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A B S T R A C T

This paper proposes an unknown input observer for nonlinear systems with input decoupling via system
invertibility. Starting from a suitable reformulation of the model of a generic nonlinear system, obtained by
merging all system uncertainties with respect to an appropriate nominal linear model into a disturbance vector,
the proposed observer can asymptotically copy both the system state and unknown inputs, even in the presence
of measurement noise. Formal proof of the estimate convergence is demonstrated analytically. A comparison
of the proposed method with existing solutions is shown in simulation, and the method’s effectiveness in
real-world scenarios is demonstrated by experimental results on a soft articulated robot.
1. Introduction

Knowing a mathematical model robust enough to encapsulate the
complexity of a dynamic system is often crucial when trying to solve
a control task (Guo & Zhao, 2015). Even with a model with the
correct structure, imprecise knowledge of parameter values, which can
vary over time, or failure in identifying external signals, hinder in
general achievable control performance (Li, Yang, Chen, & Chen, 2014).
A prevalent strategy is to collect all sources of system uncertainty,
arising from variations in model parameters, unmodeled dynamics, and
exogenous disturbances, into an unknown input vector to be estimated
in real time.

Several techniques have been devised for this purpose, spanning
from Extended State Observers (ESO) (Gu, Wang, Peng, Wang, & Han,
2022; Li & Xia, 2020; Li, Zhang, Luo, & Li, 2023; Talole, Kolhe,
& Phadke, 2009; Wang et al., 2017), Disturbance Observers (DO)
(Castillo, Sanz, Garcia, Qiu, Wang, & Xu, 2019; Potluri & Singh, 2015;
Yu, Wang, Wang, & Chen, 2016), to Unknown Input-State Observers
(UIO) (Dabladji, Ichalal, Arioui, & Mammar, 2016; Sundaram & Hadji-
costis, 2007; Valcher, 1999). ESOs estimate both system state and un-
known input according to a Luenberger-like solution and have demon-
strated to be able to handle unknown inputs with a finite number of
nonzero time derivatives, i.e., signals that are described as polynomial
functions of time with finite order. However, they not only require
extending the system state with additional variables but also cannot
cope with generic unknown inputs with an infinite number of nonzero
time derivatives. Generalized Extended State Observer (GESO) (Mik-
losovic, Radke, & Gao, 2006) are indeed designed assuming that the
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unknown input is bounded and constant at steady state (She et al.,
2023). Generalized Proportional Integral Observers (GPIO) (Ramírez-
Neria, Sira-Ramírez, Rodríguez-Angeles, & Luviano-Juárez, 2012; Sira-
Ramírez, 2018) reaches better estimation performance, but require high
gains to achieve fast convergence, which makes them more sensitive
to measurement noise (Chen, Yang, Guo, & Li, 2016; Qiao & Sun,
2023). DO-based solutions require a slow variation of the noise and
involve building an additional state observer when the state is not fully
accessible, which increases the overall computational load. Conversely,
UIOs are able to overcome the above limitations by decoupling the state
estimation from the evolution of the unknown inputs (Valcher, 1999)
and then reconstructing such inputs once state estimation convergence
is achieved.

The original approaches to designing a UIO required meeting ex-
istence conditions that are often too strict in practical contexts, thus
limiting their scope of application (Chen, Patton, & Zhang, 1996). An
idea working around this problem and partially relaxing the above
conditions was first presented in Jin, Tahk, and Park (1997), Saberi,
Stoorvogel, and Sannuti (2000), where buffers of consecutive output
samples were used to achieve the desired decoupling of the unknown
input, but no exact observer design procedure was provided. An elegant
solution was later proposed in Sundaram and Hadjicostis (2007) in the
form of a delayed UIO (DUIO), along with a strategy to reconstruct
both the system state and unknown inputs. More recently, promising
improvements have been proposed in Chakrabarty, Ayoub, Żak, and
Sundaram (2017) and subsequent derivations have found application
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in several fields (Azid, Kumar, Cirrincione, & Fagiolini, 2021; Fagiolini,
Trumić, & Jovanović, 2020; Pedone & Fagiolini, 2020, 2022; Pedone,
Trumić, Jovanović, & Fagiolini, 2022). Yet, the obtained observers
suffer from a delay in the reconstructed signal, which hinders their
real-time use, still involve complex algebraic conditions, work under
the assumption of linearity of the models, and, finally, do not allow a
complete a-priori determination of the estimation convergence rate.

Motivated, by the superior results of UIO-based solutions and a
renewed interest in their design (cf. the very recent results with data-
driven settings (Shi, Lian, & Jones, 2022; Turan & Ferrari-Trecate,
2021) and even with switching linear systems (Conte, Perdon, & Zat-
toni, 2021; Zattoni, Perdon, & Conte, 2022)), this paper proposes an
approach that aims at simplifying the UIO design procedure, resolves
the delay and measurement noise issues, and is also valid for a class
of nonlinear dynamic models, thus broadening, in our view, its ap-
plication scope. Precisely, by leveraging on the general reformulation
of a nonlinear model as the sum of a linear nominal component and
an uncertain one, which groups all system uncertainty and nonlinear
terms, our method requires simpler algebraic conditions to achieve the
input decoupling and allows direct feedback on the state estimation
error. The obtained Linear UIO (LUIO), which also includes a robust
estimation of the output vector and its time-derivative with respect
to the measurement noise, has faster and more accurate estimation,
and provides current estimates immediately usable in a control loop.
Another nice feature of the proposed UIO is that, by using the strong
observability and invertibility properties of the system, it finds an exact
number 𝜅 of time derivatives of the system output 𝑦 that allows recon-
structing the generic unknown input exactly, without any assumption
on its derivatives.

Contribution: The contribution of this paper includes at least the
following: (1) The formalization of a generic nonlinear system into
a simpler one in matrix form composed of a nominal linear system
excited by an appropriate disturbance vector that groups all system
uncertainties with respect to the nominal system; in this setting, all
system matrices are linear and constant by design; (2) The design of
an observer that explicitly provides estimates of the output vector and
its first derivatives, up to a suitable order, that are robust to measure-
ment noise; (3) An unknown input decoupling approach that exploits
only the information deriving from the resulting system matrices and
that is based on simpler algebraic rules with larger applicability; (4)
Formal proofs of applicability in nonlinear domains with no estimation
delays; (5) Simulations that demonstrate the superiority of the proposed
approach over existing solutions and its robustness with respect to
the measurement noise; (6) Experimental validation on a Soft Artic-
ulated Robot (SAR) with two degrees of freedom, demonstrating its
applicability in real-world scenarios.

2. Model formulation and problem statement

Consider the continuous-time nonlinear model
̇ = 𝑓 (𝑥, 𝑢,𝑤, 𝑡) ,

𝑦 = 𝐶𝑥 + 𝜋 ,
(1)

where 𝑥 ∈ R𝑛 is a state vector, 𝑢 ∈ R𝑝 and 𝑤 ∈ R𝑚 are known and
nknown input vectors, respectively, 𝑦 ∈ R𝑐 is an output vector and
∈ R𝑐 is a measurement noise signal, 𝐶 ∈ R𝑐×𝑛 is a constant matrix

and 𝑓 ∈ R𝑛 is a nonlinear vector function. Without loss of generality,
one can extract from the dynamic map 𝑓 its linear time-invariant
components, not depending on the unknown input 𝑤, i.e.

𝑓 (𝑥, 𝑢,𝑤, 𝑡) = 𝐴𝑥 + 𝐵 𝑢 + 𝑓 (𝑥, 𝑢,𝑤, 𝑡) ,

with 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑝. Then, defining the unknown input vector
𝛿 = 𝑓 ∈ R𝑣, (1) is rearranged as

̇ = 𝐴𝑥 + 𝐵𝑢 +𝑊 𝛿 ,

𝑦 = 𝐶𝑥 + 𝜋 ,
(2)

with 𝑊 ∈ R𝑛×𝑣 being a full-column rank constant matrix. Within this
2

setting, we aim at solving the following:
Problem 1. Given the model in (2), design a dynamic system
asymptotically estimating the system state 𝑥 and unknown input 𝛿,
using only information on the known input and output signals, 𝑢(𝑡)
and 𝑦(𝑡), i.e. computing estimates �̂� and 𝛿 such that �̂�(𝑡) → 𝑥(𝑡) and
𝛿(𝑡) → 𝛿(𝑡) for 𝑡 → ∞.

For our purposes, the following notions are helpfully recalled or
introduced. A signal 𝑠(𝑡) is convergent if lim𝑡→∞ 𝑠(𝑡) = 0. A matrix

is Hurwitz if its eigenvalues have negative real parts. 𝐼𝑛 is the
dentity and 0𝑛1×𝑛2 is the 𝑛1 × 𝑛2 zero matrix. Given a full-column
ank matrix 𝑁1, 𝑁

†
1 = (𝑁⊤

1 𝑁1)−1𝑁⊤
1 is its left pseudoinverse matrix;

iven a full-row rank matrix 𝑁2, 𝑁
††
2 = 𝑁⊤

2 (𝑁2𝑁⊤
2 )

−1 is its right
seudoinverse. Given a scalar function 𝑠(𝑡), S𝜅(t) is the Taylor series
ector, whose components pile 𝑠(𝑡) and its first derivatives up to the
rder 𝜅, i.e. S𝜅 (𝑡) = (𝑠(𝑡), �̇�(𝑡),… , 𝑑𝜅𝑠(𝑡)∕𝑑𝑡𝜅 )⊤. Given a dynamic matrix
, an input matrix 𝐵, and an output matrix 𝐶, the 𝜅th order observability
atrix associated with the pair (𝐴,𝐶) is recursively defined as 𝜅 =
𝐶⊤, (𝜅−1𝐴)⊤)⊤, the 𝜅th order invertibility matrix 𝜅 associated with the
riplet (𝐴,𝐵, 𝐶) is

𝜅 =
(

0 0
𝜅−1𝐵 𝜅−1

)

.

he dynamic model in (2) is said invertible from output 𝑦 to 𝛿, if 𝛿
s uniquely determined by the Taylor series vector, Y𝜅 , of its output
ignal, for some 𝜅. In this regard, denoting with 𝜅 the 𝑘th invertibility
atrix associated with the triplet (𝐴,𝑊 ,𝐶), the following two results
old (Sundaram & Hadjicostis, 2007):

roposition 1. System (2) is invertible from 𝑦 to 𝛿 if, and only if, for some
nteger 𝑘 ≤ 𝑛, the first 𝑣 columns of 𝜅 are linearly independent of each
thers and of the remaining columns of 𝜅 , i.e. the columns (0⊤, (𝜅−1)⊤)⊤.
his occurs when

ank(𝜅 ) − rank(𝜅−1) = 𝑣 . (3)

roposition 2. System (2) is strongly observable if, and only if, for some
nteger 𝜅 ≤ 𝑛, it holds

ank([𝜅 ,𝜅 ]) − rank(𝜅 ) = 𝑛 . (4)

The latter proposition ensures that all columns of 𝜅 are linearly
ndependent of each other and of the columns of 𝜅 . Starting from 𝜅 =
, the existence and the value of 𝜅 are found iteratively by increasing
ts value until the invertibility condition in (3) is met; the system is not
nvertible if the condition is not satisfied for some 𝜅 ≤ 𝑛.

Finally, two definitions are helpful for this work purpose: a matrix
is said (𝐴,𝐶) conditioned compliant if there exists a matrix 𝐿 such that
= 𝐴 − 𝐿𝐶; a dynamic system solving Problem 1 is termed a LUIO

nd its determination is the object of this work.

. Design of linear unknown input-state observers

This section describes a general procedure to obtain a LUIO for
he nonlinear model in (2) and, hence, to solve Problem 1. Such
rocedure uses only information about the first 𝜅 + 1 functions (from
he order 0 to the 𝜅th order) of the Taylor series of the known input 𝑢(𝑡)
nd estimated noise-free output ̂̄𝑦(𝑡), which are piled into the vectors
𝜅 (𝑡) = (𝑢(𝑡), �̇�(𝑡),… , 𝑑𝜅𝑢(𝑡)∕𝑑𝑡𝜅 )⊤ and Ŷ𝜅 (𝑡) = ( ̂̄𝑦(𝑡), ̇̄̂𝑦(𝑡),… , 𝑑𝜅 ̂̄𝑦(𝑡)∕𝑑𝑡𝜅 )⊤,

espectively. The estimated noise-free output ̂̄𝑦(𝑡), after having appro-
riately dealt with the measurement noise 𝜋, through a procedure that
ill be described later, ensuring that ̂̄𝑦(𝑡) converges to �̄�(𝑡) = 𝐶 𝑥(𝑡) and,

onsequently, Ŷ𝜅 converges to Ȳ𝜅 , i.e. the Taylor Series Vector of the
oise-free output.

Precisely, considering the factorization of the dynamic model in (2),
ne seeks a dynamic observer of the form

̇̂𝑥 = 𝐴 �̂� + 𝐵 𝑢 + 𝜑(U𝜅 , Ŷ𝜅 ) ,
𝜅 ̂ 𝜅 𝜅 ̂ 𝜅 (5)
�̂� = 𝜓(�̂�,U ,Y ), 𝛿 = 𝜃(�̂�,U ,Y ) ,
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𝑦

𝜌

where �̂� is an estimate of the system state, 𝛿 is an estimate of the
unknown input 𝛿, �̂� is the observer’s output vector, and 𝜑, 𝜓 , and 𝜃
are functions to be defined. In accordance with this choice, the state
estimation error, �̃� = 𝑥 − �̂�, evolves according to the dynamics

̇̃𝑥 = �̇� − ̇̂𝑥 =

= 𝐴𝑥 + 𝐵 𝑢 +𝑊 𝛿 − 𝐴 �̂� − 𝐵 𝑢 − 𝜑(U𝜅 , Ŷ𝜅 ) =

= 𝐴 �̃� +𝑊 𝛿 − 𝜑(U𝜅 , Ŷ𝜅 ) ,

whose convergence needs to be ensured by a suitable choice of the
above functions. To this goal, inspired by Azid et al. (2021), one
can write the expressions of the noise-free output �̄� and its first 𝜅
derivatives, i.e.

�̄� = 𝐶𝑥 ,
̇̄𝑦 = 𝐶𝐴𝑥 + 𝐶𝐵𝑢 + 𝐶𝑊 𝛿,
̈̄𝑦 = 𝐶𝐴2𝑥 + 𝐶𝐴𝐵𝑢 + 𝐶𝐵 �̇� + 𝐶𝑊 �̇� ,

⋮

̄(𝜅) = 𝐶𝐴𝜅𝑥 +
∑𝜅−1
𝑖=0 𝐶𝐴

𝜅−1−𝑖 (𝐵𝑢(𝑖) +𝑊 𝛿(𝑖)
)

,

and then compactly write them as

Ȳ𝜅 = 𝜅 𝑥 +𝜅 U𝜅 + 𝜅 𝛥𝜅 , (6)

where 𝛥𝜅 is the 𝜅th order Taylor series vector of 𝛿, 𝜅 is the 𝜅th order
invertibility matrix associated with the triplet (𝐴,𝐵, 𝐶), while 𝜅 and
𝜅 are the 𝜅th order observability and invertibility matrices previously
defined.

Having said this, it is possible to prove the following first main
result, describing when the sought LUIO exists and how 𝜑, 𝜓 , and 𝜃
must be chosen:

Theorem 1 (Linear Unknown Input-state Observer (LUIO)). Given an
integer 𝜅 ≤ 𝑛, the continuous-time dynamic system described by the
equations
̇̂𝑥 = 𝐴�̂� + 𝐵𝑢 +𝛷(Ŷ𝜅 −𝜅U𝜅 ) + 𝛯( ̂̄𝑦 − �̂�) ,

�̂� = 𝐶�̂� , 𝛿 = 𝑊 †( ̇̂𝑥 − 𝐴�̂� − 𝐵𝑢) ,
(7)

where ̂̄𝑦 and Ŷ𝜅 are estimates of the noise-free output and its corresponding
𝜅th order Taylor series vector is a LUIO for the model in (2), providing the
estimates �̂�, �̂�, and 𝛿 of the actual system state, output, and unknown input
if, and only if, the following conditions hold:

(A1) (𝐴,𝐶) is observable (system observability),
(A2) 𝛯 is such that 𝐴 − 𝛯 𝐶 = 𝛩, where 𝛩 is a free Hurwitz matrix that

is (𝐴,𝐶) conditioned compliant (free solution convergence),
(A3) 𝛷𝜅 = (𝑊 , 0𝑛×𝑐𝜅 ) (input decoupling),
(A4) 𝛷𝜅 = 0𝑛×𝑛 (residue cancellation),
(A5) 𝜅 satisfies (3)–(4) (system invertibility and strong observability).

Also, the dynamics of the state estimation error reads

̇̃𝑥 = 𝛩 �̃� . (8)

Furthermore, under the hypothesis of high-frequency low-amplitude mea-
surement noise and having defined vector

𝜌 =
(

∫ 𝑡0 𝑦(𝜏) 𝑑𝜏
Ȳ𝜅

)

that includes also the integral of the system output 𝑦 over the time, the
dynamic system

̇̂ = 𝑃 �̂� + 𝐸𝐶𝜌(𝜌 − �̂�) , (9)

with 𝑃 =
(

0𝛾×𝑐 I𝛾
0𝑐×𝑐 0𝑐×𝛾

)

, 𝐶𝜌 =
(

I𝑐 0𝑐×𝛾
)

, where 𝛾 = 𝑐(𝜅 + 1), and 𝐸

any matrix rendering 𝑃 − 𝐸𝐶𝜌 Hurwitz, provides robust estimates �̂� of the
output vector 𝑦 and its first 𝜅 time derivatives, i.e. such that �̂� converges to
𝜌. □
3

Fig. 1. Depiction of the proposed LUIO.

A depiction of the proposed LUIO is illustrated in Fig. 1. Before delv-
ing into the proof, let us clarify the meaning of the above conditions in
the following:

Remark 1. Condition (A1) ensures that the system is observable and
then all the eigenvalues of the observer can be placed at will through
a feedback matrix 𝛯. Condition (A2) specifies that 𝛯 has a structure
allowing to obtain the exact desired dynamics described by matrix
𝛩, for the state estimation error. Conditions (A3) and (A4) decouple
the state estimation error dynamics from the term depending on the
𝜅th observability matrix, i.e. vector 𝜅 𝑥 in (6), and the unknown
input, respectively. Finally, (A5) implies that all the columns of the
observability matrix 𝜅 are linearly independent of each other and of
all columns of the invertibility matrix 𝜅 , as shown later; it guarantees
that the linear equations appearing in (A2) and (A3) have a solution,
which in turn involves the existence of the solving matrix 𝛷.

Proof of Theorem 1. The result is proven in four steps. First, a
method to deal with the noise signal 𝜋(𝑡) is designed; Secondly, a
procedure allowing the asymptotic estimation of the 𝜅th order Taylor
series vector Ȳ𝜅 is found; Third, a dynamic estimator ensuring the state
estimation signal �̂�(𝑡) converge to 𝑥(𝑡); Finally, an input recovery rule
reconstructing the unknown input vector 𝛿(𝑡) is derived.

Step 1 - Estimation of the 𝜅th Taylor Series Vector of Noise-free System
Output. As commonly done in signal theory, the measurement noise 𝜋
is written as the sum of 𝑍 sinusoidal signals, i.e.

𝜋(𝑡) =
∑𝑍
𝑖=1 𝑎𝑖 sin(𝜔𝑖 𝑡 + 𝜙𝑖) (10)

where 𝑎𝑖, 𝜔𝑖 and 𝜙𝑖 are the amplitude, frequency, and phase of the 𝑖th
signal. Then, the system output in (2) reads

𝑦(𝑡) = �̄�(𝑡) + 𝜋(𝑡) =
= 𝐶𝑥(𝑡) +

∑𝑍
𝑖=1 𝑎𝑖 sin(𝜔𝑖 𝑡 + 𝜙𝑖) .

(11)

It should be noted here that the integral over the time of the system
output 𝑦 practically coincides with that of the noise free output �̄�. To
show this, consider the integral 𝛱𝑖(𝑡) of the 𝑖th term composing the
noise signal, i.e. the function

𝛱𝑖(𝑡) =
𝑎𝑖
𝜔𝑖

∫ sin(𝜔𝑖𝑡 + 𝜙𝑖) = − 𝑎𝑖
𝜔𝑖

cos(𝜔𝑖𝑡 + 𝜙𝑖) .

Given an interval [0, 𝑡), one has

∫ 𝑡0 𝜋(𝜏) 𝑑𝜏 = −
∑𝑍
𝑖=1

𝑎𝑖
𝜔𝑖

cos(𝜔𝑖 𝜏 + 𝜙𝑖)
|

|

|

|

𝑡

0
=

=
∑𝑍
𝑖=1

𝑎𝑖
𝜔𝑖
(cos(𝜙𝑖) − cos(𝜔𝑖 𝑡 + 𝜙𝑖)) =

= 2
∑𝑍
𝑖=𝑖

𝑎𝑖
𝜔𝑖

sin(𝜙𝑖 + 𝜔𝑖𝑡∕2) sin(𝜔𝑖𝑡) ,

where cos(𝜙𝑖)−cos(𝜔𝑖𝑡+𝜙𝑖) has been compacted via a prosthaphaeresis
formula. Then, the quantity ∫ 𝑡0 𝑦(𝜏) 𝑑𝜏 reads

∫ 𝑡0 �̄�(𝜏) 𝑑𝜏 + ∫ 𝑡0 𝜋(𝜏) 𝑑𝜏 =
= ∫ 𝑡0 �̄�(𝜏) 𝑑𝜏 + 2

∑𝑍
𝑖=𝑖

𝑎𝑖
𝜔𝑖

sin(𝜙𝑖 + 𝜔𝑖𝑡∕2) sin(𝜔𝑖𝑡) ,

Evaluating the Euclidean norm of the above formula yields
‖

‖

‖

∫ 𝑡0 𝑦(𝜏) 𝑑𝜏
‖

‖

‖2
= ‖

‖

‖

∫ 𝑡0 �̄�(𝜏) 𝑑𝜏
‖

‖

‖2
+ ‖

‖

‖

∫ 𝑡0 𝜋𝑖(𝜏) 𝑑𝜏
‖

‖

‖2
≤

‖ 𝑡 ‖

∑𝑍
≤ ‖

‖

∫0 �̄�(𝜏) 𝑑𝜏‖
‖2

+ 2 𝑖=1 |𝑎𝑖|∕|𝜔𝑖| .
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As typical measurement noise signals have low-amplitudes and high-
frequencies (cf. e.g. Khalil & Praly, 2014), it holds 𝑎𝑖 ≪ 𝜔𝑖 or, equiv-
alently, 𝑎𝑖∕𝜔𝑖 ≈ 0, by which
‖

‖

‖

∫ 𝑡0 𝑦(𝜏) 𝑑𝜏
‖

‖

‖2
≈ ‖

‖

‖

∫ 𝑡0 �̄�(𝜏) 𝑑𝜏
‖

‖

‖2
.

Thereby, the effect of the noise components on the integral of the
output signal is negligible, since it holds ∫ 𝑡0 𝑦(𝜏) 𝑑𝜏 ≈ ∫ 𝑡0 �̄�(𝜏) 𝑑𝜏.

Motivated by this, it is helpful for our purpose to define a new vector
𝜌, whose components pile the time integrals of the 𝑐 components of the
system output 𝑦(𝑡) and the 𝜅th Taylor series vector of the noise-free
output �̄�(𝑡), i.e.

𝜌 =
(

𝜌𝑐
Ȳ𝜅

)

∈ R𝜇 , with 𝜌𝑐 = ∫ 𝑡0 𝑦(𝜏) 𝑑𝜏 ∈ R𝑐 , (12)

with 𝜇 = 𝑐 + 𝛾 and 𝛾 = 𝑐(𝜅 +1). In deriving the dynamics of 𝜌, it should
be observed that it is perturbed by two unknown yet bounded signals,
𝜂 ∈ R𝑐 and 𝜋. Signal 𝜂 is the effect of the change rates of the (𝜅 + 1)th
derivatives of �̄�(𝑡), which is, in general, not negligible. The dynamics of
𝜌 can then be written as

�̇� = 𝑃𝜌 + 𝑃𝑏𝜂 + 𝑃𝑛𝜋

𝑦𝜌 = 𝐶𝜌𝜌 ,
(13)

where

𝑃 =
(

0𝛾×𝑐 I𝛾
0𝑐×𝑐 0𝑐×𝛾

)

, 𝑃𝑏 =
(

0𝛾×𝑐
I𝑐

)

, 𝑃𝑛 =
(

I𝑐
0𝛾×𝑐

)

,

𝐶𝜌 =
(

I𝑐 0𝑐×𝛾
)

.

Noticing that 𝜌 is observable by construction, one can design a
Luenberger-like state observer of the form
̇̂𝜌 = 𝑃 �̂� + 𝐸 (𝑦𝜌 − �̂�𝜌) ,

̂𝜌 = 𝐶𝜌�̂� ,
(14)

where �̂� = (�̂�⊤𝑐 , Ŷ
𝜅⊤)

⊤
is the estimated vector and 𝐸 is a free design

matrix to be chosen so that the estimation error �̃� = 𝜌 − �̂�, whose
components are �̃�𝑐 and Ỹ𝜅 , is convergent. Direct computation of the
dynamics yields of �̃� gives
̇̃𝜌 = �̇� − ̇̂𝜌 =

= 𝑃𝜌 − 𝑃 �̂� − 𝐸𝐶𝜌 + 𝐸𝐶�̂� − 𝑃𝑏𝜂 − 𝑃𝜋𝜋 =

= 𝑃 �̃� − 𝑃𝑏 𝜂 − 𝑃𝑛𝜋 ,

(15)

in which 𝑃 = 𝑃 −𝐸𝐶 is a matrix that has to be made Hurwitz through
a suitable choice of 𝐸. This would ensure that �̃�(𝑡) is asymptotically
bounded signal. To prove this, one has to show that the effect of
the unknown signals 𝜂 and 𝜋 are negligible. Assume that a suitable
matrix 𝐸, whose existence is ensured by the observability property
of 𝜌, has been chosen so that 𝑃 is Hurwitz and its eigenvalues are
distinct, i.e. they are located at 𝜇 different positions. By algebra theory,
there exist 𝜇 linearly independent eigenvectors, associated with the
chosen eigenvalues, with which one can construct the so-called modal
matrix 𝑇 . Such matrix can be used to diagonalize 𝑃 by the change of
coordinate 𝜖 = 𝑇 �̃�, so that the linear dynamics in (15) reads

�̇� = 𝑇𝑃𝑇 −1𝜖 − 𝑇 −1𝑃𝑏 𝜂 − 𝑇 −1𝑃𝑛 𝜋 =
= 𝛬𝜖 − 𝑇 −1𝑃𝑏 𝜂 − 𝑇 −1𝑃𝑛 𝜋 ,

(16)

where 𝛬 is diagonal and its nonzero entries are the chosen eigenvalues.
Now, from a boundedness point of view, the worst case happens when
the two unknown signals constantly take on their absolute maximum
values, i.e. 𝜂(𝑡) = 𝜂𝑚 and 𝜋(𝑡) = 𝜋𝑚. In this case, the new state 𝜖
converges to the equilibrium point

𝜖𝑞 = −𝛬−1(𝛤 𝜂𝑚 + 𝛥𝜋𝑚) , (17)

with 𝛤 = 𝑇 −1𝑃𝑏 and 𝛥 = 𝑇 −1𝑃𝑛. The Euclidean norm of (17) is
upper-bounded as follows:

‖𝜖𝑞‖2 = |𝜆𝑚|
(

‖𝛤‖2|𝜂𝑚| + ‖𝛥‖2|𝜋𝑚|
)

≤
≤ |𝜆 |

(

‖𝛤‖ |𝜂 | + ‖𝛥‖
∑𝑍

|𝑎 |

) (18)
4

𝑚 2 𝑚 2 𝑖=1 𝑖
where 𝜆𝑚 is the largest eigenvalues of 𝛬−1 and having considered from
(10) that

‖𝜋‖2 =
∑𝑍
𝑖=1 ‖𝑎𝑖 sin(𝜔𝑖𝑡 + 𝜙𝑖)‖2 ≤

∑𝑍
𝑖=1 |𝑎𝑖| .

Now, being 𝛬 diagonal, 𝜆𝑚 = 1
𝜆𝑀

, where 𝜆𝑀 is the largest eigenvalue
of 𝛬. Then, the maximum value of the unknown input 𝜂𝑚 corresponds
o known maximum values of the first (𝜅 + 1)th time derivatives of
he output signal 𝑦(𝑡); also, considering that typical measurement noise
ignals are characterized by low and bounded amplitudes and high
requencies (cf. e.g. Khalil & Praly, 2014), (18) suggests that, choosing
suitable low |𝜆𝑚|, which corresponds to a large |𝜆𝑀 |, the effects of
𝑚 and 𝜋𝑚 can be made negligible. This choice implies that ‖𝜖𝑞‖2 ≈ 0,
hat, in turn, implies that the norm of the state trajectories satisfies
𝜖‖2 ≤ ‖𝜖𝑞‖2 ≈ 0 and, hence, �̃� ≈ 0.
Step 2 - Estimation of System State and Unknown Inputs. We can now

ove on to find the dynamic model that allows a convergent estima-
ion of the state signal 𝑥(𝑡). To this end, consider first the Lyapunov
andidate

(�̃�, �̃�) = �̃�⊤𝑆 �̃� + �̃�⊤𝑁 �̃� , (19)

here 𝑆 and 𝑁 are suitable positive definite matrices, and try to
how that the convergence to zero of the estimation errors, �̃� and �̃�,
s decoupled. Towards this goal one can evaluate the time derivative of
19) that reads:

̇ = 𝜕𝑉
𝜕�̃�

̇̃𝜌 + 𝜕𝑉
𝜕�̃�

̇̃𝑥 =

= 2 �̃�⊤𝑆 ̇̃𝜌 + 2 �̃�⊤𝑁 ̇̃𝑥 =

= 2�̃�⊤𝑆 𝑃 �̃� + 2 �̃�⊤𝑁 ̇̃𝑥 =

= �̃�⊤(𝑆 𝑃 + 𝑃⊤𝑆) �̃� + 2 �̃�⊤𝑁 ̇̃𝑥 ,

(20)

hich needs to be negative definite to establish our result. The first
ddend of (20) can be made negative definite with respect to 𝜌 if 𝑃
olves the Lyapunov equation

𝑃 + 𝑃⊤𝑆 = −𝑄�̃� (21)

or a positive definite matrix 𝑄�̃�. Also, it is known that such matrix is
urwitz, unique, and given by:

= ∫

∞

0
𝑒𝑃

⊤𝑡𝑄�̃� 𝑒
𝑃 𝑡 𝑑𝑡 . (22)

sing (21) gives
𝜕𝑉
𝜕�̃�

̇̃𝜌 = −�̃�⊤𝑄�̃� �̃� . (23)

Step 3 - Dynamic State Estimator. The proof continues by referring
to the observer’s form in (5) and trying to find an affine form for
the function 𝜑(U𝜅 , Ŷ𝜅 ), which decouples the dynamics of the state
estimation error from the unknown signal 𝛿(𝑡). Namely, one can choose

𝜑(U𝜅 , Ŷ𝜅 ) = 𝛷1 Ŷ𝜅 +𝛷2 U𝜅 + 𝜈 =

= 𝛷1
(

Ȳ𝜅 − Ỹ𝜅
)

+𝛷2 U𝜅 + 𝜈

where Ŷ𝜅 = Ȳ𝜅 − Ỹ𝜅 has been substituted, 𝛷𝑖, for 𝑖 = 1, 2, are free
matrices, and 𝜈 is a free signal. It can be already stated, by virtue of
(23), that the error �̃� goes to zero, which in turn implies that Ỹ𝜅 → 0
and consequently Ŷ𝜅 = Ȳ𝜅 , leading for the state estimation dynamics
to the following:
̇̃𝑥 = 𝐴 �̃� +𝑊 𝛿 −𝛷1 Ȳ𝜅 −𝛷2 U𝜅 − 𝜈 =

= 𝐴 �̃� −𝛷1(𝜅𝑥 +𝜅 U𝜅 + 𝜅 𝛥𝜅 ) −𝛷2 U𝜅+

+ 𝑊 𝛿 − 𝜈 ,

where (6) has been used. This suggests choosing 𝛷2 = −𝛷1 𝜅 , so
that the following term collection can be done in the state estimation
dynamics:

̇ 𝜅 𝜅 𝜅
�̃� = 𝐴 �̃� −𝛷1( 𝑥 +  𝛥 ) +𝑊 𝛿 − 𝜈 . (24)
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Now, it can be seen that the behavior of the solution �̃�(𝑡) of the
differential equation above undesirably depends on the unknown input
vector 𝛿, its 𝜅th vector of the Taylor series 𝛥𝜅 , and the initial state
estimation error �̃�(0). In contrast, a desired behavior for the state
estimation is that of (8), with 𝛩 a free Hurwitz matrix that is (𝐴,𝐶)
conditioned compliant. By comparing (24) with (8), one can see that
the above property is ensured if

𝐴 �̃� −𝛷1(𝜅𝑥 + 𝜅𝛥𝜅 ) +𝑊 𝛿 − 𝜈 = 𝛩 �̃� .

possible way is to choose 𝜈 as in the standard Luenberger’s
pproach, i.e. 𝜈 = 𝛯( ̂̄𝑦 − �̂�), where 𝛯 is a free output injection matrix.
hen, computing the estimated output vector �̂� through the function
(�̂�,U𝜅 , Ŷ𝜅 ) = 𝐶 �̂� (refer again to the observer’s form in (5)) makes the

eft-hand side of the above expression equal to

�̃� −𝛷1(𝜅𝑥 + 𝜅𝛥𝜅 ) +𝑊 𝛿 − 𝛯
(

�̄� − �̃�𝑐
)

+ 𝛯 𝐶 �̂�

n which the substitution ̂̄𝑦 = �̄� − �̃�𝑐 has been done considering that �̃�𝑐
s the vector composed of the first 𝑐 components of �̃�. By virtue of the
act that �̃�→ 0, which implies that �̃�𝑐 → 0, and �̄� = 𝐶 𝑥, we come to

𝐴 − 𝛯 𝐶) �̃� −𝛷1(𝜅𝑥 + 𝜅𝛥𝜅 ) +𝑊 𝛿. (25)

y comparing now (25) with the right-hand side of (8), the following
wo conditions are found:

𝐴 − 𝛯 𝐶 = 𝛩 ,
−𝛷1(𝜅𝑥 + 𝜅𝛥𝜅 ) +𝑊 𝛿 = 0 .

he existence of a matrix 𝛯 satisfying the equation in the first row,
or some Hurwitz matrix 𝛩 that is conditioned compliant, is ensured
y (𝐴,𝐶) being observable (Condition A1). As for the equation in the
econd row, observing that 𝛿 is the first elements of vector 𝛥𝜅 , the
econd-row equation becomes

1 𝜅𝑥 +
(

𝛷1 𝜅 −
(

𝑊 , 0𝑛×𝑐𝜅
))

𝛥𝜅 = 0 .

Now, as the above equation must be satisfied for all 𝑥 and all 𝛥𝜅 , it
follows that it must be

𝛷1 𝜅 = 0𝑛×𝑛 , and 𝛷1 𝜅 =
(

𝑊 , 0𝑛×𝑐𝜅
)

.

Now, putting all together one obtains 𝜑(Ŷ𝜅 ,U𝜅 ) = 𝛷1(Ŷ𝜅 − 𝜅U𝜅 ) −
𝛯( ̂̄𝑦 − �̂�), or equivalently 𝜑(Ȳ𝜅 ,U𝜅 ) = 𝛷1(Ȳ𝜅 − 𝜅U𝜅 ) − 𝛯(�̄� − �̂�), and
inally, renaming 𝛷1 as 𝛷, the relations in the above formula becomes
he ones expressed in Condition A2 and A3. Note now that the two
onditions can be stacked vertically in the equation system
⊤𝛷⊤ = 𝛶 ⊤ , (26)

here 𝛹⊤ =
(

𝜅⊤

𝜅⊤
)

and 𝛶 ⊤ =
⎛

⎜

⎜

⎝

𝑊 ⊤

0𝑐𝜅×𝑛
0𝑛×𝑛

⎞

⎟

⎟

⎠

. The above system admits

olution in terms of 𝛷⊤ if, and only if,

ank
(

𝛹⊤
)

= rank
(

𝛹⊤|𝛶 ⊤
)

(27)

rom the hypothesis of strong observability of the system (4), the rows
f matrix 𝛹⊤ are linearly independent. Furthermore, the invertibility
ondition (3) ensures that the first 𝑣 rows of matrix 𝜅⊤ are linearly
ndependent of all other rows of it and of each other. On the other hand,
he unknown input matrix 𝑊 ∈ R𝑛×𝑣 is full-column rank for hypothesis
nd has a rank equal to 𝑣 and, consequently, its transpose 𝑊 ⊤ ∈ R𝑣×𝑛
s a full-row rank matrix with rank also equal to 𝑣. Considering that the
emainder of 𝛶 ⊤ is composed by null values and recalling the shape of
atrix 𝜅⊤, this implies that condition (27) is satisfied if and only if the

ows of 𝑊 ⊤ are in the span of the rows of sub-matrix 𝑊 ⊤O𝜅−1⊤ and,
he latter, if always satisfied by virtue of the invertibility condition (3)
rom which holds that rank

(

𝑊 ⊤O𝜅−1⊤
)

= rank
(

𝑊 ⊤). In this setting a
olution in terms of 𝛷⊤, and consequently 𝛷, exists and we can continue
he proof. Having satisfied all the above conditions, the state estimation
ynamics is rendered convergent by a suitable choice of 𝛯.
5

Now, using the state estimation error dynamics in (8), the second
ddend of the time derivative in (20) becomes
𝜕𝑉
𝜕�̃�

̇̃𝑥 = 2 �̃�⊤𝑁 ̇̃𝑥 = 2�̃�⊤𝑁 𝛩 �̃� = �̃�⊤(𝑁 𝛩 + 𝛩⊤𝑁) �̃� , (28)

which can be made negative definite with respect to �̃� by choosing

= ∫

∞

0
𝑒𝛩

⊤𝑡𝑄𝑥 𝑒
𝛩𝑡 𝑑𝑡 (29)

here 𝑄𝑥 is a positive definite matrix; such matrix 𝑁 is the unique,
ositive definite solution of the Lyapunov equation 𝑁 𝛩+𝛩⊤𝑁 = −𝑄𝑥,
nd it exists since 𝛩 is Hurwitz by design. This implies that
𝜕𝑉
𝜕�̃�

̇̃𝑥 = −�̃�⊤𝑄𝑥 �̃�⊤ . (30)

Substituting the matrices 𝑁 and 𝑆 obtained from (22)–(29) in the
ime derivative (20) gives

̇ = −�̃�⊤𝑄�̃� �̃� − �̃�⊤𝑄𝑥 �̃� , (31)

hich proves the overall convergence of �̃� and �̃�.
Step 4 - Unknown Input Reconstruction. Now that the state estimate

̂(𝑡) is guaranteed to asymptotically converge to 𝑥(𝑡), it can be used
o retrieve the input estimate signal 𝛿(𝑡). Precisely, from (2), one first
ets 𝑊 𝛿 = �̇� − 𝐴𝑥 − 𝐵𝑢. Since 𝑊 is full column rank by construc-

tion, one can multiply both members of the above equation by 𝑊 ’s
left-pseudoinverse, i.e.

(𝑊 ⊤𝑊 )−1𝑊 ⊤𝑊 𝛿 = (𝑊 ⊤𝑊 )−1𝑊 ⊤(�̇� − 𝐴𝑥 − 𝐵 𝑢) ,

nd obtain 𝛿 = (𝑊 ⊤𝑊 )−1𝑊 ⊤(�̇� − 𝐴𝑥 − 𝐵 𝑢); then, since 𝑥(𝑡) ≃ �̂�(𝑡),
he state vector can be replaced with �̂�(𝑡) and its time derivative can
e derived by assuming a similar form for the observer’s dynamics,
.e. ̇̂𝑥 = 𝐴 �̂� + 𝐵 𝑢 +𝑊 𝛿. Referring for the final time to the observer’s
orm in (5), this leads to the choice of 𝜃(�̂�,U𝜅 , Ŷ𝜅 ) = 𝑊 †( ̇̂𝑥−𝐴 �̂�−𝐵 𝑢),

which is the formula in the third row of (7). If so, the input estimation
error becomes
𝛿 = 𝛿 − 𝛿 = 𝑊 (�̇� − 𝐴𝑥 + 𝐵 𝑢 − ̇̂𝑥 + 𝐴 �̂� − 𝐵 𝑢) =

= 𝑊 ( ̇̃𝑥 − 𝐴 �̃�) ,

hose convergence to zero is ensured by �̃�(𝑡) being convergent. Finally,
t can be noticed that the convergence speed of 𝛿 follows that of �̃�,
hich concludes the proof. □

. Application to soft articulated robots

The proposed method is applied to a SAR setup. After recalling the
onlinear model of the robot and exploiting the information deriving
rom the measured output and input vectors, the existence of the
UIO is tested and the observer is designed; then, simulations show
he effectiveness of the method and its superiority to state-of-the-art
olutions (cf. e.g. Sundaram & Hadjicostis, 2007); finally, the hardware
f the experimental setup is described and the attained results are
eported to validate the real applicability of the method. It should be
mphasized that in both cases the design and structure of the controller
ill be seen as a black box.

.1. Existence and design of the LUIO

A two-degree-of-freedom Soft Articulated Robot (SAR), with joint
onfiguration vector 𝑞 = (𝑞1, 𝑞2)⊤ and input torque vector 𝜏 = (𝜏1, 𝜏2)⊤,

is described by the nonlinear model

𝑀(𝑞) 𝑞 + ℎ(𝑞, �̇�) = 𝜏 , (32)

here 𝑀(𝑞) = {𝑀𝑖𝑗 (𝑞)}, for 𝑖, 𝑗 = 1, 2, is the inertia matrix and
(𝑞, �̇�) = (ℎ (𝑞), ℎ (𝑞))⊤ is a vector piling all Coriolis, centrifugal, and
1 2
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Fig. 2. Simulation results with a two-degree-of-freedom SAR. A LUIO and a DUIO estimate the full state and unknown inputs by using only link position information 𝑞 and known
inputs 𝜏. The proposed linear observer reconstructs faster and more precisely both the system’s state and unknown inputs.
𝑥

i
s

a

D
o

𝛷

gravity moments (Siciliano, Khatib, & Kröger, 2008); more precisely, it
holds:
𝑀11(𝑞) = 𝐽1 + 𝑚1𝑙

2
1∕4 + 𝐽2 + 𝑚2(𝑙21 + 𝑙

2
2∕4 + 𝑙1𝑙2𝑐2) ,

𝑀12(𝑞) = 𝐽2 + 𝑚2(𝑙22∕4 + 𝑙1𝑙2𝑐2∕2) ,

𝑀22(𝑞) = 𝐽2 + 𝑚2𝑙
2
2∕2 ,

and
ℎ1(𝑞) = − 1

2𝑚2𝑙1𝑠2�̇�1�̇�2 −
1
2𝑚2𝑙1𝑠2(�̇�1 + �̇�2)�̇�2+

+ 𝑔𝑠1(
1
2𝑚1𝑙1 + 𝑚2𝑙1) +

1
2𝑚2𝑙2 𝑔𝑠12 ,

ℎ2(𝑞) =
1
2𝑚2𝑙1𝑠2�̇�

2
1 +

1
2𝑚2𝑙2 𝑔𝑠12 ,

n which 𝐽𝑖, 𝑚𝑖, 𝑙𝑖 are the inertia, the mass and the length of the 𝑖th link,
is the gravity acceleration, and where the shorthand 𝑐𝑖 = cos(𝑞𝑖), 𝑠𝑖 =
in(𝑞𝑖), and 𝑠𝑖𝑗 = sin(𝑞𝑖 + 𝑞𝑗 ) have been used. Every joint configuration
s assumed to be directly measured.

Following the strategy described in Section 2, one can choose the
tate vector 𝑥 = (𝑞⊤, �̇�⊤)⊤, the input vector 𝑢 = 𝜏 and express the system

model as in (1) with 𝑓 (𝑥, 𝑢,𝑤) =
(

𝑓1(𝑥, 𝑢,𝑤), 𝑓2(𝑥, 𝑢,𝑤), 𝑓3(𝑥, 𝑢,𝑤),
𝑓4(𝑥, 𝑢,𝑤)

)⊤, where

𝑓1(𝑥, 𝑢,𝑤) = 𝑥3, 𝑓2(𝑥, 𝑢,𝑤) = 𝑥4,

𝜁 (𝑥, 𝑢,𝑤) =
(

𝑓3(𝑥, 𝑢,𝑤)
𝑓4(𝑥, 𝑢,𝑤)

)

=𝑀(𝑞)−1 (𝜏 − ℎ(𝑞, �̇�))

Then, in order to separate linear and nonlinear terms and reach the
form of (2), one can consider the nominal expression of the inertia
matrix, namely �̄�(𝑞), i.e. the typical inertia matrix of a two-degree soft
articulated robot composed (Pedone et al., 2022) via the parameters
reported in Table 1, to obtain

𝑓 (𝑥, 𝑢,𝑤) =
(

𝑓1(𝑥, 𝑢,𝑤), 𝑓2(𝑥, 𝑢,𝑤), 𝜁 (𝑥, 𝑢,𝑤)⊤
)

=

=
(

02×1
−𝑀(𝑞)−1 ℎ(𝑞, �̇�) −

(

𝑀(𝑞)−1 − 𝛥𝑀(𝑞)
)

𝜏

)

where 𝛥𝑀(𝑞) = 𝑀(𝑞)−1 − �̄�(𝑞)−1, and hence leads to the following
system

̇ = 𝐴𝑥 + 𝐵𝑢 + 𝑓 (𝑥, 𝑢,𝑤)

𝑦 = 𝐶𝑥 + 𝜋 ,
(33)

where 𝜋 is the unknown measurement noise vector and

𝐴 =
(

02×2 I2
)

, 𝐵 =
(

02×2
−1

)

, 𝐶 =
(

I2 02×2
)

,

6

02×2 02×2 �̄�(𝑞)
Finally, collecting the unknown term 𝑓 (𝑥, 𝑢,𝑤) in a suitable unknown
vector 𝛿 ∈ R2, we obtain to the following final form

̇ = 𝐴𝑥 + 𝐵𝑢 +𝑊 𝛿 , (34)

where 𝑊 =
(

02×2
I2

)

.

Moreover, to verify the existence of a LUIO, one has first to check
the existence of an integer 𝜅 satisfying Condition A1 and A5. For this
purpose, it is worth saying that the system model is observable with
𝜅 = 2 (indeed, 1 = (𝐶⊤, (𝐶𝐴)⊤)⊤ = I4) and thus Condition A1 is met.
Furthermore, Condition A5 (or equivalently (3) and (4)) is met also
for 𝜅 = 2 and with 𝑣 = 2. Direct computation yields

1 =
(

0 0
𝐶𝑊 0

)

= 04×4 ,

2 =
⎛

⎜

⎜

⎝

0 0 0
𝐶𝑊 0 0
𝐶𝐴𝑊 𝐶𝑊 0

⎞

⎟

⎟

⎠

=
(

04×2 04×4
I2 02×4

)

,

and

O2 =
⎛

⎜

⎜

⎝

𝐶
𝐶𝐴
𝐶𝐴2

⎞

⎟

⎟

⎠

=
(

I4
02×4

)

from which rank2 − rank1 = 𝑣 = 2 and rank(2,2) − rank𝑉 1 = 𝑛 = 4.
Therefore, the minimum integer satisfying the LUIO existence is 𝜅 = 2,
which also means that the first 𝑣 = 2 columns of 2 are linearly
ndependent. The LUIO design can now proceed by solving the matrix
ystem 𝛹⊤𝛷⊤ = 𝛶 ⊤ in (26), which, for (34), reads
(

V2⊤

O2⊤

)

𝛷⊤ =
⎛

⎜

⎜

⎝

𝑊 ⊤

04×4
04×4

⎞

⎟

⎟

⎠

,

nd thus
⎛

⎜

⎜

⎝

02×4 I2
04×4 04×2
I4 04×2

⎞

⎟

⎟

⎠

𝛷⊤ =
(

02×2 I2
08×2 08×2

)

. (35)

irect inspection of the involved matrices shows that the first matrix
n the left side of (35) is full column rank. This allows finding
⊤ = (𝛹⊤𝛹 )−1𝛹⊤𝛶 ⊤ =

=
(

04×6 I4
)(

02×2 I2
)

=
(

04×2 04×2
)

,
I2 02×8 08×2 08×2 02×2 I2
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Fig. 3. Simulation results with a two-degree-of-freedom SAR with a parameter variations until 100% with respect to the nominal ones. The proposed linear observer reconstructs
system state and unknown inputs with almost identical performance in all simulations conducted with estimation errors convergent to zero for 𝑡→ ∞.
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Table 1
Nominal parameters of the soft articulated robot.
Link masses 𝑚1 = 𝑚2 = 0.45 kg

Link inertia 𝐼1 = 𝐼2 = 0.0045 kg m2

Link lengths 𝑙1 = 𝑙2 = 0.1 𝑚

Agonistic 𝑘𝑎 = 0.0026 N m, 𝑎𝑎 = 8.9995 rad−1

Antagonistic 𝑘𝑏 = 0.0011 N m, 𝑎𝑏 = 8.9989 rad−1

and finally 𝛷 =
(

02×4 02
02×4 I2

)

.

Once the existence of a LUIO for system (33) has been demon-
trated, the next step is to deal with the measurement noise signals.
ollowing the procedure in Section 3, we define a new vector

=
(

𝜌𝑐
Ȳ𝜅

)

=
(

∫ 𝑡0 𝑥1𝑑𝜏, ∫
𝑡
0 𝑥2𝑑𝜏, 𝑥1, 𝑥2, �̇�1, �̇�2, �̈�1, �̈�2

)

,

hose dynamics is in the form of (13), with

𝑃 =
(

06×2 I6
02×2 02×6

)

, 𝑃𝑏 =
(

06×2
I2

)

, 𝑃𝑛 =
(

I2
06×2

)

,

𝐶𝜌 =
(

I2 02×6
)

.

As discussed in Section 3, the existence of a matrix 𝐸 ensuring
he estimation law in (14) is guaranteed by the above system being
bservable.

.2. Simulation and comparison with existing solutions

The proposed solution is compared with a DUIO whose implementa-
ion follows the design procedure in Sundaram and Hadjicostis (2007)
fter replacing delays with derivatives. To make the results comparable,
he eigenvalues of both estimators have the same position, namely in
= (−100,−99.9,−99.8,−99.7). For the LUIO, this is obtained via the

conditioned compliant matrix 𝛩 =
(

−199.5 I2 I2
−999.5 I2 02×2

)

. According to

the procedure expressed in Section 3, to make the unknown inputs
𝜂 and 𝜋 negligible, we start to consider that from qbrobotics (2022)
𝜂𝑚 = 6.33 𝑟𝑎𝑑

𝑠3
and that the maximum allowable link positions, here

denoted with 𝑞1𝑚 and 𝑞2𝑚 , respectively, are equal to = 6.28 𝑟𝑎𝑑.
Furthermore, a possible strategy to deal with the measurement noise
7

is to overestimate its amplitude considering it equal to the maximum
link positions, i.e. |𝜋| = |𝑞1𝑚 | = |𝑞2𝑚 | = 6.28 𝑟𝑎𝑑. In this setting, the
eigenvalues of 𝑃 are placed in 𝑝𝜌 = −

(

104, 50, 45, 40, 35, 30, 25, 20
)

, from
which |𝜆𝑚| =

|

|

|

1
104

|

|

|

, and consequently (18) reads

‖𝜖𝑞‖2 = |𝜆𝑚|
(

‖𝛤‖2|𝜂𝑚| + ‖𝛥‖2|𝜋𝑚|
)

≤
≤ 10−4 ⋅ 12.61 ≤ 1.2 ⋅ 10−3

(36)

Fig. 2 depicts the attained results of a noise-free simulation and
shows a faster and more precise estimation of the proposed LUIO.
Instead, Fig. 3 shows the estimation performance of the LUIO with
system parameter variations up to 100%. More specifically, in the first
scenario, all robot parameters take their respective nominal values as in
Table 1, while, in the second and third scenarios, they are perturbed by
an increment of 50% and 100%, respectively. For all three scenarios, the
LUIO design is based on the same offline model in (34), i.e., the system
matrices used to design the LUIO are the same for all conducted simu-
lations. The deviations of the parameter of the nonlinear system in (32)
do not substantially affect the estimation performance, which remain
almost identical in all the three cases considered, with estimation errors
convergent to zero for 𝑡→ ∞.

Another interesting feature of the proposed approach is its very
low computational load in terms of CPU utilization. To demonstrate
this, using Simulink Real-time Code Generation, the Matlab/Simulink
scheme including the soft-articulation robot and the LUIO, with a
system parameter deviation of 100% has been compiled and linked as a
stand-alone application. Then, the obtained application has been run
on a low-cost Raspberry PI 4 Model B system (Raspberry Pi, 2024)
with a scheduling time of 10−3 seconds. The CPU utilization obtained
n 20 runs of the application has an average of 5.12% and a standard
eviation of 0.023%. This confirms a very low computational cost and
uarantees practical implementability of the proposed solution even on
ow-cost platforms.

Fig. 4 shows the estimation performance of the LUIO and of the
UIO when the output vector is perturbed via a white measurement
oise. More specifically, the noise signal is simulated through the white
oise block in Simulink with a noise power 𝑝𝑤 = 3.5 ⋅ 10−6 and

with a sampling time equal to simulations one. The proposed method
to deal with the measurement noise is able to ensure an asymptotic
reconstruction of the free-noise output, with its relating 𝜅th derivatives,


