frame
of a joint National Aeronautics and Space Administration (NASA) and United States
Geological Survey (USGS) mission. L8 was launched in 2013 and L9 in 2021. The two
twins satellites have a temporal resolution of 16 days and carry the same two types of
sensors, named Operational Land Imager (respectively, OLI for L8 and OLI-2 for L9)
and Thermal InfraRed Sensor (TIRS for L8 and TIRS-2 for L9). OLI/OLI-2 are char-
acterized by 9 spectral bands, in the Visible, Near InfraRed and ShortWave InfraRed,
and a "Coastal aerosol" band (spatial resolution of 30 m), and with a Panchromatic
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band and a "Cirrus" band at a spatial resolution of 15 m; TIRS/TIRS-2) have 2 bands
of 100 m spatial resolution.

Finally, the NASA EOS AM-1 Terra polar satellite is equipped with the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor with high
spatial, spectral and radiometric resolution. The ASTER high spatial resolution is of
15 to 90 m and the spectral resolution is of 14 spectral bands, including Visible and
Near InfraRed radiation (VNIR), ShortWave InfraRed radiation (SWIR) and Thermal
InfraRed radiation (TIR). The temporal resolution is 16 days.
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