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Abstract Path computation in a network is dependent on the network’s processes
and resource usage pattern. While distributed traffic control methods improve the
scalability of a system, their topology and link state conditions may influence the
sub-optimal path computation. Herein, we present Pathfinder, an application-aware
distributed path computationmodel. The proposedmodel framework can improve path
computation functions through software-defined network controls. In the paper, we
first analyse the key issues in distributed path computation functions and then present
Pathfinder’s system architecture, followed by its design principles and orchestration
environment. Furthermore, we evaluate our system’s performance by comparing it
with FreeFlow and Prune-Dijk techniques. Our results demonstrate that Pathfinder
outperforms these two techniques and delivers significant improvement in the system’s
resource utilisation behaviour.

Keywords Cloud computing · Virtualization · SDN · Network · Topology inference ·
Path computation

1 Introduction

Cloud computing, which represents the long-held dream of computing as a utility,
has the potential to transform a large part of the IT industry, including making the
software evenmore attractive as a service and shaping theway IT hardware is designed
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and purchased [1]. The success of any cloud management software thus critically
depends on the flexibility, scale, and efficiency with which it can utilise the underlying
hardware resources while providing necessary performance isolation [2–5]. Thus,
resource management on the cloud scale requires the management platform to provide
a rich set of resource controls that can balance the QoS requirements of tenants with
the overall resource efficiencies of datacenters (DCs). In order to clearly understand
the current rigid DC architectures, it is necessary to also understand the characteristics
of the network links connecting them.

In general, there are two serious issues in topology inference and distributed path
computation: (1) The use of inconsistent information across nodes, resulting in the
formation of transient routing loops and forwarding tables [6]; (2) The lack of opaque-
ness to link states and traffic information [7], which contributes much to the cloud’s
flexibility but hinders the efficient execution of distributed applications that require the
exchange of large amounts of data among the virtualized infrastructure and resources.

In light of the above, an interesting solution is required that can integrate both
conventional and state-of-the-art path computation schemes and reduce the complexity
related to configuring and operating the cloud infrastructure. A solution providing
comprehensive information on the status of the network’s nodes could be expected
to assist in achieving higher efficiency while incurring only a minimal penalty on the
network resource utilisation.

1.1 Overview of Our Approach

In this paper, we utilise network topology inference (sometimes called network
tomography) in our development of Pathfinder, a model framework that enhances
the efficiency of topology inference and discovery in virtualized environments. Pre-
vious contributions and surveys on network tomography [8] principally suggested
developing estimations on given network statistics, whereas Pathfinder exploits SDN
functionalities to bring real-time network-wide abstraction under topology control and
to relate it to path computation and service level agreement (SLA) requirements. SDN
[9] is a technology that separates the control plane of a network from its data plane
and enables programmable network behaviour. This assists in reducing the complexi-
ties of understanding complex virtualised environments that work beyond static code
visualisations.

Instead of implementing a range of policies (to manage information-flow) or using
static analysis, we develop an application program interface (API) based solution sim-
ilar to [10] to administer topology functions. Although we describe our prototype
system in a fair amount of detail, it should be noted, that only limited parameters are
considered in developing Pathfinder. In addition, the overheads incurred by Pathfinder
are ignored during the experimentation. This presents a limitation of the current devel-
opment phase.

1.2 Contributions of the Paper

In summary, the paper makes the following contributions:
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– We discuss the importance of network topology inference.
– We highlight the dependencies that influence topology inference behaviour.
– We present Pathfinder model and elaborate its features.
– We implement and evaluate a prototype of the Pathfinder model.

1.3 Outline

The rest of the paper is organised as follows. Section 2 outlines the related work on
topology inference and path-computation schemes. In Sect. 3, we give an overview of
dependencies in distributed path optimisation features and functions. In Sect. 4, we
present Pathfinder’s design, including its orchestration environment, topology infer-
ence model and path allocation scheme. Section 5 provides comprehensive details
about Pathfinder’s implementation. Finally, Sect. 6 concludes the paper.

2 Related Work

2.1 Design Considerations in Topology Inference

End-to-end path monitoring and restoration techniques are commonly used in data
networks to ensure better performance and recovery from network link failures. The
following points need to be considered during the path allocation procedure.

– Ensure that the recovery path for a network can be computed alongside its working
path (for an easy and quick restoration of services).

– Ascertain that the recovery path has enough available resources.
– Identify the roles of ingress and egress nodes beforehand (in the case of node fail-
ure). Previous studies [8,11–14] addressed network path computation and topology
administration challenges by using end-to-end estimations and network character-
ization approaches.

2.2 Network Characterization

In network characterization, a network’s topology-related information is collected
through its internal resources. This is awidely-adopted strategy and is explained briefly
in literature [15–17]. An interesting aspect of network characterization is highlighted
in [18], where the authors propose a general framework for the construction of ametric
inducedmodel based on network characterization. The frameworkwasmetric-induced
network topologies (MINT). MINT employs network characterization concepts by
integrating different topologies obtained at different points in time and from different
network vantage points.

With complete link resource information available in a centralised path computa-
tionmodule (PCM), the computation for a sharedmesh restored path is a NP-complete
problem ifminimization of the total capacity usage (working and restoration) is sought
[8]. It is therefore desirable that the path computation algorithms use the input informa-
tion as little as possible to compute the paths, with no penalty (or just a small penalty)
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in terms of capacity efficiency [19]. We, therefore, in this paper, use a combination
(our own developedAPI and a link state database dependent API) approach to commu-
nicate and modify the topology state behaviour, as illustrated in Fig. 2. In summary,
the discussed end-to-end estimation and network characterization techniques offer
different trade-offs in term of network topology administration, topology inference
and restoration guarantee under single and/or multiple network failures. This enables
network operators to choose their desired protection and restoration mechanism based
on the performance requirements of the end user applications.

3 Dependencies in Distributed Path Optimization Functions

Service dependencies in a virtualized environment are very rigid and complicated.
Fromadevelopment point-of-view, each service component of traffic function depends
on a bunch of service components in logic.While on the other hand, from a deployment
point-of-view, the dependencies must overcome the limitations to satisfy the desired
QoS levels. Based on [8], and our experience, we consider the system dependencies
of topology inference in the following four major areas.

– Enforcing optimisation for large production networks Operations performed
through the path computation element (PCE) provide information not only related
to the link/nodes states, but also provide information on the active network connec-
tions. Carefully engineering these statistics can improve the best (i.e. optimised)
path selection in networks.

– Path maintenanceWhen a connection is lost due to a link failure, path optimisation
takes places using distributed intermediate variables (DIVs) based mechanisms.
This helps the system to tolerate data traffic (packets) reordering and losses.

– Overlapping updates In cases where multiple overlapping updates occur, cost-to-
destination schemes can be applied for result selection. It is therefore necessary to
ensure a suitable mechanism whereby, the traffic nodes only respond to the latest
or best update.

– Topology inference Topology identification takes into account the global infor-
mation related to network resources and paths and works by probing a network’s
internal characteristics, using information derived from each node. It is therefore
necessary to improve the topology inference models to reduce network’s link loss
rates.

The techniques discussed in [18] employ time-dependent link costs for routing but
are not applicable to our experimental settings. Moreover, such approaches are not
applicable to very-large scale data-centric environments. Pathfinder improves topology
inference and control in the following two ways

– By exploiting software-defined principles in data centres.
– By adopting a SLA-aware approach to administer topology functions.
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4 System Design

Pathfinder incorporates SDN features in distributed path computation process, which
brings two major benefits:

– It brings flexibility to introduce new ideas into the network through a software
program, as it is easier to change and manipulate a software program than to use
a fixed set of commands with proprietary network devices.

– It simplifies network configuration, as opposed to more complex conventional
distributedmanagement systems. In SDN-enabled networks, operators do not have
to configure all the network devices individually but instead can make network-
wide traffic-forwarding decisions in a logical single location, i.e. the controller,
with global knowledge of the network state.

4.1 Orchestration Environment

Wedevelop a set of programmableAPIs tomanage an already existing cloud infrastruc-
ture. Pathfinder implements an integrated orchestration of inter-DC/ cloud connectivity
by allowing operators to re-configure networkmanagement control functions. In Fig. 1,
we highlight the contribution of Pathfinder’s role (in red colour) in handling the path
computation process, where it updates the access link state information database to
implement the desired switching and routing functions on SDN-enabled hardware
equipment.

Pathfinder’s orchestration process revolves around four major actors, i.e. PCE, API,
the link state database and (SDN-enabled) switching elements. The process takes place
in following steps

– Step 1 A topology request is sent for PCE computation. This request is mirrored
and forwarded into the link state database—which is a collection of node links and
their states—through an API plug-in. The link state database evaluates the request
for any inconsistency.

Fig. 1 Implementation scenario (Color figure online)
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Algorithm 1 Resource-aware path allocation scheme

1: Input: PQ : PrecedenceQueue (the queue of pending topology requests); R[i]: the exit time of i th

topology request; REQ: a topology request; REQc , REQm and REQbw : requested CPU, memory
and bandwidth resources; Available CPU, memory and bandwidth resources denoted by C , M and
BW respectively.

2: Output: Path allocation decision
3: /* The PQ queue accumulate a domain’s pending and rejected requests */
4: while PQi != NULL do
5: sort the requests of PQi in ascending order of Rt
6: for REQ ∈ PQi do
7: /* To ensure that available resources are enough to handle upcoming requests */
8: if REQc ≤ C&&REQm ≤ M&&REQbw ≤ BW then
9: Allocate desired resources and activate request (REQ)

10: else
11: return computation failure (resources insufficient)
12: end if
13: Repeat
14: end for
15: switch to the next PQ
16: end while

Fig. 2 Pathfinder—workflow process

– Step 2 The accepted request is replied with an acknowledgement.
– Step 3 The API plug-in reads the latest switch update information from the link
state database and assigns the best available route to the request. This function is
performed through Algorithm 1.

– Step 4 The processed request is sent back to the receiver and an acknowledge-
ment of the same is updated in the API plug-in’s success f ul − request vault.
This workflow process is also illustrated in Fig. 2. Next, we discuss Pathfinder’s
topology monitoring and resource-aware path allocation schemes.
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Table 1 Topology control functions and their short description

Component Function Description

Application handler Invoke services By mapping dependencies, the application
handler selects topology requests and sends
them onward for SLA compatibility check

Service handler SLA compliance The service handler performs SLA
compatibility check. Each topology
request is controlled by the service handler
through its handler function. All services
must accept and process the control code

Path computation Path identification First, a check is made that the system has
sufficient resources for executing a process.
Then PCE is used for path computation so
that the appropriate network devices can
take part in executing the process

4.2 Monitoring Approach

A topology manager provides an open choice to administrators for fulfilling their
monitoring needs in a combination of ways, including the use of cloud platformmoni-
toring features, third partymonitoring services, or customisedmonitoring components.
Topologymanager also addresses application deployment on the basis of SLA require-
ments and resource availability.

In Pathfinder, the monitoring process is initiated following a process or application
request for the granting of resources. The Application handler checks the process
for SLA violations. If SLA violations are found, the process is rejected. If there are
no SLA violations, the request is forwarded to the Service handler, which ensures
that the process has enough resources for execution. Process requests with insufficient
resources are dropped out (rejected), while those with sufficient resources are reserved
for the PCE process. The PCE defines a suitable route for conveying data between the
request source and its destination for the accepted requests. By using PCE, the overall
processing overhead is reduced as PCE reuses the already calculated paths (using
path caching) to improve routing performance. This monitoring approach therefore
attempts to identify the bottlenecks and investigate SLA violation issues efficiently.
A short description of inference model functions is presented in Table 1.

4.3 Resource-Aware Path Allocation Scheme

Let us consider a case where an SDN controller sits atop a domain of programmable
switching elements to oversee their topology patterns. The path allocation function
can be developed by forming a precedence queue (PQ). The PQ contains a list of all
(i.e. pending and rejected) topology service requests of an individual network domain.
This allows model descriptions to be developed for different kinds of workloads,
such as topology patterns and management plans. The term pattern here refers to a
description of components of a service, i.e. an application, its required resources and
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their relationship. The proposed resource-aware path allocation scheme performs two
major tasks.

– It sorts the received topology requests from a domain in increasing order of their
burst time.

– It ensures that the network has enough resource to entertain the topology requests.

InPathfinder, resource requirements of a topology request are defined as a composite
of the CPU, memory and bandwidth resources. Algorithm 1 presents our proposed
resource-aware path allocation scheme. The developed scheme also corresponds to
the case of virtualized infrastructure managers providing an integrated orchestration
of IT resources.

5 Implementation and Evaluation

5.1 Scenarios and Compared Schemes

We take into account the following two considerations in our implementation case
scenarios.

– Path isolation For path isolation in virtualized network environments, it is assumed
that enterprise traffic is handled at “global table” of a network.

– Overlay designVirtualized infrastructures constitute an overlay design (rather than
employing a “rip-and-replace” approach), which means that network deployment
of network virtualization should take place without impacting (or just a limited
impact on) the network design that tenants already have in place.

We perform path computation on a five node topology mesh and compare Pathfinder’s
performance with the Freeflow [20] and Prune-Dijk [21] techniques using following
cases.

– Case 1Measure optimised traffic flow behaviour on a pre-computed route.
– Case 2Measure traffic flow behaviour on a resilient path.

5.2 Experimental Settings

Weconsider a controlled environment for Pathfinder anduse a limitednumber of packet
forwarding elements mapped to transmit data traffic over a network. The data traffic
in our experiments is controlled by a SDN-enabled EPC Gateway [22], which is itself
controlled by an API. The inter-node link distance is pre-computed and the shortest
path calculated is measured as the path-cost between the source and destination nodes.
We develop the API using RealCloudSim (v9.8). The console prototype is deployed
on an Intel Xeon CPU E5-2650 v3, with a clock speed of 2.30GHz, 25MB Smart
cache and 10 cores (20 threads). The test bed comprises SDN-enabled Huawei SN640
switches (OpenFlow v.1.3) and EPC Gateway agent. The agent is implemented to
administer the routes. If required, it could also selectively break out the traffic streams
(Fig. 3).
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Fig. 3 Topology map cases

Table 2 Average preprocessing
time (in seconds)—Case 1

Batch no. Freeflow Prune-Dijk Pathfinder

1st 17.45 16.92 16.40
2nd 17.21 16.67 16.93
3rd 17.62 16.83 16.42
4th 17.03 16.76 16.20
5th 17.43 16.89 16.34

Table 3 Average preprocessing
time (in seconds)—Case 2

Batch no. Freeflow Prune-Dijk Pathfinder

1st 14.36 11.61 10.83
2nd 14.21 11.46 10.92
3rd 14.06 11.33 10.57
4th 14.11 11.72 11.03
5th 14.18 11.41 10.87

5.3 Results and Discussion

These experiments are aimed at evaluating the following:

– Average pre-processing time for each case (Tables 2, 3).
– Number of node visited for each path computation technique (Table 4).
– Service response time for each case (Fig. 4a, b).
– CPU time (Fig. 5a).
– Memory utilisation (Fig. 5b).
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Table 4 Number of node visits

Methodology No. of node visits Path cost (in seconds)

Freeflow 43 16.21
Prune-Dijk 32 13.46
Pathfinder 28 10.33

(a) (b)

Fig. 4 Response time analysis. a Response time (Case 1). b Response time (Case 2)

(a) (b)

Fig. 5 Resource utilisation analysis. a CPU time comparison. bMemory utilisation

We perform simulation by first launching five batches of 30 requests under both
test case scenarios, Case 1 and Case 2 (Fig. 3). We begin by first calculating the pre-
processing time of requests. The pre-processing time of all the three compared path
computation strategies (i.e. Pathfinder, Freeflow and Prune-Dijk) keeps on fluctuating.
However, we observe a considerable improvement in Pathfinder’s time. We believe
this improvement is a result of the pre-computed paths, which is only possible in our
technique due to the flexibility brought in by the programmable API plug-in feature.

We calculate and compare Pathfinder’s pre-processing time with Freeflow and
Prune-Dijk using both Case 1 (Table 2) and Case 2 (Table 3). We also evaluate and
compare the number of node visited per successful execution (Table 4). For service
response time, we perform a set of experiments using trace-driven simulation. In our
experimentation process, service response time of a query is calculated as the time
period from the query is issued until the source node receives a response result from
the first responder (node). Finally, we performCPU time comparisons among the three
compared techniques and find Pathfinder has better CPU and memory usage statistics.
We believe that the application-awareness brought in by the SDN concept and the
introduction of a separate PQ for pending requests creates room for incoming services
to be treated on the basis of resource availability.

Results demonstrate that adopting an application-aware approach can not only
lessen the node visited and checked but can also help in reducing the CPU (Fig. 5a)
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and memory utilisation of the system (Fig. 5b). Contrariwise, CPU resources can be
overburdened if visits aremade strictly on the basis of pre-determined paths. Basically,
by adopting a continuous look and update policy by Pathfinder through resource-aware
path allocation improves path computation constraints in a simple yet effective way,
which resulted in reduced system CPU utilisation and memory utilisation.

6 Conclusion and Future Work

In this paper, we present Pathfinder, an application-aware distributed path computa-
tion model. By fine tuning the data traffic structure between the traffic flow source
and SDN-enabled destination switches, Pathfinder attempts to minimise the network
resource utilisation. We start the paper by briefly discussing the varying behaviour
and importance of network topology inference in virtualized environments. By high-
lighting the role and importance of application-awareness (using SDN as the enabling
technology) in dealingwith path computational dependencies, we present our system’s
design and briefly explain its topology inference model and resource-aware path allo-
cation control policy. We compare Pathfinder’s performance with the Freeflow and
Prune-Dijk techniques. The obtained results demonstrate that Pathfinder outperforms
these two techniques when comparing them in terms of the pre-processing time and
system resource utilisation (CPU and memory utilisation) performance.

In future, we plan to simulate Pathfinder’s performance on real-time workload and
by comparing it with several other state of the art topology inference schemes.We also
plan to explore a dynamic solution to cope with the changing demands of topology
requests.
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