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We investigate the effects of parity-deformed radiation fields on the dynamics of entanglement transfer to
distant noninteracting atom qubits. These qubits are embedded in two separated lossy cavities connected by
a leaky fiber, which acts as a cavity buffer with delocalized modes. The process is studied within a single-
excitation subspace, the parity-deformed cavity photons allowing the introduction of static local classical fields
which function as a control. The mechanism of state transfer is analyzed in comparison to the uncontrolled
case. We find that the transfer evolution exhibits an asymmetry with respect to atom-field detuning, being
sensitive to the sign of the detuning. Under a linear interaction controlled by the local classical fields, we
show that the entanglement distribution can be both amplified and preserved against the noise. These results
motivate developments towards the implementation or simulation of the purely theoretical model employing
parity-deformed fields.

Since the birth of quantum communication, various quan-
tum systems have been suggested as possible candidates for
generating quantum entanglement or transferring quantum
state [1–10]. Quantum state transfer can be completed either
by teleportation or through quantum networking [2, 11–14].
In the past two decades, many schemes of quantum communi-
cation in the context of cavity-QED have been proposed [15–
25]. Most of them are based on (in-)direct interactions be-
tween the atoms whose internal states are to be transferred.
The basic idea [15, 16] is as follows: localized atoms are
trapped in high-Q cavities which are spatially separated from
each other, special laser pulses are employed and an atom
emits a photon into the cavity mode; successively, the photon
enters the second cavity and is absorbed by the other atom,
so that the state transfer is completed by appropriately switch-
ing on or off the laser. The schemes typically utilize the in-
teraction between electromagnetic fields and atoms (or ions),
because atoms with long-lived internal states can be useful as
storage qubits and photons are best suited as fast information
carriers.

One promising procedure consists in transmitting the quan-
tum state between two-level atoms located in different cavi-
ties, with the cavity electromagnetic fields being coupled to
each other. In this scenario, a robust model has been origi-
nally presented for quantum state transfer where the cavities
exchange photons through a transmission line [15]. Connec-
tion between two cavities at long distance was also considered
[26], where a quantum gate is made of atoms trapped in cavi-
ties with modes that are indirectly coupled by optical fibers. It
has been experimentally shown that entanglement can be dis-
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tributed between remote parties who exchange unentangled
photons [27]. The transfer of an entangled state from atoms to
cavity modes has been particularly studied [28–32].

On the other hand, state transfer procedures in cavity-QED
networks have to face the problems due to the interaction of
leaky cavities with the surrounding environment. The action
of the environment on the dynamics of entanglement usually
leads to its disappearance, even at a finite time [33–41]. Many
efforts have been then devoted to finding strategies for entan-
glement protection in open quantum systems, for example by
engineering structured non-Markovian (memory-keeping) en-
vironments or by suitable control techniques [3, 42–63].

In this work, we analyze the time behavior of quantum
state transfer in a cavity-QED network through the theoretical
model of parity-deformed radiation fields [64, 65]. In partic-
ular, we use the so-called R-deformed Heisenberg extension
of the cavity photons [66], whose peculiar effect can be inter-
preted as the action of local external classical fields. We inves-
tigate the entanglement distribution to distant atomic qubits
embedded in separated leaky cavities which are connected by
an optical lossy fiber, acting as a cavity buffer with delocal-
ized modes. To the best of our knowledge, parity-deformed
fields have not been experimentally reported while some pro-
posals of implementation exist in the literature [67–69]. Other
than their general interest from a purely theoretical viewpoint
within the context of parafields and parastatistics [64, 65, 70–
74], our aim here is to explore their role within a quantum
information scenario. We indeed show that the realization of
such a parity-deformed cavity system would enable a high-
fidelity state transfer.

The paper is organized as follows. In Sec. I we re-
call the Hamiltonian associated to a parity-deformed Jaynes-
Cummings model for a two-level atom (qubit) in a single-
mode cavity. The overall system under consideration is then
described in Sec. II. In Sec. III we derive the relevant master
equation and give the structure of the evolved density matrix
of the system. The dynamics of the state transfer process is
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provided in Sec. IV. In Sec. V we discuss the results.

I. PARITY-DEFORMED FIELD AND JAYNES-CUMMINGS
MODEL

In this section we briefly review a parity extension of the
standard Jaynes-Cummings model within the rotating-wave
approximation [66], which will be useful for our successive
analysis.

It is first convenient to define the single-mode generators
a, a† of a parity-deformed field in terms of the well-known
photon annihilation and creation operators a, a†, which are

â = â −
λ
√

2x
R̂, â

† = â† +
λ
√

2x
R̂, (1)

where λ is a real constant named Wigner deformation param-
eter while R̂ is a parity operator, being Hermitian and unitary
with the properties R̂2 = Î, R̂† = R̂−1 = R̂ (Î is the identity
operator). This parity operator R acts in the Hilbert space of
the eigenvectors (number states) as R̂|k〉 = (−1)k |k〉, while the
continuous variable x is the position defined by the quadra-
ture of the generator operators x̂ = (a + a†)/

√
2 [66]. The

generators â, â†, together with Î and R̂, construct the so-called
parity-deformed Heisenberg algebra [66, 75, 76] which ex-
hibits significant features in quantum optics [67–69, 77–81],
and satisfy the following (anti-)commutation relations

[â, â†] = 1 + 2λR̂, {R̂, â} = {R̂, â†} = 0. (2)

The action of â and â† on a number (Fock) state |k〉 (k =

0, 1, 2, . . .) is, respectively, [66]

â|2k〉 =
√

2k|2k − 1〉,

â|2k + 1〉 =
√

2k + 2λ + 1|2k〉,

â
†|2k〉 =

√
2k + 2λ + 1|2k + 1〉,

â
†|2k + 1〉 =

√
2k + 2|2k + 2〉. (3)

The Hamiltonian of the parity-deformed Jaynes-Cummings
model has therefore the form

Hλ :=
ω0

2
σ3 +

ωc

2
{â, â†} + η(â†σ− + âσ+), (4)

where ω0 is the atomic transition frequency, ωc the cavity
mode frequency, η the atom-cavity coupling constant, while
σ± and σ3 are the usual Pauli rising (lowering) and inversion
operators for the atomic states satisfying [σ+, σ−] = σ3 and
[σ3, σ±] = ±2σ±. With the explicit expressions of the gener-
ators given in Eq. (1), it can be recast into

Hλ = HJC +
ωc

2
λ2

x2 +
ωc

2

â − â†,

√
2λ
x

R̂

− i

√
2ηλ
x

R̂σ2, (5)

where σ2 = σy is the second Pauli matrix and

HJC =
ω0

2
σ3 +

ωc

2

{
â, â†

}
+ η(â†σ− + âσ+), (6)

ω0 ω0ωc1 2
3

FIG. 1: Sketch of the system. Two qubits of transition frequency
ω0 are embedded in two separated cavities linked via a single-mode
fiber (cavity buffer). Cavities (1 and 2) and fiber (3) have frequency
ωc and leak photons to the surrounding bath at rates γ1, γ2 and γ3, re-
spectively. The three cavity radiation fields are parity-deformed ones,
whose effect is intepretable as qubits, cavities and fiber all driven by
local classical fields with frequency ωc and amplitudes ruled by the
Wigner parameters λi (i = 1, 2, 3).

indicates the well-known Jaynes-Cummings Hamiltonian.
The Hamiltonian Hλ can be interpreted as describing a two-
level atom (qubit) coupled to a single-mode cavity field sub-
ject to a local external classical field Êext = − λ

√
2x

R̂ of fre-
quency ωc [66]. Such an external field can be meant as a
function of the continuous variable x, whose dynamical fea-
tures are ruled by the parameter λ. In Eq. (5), the second
term ωc

2
λ2

x2 thus represents the self-energy of the external field,

the third term ωc
2

{
â − â†,

√
2ηλ
x R̂

}
denotes the interaction be-

tween the quantized cavity field and an external field and,
finally, −i

√
2ηλ
x R̂σ2 ≡ Êextd(iσ2) identifies the coupling be-

tween the atom and an external classical field, with d recalling
the atomic dipole matrix element for the transition.

Notice that the standard Jaynes-Cummings model is re-
trieved by using the usual annihilation and creation operators
a, a† in place of the parity-deformed ones. In fact, when λ = 0
the Hamiltonian Hλ of Eq. (5) reduces to HJC.

II. THE SYSTEM

We now consider the composite system of interest for
our study, which is made of two separated qubits (two-level
atoms) each one embedded in a leaky cavity and governed
by the parity-deformed Jaynes-Cummings model described
above [66], the two cavities being connected by a lossy op-
tical fiber, as depicted in Fig. 1. The fiber is a cavity buffer
also described by a parity-deformed field to simulate its inter-
action with a local classical field. All the subsystems (atoms,
cavities and fiber) are open and surrounded by an external bath
at thermal equilibrium (zero temperature).

The evolution of the total system (including the bath) is
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ruled by the Hamiltonian

H = Hs + Hbath + Hint, (7)

where Hs corresponds to the Hamiltonian of the system com-
posed of the atoms, cavities and fiber, Hbath is the bath Hamil-
tonian and Hint is the system-bath interaction Hamiltonian.

The system Hamiltonian describes all the relevant interac-
tions among the various subsystems, with atoms, cavities and
fiber subject to local classical fields. It has the form

Hs =

2∑
i=1

Hλi +
ωc

2
{â3, â

†

3} + υâ3(â†1 + â
†

2) + υâ†3(â1 + â2), (8)

where âi are the boson-like generator operators for the first and
second cavity (i = 1, 2) and for the optical fiber (i = 3), whose
expression is that of Eq. (1). The only difference among these
operators for the three parts (cavity-1, cavity-2, fiber) is in the
possible different values of the real parameters λi (i = 1, 2, 3)
and the continuous variables x, in general. In Eq. (8), each of
the terms Hλi represents a parity-deformed Jaynes-Cummings
Hamiltonian as given in Eq. (4), the second term ωc

2 {â3, â
†

3}

denotes a free Hamiltonian of the fiber mode including the
interaction term between the fiber itself and a local external
field, and the last terms υâ3(â†1 + â

†

2) + υâ†3(â1 + â2) describe
the interaction between parity-deformed fields. Notice that ωc
is the fiber mode frequency, which is the same of that of the
cavity modes and of the local classical fields, while υ denotes
the cavity-fiber hopping strength.

Indicating with bi j (bi j
†) the usual bath annihilation (cre-

ation) operators for the three subsystems (i = 1, 2, 3), the bath
and interaction Hamiltonians appearing in Eq. (7) are, respec-
tively, Hbath =

∑∞
j=1

∑3
i=1 ωi jbi j

†bi j and

Hint =

∞∑
j=1

3∑
i=1

Ωi j

(
âi + â

†

i

) (
b̂i j + b̂†i j

)
, (9)

where Ωi j are the system-bath coupling constants.
Since we are interested in the dynamics of entanglement

transfer involving qubits and cavities at zero temperature,
we assume that only a single excitation is at most contained
within the system. Indicating with |g〉 and |e〉 the ground and
excited states of each atom qubit, the bare basis of the system
can be denoted by {|n〉, n = 1, . . . , 6}, with |1〉 := |eg000〉,
|2〉 := |gg100〉, |3〉 := |gg001〉, |4〉 := |gg010〉, |5〉 := |ge000〉
and the ground (zero-excitation) state |6〉 := |gg000〉. Notice
that, in this notation, the order of each subsystem state in the
system state vector is |qubit-1 qubit-2 cavity-1 cavity-2 fiber〉.

III. MASTER EQUATION AND EVOLVED DENSITY
MATRIX

To describe how the quantum state transfer works, we need
the evolved density matrix of the system. To this aim, we
firstly introduce the (dressed) eigenstates |φn〉 (n = 1, . . . , 6)
corresponding to each eigenvalue εn of the system Hamilto-
nian Hs which for n = 1, . . . , 5 are

|φn〉 = cn1|1〉 + cn2|2〉 + cn3|3〉 + cn4|4〉 + cn5|5〉, (10)

while |φ6〉 = |6〉 is the ground state. We point out that
â
†

i |φn〉 = 0 (i = 1, 2, 3; n = 1, . . . , 5) because the number
of excitations cannot be larger than one, while â†i |φ6〉 , 0.
The explicit expressions of the coefficients cni of Eq. (10) are
rather cumbersome and are thus not reported here: their values
shall be calculated numerically for given values of the system
parameters.

To obtain the evolved density matrix of the system, we use
the standard Liouville-von Neumann equation [82] for the to-
tal density operator in the interaction picture with respect to
Hs + Hbath. Performing the Born-Markov and rotating-wave
approximation, tracing out the environmental (bath) degrees
of freedom and then going back to the Schrödinger picture,
one obtains the microscopic master equation [83–85] for the
reduced density operator ρ(t) of the system at zero tempera-
ture as

ρ̇(t) = −i[Hs, ρ(t)]+
3∑

i=1

5∑
n=1

γi

[
Âi,nρ(t)Â†i,n −

1
2

{
Â†i,nÂi,n, ρ(t)

}]
,

(11)
where γi (i = 1, 2, 3) are the photon decay rates for the cavities
and fiber, respectively, and

Âi,n = |φ6〉〈φ6|
(
âi + â

†

i

)
|φn〉〈φn|. (n = 1, 2, . . . , 5) (12)

At zero temperature the system can make transitions only
downwards on the energy ladder. For this reason, the oper-
ators of Eq. (12) become Âi,n = |φ6〉〈φ6|âi|φn〉〈φn|, which give

Â1,n = cn2

√
2λ1 + 1|φ6〉〈φn|,

Â2,n = cn4

√
2λ2 + 1|φ6〉〈φn|,

Â3,n = cn3
√

2λ3 + 1|φ6〉〈φn|. (13)

Using the master equation of Eq. (11) and the notation
ρ(t)mn = 〈φm|ρ(t)|φn〉 (m, n = 1, . . . , 5), the differential equa-
tions for the elements of the system reduced density matrix
ρ̂(t) are

ρ̇(t)nn = −γnnρ(t)nn, ρ̇(t)66 =
∑5

n=1 γnnρ(t)nn,

ρ̇(t)nm =
[
i(εm − εn) − γnn+γmm

2

]
ρ(t)nm, ρ̇(t)6n = 0, (14)

where γnn := γ1(2λ1 + 1)|cn2|
2 + γ2(2λ2 + 1)|cn4|

2 + γ3(2λ3 +

1)|cn3|
2. Since the evolution of the system is written in the

dressed-state basis {|φn〉}, it is strategical to perform a change
of basis

|n〉 = c̃n1|φ1〉 + c̃n2|φ2〉 + c̃n3|φ3〉 + c̃4n|φ4〉 + c̃n5|φ5〉, (15)

where, we have defined the matrix C̃ = {c̃mn} by inverting
the matrix of the above mentioned coefficients C = {cmn} (see
Eq. (10)), i.e. C̃ = C−1. Then, one can easily determine the
solutions of the first-order differential equations in Eq. (14) as

ρ(t)nn = ρ(0)nne−γnnt, ρ(t)66 =
∑5

n=1 ρ(0)nn
[
1 − e−γnnt],

ρ(t)nm = ρ(0)nme
2i(εm−εn )−(γnn+γmm )

2 t, ρ(t)6n = ρ(0)6n. (16)

The general expressions found above for the evolved sys-
tem density matrix are a very convenient starting point for our
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analysis. In fact, by choosing the system initial state ρ(0) and
the values of the various parameters, they allow us to obtain
the evolved reduced density matrix of the subsystems of inter-
est. In particular, since we are interested in transferring entan-
glement between the two separated qubits, we shall focus on
the two-qubit evolved density matrix.

IV. DYNAMICS OF ENTANGLED STATE TRANSFER

In this section, we show how the above parity-deformed
Hamiltonian and the corresponding evolved density matrix of
the system can be used for investigating the transfer of entan-
glement to atomic qubits.

An arbitrary state of the system at time t, expressed in the
dressed state basis {|φn〉, n = 1, . . . , 6}, can be written as

ρ(t) =

6∑
m,n=1

ρ(t)mn|φm〉〈φn|. (17)

Tracing over cavities and fiber degrees of freedom, we get the
two-qubit reduced density matrix

%(t) = %(t)1|eg〉〈eg| + %(t)2|ge〉〈ge| + %(t)3|gg〉〈gg|
+ %(t)4|eg〉〈ge| + %̄(t)4|ge〉〈eg|, (18)

where the coefficients are given by

%(t)1 =

5∑
n=1

ρ(t)nn|cn1|
2 + 2

5∑
n,m=1

Re[ρ(t)nmcm1cn1],

%(t)2 =

5∑
n=1

ρ(t)nn|cn5|
2 + 2

5∑
n,m=1

Re[ρ(t)nmcm5cn5],

%(t)3 = ρ(t)66 +

5∑
n=1

4∑
i=2

ρ(t)nn|cni|
2

+2
5∑

n=1

4∑
i,m=2

Re (ρ(t)nmcnicmi),

%(t)4 =

5∑
n=1

ρ(t)nncn5cn1 +

5∑
n,m=1

ρ(t)nmcm5cn1, (19)

with z indicating the complex conjugate of a number z. Such
equations permit us to study the desired entanglement evolu-
tion, once chosen the initial state ρ(0) of the system.

In the standard two-qubit product computational basis
{|ee〉, |eg〉, |ge〉, |gg〉}, we evaluate the entanglement which
builds up between the two atom qubits during the evolu-
tion using the well-known concurrence measure [1]. For the
evolved two-qubit density matrix %(t) of Eq. (18), the concur-
rence at time t is C(%(t)) = 2 max{0, |%(t)4|}.

A. Entanglement transfer from cavities to atoms

We first study the transfer of entanglement from the cavity
modes to the atom qubits. We take at the initial time the fiber

mode in the vacuum state |0〉 and the atoms in the ground state
|gg〉, while the two cavities are in one of the two Bell states
|ψ±〉 = (|10〉 ± |01〉)/

√
2. Notice that such an entangled state

for the two cavity modes can be prepared by standard cavity-
QED or circuit-QED procedures by suitably controlling atom-
cavity interactions [4, 86, 87].

The system initial state is therefore ρ(0) = |Ψ±〉〈Ψ±| with

|Ψ±〉 =

(
|gg100〉 ± |gg010〉

√
2

)
=
|2〉 ± |4〉
√

2
, (20)

where we have used the bare state basis {|n〉} of the system.
Passing to the dressed basis {|φn〉} by means of Eq. (15), one
then obtains the initial density matrix elements

ρ(0)nn =
|c̃2n + c̃4n|

2

2
, ρ(0)nm =

(c̃2n + c̃4n)(c̃2m + c̃4m)
2

,

ρ(0)6n = 0. (21)

We are now able to numerically analyze and plot the evo-
lution of entanglement transfer from the two cavities to the
two atoms by choosing suitable values of the system param-
eters. In general, the dynamics is sensitive to the different
values of all the involved parameters (except the continuous
variables x, which does not affect the dynamics). In Fig. 2 we
plot the concurrence as a function of the dimensionless time
ηt, fixing suitable values of the parameters ω0, λi, γi and υ,
comparing it with the uncontrolled case without local classi-
cal fields given by the standard Jaynes-Cummings interaction
(λi = 0). We observe that, despite similar qualitative peri-
odic behaviors with the amplitudes eventually decreasing in
time, the dynamics of transfer shows quantitative differences
depending on the initial state and, especially, on the atom-field
detuning ∆ = ωc − ω0. Compared to the decreasing oscil-
lations occurring for the standard Jaynes-Cummings interac-
tion, the control of local classical fields in the parity-deformed
Jaynes-Cummings model has the general effect to improve the
stabilization and protection of the two-qubit entanglement es-
tablished during the evolution. The best performance is found
starting from the initial state |Ψ+〉 (right plots of Fig. 2) and
out of resonance with negative detuning ∆ (red-detuned field).
It is interesting to point out the asymmetry shown by the con-
currence as regards the detuning. In fact, one could reckon
that the performance of state transfer is symmetric with re-
spect to the resonant case, independently of the sign of the
field detuning ∆. Instead, we observe that negative atom-field
detuning (∆ = −0.1η) enables a more efficient entanglement
transfer with respect to the resonant case, while positive de-
tuning (∆ = 0.1η, blue-detuned field) supplies a smaller ef-
ficiency. Differently, one immediately sees that the uncon-
trolled dynamics is not significantly affected by the detuning.
We mention that analogous results would be obtained for the
inverse entanglement transfer process, that is from qubits to
cavities, as expected due to the interchangeability of each lo-
cal qubit and cavity mode.
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FIG. 2: Entanglement transfer from cavities to atoms. Dynamics of two-qubit entanglement (concurrence) as a function of the dimensionless
time ηt. The curves are plotted for the set of parameters: ω0 = 0.2η, λ1 = λ2 = λ3 = −0.49, γ1 = γ2 = γ3 = 0.1η and υ = 0.5η (plots are
independent of the value of x). The plots display the results for the standard (uncontrolled) Jaynes-Cummings Hamiltonian (blue dashed line)
and for the parity-deformed (controlled) Hamiltonian (red solid line). The plots are related to the initial system states |Ψ−〉 (left plots) and |Ψ+〉

(right plots). Panels (a), (b) and (c) correspond to different detuning ∆ = −0.1η, 0 and 0.1η, respectively.

B. Entanglement transfer from a local atom-cavity subsystem
to separated atoms

We here investigate the state transfer performance from a
local hybrid atom-cavity entanglement, for instance initially
created between qubit-1 and cavity-1, to the two separated
atom qubits in the subsystems 1 and 2. We then choose
fiber, cavity-2 and qubit-2 initially in their vacuum and ground
states, respectively, with qubit-1 and cavity-1 being instead
in one of the two Bell states |φ±〉 = (|e0〉 ± |g1〉)/

√
2. Such

an initial local atom-cavity entangled state can be as well
prepared by usual cavity-QED (or circuit-QED) interaction-
based methods [4, 86, 87].

The global initial state of the system is ρ(0) = |Φ±〉〈Φ±|

with

|Φ±〉 =
|eg000〉 ± |gg100〉

√
2

=
|1〉 ± |2〉
√

2
, (22)

which leads to the following initial density matrix elements in

the dressed state basis

ρ(0)nn =
|c̃2n + c̃1n|

2

2
, ρ(0)nm =

(c̃2n + c̃1n)(c̃2m + c̃1m)
2

,

ρ(0)6n = 0. (23)

The time behavior of the concurrence associated to the two-
atom evolved density matrix corresponding to this initial con-
dition is plotted in Fig. 3, for some fixed values of the sys-
tem parameters. It is worth mentioning that the chosen values
for the parameters have been used in the numerical analysis
to obtain particularly interesting performances for the entan-
glement distribution from both the qualitative and quantita-
tive viewpoints. We look for a good amplification and shield
from noise for the entanglement transfer, which is shown to
happen for the controlled case of the parity-deformed Jaynes-
Cummings interaction.

The optimal performance is reached starting from the state
|Φ−〉 and for the resonant case, as seen in the left plot of Fig.
3(b), where the concurrence attains its higher value (larger
than 0.8) which is periodically retrieved. At variance with
the process of entanglement transfer from cavities to qubits
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FIG. 3: Entanglement transfer from a local atom-cavity subsystem to separated atoms. Dynamics of two-qubit entanglement (concur-
rence) as a function of the dimensionless time ηt. The curves are plotted for the set of parameters: ω0 = 0.4η, λ1 = λ2 = λ3 = −0.49,
γ1 = γ2 = γ3 = 0.1η and υ = 10η (plots are independent of the value of x). The plots display the concurrence resulting from the standard
(uncontrolled) Jaynes-Cummings Hamiltonian (dashed line) and from the parity-deformed (controlled) Hamiltonian (solid line). The plots are
related to the initial system states |Φ−〉 (left plots) and |Φ+〉 (right plots). Panels (a), (b) and (c) are related to different values of detuning
∆ = −0.2η, 0 and 0.2η, respectively.

treated above, the resonant case provides here a high fidelity
entanglement transfer to the qubits. An asymmetric behavior
as regards the detuning ∆ is still retrieved, both qualitatively
and quantitatively. In particular, a more chaotic and slower
amplification of the state transfer is found for positive detun-
ing (∆ = 0.2η) with respect to negative detuning (∆ = −0.2η).
In general the action of the local classical fields, although
weakening the stabilization, remains strategic for amplifying
the efficiency of the process of entanglement distribution.

V. CONCLUSIONS

In this work we have studied the effects of the theoretical
model of parity-deformed radiation fields into the efficiency
of entanglement distribution to distant qubits in a noisy cavity
network. We have considered the simple situation of two non-
interacting atom qubits embedded in separated leaky cavities
which are in turn linked by a dissipative fiber, which func-
tions as a cavity buffer with delocalized modes. The parity-

deformed cavity photons introduce additional terms to the sys-
tem Hamiltonian which can be seen as external classical fields
locally controlling each atom-cavity subsystem as well as the
fiber.

The dynamics of entanglement transfer depends on both
the initial state of the system and the detuning between the
qubit transition frequency and the cavity field frequency. The
(parity-deformed) process starting from initially entangled
cavities to the qubits is found to be more stable with respect
to that starting from a local atom-cavity entangled state. The
larger gain, however, is achieved in the latter situation, where
the parity-deformed (controlled) model allows an amount of
entanglement transfer up to four times larger than that ob-
tained for the (uncontrolled) case ruled by a standard Jaynes-
Cumming interaction. Depending on the initial state of the
system, the resonant condition corresponding to zero atom-
cavity detuning does not always provide the most efficient
process, whose dynamics is quite sensitive to the sign of the
detuning. This asymmetry as regards the detuning is a pecu-
liar dynamical aspect, since one may expect that the evolution
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of state transfer is symmetric with respect to the resonant case,
independently of the sign of the atom-field detuning.

As a general result, we have shown that the adoption of
parity-deformed cavity fields, introducing the action of spe-
cific local classical fields as external control, can enable ro-
bust transfer of entangled states to far qubits of a cavity-based
quantum network. In particular, the entanglement distribution
can be both amplified and preserved against the noise com-

pared to the case without control. Albeit the model of parity-
deformed cavity radiation here employed remains a purely
theoretical one, our results highlight its potentiality in a quan-
tum information scenario, possibly motivating developments
towards the implementation or simulation of such parafields in
contexts like trapped atoms in cavity-QED or artificial atoms
in circuit-QED [4, 86–88].
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