
Journal of Combinatorial Theory, Series A 208 (2024) 105936
Contents lists available at ScienceDirect

Journal of Combinatorial Theory,
Series A

journal homepage: www.elsevier.com/locate/jcta

New string attractor-based complexities for infinite

words

Julien Cassaigne a, France Gheeraert b, Antonio Restivo c,
Giuseppe Romana c,∗,1, Marinella Sciortino c,1,
Manon Stipulanti d,2

a I2M, CNRS, Aix-Marseille Université, France
b Department of Mathematics, Radboud University, Nijmegen, Netherlands
c Department of Mathematics and Computer Science, University of Palermo, Italy
d Department of Mathematics, University of Liège, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 December 2023
Received in revised form 17 April
2024
Accepted 2 July 2024
Available online xxxx

Keywords:
String attractor
Factor complexity
Recurrence function
Repetitiveness measure
Sturmian word
k-bonacci word

A string attractor is a set of positions in a word such that each
distinct factor has an occurrence crossing a position from the
set. This definition comes from the data compression field,
where the size γ∗ of a smallest string attractor represents
a lower bound for the output size of a large family of
string compressors exploiting repetitions in words, including
BWT-based and LZ-based compressors. For finite words,
the combinatorial properties of string attractors have been
studied in 2021 by Mantaci et al.. Later, Schaeffer and Shallit
introduced the string attractor profile function, a complexity
function that evaluates for each n > 0 the size γ∗ of the
length-n prefix of a one-sided infinite word.
A natural development of the research on the topic is to link
string attractors with other classical notions of repetitiveness
in combinatorics on words. Our contribution in this sense is
threefold. First, we explore the relation between the string
attractor profile function and other well-known combinatorial
complexity functions in the context of infinite words, such

* Corresponding author.
E-mail addresses: julien.cassaigne@math.cnrs.fr (J. Cassaigne), france.gheeraert@ru.nl (F. Gheeraert),

antonio.restivo@unipa.it (A. Restivo), giuseppe.romana01@unipa.it (G. Romana),
marinella.sciortino@unipa.it (M. Sciortino), m.stipulanti@uliege.be (M. Stipulanti).
1 M. Sciortino and G. Romana are partly supported by MUR project PRIN 2022 PINC – 2022YRB97K.
2 M. Stipulanti is supported by the FNRS Research grant 1.C.104.24F.
https://doi.org/10.1016/j.jcta.2024.105936
0097-3165/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).

https://doi.org/10.1016/j.jcta.2024.105936
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcta.2024.105936&domain=pdf
mailto:julien.cassaigne@math.cnrs.fr
mailto:france.gheeraert@ru.nl
mailto:antonio.restivo@unipa.it
mailto:giuseppe.romana01@unipa.it
mailto:marinella.sciortino@unipa.it
mailto:m.stipulanti@uliege.be
https://doi.org/10.1016/j.jcta.2024.105936
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
as the factor complexity and the property of recurrence.
Moreover, we study its asymptotic growth in the case of
purely morphic words and obtain a complete description in the
binary case. Second, we introduce two new string attractor-
based complexity functions, in which the structure and the
distribution of positions in a string attractor are taken into
account, and we study their combinatorial properties. We
also show that these measures provide a finer classification
of some infinite families of words, namely the Sturmian and
quasi-Sturmian words. Third, we explicitly give the three
complexities for some specific morphic words called k-bonacci
words.
A preliminary version of some results presented in this paper
can be found in [Restivo, Romana, Sciortino, String Attractors
and Infinite Words, LATIN 2022].

© 2024 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license

(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Repetitiveness is a central notion in the field of Combinatorics on Words, which has
been approached from various perspectives. For instance, the factor complexity function
is probably the most extensively studied repetitiveness measure [9]. For an infinite word
x, its factor complexity function px counts, for each n ≥ 0, the number of distinct
factors of length n. Intuitively, the lower the factor complexity, the more repetitive the
infinite word. Indeed, a famous theorem by Morse and Hedlund characterizes the words
with (eventually) constant factor complexity as being eventually periodic, i.e. obtained
by repeating the same factor, starting after a certain finite prefix. Within the sphere
of infinite aperiodic words, some of the most studied words are the Sturmian words,
which are the infinite aperiodic words with the lowest factor complexity function, i.e.
their factor complexity is n +1 for every n. Quasi-Sturmian words represent the simplest
generalization of Sturmian words in terms of factor complexity, they are infinite words
having factor complexity n + d, with d ≥ 1, for every large enough n.

The analysis of repetitiveness in words can also be conducted using the recurrence
function. It is another powerful measure that, in a complementary way, unveils the
repetitive structure of infinite words. This notion was initially defined by Morse and
Hedlund [36] but has found widespread recognition in the literature. See [8] for a survey.
An infinite word x is recurrent if every factor of x occurs infinitely often. The recurrence
function Rx for an infinite word x gives, for each n ≥ 0, if it exists, the size of the
smallest window containing all the length-n factors of x, no matter where this window is
located in x. Intuitively, it is closely related to the maximum gap between two consecutive
occurrences of any length-n factor. Essentially, it provides an idea of how quickly factors
repeat within an infinite word and how distributed the repetitive elements are in the
word. If Rx(n) is defined for all n, then the word is called uniformly recurrent, and if Rx

is linear, then x is called linearly recurrent.

http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 3
In application contexts, repetitiveness has recently become a fundamental concept
that is gaining increasing relevance [38]. Due to the abundance of highly repetitive data
and the need to manage them efficiently, being able to effectively evaluate and measure
the repetitiveness of data is fundamental to optimize processes and resources. For in-
stance, in the realm of indexing massive text collections, defining data structures that
enable querying data using space proportional to the size of compressed data becomes
crucial [39]. In such a scenario, finding good measures capable of capturing the level
of repetitiveness in a text is strongly related to having effective parameters to evaluate
the performance of such compressed data structures, both in terms of space and time.
For this reason, the most commonly used measures in this field stem from compression
schemes, such as the number of phrases in the LZ77 parsing and the number of equal
letter runs produced by the Burrows-Wheeler Transform [40].

With the aim of unifying existing compressor-based measures, Kempa and Prezza
proposed in [26] a repetitiveness measure related to combinatorial properties of the text
instead of being associated with a specific compressor. A string attractor Γ for a text
w is a set of positions in w such that each factor of w has an occurrence crossing some
position in Γ. Intuitively, the more repetitive the text, the lower the number of positions
needed in a string attractor. The measure γ∗(w) is then the minimal size of a string
attractor for w. On the one hand, it has been proven that γ∗ is a lower bound for all
other usual compressor-based repetitiveness measures. On the other hand, finding the
smallest attractor size γ∗ for a given text w is an NP-complete problem.

Recently much interest has been aroused by the combinatorial properties of string
attractors. Firstly, in [34] the sensitivity of the measure γ∗ with respect to combinatorial
operations on finite words has been studied. In particular, it has been shown that γ∗

is not monotone, in the sense that the measure γ∗ of a word can be smaller than that
of its prefixes. Also, the measure γ∗ has been studied for families of finite prefixes of
well-known infinite words such as Thue-Morse word [30,45], Episturmian words [19],
k-bonacci-like words [22] and Rote sequences [20], as well as for finite factors of the
Thue-Morse word [13]. Moreover, a variation of γ∗ in which cyclic factors are considered
has been used to characterize the necklaces of standard Sturmian words [34], well-known
infinite families of finite words used as bricks to construct particular Sturmian words,
called characteristic Sturmian words.

A groundbreaking research connecting the notion of string attractors with previously
mentioned classical combinatorial notions of repetitiveness for infinite words has been
presented in [45]. In particular, the string attractor profile function sx of an infinite word
x is introduced. It measures, for each n ≥ 1, the smallest size of a string attractor for the
length-n prefix of x. The authors study the behavior of sx when x is linearly recurrent,
and when x is automatic, i.e., x can be defined through a finite automaton [1].

In this paper, in addition to the size of a string attractor, we also take into account
the distribution of the positions within the string attractor. This leads to the definition
of two new measures: for a finite word w, the span of w is the minimal span (or width) of
a string attractor of w and the leftmost measure of w is the smallest rightmost position

4 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
of a string attractor of w. Starting from these two notions the new complexity measures
lmx and spanx can be defined for an infinite word x. In particular, the span complexity
function spanx(n) and the leftmost complexity function lmx(n) give the value of the span
and the leftmost measure applied to the length-n prefix of x.

We study the string attractor-based complexities sx, lmx, and spanx with three
main objectives: understanding their relation with other combinatorial notions of repet-
itiveness, characterizing some families of words using these complexities, and explicitly
computing them for some particular words. We detail below the main contributions to
these three topics.

Firstly, when comparing the string attractor-based complexities to repetitiveness prop-
erties, the case of bounded sx, lmx, or spanx is of particular interest. While we can fully
characterize it for the leftmost complexity, we only obtain necessary conditions for the
profile function and the span complexity. In particular, we show that aperiodic words
with bounded profile function are ω-power-free and have linear factor complexity (The-
orem 19). We moreover prove that these conditions are not sufficient, thus answering
negatively a question raised in [44].

Secondly, we exhibit three families of infinite words that can be characterized us-
ing the two new string attractor-based complexities. Eventually periodic words are the
words with bounded leftmost complexity (Proposition 40), Sturmian words those with
unbounded leftmost complexity and span complexity equal to 1 infinitely often (The-
orem 48), and quasi-Sturmian words those having a suffix with unbounded leftmost
complexity and span complexity equal to some constant infinitely often (Theorem 50).

Finally, we compute the three complexities for two families of words: characteristic
Sturmian words (Theorem 44) and k-bonacci words (Theorem 58, Proposition 60, and
Corollary 63). This is done by explicitly providing string attractors realizing these com-
plexities. In particular, we show that the leftmost complexity uniquely determines the
characteristic Sturmian word up to exchanging the two letters (Proposition 46).

This paper is organized as follows.
Section 2 contains all the preliminary definitions. In Section 3, we investigate in depth

the connection between the function sx and some well-known notions of repetitiveness
such as factor complexity, uniform recurrence, or ω-power freeness. For example, we show
that the values taken by sx for infinitely many lengths of prefixes give an upper bound
on the factor complexity (Proposition 9), as well as study the case of bounded sx. In
Section 3.3, we extend a result about the growth of sx known for automatic words to
binary purely morphic words, namely that sx(n) = Θ(1) or sx(n) = Θ(logn) and we can
decide whether it is the former or the latter (Theorem 23).

Section 4 introduces the span and leftmost measures of a finite word. We give some
simple combinatorial observations and study their behaviors when applying a morphism
(Proposition 34). Studying these measures for prefixes of infinite words leads to the defi-
nition of the span and the leftmost complexities in Section 5. We prove that, analogously
to the factor complexity, the leftmost complexity characterizes eventually periodic words.

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 5
We also study words of minimal span complexity (Proposition 41) and of maximal span
complexity (Proposition 42).

Section 6 is devoted to the study of Sturmian and quasi-Sturmian words. We first
focus on characteristic Sturmian words and describe string attractors minimizing all
three complexities. We then turn to general Sturmian words and quasi-Sturmian words
and characterize them using the string attractor-based complexities.

In Section 7, we move the focus to the k-bonacci words, a generalization of the well-
known Fibonacci word to an alphabet of size k. We use a new technique to build string
attractors of minimal size. This recursive procedure can be extended to more general
families of words obtained by applying morphisms, which represent a classical mechanism
to generate repetitive words.

We end the paper with remarks and future works in Section 8.
A preliminary version of some of the results can be found in the conference paper [44].

2. Preliminaries

Combinatorics on words. An alphabet is a finite set of letters (of cardinality at least 2).
A finite (resp., infinite) word on an alphabet Σ is simply a finite (resp., infinite) sequence
of letters of Σ. To distinguish them from finite words, infinite words are written in bold,
and we start indexing both finite and infinite words at 1, e.g., we will write x = x1x2 · · · .
For a finite or infinite word x, let |x| denote its length, i.e., the number of letters in x,
and alph(x) denote the set of letters appearing in x. The empty word ε is the only word
that verifies |ε| = 0. Let Σ∗ (resp., Σ+) denote the set of finite (resp., non-empty finite)
words over Σ. For all n ≥ 0, let Σn denote the set of length-n words over Σ.

Given a word

x =
{
x1x2 · · ·x|x|, if x is finite;
x1x2 · · · , if x is infinite;

an integer 1 ≤ i ≤ |x| is called a position within x. Given two positions 1 ≤ i, j ≤ |x|,
we use the notation x[i, j] = xixi+1 · · ·xj ; note that x[i, j] = ε if j < i. Such a portion
x[i, j] for i ≤ j is called a factor of x, which occurs at position i. Let F (x) denote the
set of factors of x. The factor y ∈ F (x) is proper if y �= x. The word u is a prefix (resp.,
suffix) of x if x = uv (resp., x = vu) for some word v. A factor u of x is right special
(resp., left special) if there exist distinct letters a, b ∈ Σ such that both ua and ub (resp.,
au and bu) are factors of x. The reverse of a finite word x = x1x2 . . . x|x| is the word
read from right to left, i.e., xR = x|x|x|x|−1 · · ·x1. If x = xR, then x is a palindrome.

String attractor of a finite word. Roughly, a string attractor for a finite word is a set
of positions within the word such that each of its factors has an occurrence “crossing”
at least one element of the set. More formally, a string attractor of a finite word x is a
set Γ of positions within x such that, for every non-empty factor w ∈ F (x), there exist

6 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
integers i, j such that w = x[i, j] and [i, j] ∩Γ �= ∅. Let γ∗(x) denote the size of a smallest
string attractor for x. It is easy to see that γ∗(x) ≥ |alph(x)|.

Example 1. Let x = 032100321032 be a word on Σ = {0, 1, 2, 3} (the reason why some
letters are underlined will become clear later on). The set Γ = {1, 4, 6, 8, 11} is a string
attractor for x. Note that Γ∗ = Γ \ {1} = {4, 6, 8, 11} is still a string attractor for x
since each factor that crosses position 1 has another occurrence that crosses a different
position in Γ. The positions of Γ∗ are underlined above. The set Γ∗ is also a smallest
string attractor since |Γ∗| = |Σ|, so γ∗(x) = 4. Note that {3, 4, 5, 11} and {3, 4, 6, 7, 11}
are also string attractors for x. It is easy to verify that the set Δ = {1, 2, 3, 4} is not a
string attractor since, for instance, the factor 00 does not intersect any position in Δ.

Factor complexity. For an infinite word x, its factor complexity function px counts,
for any integer n ≥ 0, the distinct length-n factors of x, i.e., px(n) = |F (x) ∩ Σn| for all
n ≥ 0.

Periodicity. Given a word x, an integer p ≥ 1 is a period of x if xi = xj whenever i ≡ j

mod p. An infinite word x is eventually periodic if there exist u ∈ Σ∗ and v ∈ Σ+ such
that x = uvω, i.e., x is the concatenation of u followed by infinite copies of a non-empty
word v (denoted by vω). If u = ε, then x is said to be periodic. An infinite word is
aperiodic if it is not eventually periodic. We recall the famous Morse-Hedlund theorem
(see, for instance, [32, Theorem 1.3.13]).

Theorem 2 (Morse-Hedlund theorem). Let x be an infinite word. The following are equiv-
alent.

1. The word x is eventually periodic.
2. We have px(n + 1) = px(n) for some integer n ≥ 0.
3. The complexity function px is bounded.

Recurrence and appearance functions. An infinite word x is said to be recurrent if
every factor of x occurs infinitely often (in x). The recurrence function Rx : n 	→ Rx(n)
gives, for each n, the least integer m (or ∞ if no such m exists) such that each length-m
factor of x contains at least an occurrence of each length-n factor of x. An infinite word
x is uniformly recurrent if Rx(n) < ∞ for each n ≥ 1. Note that Rx(n) − n + 1 is the
maximum gap between consecutive occurrences of the same factor when all length-n
factors are considered. If Rx(n) is linear, then x is linearly recurrent. It is easy to see
that a periodic word x is linearly recurrent. On the other hand, if x is eventually periodic
but not periodic, then x is not recurrent. Therefore, a recurrent word is either aperiodic
or periodic. For an infinite word x and an integer n, let Ax(n) denote the length of the
shortest prefix containing all length-n factors of x. The function n 	→ Ax(n) is called the
appearance function of x.

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 7
Example 3. For the binary word x = 11011100101110111 · · · , which is the concatenation
of all binary representations of the positive integers, the function Ax is easily seen to be
exponential. This also follows from the fact that px is exponential too, as explained in
the remark below.

Remark 4. For any infinite word x over Σ, the fact that Σ is finite implies that Ax(n) is
defined for each n ≥ 1. One then easily sees that px(n) + n − 1 ≤ Ax(n) ≤ Rx(n).

Power freeness. An infinite word x is said to be k-power free for some k > 1 if, for
every factor w of x, wk is not a factor of x. If for each factor w of x, there exists some
integer k > 1 such that wk is not a factor of x, then x is ω-power free.

Morphisms. They represent a mechanism to generate infinite families of repetitive
sequences, which have many mathematical properties [1,3,18]. Let Σ1 and Σ2 be alpha-
bets. A morphism is a map ϕ : Σ∗

1 → Σ∗
2 that satisfies the identity ϕ(uv) = ϕ(u)ϕ(v) for

all words u, v ∈ Σ∗
1. Given an alphabet Σ, a morphism ϕ : Σ∗ 	→ Σ∗ is prolongable on a

letter a ∈ Σ if ϕ(a) = au with u ∈ Σ+. If ϕ(a) �= ε for all a ∈ Σ, then the morphism ϕ is
said to be non-erasing. Given a non-erasing morphism ϕ prolongable on some a ∈ Σ, the
sequence (ϕi(a))i≥0 of finite words gives an infinite family of prefixes of a unique infinite
word ϕ∞(a) = limi→∞ ϕi(a), which is called a purely morphic word or a fixed point of
ϕ. A morphism ϕ is primitive if there exists t ≥ 1 such that b ∈ F (ϕt(a)) for every pair
of letters a, b ∈ Σ. If there exists k such that |ϕ(a)| = k for every a ∈ Σ, then ϕ is said
to be k-uniform.

Example 5. Let us consider the Thue–Morse word t = 0110100110010110 · · · which is
the fixed point of the 2-uniform morphism 0 	→ 01, 1 	→ 10. It is known that the functions
pt(n), Rt(n) and At(n) are Θ(n). See [1] for details.

Lempel-Ziv factorization. The Lempel-Ziv factorization or parsing (LZ77 parsing in
short) of a finite word w is its factorization LZ(w) = v1v2 · · · vz built from left to right
in a greedy way as follows: if a prefix w[1, j−1] = v1v2 · · · vi−1 is already processed, then
the factor vi (which is also called an LZ-phrase) is either the letter wj if it does not occur
in w[1, j − 1] or vi is the longest prefix of w[j, |w|] occurring in w at a position h < j.
Let z(w) denote the number of LZ-phrases in the LZ77 parsing of w. For example, the
LZ77 parsing of the word w = 0101012 is 0 · 1 · 0101 · 2. Consequently, z(0101012) = 4.
It naturally induces a measure on infinite words as follows: for an infinite word x, the
LZ-complexity function zx maps each n ≥ 1 to the number z(x[1, n]) of LZ-phrases of the
length-n prefix of x. An overview of the relationship between z and other repetitiveness
measures based on compression schemes can be found in [39].

Remark 6. Note that there are several variants of the Lempel-Ziv factorization; a survey
can be found in [29] containing an in-depth study of the relationships between the asso-
ciated measures. A well-known variant, originally defined in [31], constructs the parsing

8 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
of the string w through a similar greedy procedure. However, the phrase vi is now the
longest prefix of w[j, |w|] such that vi[1, |vi| − 1] has an occurrence at position h < j.
Using this technique, the word w = 0101012 is factorized as follows: 0 · 1 · 01012. If z′
denotes the number of phrases obtained using such a factorization, then z′(0101012) = 3.
In [29, Theorem 3], it is shown that z′(w) ≤ z(w) ≤ 2z′(w), for every word w ∈ Σ∗. A
complexity measure based on z′ is studied for purely morphic words in [12].

The link between string attractors and LZ77 parsings is given in the result below. It
follows from the fact that any given finite word has a string attractor of size equal to the
number of its LZ-phrases. In fact, it is enough to consider as a string attractor the set
of final positions of each LZ-phrase in the Lempel-Ziv factorization. Then, the following
proposition holds.

Proposition 7 ([39]). For every word w ∈ Σ∗, γ∗(w) ≤ z(w).

3. String attractor profile function, factor complexity and recurrence

In this section, we explore the growth of the size of a smallest string attractor when
considering increasingly large prefixes of an infinite word. This idea was first considered
in [45].

Definition 8. Let x be an infinite word. The string attractor profile function of x is the
map sx : n 	→ γ∗(x[1, n]), i.e. sx(n) is the size of a smallest string attractor for the
length-n prefix of x.

We study the link between the string attractor profile function and different notions
measuring the repetitiveness of factors within infinite sequences of symbols. We first
establish a bond between the appearance, factor complexity, and string attractor profile
functions, and in particular, we show that upper bounds on sx induce upper bounds on
px.

Proposition 9. Let x be an infinite word. For all n ≥ 1, we have px(n) ≤ n · sx(Ax(n)).

Proof. Since alphabets are finite, so is the value Ax(n). By definition, sx(Ax(n)) is the
size of a smallest string attractor Γ of the prefix of length Ax(n). Therefore, each length-n
factor of x crosses at least one element of this string attractor. Since each element of Γ
is crossed by at most n distinct length-n factors of x, one has px(n) ≤ n · sx(Ax(n)). �

Using the link between string attractors and LZ77 parsings, we easily obtain an upper
bound on sx as follows.

Proposition 10. Let x be an infinite word. Then sx(n) = O
(

n
)
.
logn

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 9
Proof. Using Proposition 7, we have sx(n) ≤ zx(n). To conclude, it suffices to use an
upper bound on zx(n) that can be derived from [31, Theorem 2]: for a length-n word on
an alphabet Σ, the number z′ of phrases obtained using the LZ-factorization introduced
in [31] is bounded by n

(1−εn) log|Σ|(n) , where εn = 2
1+log|Σ|(log|Σ|(n|Σ|))

log|Σ|(n) . The conclusion

follows since z(x[1, n]) ≤ 2z′(x[1, n]) for every n (see Remark 6). �
It is possible to construct infinite words x for which there exists an increasing sequence

of positive integers ni, i ≥ 1, such that sx(ni) = Θ(ni

logni
). For instance, one can take the

infinite de Bruijn sequence from [4], where for a fixed alphabet Σ of size σ ≥ 3 and for
all i ≥ 1, the prefix of length σi + i − 1 contains all possible length-i words over Σ. As
there are σi such words, by Propositions 9 and 10, we have sx(σi + i −1) = Θ(σ

i

i). Thus,
by setting ni = σi + i − 1 for all i ≥ 1, we obtain sx(ni) = Θ(ni

logni
). However, having

information on the values of the string attractor profile function over a sequence (ni)i≥1
does not allow us to determine its entire behavior, especially since sx is not monotone
(see [34, Proposition 14]). Therefore, the question whether there exist words such that
sx(n) = Θ(n

logn) for all sufficiently large n is still open.
The following theorem shows that, if we assume that the appearance function is linear,

a better bound on the function sx can be given.

Theorem 11 ([45]). Let x be an infinite word. If Ax(n) = Θ(n), then sx(n) = O(logn).

In the following sections we show several examples in which different repetitive-
ness aspects are considered (Section 3.1), we analyze which combinatorial notions of
repetitiveness are related to the boundedness of the string attractor profile function
(Section 3.2) and, finally, we study the behavior of the string attractor profile function
in case of infinite words generated by morphisms (Section 3.3).

3.1. Some examples

In this section, we study the behavior of the string attractor profile function for various
infinite words, and we focus on the relation with other measures of repetitiveness.

First, let us look at the string attractor profile function of a periodic word, which
represents the simplest case of repetitiveness.

Example 12. Let us consider the word (01)ω = 01010101 · · · . The word is periodic, and
therefore p(01)ω(n) = Θ(1) and A(01)ω(n) = n +1. Since each non-empty factor v of (01)ω
has an occurrence starting either in the first or in the second position (respectively when
v starts with 0 or 1), the set {1, 2} is a string attractor for each prefix of length n ≥ 2
of (01)ω, and therefore s(01)ω(n) = Θ(1).

As shown later in Proposition 20, the previous observation is more general, and every
infinite word with factor complexity Θ(1) has a bounded string attractor profile function.

10 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
On the other hand, by Proposition 9, a word with superlinear factor complexity cannot
have a bounded string attractor profile function. Therefore, the other words considered
in this section have linear factor complexity.

In the following example, we provide a non-recurrent infinite word having linear com-
plexity function and unbounded string attractor profile function.

Example 13. Let us consider the characteristic sequence c = 1101000100000001 · · · of
powers of 2, i.e., ci = 1 if i = 2j for some j ≥ 0, ci = 0 otherwise. It is easy to see that
c is aperiodic and not recurrent (e.g., the factor 11 occurs only once). It is known that
pc(n) and Ac(n) are Θ(n) [1], while one can prove that sc(n) = Θ(logn) [28,34,45].

Example 14 gives a recurrent (not uniformly) infinite word with linear factor com-
plexity and unbounded string attractor profile function.

Example 14. Let μ : {0, 1}∗ → {0, 1}∗ be the 3-uniform morphism defined by μ(0) = 010
and μ(1) = 111. The infinite word w = μ∞(0) = 010111010111111111010 · · · , known
in the literature as the Sierpiński word or the Cantor word (see, for instance, [5]), has
linear factor complexity. Moreover, it is recurrent but not uniformly. Finally, since all
factors 013k0, k ≥ 1, occur in w and do not overlap with each other, the string attractor
profile function sw is unbounded. In fact, as a consequence of Theorem 23 (proved in
Section 3.3), we can conclude that sw(n) = Θ(logn).

In the previous example, the fact that the string attractor profile function is un-
bounded follows from the existence of arbitrary large powers of 1. The example below
uses the Thue-Morse word to give an ω-power-free infinite word with linear factor com-
plexity and unbounded string attractor profile function.

Example 15. Let ψ : {s, a0, b0, a1, b1}∗ → {s, a0, b0, a1, b1}∗ be the 2-uniform morphism
defined by ψ(s) = sb0, ψ(ax) = axbx, and ψ(bx) = bxax for all x ∈ {0, 1}, where
x = 1 − x. Since ψ is 2-uniform, it follows that the infinite word v = ψ∞(s) =
sb0b1a1b0a0a0b0b1a1a1b1 · · · has linear factor complexity [1]. Moreover, one can observe
that if we consider the coding λ : {s, a0, b0, a1, b1}∗ 	→ {0, 1}∗ defined by λ(s) = λ(a0) =
λ(a1) = 0 and λ(b0) = λ(b1) = 1 and apply it on v, we obtain the Thue-Morse word
t = 0110100110010110 · · · . Since t is 3-power free [1], it follows that v is ω-power free.
Finally, since all the factors b0ψ2k−1(b0)b0, k ≥ 1, occur only once in v and do not
overlap with each other, the string profile function sv is not bounded by a constant.

The previous example is not recurrent, however. To conclude the series of words with
linear factor complexity and unbounded string attractor profile function, we give one
example of a uniformly recurrent word. Contrary to the last two examples, it is not
purely morphic but generated by two morphisms.

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 11
Example 16. Let us consider the two 3-uniform morphisms

μ :
{

0 	→ 010
1 	→ 111

and μ̄ :
{

0 	→ 000
1 	→ 101

and the word q = limn→∞ μ̄ ◦ μ ◦ μ̄2 ◦ μ2 ◦ · · · ◦ μ̄n ◦ μn(0). This word is of linear factor
complexity [16, Proposition 2.1] and is uniformly recurrent [15, Lemma 7]. Let us show
that, for all n ≥ 1, the prefix un = μ̄ ◦ μ ◦ μ̄2 ◦ μ2 ◦ · · · ◦ μ̄n ◦ μn(0) of q requires at
least n − 1 positions in any of its string attractors. Observe that, in μn(0), we have the
factors 013i0 for all 1 ≤ i ≤ n − 1 which do not overlap one another. Let us show that
their images under σ = μ̄ ◦ μ ◦ μ̄2 ◦ μ2 ◦ · · · ◦ μ̄n do not overlap either. We first make
the following observation. By definition of the morphism μ, for any words u and w, if u
contains (at least) a 0, then any occurrence of μ(u) in μ(w) corresponds to an occurrence
of u in w. In other words, for any u and v containing (at least) a 0 each, μ(u) and μ(v)
overlap in μ(w) if and only if u and v overlap in w. Similarly, for any u and v containing
(at least) a 1 each, μ̄(u) and μ̄(v) overlap in μ̄(w) if and only if u and v overlap in w.
As σ is a composition of μ and μ̄, this shows that the factors σ(013i0), 1 ≤ i ≤ n − 1, do
not overlap in un. We conclude that sq is not bounded.

However, many classical infinite words in the literature have a known string attractor
profile function bounded by a constant. It is the case of the Thue–Morse word (Ex-
ample 25), the period-doubling word (Example 26), and, as shown in this paper, the
characteristic Sturmian words (Theorem 44), the k-bonacci words (Theorem 58) and the
family of words defined by Holub in [25] (Example 17).

Example 17. Let us define an infinite word u introduced by Holub in [25]. For that, let
(ni)i≥1 be an increasing sequence of positive integers with n1 ≥ 2. We recursively define
the sequence (ui)i≥0 as u0 = ε and ui = ui−10(ui−11)niui−1. It is proved in [25] that
u = limi→∞ ui is uniformly recurrent but not linearly recurrent. Moreover, for each i ≥ 1,
u can be factorized as a product of words ui0 and ui1, i.e., u = uic1uic2uic3 · · · , where
cj ∈ {0, 1}. More precisely, it has been proved in [25] that each occurrence of ui starts at
a position that is a multiple of |ui| +1. Using such a property, the word u has exactly two
right special factors of length n, for each n ≥ 1. They are precisely the length-n suffixes
of ui−10(ui−11)niui−1 and (ui−11)niui−10ui−1 where |ui−1| + 1 ≤ n ≤ |ui|. By [6], this
implies that pu(n) = 2n.

Furthermore, we shall prove that, for i ≥ 1, the set

Γ(i) =
{
|ui−1| + 1,

i−1∑
k=0

(|uk| + 1), 2|ui−1| + 2
}

is a string attractor for ui. Given the recursive construction of u, for each non-empty
factor v of ui, we can find 0 ≤ j ≤ i − 1 such that |uj | < |v| ≤ |uj+1|, and v falls in one
of the following mutually exclusive cases:

12 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
1. either v = sj(1uj)q10(uj1)q2pj , for some q1, q2 ≥ 0 such that q1 + q2 ≤ nj+1, and for
some prefix pj and suffix sj of uj ;

2. or v = sj(1uj)h10uj0(uj1)h2pj , for some j < i −1 and h1, h2 ≥ 0 such that h1 +h2 <

nj+1, and for some prefix pj and suffix sj of uj ;
3. or v = sj(1uj)k1pj , for some 0 ≤ k < ni (resp. 0 ≤ k ≤ nj) if j = i − 1 (resp. if

j < i − 1), and for some prefix pj and suffix sj of uj .

One can observe that for all j < i − 1, the factors v from Case 1 have an occurrence
crossing position

∑i−1
k=0(|uk| + 1) ∈ Γ(i), while if j = i − 1 the only occurrence of v in

ui crosses the position |ui−1| + 1 ∈ Γ(i). Similarly, the factors v that fall in Case 2 have
an occurrence in ui where the 0 at position |sj | + h1(1 + |uj |) + 1 in v is at position
|uj | +1 ∈ Γ(i) in ui. Finally, one occurrence of each factor falling in Case 3 can be found
overlapping the last position in Γ(i), where the last 1 before pj is exactly at position
2|ui| + 2 ∈ Γ(i), this ends the proof that Γ(i) is a string attractor of ui.

We deduce a string attractor for the length-n prefix of u as follows: if i is such that
|ui| < n < |ui+1|, we can merge the set Γ(i) with the positions ≤ n in Γ(i+1) to obtain a
string attractor for the length-n prefix. Such a string attractor can have up to 6 positions,
and it follows that su(n) = Θ(1).

3.2. The bounded case

Supported by the previous section, it is relevant to detect which combinatorial prop-
erties of infinite words are related to the boundedness of the string attractor profile
function. Observe that we already know the following result.

Theorem 18 ([45]). For any linearly recurrent infinite word x, we have sx(n) = Θ(1).

The previous theorem is not a characterization. Indeed, Example 17 exhibits uniformly
(and not linearly) recurrent words x for which sx is bounded. In this section, we gather
results towards a characterization.

First, we analyze how the boundedness of sx structures the infinite word x, and we
show that if an infinite word has its string attractor profile function bounded by some
constant value, then it has at most linear factor complexity. More precisely, we have the
following result.

Theorem 19. Let x be an infinite word. If sx = Θ(1), then either x is eventually periodic,
or x is ω-power free and px = Θ(n).

Proof. First, Proposition 9 implies that, if k is such that sx(n) < k for each n ≥ 1, then
px(n) ≤ n ·k for each n ≥ 1. Therefore, the factor complexity is (at most) linear. Towards
a contradiction, let us assume that x is aperiodic and not ω-power free. Then there exists
a factor w of x such that, for every q ≥ 1, wq is factor of x. Moreover, the assumption

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 13
on x implies that x �= uwω for any u ∈ Σ∗. It follows that there exists an increasing
sequence (qj)j≥1 of integers such that, for each j, there exist a proper suffix sj and a
proper prefix pj of w, and two letters aj and bj such that ajsj is not a suffix of w, pjbj is
not a prefix of w, and ajsjwqjpjbj is a factor of x. As any position (of a string attractor)
can cover at most two such factors, sx is unbounded. This is a contradiction. �

The following proposition shows that, in the case of eventually periodic words, the
string attractor profile function is bounded by a constant.

Proposition 20. For any eventually periodic infinite word x, we have sx(n) = Θ(1).

Proof. Let u ∈ Σ∗ and v ∈ Σ+ such that x = uvω. For all n ≥ 1, {1, . . . , min{n, |uv|}}
is a string attractor for the length-n prefix. Therefore, sx(n) ≤ |uv| for all n. �

However, the converse of Theorem 19 does not hold. Indeed, we give in Example 15 an
ω-power-free word with linear factor complexity and unbounded string attractor profile
function. Even strengthening the hypotheses by requiring uniform recurrence does not
guarantee a bounded string profile function, as shown in Example 16. In particular,
Examples 15 and 16 negatively answer the questions posed in [44]. Thus, the problem
of finding a complete characterization of the infinite words having a bounded string
attractor profile function is still open.

We conclude this section with Table 1 showing a synoptic overview of the factor
complexity, repetitiveness properties, and string attractor profile function for the infinite
words described in this section and those we consider in the rest of the paper. Apart from
the periodic word (01)ω, all words considered in the table have linear factor complexity,
which is a necessary (but not sufficient) condition to have a bounded string attractor
profile function by Theorem 19. Four of the words have an unbounded string attractor
profile function. For the others, the exact value of sx(n), for n large enough, is reported in
the table. This table points out both that different repetitiveness aspects may be hiding
behind a constant string attractor profile function, and that infinite words with different
combinatorial structures and properties may have point-wise equal profile functions. This
observation motivates the use of string attractors to define new complexity measures to
capture such combinatorial properties, as done in the following sections.

3.3. The case of purely morphic words

Some data compression measures were explored in the particular setting of fixed points
of morphisms, or more precisely, of iterated images of a morphism. It is the case of the
number of BWT equal-letter runs [21] and of the LZ-complexity function [12]. Therefore,
it is natural to wonder if similar results can be obtained for the string attractor profile
function.

First, we present an upper bound on the string attractor profile function of purely
morphic words.

14 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
Table 1
The table shows the factor complexity px(n), recurrence properties, ω-power freeness and the string attrac-
tor profile function sx(n) for large enough n, for all the infinite words x considered in Sections 3, 6 and 7,
namely: the periodic word (01)ω, the characteristic sequence c of powers of 2; the purely morphic word w
generated by the morphism μ defined by μ(0) = 010 and μ(1) = 111; a purely morphic word v generated
by a 2-uniform morphism; a uniformly recurrent word q defined using μ and its counterpart obtained by
echanging 0 and 1; an infinite word u introduced by Holub in [25]; any characteristic Sturmian word s; the
Thue-Morse word t; the period doubling word pd; the k-bonacci word b(k) defined over an alphabet of
size k.

Infinite word x px(n) Recurrence ω-power
free sx(n)

(01)ω (Ex. 12) Θ(1) linearly
recurrent No 2

c (Ex. 13) Θ(n) not
recurrent No Θ(logn)

w (Ex. 14) Θ(n) recurrent No Θ(logn)
v (Ex. 15) Θ(n) not recurrent Yes Θ(logn)

q (Ex. 16) Θ(n) uniformly
recurrent Yes Θ(logn)

u (Ex. 17) Θ(n) uniformly
recurrent Yes 3

s (Sec. 6) Θ(n) uniformly
recurrent Yes 2

t (Ex. 25) Θ(n) linearly
recurrent Yes 4

pd (Ex. 26) Θ(n) linearly
recurrent Yes 2

b(k) (Sec. 7) Θ(n) linearly
recurrent Yes k

Theorem 21. Let x = ϕ∞(a) be the fixed point of a non-erasing morphism ϕ prolongable
on a ∈ Σ. Then sx(n) = O(i), where i is such that |ϕi(a)| ≤ n < |ϕi+1(a)|. In particular,
if there exists ρ > 1 such that |ϕi(a)| = Ω(ρi), then sx(n) = O(logn).

To prove Theorem 21, we use Proposition 7 and the following result about the number
of LZ-phrases in the LZ77 parsing in purely morphic words, which directly follows from
[12, Theorem 1] and Remark 6.

Proposition 22. Let x = ϕ∞(a) be the fixed point of a non-erasing morphism ϕ pro-
longable on a ∈ Σ. Then

z(ϕi(a)) =
{

Θ(1), if x is eventually periodic;
Θ(i), otherwise.

Proof of Theorem 21. If x is eventually periodic, then by Proposition 20, sx is bounded,
so in particular, sx(n) = O(i). Let us consider the case where x is not eventually periodic.
For all i ≥ 0, define ni = |ϕi(a)|. By Proposition 22, there exist two constants c1, c2 ≥ 1
such that for all n ∈ [ni, ni+1), we have c1 · i ≤ zx(ni) ≤ zx(n) ≤ zx(ni+1) ≤ c2 · i + c2.
Note that the second and third inequalities follow by the monotonicity of the measure z
(i.e., z(u) ≤ z(uv) for all u, v ∈ Σ∗). This implies that zx(n) = Θ(i), and by Proposition 7
it follows that sx(n) = O(i). In particular, if |ϕi(a)| = Ω(ρi) for some ρ > 1, then one

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 15
has n ∈ Ω(ρi) or, conversely, i = O(logn) so the conclusion sx(n) = O(i) = O(logn)
follows. �

In the following theorem, we provide a finer result in the case of binary purely morphic
words.

Theorem 23. Let μ : {0, 1}∗ → {0, 1}∗ be a morphism prolongable on 0 and x = μ∞(0).
Then either sx(n) = Θ(1) or sx(n) = Θ(logn), and it is decidable whether the former
or the latter occurs.

Proof. Based on the morphism μ, we can decide in which of the following (mutually
exclusive) cases we are.

1. The word x is eventually periodic [42, Theorem 4].
2. The word x is aperiodic and there exist a non-erasing morphism τ : Σ∗ → {0, 1}∗

and a primitive morphism ϕ : Σ∗ → Σ∗ such that x = μ∞(0) = τ(ϕ∞(0)) (whenever
μ is primitive, as well as some decidable cases where μ(1) = 1 by [41, Theorem 4.1]
and its proof).

3. The word x is aperiodic and contains arbitrarily large powers of 1’s (whenever μ(1) =
1k, k ≥ 2, as well as some decidable cases where μ(1) = 1 by [41, Theorem 4.1]).

Let us now show that, in each case, we have either sx(n) = Θ(1) or sx(n) = Θ(logn).
For the first case, we have sx(n) = Θ(1) as a direct consequence of Proposition 20. In
the second case, as ϕ is primitive, ϕ∞(0) is linearly recurrent (see [17, Proposition 25]).
This implies that x is also linearly recurrent and thus that sx(n) = Θ(1) by Theorem 18.

We now turn to the third case. Observe that, by Theorem 19, we cannot have sx(n) =
Θ(1), so we show that sx(n) = Θ(logn). By [21, Proposition 20 and Corollary 27], the
number of distinct maximal runs of 1’s grows logarithmically with respect to the length
of the prefixes of x, where a maximal run of 1’s is a factor of the form 01k0. As a
position in a string attractor can cover at most two different runs of 1’s, this implies that
sx(n) = Ω(log n). On the other hand, observe that by aperiodicity μ(0) contains at least
two occurrences of 0. Therefore, |μn(0)| = Ω(2n) and, by Theorem 21, we conclude that
sx(n) = O(logn) so sx(n) = Θ(logn). �

The same result has been obtained for another class of words, as reported below. In
short, an infinite word x is k-automatic, with k ≥ 2, if and only if there exist a coding
τ : Σ → Σ and a k-uniform morphism μk such that x = τ(μ∞

k (a)), for some a ∈ Σ [1].
An infinite word is called automatic if it is k-automatic for some k ≥ 2.

Theorem 24 ([45]). Let x be an automatic infinite word. Then, either sx(n) = Θ(1) or
sx(n) = Θ(logn), and it is decidable whether the former or the latter occurs.

16 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
Examples 13 and 14 show two automatic sequences for which the string attractor
profile function is Θ(logn).

For some particular automatic words obtained as fixed points of morphisms, string
attractors may be found using their specific combinatorial structure and properties, as
recalled in the example below.

Example 25. Let us consider the Thue–Morse word t = 0110100110010110 · · · . It is a
purely morphic word, as described in Example 5. It has been proven in [45] (cf. also [30,
13]) that st(n) = 4 for all n ≥ 25.

More generally, the authors of [45] show that, in the case of an automatic word with
bounded string attractor profile function, it is possible to build an automaton returning
the positions of a smallest string attractor for each prefix. However, this automaton is
constructed case by case using the theorem-proving software Walnut [37]. This technique
was used in [45] to find string attractors of minimal size for the prefixes of the automatic
word considered in the following example.

Example 26. Consider the period-doubling word pd = 101110101011 · · · , which is the
fixed point of the morphism 1 	→ 10, 0 	→ 11. It has been proven in [45, Theorem 3] that
spd(n) = 2 for all n ≥ 1. In particular, it has been shown [45, Theorem 4] that for the
prefix of pd of length n ≥ 6, a string attractor of smallest size is

Γ(pd[1, n]) =
{
{3 · 2i−3, 3 · 2i−2}, if 2i ≤ n < 3 · 2i−1;
{2i−1, 2i}, if 3 · 2i−1 ≤ n < 2i+1.

4. Two new string attractor-based measures

In this section, we introduce two new notions related to the string attractors of a
word. Indeed, knowing the minimal size of a string attractor is often not sufficient to
understand the structure of a word or choose interesting string attractors. Therefore, it
can be relevant to consider the distribution of the positions in the string attractors. This
is what our new measures capture, and as we will show later, they allow us to distinguish
families of words.

The first measure is the span of a word, which gives the minimum distance between
the rightmost and the leftmost positions of any string attractor.

Definition 27. Let w be a finite word and G be the set of all string attractors for w. The
span of Γ ∈ G is span(Γ) = max Γ − min Γ, and the (string attractor) span of w is the
value span(w) = minΓ∈G span(Γ).

Example 28. Let us consider the word w = 0122012 on the alphabet Σ = {0, 1, 2}. One
can see that the sets Γ1 = {4, 5, 6} (underlined positions) and Γ2 = {1, 2, 4} (overlined

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 17
positions) are two suitable string attractors for w. Both are of minimal size as |Γ1| =
|Γ2| = |Σ| but they have different spans. Moreover, since all of the positions of Γ1 are
consecutive, it is of minimal span and therefore span(w) = 6 − 4 = 2.

The span can be used to derive an upper bound on the number of distinct factors, as
shown below.

Proposition 29. For any finite word w over Σ, we have |F (w) ∩ Σn| ≤ n + span(w) for
all 1 ≤ n ≤ |w|.

Proof. Let Γ be a string attractor of minimal span and write δ = min Γ and δ′ = max Γ.
Then, the interval Δ = [δ, δ′] contains Γ and is a string attractor for w. Since every factor
has an occurrence crossing a position in Δ, it is possible to find all length-n factors of w
by considering a window of length n sliding from position max{δ − n + 1, 1} to position
min{δ′, |w| −n +1}. One can see that this interval is of size at most δ′− (δ−n +1) +1 =
n + span(w). This ends the proof. �

In addition, we may compare string attractors of a given word according to their
rightmost positions. More specifically, we want string attractors having the smallest
such position. This gives the notion defined below.

Definition 30. Let w be a finite word and G be the set of all string attractors for w. The
leftmost string attractor for w is a string attractor Γ ∈ G such that, for all Δ ∈ G, we have
max Γ ≤ max Δ. The (string attractor) leftmost measure of w is then lm(w) = max Γ,
where Γ is a leftmost string attractor.

Example 31. We resume Example 28. First, we have 4 = max Γ2 < max Γ1 = 6. Second,
the set Δ = {1, 2, 3} is not a string attractor for w. Therefore lm(w) = 4.

Examples 28 and 31 show that for the finite word w = 0122012, these two measures
can be realized by distinct string attractors. In fact, in this case, it is not possible to find
a leftmost string attractor having minimal span since {2, 3, 4} is not a string attractor.

Similarly to what we did for the span, we can use the leftmost measure to obtain an
upper bound on the number of distinct factors.

Proposition 32. For any finite word w over Σ, we have |F (w) ∩ Σn| ≤ lm(w) for all
1 ≤ n ≤ |w|.

Proof. The proof follows the same lines as that of Proposition 29 by considering a left-
most string attractor Γ, and Δ = [1, max Γ] instead. �

From Examples 28 and 31, we formulate the following general observation.

18 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
Proposition 33. Let w be a finite word. Then, γ∗(w) − 1 ≤ span(w) ≤ lm(w) − 1.

Proof. Let Γ1 be a string attractor of w with minimal span. It contains at most max Γ1−
min Γ1 + 1 = span(w) + 1 elements, therefore γ∗(w) ≤ span(w) + 1.

Let Γ2 be a leftmost string attractor of w. Its span is at most maxΓ2−1 = lm(w) −1,
therefore span(w) ≤ lm(w) − 1. �

The following proposition shows how the size of the smallest string attractor, the
span, and the leftmost measure of a word yield bounds on the corresponding measures
for its image under a morphism.

Proposition 34. Let ϕ : Σ∗
1 → Σ∗

2 be a morphism. There exists a constant C ≥ 1 which
depends only on ϕ such that, for every w ∈ Σ+

1 , the following hold:

1. γ∗(ϕ(w)) ≤ 2γ∗(w) + C;
2. span(ϕ(w)) ≤ C · span(w);
3. lm(ϕ(w)) ≤ C · lm(w).

Proof. Starting from a given string attractor Γ for w, we show how one can build a valid
string attractor for ϕ(w) in two steps.

Step 1. First, we consider the factors of the images of letters, i.e., the elements of
Fϕ =

⋃
a∈alph(w) F (ϕ(a)). By definition, for each symbol a ∈ alph(w), there is at least

one position j ∈ Γ such that wj = a; let ja denote such a position. Then, for each
a ∈ alph(w), we choose a minimum string attractor Γa of ϕ(a) and overlay it with the
occurrence of ϕ(wja) to cover the factors of ϕ(a). In other words, every element of Fϕ

has an occurrence in w crossing at least a position in

Tϕ =
⋃

a∈alph(w)

{|ϕ(w[1, ja − 1])| + δ : δ ∈ Γa}.

Step 2. Let us now consider the other factors of ϕ(w), i.e., the elements of F (ϕ(w))
which are not in Fϕ. To cover these factors, we define two sets of positions. Let Tf =
{|ϕ(w[1, j − 1])| + 1 : j ∈ Γ} be the set of positions corresponding to the first letter of
ϕ(wj), where j is a position in Γ. Analogously, we define the set T� = {|ϕ(w[1, j])| : j ∈ Γ}
as the set of positions corresponding to the last letter of each ϕ(wj) with j ∈ Γ.

Let u ∈ F (ϕ(w)) \ Fϕ and let v be a factor of w of minimal length such that u is a
factor of ϕ(v). Observe that, by definition of Fϕ, v is of length at least 2. As v is a factor
of w, it has an occurrence crossing some position j ∈ Γ. By minimality of v, we know
that u has an occurrence crossing either the first position of ϕ(wj) or the last position
of ϕ(wj) (or both). Therefore, u crosses a position in Tf or T�.

As a consequence of the previous two steps, Δ = Tϕ ∪ Tf ∪ T� is a string attractor for
ϕ(w). Recall that this construction can be done starting from any string attractor Γ of w,

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 19
giving different corresponding string attractors Δ. To obtain the three claimed inequal-
ities, we will consider different string attractors Γ of w. Now let M = maxa∈Σ1 |ϕ(a)|,
i.e., M is the length of the longest image of a letter.

1. If Γ is such that |Γ| = γ∗(w), then

γ∗(ϕ(w)) ≤ |Δ| ≤ |Tf | + |T�| + |Tϕ| ≤ 2γ∗(w) +
∑

a∈alph(w)

γ∗(ϕ(a)).

2. If Γ is such that δ = min Γ, δ′ = max Γ and δ′ − δ = span(w), then by construction
we have min Δ = |ϕ(w[1, δ − 1])| + 1 ∈ Tf and max Δ = |ϕ(w[1, δ′])| ∈ T�, and therefore

span(ϕ(w)) ≤ |ϕ(w[1, δ′])| − (|ϕ(w[1, δ− 1])|+ 1) = |ϕ(w[δ, δ′])| − 1 ≤ M · (span(w) + 1).

3. If Γ is such that max Γ = lm(w), then

lm(ϕ(w)) ≤ max Δ = |ϕ(w[1,max Γ])| ≤ M · lm(w).

To end the proof, we can choose the constant C = M(|Σ1| +1) (which is independent
of w), and the conclusion will follow for all three cases. �
5. Span and leftmost complexities

Based on the two new measures introduced in the previous section, we can define
related complexity functions for infinite words, respectively called the span complexity
and the leftmost complexity, which allow us to obtain a finer classification of infinite
words. Indeed, Examples 36 and 45 highlight two infinite words, the period-doubling
word and the Fibonacci word, which are not distinguishable if we consider their respective
string attractor profile function as they are eventually equal to 2. However, the situation
is very different if we look at how the positions within a string attractor are arranged.

Definition 35. Let x be an infinite word. The span and leftmost complexities of x are
respectively defined by spanx(n) = span(x[1, n]) and lmx(n) = lm(x[1, n]) for all n ≥ 1.

The span complexity for the period doubling word is described below.

Example 36. Consider the period-doubling word pd = 101110101011 · · · described in
Example 26 in which we recalled that spd(n) = 2 for all n ≥ 2. It has been proven in [45,
Theorem 10] that

spanpd(n) =
{

1, if 2 ≤ n ≤ 5;
2i, if 3 · 2i ≤ n < 3 · 2i+1 for some i ≥ 1.

For Holub’s words, we can use Example 17 to obtain the span and the leftmost com-
plexities for particular prefixes, as shown below.

20 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
Example 37. Consider the word u from Example 17 in which we proved that, for all
i ≥ 0, the set Γ(i+1) =

{
|ui| + 1,

∑i
k=0(|uk| + 1), 2|ui| + 2

}
is a string attractor of

the length-|ui+1| prefix of u. This directly implies that spanu(|ui+1|) ≤ max Γ(i+1) −
min Γ(i+1) = |ui| + 1 and that lmu(|ui+1|) ≤ 2|ui| + 2. Moreover, recall that consecutive
occurrences of ui in u are separated by at least |ui| + 1 letters. In particular, as ui+1 =
ui0(ui1)niui with ni ≥ 2, the factor ui0 only occurs as a prefix in ui+1, and 1ui1 does
not occur before position 2|ui| + 2. It follows that spanu(|ui+1|) = |ui| + 1 and that
lmu(|ui+1|) = 2|ui| + 2.

The next result directly follows from Proposition 33 and establishes the relationship
between the profile function, the span complexity and the leftmost complexity.

Proposition 38. For any infinite word x, we have sx(n) − 1 ≤ spanx(n) ≤ lmx(n) − 1 for
all n ≥ 1.

As we did for the string attractor profile function, we now focus on the case where
these new complexities are “bounded”. More specifically, we will characterize the infinite
words such that these complexities are bounded infinitely many times.

We first look at the leftmost complexity. We will use the following intermediate result,
which can be deduced from the proofs of [34, Propositions 12 and 15].

Proposition 39. Let w be a non-empty word and let u = wr, v = ws be fractional powers
of w with 1 ≤ r ≤ s. If Γ is a string attractor of u, then Γ ∪ {|w|} is a string attractor
of v.

Proposition 40. For any infinite word x, the following are equivalent:

1. There exists a constant C ≥ 1 such that lmx(n) ≤ C for infinitely many n.
2. The word x is eventually periodic.
3. The leftmost complexity lmx is bounded.

Proof. The implication (1) =⇒ (2) follows from Proposition 32. Indeed, for all m ≥ 1,
there exists an integer n such that lmx(n) ≤ C and x[1, n] contains all length-m factors.
Therefore, px(m) ≤ C. Using Theorem 2, this implies that x is eventually periodic.

The implication (2) =⇒ (3) follows from Proposition 39. Indeed, if x = uvω, then for
all n ≥ 1, {1, 2, . . . , min{n, |uv|}} is a string attractor for the word x[1, n]. Therefore,
lmx(n) ≤ |uv| for all n ≥ 1.

The implication (3) =⇒ (1) is direct. �
This result gives a new characterization of eventually periodic words. Observe that the

proof uses the well-known characterization by Morse and Hedlund (Theorem 2). Note
that, in the following, we will mostly use the contraposition of Proposition 40.

We now look at a similar description for the span.

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 21
Proposition 41. Let x be an infinite word. If there exists a constant C ≥ 1 such that
spanx(n) ≤ C for infinitely many n, then x is eventually periodic, or it is recurrent and
there exists d ≤ C such that px(n) = n + d for all large enough n.

Proof. Let us suppose that x is aperiodic. We first show that x is recurrent. Towards a
contradiction, we assume that x is not recurrent. Therefore, there exists a factor that
only occurs once in x. Say that this occurrence ends at position k. This implies that,
for all n ≥ k, any string attractor of x[1, n] contains a position smaller than or equal to
k. As spanx(n) ≤ C for infinitely many n, then lmx(n) ≤ k + C for infinitely many n,
which contradicts Proposition 40.

We now show that x has the claimed factor complexity. For all m ≥ 1, there exists an
integer n such that spanx(n) ≤ C and x[1, n] contains all length-m factors. By Proposi-
tion 29, we have px(m) ≤ m + C. Using Theorem 2 and as x is aperiodic, we conclude
that px(m) = m + d for all large enough m and for some d ≤ C. �

Note that a converse-like characterization will be given in Theorem 50.
On the other hand, some infinite words have maximal span complexity, as stated in

the following result.

Proposition 42. For any linearly recurrent word x, if px(n) = n +Ω(n), then spanx(n) =
Θ(n).

Proof. Since x is linearly recurrent, by Remark 4, there exists an integer A such that,
for all m, the length-(Am) prefix of x contains all length-m factors of x. For all n, if m
is such that n ∈ [Am +1, A(m +1)], Proposition 29 implies that spanx(n) ≥ px(m) −m.
By assumption on the factor complexity function, we have px(m) ≥ Cm for a constant
C > 1. Therefore spanx(n) ≥ (C−1)m ≥ (C−1) (n/A− 1). This shows that spanx(n) =
Ω(n). But since we trivially have spanx(n) = O(n), the conclusion follows. �
6. The case of Sturmian words

Sturmian words are famous combinatorial objects having several mathematical prop-
erties and characterizations. To name one of them, they approximate straight lines [32,
Chapter 2]. Among aperiodic binary infinite words, Sturmian words have minimal factor
complexity, i.e., an aperiodic infinite word x is Sturmian if px(n) = n + 1, for all n ≥ 0.
Moreover, Sturmian words are uniformly recurrent.

In this section, we study the three string attractor-related complexities in the context
of Sturmian words and two related families of infinite words. On the one hand, we
consider the subfamily of characteristic Sturmian words, defined as follows: a Sturmian
word s is characteristic if both 0s and 1s are Sturmian words. On the other hand,
we investigate the superfamily of quasi-Sturmian words, which can be considered the
simplest generalization of Sturmian words in terms of factor complexity. Indeed, they

22 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
are defined as follows [7]: a word x is quasi-Sturmian if there exist integers d and n0 such
that px(n) = n + d, for each n ≥ n0. The infinite words with factor complexity n + d

were also studied in [24] under the name of “words with minimal block growth”.

6.1. On the string attractor-based complexities for characteristic Sturmian words

We first focus on the family of characteristic Sturmian words, for which we can ex-
plicitly give the string attractor profile function, the span complexity, and the leftmost
complexity. To do so, we provide string attractors realizing them and based on the con-
struction of characteristic Sturmian words via particular finite words called standard
Sturmian words. These words have many interesting combinatorial properties and ap-
pear as extreme cases for several algorithms and data structures [11,10,27,35,46]. The
standard Sturmian words are defined recursively as follows [43].

Definition 43. A directive sequence is an infinite sequence of integers (qi)i≥0 such that
q0 ≥ 0 and qi ≥ 1 for all i ≥ 1. The corresponding sequence of standard Sturmian words
(xi)i≥0 is defined by x0 = 1, x1 = 0, and xi+1 = x

qi−1
i xi−1 for all i ≥ 1.

The limits s = limi→∞ xi of such sequences of standard Sturmian words are precisely
the characteristic Sturmian words [32, Proposition 2.2.24]. Note that s starts with the
letter 0 if and only if q0 ≥ 1. We let E : {0, 1}∗ → {0, 1}∗ be the exchange morphism, i.e.,
E(0) = 1 and E(1) = 0. A well-known property of characteristic Sturmian words is the
following: s starts with a letter 0 and has (qi)i≥0 as directive sequence if and only if E(s)
starts with a letter 1 and has (q′i)i≥0 as directive sequence with q′0 = 0 and q′i+1 = qi
for all i ≥ 0 [33, Section 2]. Therefore, in what follows, we only consider the case where
q0 ≥ 1.

The following result shows that each prefix of a characteristic Sturmian word has a
smallest string attractor of span 1, i.e., consisting of two consecutive positions.

Theorem 44. Consider a directive sequence (qi)i≥0 with q0 ≥ 1, the corresponding se-
quence (xi)i≥0 of standard Sturmian words and the associated characteristic Sturmian
word s = limi→∞ xi as in Definition 43. Then we have

ss(n) =
{

1, if n < |x2|;
2, if n ≥ |x2|;

spans(n) =
{

0, if n < |x2|;
1, if n ≥ |x2|;

and

lms(n) =
{

1, if n < |x2|;
|xk|, if |xk| + |xk−1| − 1 ≤ n ≤ |xk+1| + |xk| − 2 for some k ≥ 2.

More precisely, for all n ≥ 1, the following string attractor for s[1, n] witnesses the above
equalities:

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 23
Γn =
{
{1}, if n < |x2|;
{|xk| − 1, |xk|}, if |xk| + |xk−1| − 1 ≤ n ≤ |xk+1| + |xk| − 2 for some k ≥ 2.

Proof. We start the proof by showing the last part of the statement, i.e., we show that,
for all n ≥ 1, the given Γn is a string attractor for s[1, n]. Observe first that, if n < |x2|,
then s[1, n] = 0n, so {1} is directly a string attractor. For the case n ≥ |x2|, we need
the following notation. For all k ≥ 2, using [33, Theorem 3], we factorize the standard
Sturmian word xk into xk = ykuk where yk is a palindrome and uk = 01 if k is even and
uk = 10 if k is odd. We also recall the following observation: for all k ≥ 2, since we have

s[1, |xk+1| + |xk| − 2] = xk+1yk = yk+1uk+1yk,

then [32, Theorem 2.2.11] implies that s[1, |xk+1| +|xk| −2] is periodic of period |yk| +2 =
|xk|.

Assume now that n ≥ |x2|, and let k ≥ 2 be such that |xk| + |xk−1| − 1 ≤ n ≤
|xk+1| + |xk| −2 (such a k exists since |x2| + |x1| −1 = |x2|). Since s[1, |xk+1| + |xk| −2] is
periodic of period |xk|, then it is a fractional power of xk. Therefore, using Proposition 39,
it is enough to show that Γn = {|xk| − 1, |xk|} is a string attractor of the length-(|xk| +
|xk−1| − 1) prefix of s, denoted by pk.

If k = 2 or k = 3, the conclusion is direct as p2 = x2 = 0q01 and p3 = (0q01)q100q0 . If
k ≥ 4, we use the fact that a similar result was proved for the standard Sturmian words
in [34, Theorem 22]. Namely, Γn is a string attractor for xk+1. To show that Γn is also
a string attractor for pk, we will show that w := s[|xk|, |pk|] does not occur elsewhere in
pk. Indeed, this will imply that for each factor of pk its occurrence that was covered by
Γn in xk+1 is an occurrence in pk (also covered by Γn).

Observe that, as k ≥ 4, w = ayk−1a where a is the last letter of uk and the first letter
of uk−1. Note that w is not a suffix of s[1, |pk| − 1] = xkyk−1 as xk ends with uk = ba,
b �= a. Therefore, if w is a factor of xkyk−1, it is followed by a since xkyk−1 is periodic
of period |xk−1| = |w|. In particular, yk−1aa and yk−1ab = xk−1 are factors of xkyk−1.
This implies that yk−1a is right special and, by [32, Proposition 2.1.23], ayk−1 is a prefix
of xk. As yk−1a is also a prefix of xk, this implies that yk−1 is periodic of period 1, a
contradiction as k ≥ 4. This ends the proof that w is not a factor of xkyk−1 and, with
it, the proof that Γn is a string attractor of s[1, n].

Moreover, we directly have that Γn is of minimal size and of minimal span among the
string attractors of s[1, n]. It is also a leftmost string attractor as each string attractor
of s[1, n] will contain a position greater than or equal to |xk| to cover w. This proves the
three claimed complexities. �
Example 45. Consider the infinite Fibonacci word f = 01001010010010100 · · · , which is
a characteristic Sturmian word with directive sequence (1)i≥0. In Table 2, for 1 ≤ n ≤ 8,
we exhibit the length-n prefixes of f and their respective leftmost string attractor Γn.
The underlined positions in f [1, n] correspond to those in Γn, while the first few lengths
|xk|, k ∈ [1, 5] are given by {1, 2, 3, 5, 8}.

24 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
Table 2
For n ∈ [1, 8], the length-n prefix of the Fibonacci word f = 010010100100 · · · and its leftmost string
attractor Γn.

n 1 2 3 4 5 6 7 8
f [1, n] 0 01 010 0100 01001 010010 0100101 01001010
Γn {1} {1, 2} {1, 2} {2, 3} {2, 3} {2, 3} {4, 5} {4, 5}

Note that different size-2 string attractors are obtained in Section 7.2.

While infinitely many characteristic Sturmian words have the same string attractor
profile function (resp., the same span complexity), the leftmost complexity uniquely
determines the characteristic Sturmian word (up to exchanging the letters 0 and 1,
captured by the exchange morphism E). This is the object of the result below.

Proposition 46. Let s and s′ be two characteristic Sturmian words such that lms = lms′ .
Then, either s = s′ or s = E(s′).

Proof. As in Definition 43, let (qi)i≥0 and (pi)i≥0 be two directive sequences and let
(xi)i≥0 and (yi)i≥0 be the corresponding sequences of standard Sturmian words that are
prefixes of s and s′ respectively. Now consider the associated characteristic Sturmian
words s and s′. Due to the observation made after Definition 43, we may assume that,
up to exchanging 0 and 1, both s and s′ start with the letter 0 (i.e., q0, p0 ≥ 1). The
assumption that lms = lms′ together with Theorem 44 now implies that the sequences
(|xi|)i≥0 and (|yi|)i≥0 are equal. A simple induction shows that qi = pi for all i, therefore
s = s′. �

Observe that Theorem 44 is only true for characteristic Sturmian words since some
prefixes of non-characteristic Sturmian words do not admit any string attractor of span
1, as shown in the following example.

Example 47. Let s = 0000001000000100000001 · · · be a characteristic Sturmian word
whose directive sequence begins with q0 = 6 and q1 = 2 and let x be the non-
characteristic Sturmian word such that s = 0000 ·x, hence x = 001000000100000001 · · · .
We consider the prefix x[1, 14] = 02106104. Since 1 occurs only at positions 3 and 10
and the factor 06 only in x[4, 9], the candidates as string attractor with two consecutive
positions are Γ1 = {3, 4} and Γ2 = {9, 10}. However, one can check that the factors 0001
and 105 do not cross any position in Γ1 and Γ2 respectively, showing that spanx(14) ≥ 2.
Nonetheless, x[1, 14] admits a string attractor of size 2 (but with a larger span), i.e.,
Γ = {4, 10}.

6.2. Characterization of Sturmian and quasi-Sturmian words

We now turn to the families of Sturmian and quasi-Sturmian words. For each, we
provide a new characterization in terms of both the span and leftmost complexities.

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 25
We start with Sturmian words.

Theorem 48. An infinite word x is Sturmian if and only if lmx is unbounded and
spanx(n) = 1 for infinitely many n ≥ 1.

Proof. For the first implication, let x be a Sturmian word. Since x is aperiodic, Proposi-
tion 40 implies that lmx is unbounded. We now establish the claimed property on spanx.
As x is aperiodic and recurrent, it has infinitely many right special prefixes. Moreover,
for each such prefix v, there is a characteristic Sturmian word s (depending on v) having
vR as a prefix [32, Proposition 2.1.23]. Therefore, span(v) = span(vR) = 1 for all long
enough v by Theorem 44 and the proof of [34, Proposition 11].

For the other implication, consider an infinite word x satisfying the assumptions.
First, it is aperiodic by Proposition 40. For all m ≥ 1, there exists an integer n such
that x[1, n] contains all length-m factors. By assumption, we can moreover presume that
spanx(n) = 1. Therefore, px(m) ≤ m + 1 by Proposition 29. The fact that x is Sturmian
follows from Theorem 2. �

We now turn to quasi-Sturmian words. As announced, we prove a sort of converse
of Proposition 41. We will make use of the following characterization of quasi-Sturmian
words [7].

Theorem 49 ([7]). An infinite word x over the alphabet Σ is quasi-Sturmian if and only
if it can be written as x = wϕ(s), where w is a finite word, s is a Sturmian word on the
alphabet {0, 1}, and ϕ is a morphism from {0, 1}∗ to Σ∗ such that ϕ(01) �= ϕ(10).

Theorem 50. An infinite word x is quasi-Sturmian if and only if lmx is unbounded and
there exist a suffix y of x and a constant C ≥ 1 such that spany(n) ≤ C for infinitely
many n ≥ 1.

Proof. For the first implication, as quasi-Sturmian words are aperiodic by Theorem 2,
lmx is unbounded by Proposition 40. In addition, by Theorem 49, there exist a finite
word w, a Sturmian word s, and a morphism ϕ such that x = wϕ(s). Consider the suffix
y = ϕ(s). By Theorem 48, there are infinitely many integers n such that spans(n) = 1,
and by Proposition 34, there exists a constant C ≥ 1 such that, for all N = |ϕ(s[1, n])|,

spany(N) = span(ϕ(s[1, n])) ≤ C · span(s[1, n]) = C.

For the other implication, by Propositions 40 and 41, py(n) = n +D with D ≤ C for
all large enough n. Since x = wy for some finite word w, we have px(n) ≤ py(n) + |w| =
n +D+|w| for all large enough n. We conclude by Theorem 2 that x is quasi-Sturmian. �

26 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
Table 3
The first few finite Tribonacci words (b(3)n)0≤n≤5 (some particular decomposition is highlighted for a later
purpose, see Proposition 52).

n 0 1 2 3 4 5
b(3)n 0 0 1 01 0 2 0102 01 0 0102010 0102 01 0102010010201 0102010 0102

7. String attractors and complexities for k-bonacci words

In this section, we study string attractors of prefixes of some purely morphic words
over an alphabet of size k ≥ 2, namely the so-called k-bonacci words. The case k = 2
corresponds to the famous Fibonacci word, which is a Sturmian word and for which
string attractor-related concepts have already been studied. For k = 3, each prefix of the
Tribonacci word admits a string attractor of size at most 3 as shown in [45].

More generally, as k-bonacci words are episturmian, Dvořáková showed that each
prefix admits a string attractor of size at most k using palindromes [19, Theorem 10].
We also provide (different) string attractors of size at most k, using an approach that
differs from the techniques used to obtain string attractors for the Thue–Morse word,
the period-doubling word, and standard Sturmian words and may be extended to other
purely morphic words. Moreover, we precisely describe our string attractors in terms of
the corresponding k-bonacci numbers, which opens the door to considerations related
to numeration systems. In fact, a first attempt towards these considerations was done
in [22] using a similar construction.

Furthermore, we then study the leftmost and the span complexities of the k-bonacci
words.

7.1. Useful definitions and intermediate results

Let us consider an integer k ≥ 2 and the morphism μk : {0, . . . , k− 1}∗ → {0, . . . , k−
1}∗ defined by μk(i) = 0(i +1) for all i ∈ {0, 1, . . . , k−2} and μk(k−1) = 0. The infinite
k-bonacci word b(k) is defined as the fixed point b(k) = μ∞

k (0). The cases k = 2 and
k = 3 correspond to the Fibonacci and Tribonacci words respectively.

Furthermore, for all n ≥ 0, we let b(k)
n = μn

k (0) denote the nth finite k-bonacci word.
We also set b(k)

n = ε for all −k ≤ n < 0. For any n ≥ 0, we let B(k)
n = |b(k)

n | denote the
length of the nth finite k-bonacci word. The sequence (B(k)

n)n≥0 will be referred to as the
sequence of k-bonacci numbers. When the context is clear, we will drop the superscript
(k) in all notation.

Example 51. For k = 3, we write the first few non empty finite Tribonacci words in
Table 3.

Another way of seeing the sequence (b(k)
n)n≥−k is the following, which can be proven

by an easy induction. See Table 3 for an example with k = 3.

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 27
Proposition 52. We have

b(k)
n =

⎧⎨
⎩
(∏k

i=1 b
(k)
n−i

)
· n =

(∏n
i=1 b

(k)
n−i

)
· n, if 0 ≤ n ≤ k − 1;∏k

i=1 b
(k)
n−i, if n ≥ k.

We now define two sequences of integers (L(k)
n)n≥0 and (U (k)

n)n≥0 linked to k-bonacci
numbers that will help us partition N.

Definition 53. For all n ≥ 0, we set

L(k)
n =

{
B

(k)
n , if n ≤ k;

B
(k)
n + B

(k)
n−k−1 − 1, otherwise;

and

U (k)
n =

n∑
i=0

B
(k)
i .

Example 54. When k = 3, we obtain (L(3)
n)n≥0 = 1, 2, 4, 7, 13, 25, 47, 87, . . . and

(U (3)
n)n≥0 = 1, 3, 7, 14, 27, 51, 95, 176,

For any k ≥ 2, one can show that (U (k)
n)n≥0 gives the lengths of palindromic prefixes

of the k-bonacci word (note that the case k = 3 gives the sequence [47, A027084]).

Remark 55. Observe that, by Proposition 52, if 1 ≤ n ≤ k − 1, then Un−1 = Bn −
1 = Ln − 1, and if n = k, then Uk−1 = Bk = Lk. Moreover, for n > k, we have

Ln =
(∑n−1

i=n−k−1 Bi

)
− 1 ≤ Un−1. As L0 = 1, this implies that the intervals [Ln, Un],

n ≥ 0 cover the set of integers m ≥ 1.

7.2. String attractor profile function

We now study the string attractor profile function of the k-bonacci word b(k). To do
so, we will make use of Proposition 39 therefore we look at prefixes obtained as fractional
powers. More specifically, as the string attractors positions will be elements of (Bn)n≥0,
we study fractional powers of the words bn, n ≥ 0.

Proposition 56. For all n ≥ 0, b(k)[1, U (k)
n] =

∏n
i=0 b

(k)
n−i. Moreover, b(k)[1, U (k)

n] is a

fractional power of b(k)
n .

Proof. For n = 0, we directly have b[1, U0] = b[1, 1] = b0, so both claims hold in this
case. Assume that the result is true for n, and let us prove it for n +1. By the induction
hypothesis, we have

28 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
μk(b[1, Un]) = μk

(
n∏

i=0
bn−i

)
=

n∏
i=0

bn+1−i.

As b is a fixed point of μk, μk(b[1, Un]) is a prefix of b, and it is followed by the image
of a letter, thus by the letter 0. Therefore,

b[1, Un+1] = b
[
1,

n+1∑
i=0

Bi

]
=

(
n∏

i=0
bn+1−i

)
· 0 =

n+1∏
i=0

bn+1−i.

Moreover, since b[1, Un] is a fractional power of bn by the induction hypothesis, so
is b[1, Un] · a for some letter a ∈ {0, 1, . . . , k − 1}. By applying the morphism μk on
both words, we can conclude that b[1, Un+1] = μk(b[1, Un]) · 0 is a fractional power of
bn+1 = μk(bn). �

Using Proposition 39, we then directly have the following corollary.

Corollary 57. For all n ≥ 0, if Γ is a string attractor for b(k)[1, L(k)
n] and if B(k)

n ∈ Γ,
then Γ is a string attractor for b(k)[1, m] for all m ∈ [L(k)

n , U (k)
n].

We now exhibit a minimum string attractor of size at most k for each prefix of b(k)

and deduce the string attractor profile function.

Theorem 58. For all n ≥ 0, the set

Γn =
{
{B(k)

0 , . . . , B
(k)
n }, if n ≤ k − 1;

{B(k)
n−k+1, . . . , B

(k)
n }, if n ≥ k;

is a minimum string attractor for b(k)[1, m], for all m ∈ [L(k)
n , U (k)

n]. In particular, the
string attractor profile function for b(k) is given by

sb(k)(n) =
{
i + 1, if B(k)

i ≤ n < B
(k)
i+1 for some i ≤ k − 2;

k, if n ≥ B
(k)
k−1.

Proof. Using Proposition 52, a simple induction shows that, for all n ≥ 0, the positions
of Γn correspond to different letters, which implies that, if Γn is a string attractor of
a prefix, it is minimum. We prove that it is a string attractor of the length-m prefix,
m ∈ [Ln, Un], by induction on n ≥ 0. More precisely, the induction step is divided into
three intermediary claims (where we take the convention that Γ−1 = ∅):

1. Γn−1 ∪ {Bn} is a string attractor for b[1, Ln];
2. Γn is a string attractor for b[1, Ln];
3. Γn is a string attractor for b[1, m] for all m ∈ [Ln, Un].

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 29
b[1, Ln] = bn u

bn−k u

Bn−k

bn−k u

Bn

Fig. 1. Case 1 in the proof of Theorem 58.

First, notice that for n ≤ k−1, the first two claims are identical. Second, observe that
for all n, the third claim is a direct consequence of the second claim and of Corollary 57.

Let us now proceed to the induction. If n = 0, we directly conclude that {1} is a string
attractor for b[1, 1], which shows the first claim (and the other two follow as explained
above).

If 1 ≤ n ≤ k−1, then Ln = Un−1+1 = Bn. Since Γn−1 is a string attractor of b[1, Un]
by the induction hypothesis on the third claim, this directly implies that Γn−1 ∪ {Bn}
is a string attractor for b[1, Ln]. Once again, the other two claims directly follow.

Assume now that n ≥ k and let us prove the first claim. Then Ln ∈ [Ln−1, Un−1],
which implies as above that Γn−1 ∪ {Bn} is a string attractor for b[1, Ln].

Let us prove the second claim, and let b[1, Ln] = bnu, where u = ε if n = k or
u is bn−k−1 without its last letter if n ≥ k + 1. Using the first claim, it remains to
show that the position Bn−k is not needed in the string attractor, i.e., the factors of
b[1, Ln] that are covered by position Bn−k are still covered by Γn. As the first position
in Γn is Bn−k+1, it suffices to consider the factor occurrences crossing position Bn−k in
b[1, Bn−k+1 − 1]. As b[1, Bn−k+1 − 1] is bn−k+1 without its last letter, Proposition 52
implies that they are occurrences in

k∏
i=1

bn−k+1−i = bn−kbn−k−1

k∏
i=3

bn−k+1−i.

Note that bn−ku is a prefix of this word. We consider two cases: either the considered
occurrence is entirely contained in bn−ku or it crosses position Bn−k +Bn−k−1. Observe
that, if n ≥ k + 1, these two cases are mutually exclusive.

Case 1. Since bn−k is a suffix of bn by Proposition 52, the factors having an occurrence
in bn−ku crossing position Bn−k have an occurrence in bnu crossing position Bn, so they
are covered by Γn. See Fig. 1.

Case 2. Similarly, by Proposition 52, bn−kbn−k−1 is a suffix of bn−1 and
∏k

i=3 bn−k+1−i

=
∏k−2

i=1 bn−k−1−i is a prefix of bn−k−1, so of bn−2 (as the finite k-bonacci words are
prefixes of each other). As bn−1bn−2 is a prefix of bn, we conclude that the factors having
an occurrence in b[1, Bn−k+1 − 1] crossing position Bn−k +Bn−k−1 have an occurrence
in bn crossing position Bn−1, so they are covered by Γn. See Fig. 2. This ends the proof
of the second claim.

30 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
b[1, Ln] = bn−1 bn−2 · · · bn−k u

bn−kbn−k−1 v

Bn−k + Bn−k−1

bn−kbn−k−1 v

Bn−1

Fig. 2. Case 2 in the proof of Theorem 58 with v =
∏k

i=3 bn−k+1−i.

The third claim then follows, and this ends the proof that, for all n ≥ 0 and for all
m ∈ [Ln, Un], Γn is a string attractor of the length-m prefix of b. Finally, the string
attractor profile function follows from Remark 55. �
Remark 59. In the Tribonacci case, the elements in our string attractors are the same as
in [45, Theorem 6]. The corresponding intervals of prefix lengths are also linked. Indeed,
our sequence (U (3)

n)n≥0 is related to the sequence (Wn)n≥4 defined in [45, Theorem 6]
as follows: we have Wn+3 = U

(3)
n+1 for all n ≥ 1. Therefore, our upper bounds and that

of Schaeffer and Shallit coincide. However, our lower bounds are smaller than theirs. On
the other hand, the string attractors obtained for the palindromic prefixes in [19] are
different from ours. For instance, the case k = 3 is treated in [19, Example 8].

7.3. Leftmost complexity

We can further prove that the string attractor from Theorem 58 is actually a leftmost
string attractor. For the following few results, we set U (k)

−1 = 0.

Proposition 60. The leftmost complexity of b(k) satisfies lmb(k)(m) = B
(k)
n for all n ≥ 0

and m ∈ [U (k)
n−1 + 1, U (k)

n].

Proof. We show that the factor b[Bn, Un−1 + 1] does not occur in b before position
Bn. This implies that, for all m ≥ Un−1 + 1, any string attractor of b[1, m] contains
a position at least equal to Bn and, combined with Theorem 58, proves the claimed
leftmost complexity.

The claim is direct for n = 0 as B0 = 1 = U−1 + 1. Assume that it is true for n,
and let us prove it for n + 1. By construction, the Bn+1th letter of b is the last letter
of the image of the Bnth letter under μk, and, by Proposition 56, b[Bn+1 + 1, Un + 1]
is the image of b[Bn + 1, Un−1 + 1], potentially followed by a letter 0 (this occurs when
b[Bn, Un−1 +1] ends with the letter k−1). Therefore, each occurrence of b[Bn+1, Un+1]
in b is associated with the image of an occurrence of b[Bn, Un−1+1]. Using the induction
hypothesis, we conclude that b[Bn+1, Un + 1] does not occur before position Bn+1. �
7.4. Span complexity

For the k-bonacci words b(k), the factor complexity function is given by pb(k)(n) = (k−
1)n +1 (see, for instance, [14,23]). Therefore, when k ≥ 3, Proposition 42 implies that the

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 31
span complexity is linear. However, the string attractors described in Section 7.2 do not
have the smallest difference between their extreme positions. In what follows, we compute
the span for infinitely many prefixes and describe string attractors (of unbounded size)
having that span.

We first make the following observation which gives a lower bound on the span. Recall
that we have set U (k)

−1 = 0.

Proposition 61. Let k ≥ 2. For all n ≥ 2, the factors b(k)[i, i +U
(k)
n−3] are distinct for all

i ∈ [B(k)
n−2 + 1, B(k)

n].

Proof. Let us prove the result by induction on n. For n = 2, we need to consider the
letters in u = b[2, B2]. If k = 2, then u = 10, and if k ≥ 3, then u = 102. In both cases,
the letters are indeed distinct.

Let us now assume that the claim is true for n ≥ 2 and let us prove it for n + 1. We
proceed by contradiction and assume that there exist i, j ∈ [Bn−1 + 1, Bn+1] minimal
such that i < j and b[i, i + Un−2] = b[j, j + Un−2]. As Bn−1 + 1 marks the beginning
of the image of a letter in b and i and j are taken minimal, we know that the factor
u = b[i, i +Un−2] = b[j, j+Un−2] begins with 0. We may also assume that it does not end
with 0. Indeed, otherwise, we consider the word u = b[i, i +Un−2−1] = b[j, j+Un−2−1]
instead.

As the word u starts with 0, there exist i′ < j′ such that μk(b[1, i′ − 1]) = b[1, i − 1]
and μk(b[1, j′ − 1]) = b[1, j − 1]. Moreover, as Un−2 + 1 ≥ 2 and as u does not end with
a 0, it can be uniquely desubstituted (i.e., its preimage under μk is unique). There thus
exists
 such that b[i′, i′ +
] = b[j′, j′ +
] and μk(b[i′, i′ +
]) = u.

As |μk(b[1, i′ − 1])| = i − 1 ∈ [Bn−1, Bn+1 − 1], we have i′ ∈ [Bn−2 + 1, Bn]. The
same holds for j′. Therefore, by the induction hypothesis, we have b[i′, i′ + Un−3] �=
b[j′, j′+Un−3]. Let us take
′ ∈ [
, Un−3−1] maximal such that b[i′, i′+
′] = b[j′, j′+
′]
and let v = b[i′, i′+
′]. By maximality of
′, v is right special. Moreover, the set of factors
of b is stable under reversal [14, Theorem 5], i.e., the reversal of any factor of b is also a
factor. In particular, vR is a left special factor of b. Furthermore, the left special factors
of b are exactly its prefixes [14, Proposition 5], so vR is a prefix of b and also of b[1, Un−3]
as
′ ≤ Un−3 − 1. However, we have

|μk(vR)| = |μk(v)| ≥ |μk(b[i′, i′ +
])| ≥ Un−2

by definition of
. This is a contradiction. In fact, by Proposition 56, we have |μk(vR)| ≤
|μk(b[1, Un−3])| < Un−2. �

We now describe a new string attractor for prefixes of the k-bonacci word.

Proposition 62. Let k ≥ 2. For all n ≥ 1 and for all m ∈ [U (k)
n−1 + 1, U (k)

n], Γn =
{U (k)

n−2 + 1, U (k)
n−2 + 2, . . . , B(k)

n } is a string attractor of b(k)[1, m].

32 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
Proof. We proceed by induction on n ≥ 1. For the base case n = 1, the interval [U1−1 +
1, U2] becomes [2, 3], and Γ1 = {1, 2}, so the conclusion follows.

Now assume that the result is true for n ≥ 1, and we show it also holds for n +1. To do
so, we will use the following observation. From Proposition 56 and [2, Proposition 4.4],
one may prove that b[1, Un] is a palindrome for all n ≥ −1. By the induction hypothesis,
Γn is a string attractor for b[1, Un]. As this word is a palindrome, it also has the string
attractor

ΓR
n = {Un + 1 −Bn, . . . , Un + 1 − Un−2 − 1} = {Un−1 + 1, . . . , Bn + Bn−1}.

In particular, Γn+1 ⊇ ΓR
n is a string attractor of b[1, Un] when Bn+1 ≤ Un. If Bn+1 > Un,

then n ≤ k − 1 and Bn+1 = Un + 1, so Γn+1 is a string attractor of b[1, Un + 1]. In
both cases, Propositions 39 and 56 imply that Γn+1 is a string attractor of b[1, m] for
all m ∈ [Un + 1, Un+1]. �
Corollary 63. Let k ≥ 2. For all n ≥ 2 and for all m ∈ [U (k)

n − B
(k)
n−1 − B

(k)
n−2, U

(k)
n], we

have spanb(k)(m) = B
(k)
n − U

(k)
n−2 − 1. In particular, for infinitely many prefixes, there is

a factor length for which the bound given by Proposition 29 is tight.

Proof. Using Propositions 61 and 29, we know that for m ≥ Bn + Un−3, we have
spanb(m) ≥ Bn − Bn−2 − Un−3 − 1 = Bn − Un−2 − 1. Observe that Bn + Un−3 =
Un − Bn−1 − Bn−2. On the other hand, using Proposition 62, we know that for
m ∈ [Un−1 + 1, Un], we have spanb(m) ≤ Bn − Un−2 − 1.

If k ≥ 3, then Bn + Un−3 ≥ Un−1 + 1 so, for all m ∈ [Un − Bn−1 − Bn−2, Un], we
have spanb(m) = Bn − Un−2 − 1, as desired. It remains to consider k = 2. In that
case, Bn − Un−2 − 1 = 1 which does not depend on n. Therefore spanb(m) ≥ 1 for all
m ≥ B2 + U−1 = 3 and spanb(m) ≤ 1 for all m ≥ U0 + 1 = 2. Therefore, the conclusion
follows for all m ≥ 3. �

Observe that, for the Fibonacci word, we once again obtain that spanb(2) = 1, as in
Theorem 44.

8. Conclusions

In this paper, we emphasized the close relationship between string attractor-based
measures and classical notions of repetitiveness on infinite words, such as the factor
complexity and the recurrence function. In particular, we identified some combinatorial
properties needed to have a bounded string attractor profile function. Nonetheless, a
complete characterization of these words is still missing.

Furthermore, we used the new leftmost and span complexities to obtain novel char-
acterizations of particular infinite words, such as periodic words and the families of
Sturmian and quasi-Sturmian words. We wonder if one can use different string attractor-
based measures to characterize other combinatorial properties or families of words.

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 33
Finally, for the characteristic Sturmian words and the k-bonacci words, we have shown
how to construct, for each prefix, a string attractor with minimum size, minimum leftmost
measure, or minimum span. The methods presented for the k-bonacci words rely on the
properties they inherit from their morphic construction. A future perspective of research
could be a generalization of such a strategy to extend the construction of a smallest
string attractor to other families of morphic sequences.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

We thank Julien Leroy for the fruitful discussion on the S-adic words which led to
the construction of the infinite word from Example 16.

References

[1] J.P. Allouche, J.O. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge
University Press, 2003.

[2] P. Ambrož, Z. Masáková, E. Pelantová, C. Frougny, Palindromic complexity of infinite words asso-
ciated with simple Parry numbers, Ann. Inst. Fourier (2006) 2131–2160.

[3] M.P. Béal, D. Perrin, A. Restivo, Decidable problems in substitution shifts, J. Comput. Syst. Sci.
143 (2024) 103529, https://doi .org /10 .1016 /j .jcss .2024 .103529.

[4] V. Becher, P.A. Heiber, On extending de Bruijn sequences, Inf. Process. Lett. 111 (2011) 930–932,
https://doi .org /10 .1016 /j .ipl .2011 .06 .013.

[5] D. Bulgakova, A. Frid, J. Scanvic, Prefix palindromic length of the Sierpinski word, in: Developments
in Language Theory, in: Lecture Notes in Comput. Sci., vol. 13257, Springer, Cham, 2022, pp. 78–89.

[6] J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 67–88.
[7] J. Cassaigne, Sequences with grouped factors, in: Developments in Language Theory, Aristotle

University of Thessaloniki, 1997, pp. 211–222.
[8] J. Cassaigne, Recurrence in infinite words, in: STACS, Springer, 2001, pp. 1–11.
[9] J. Cassaigne, F. Nicolas, Factor complexity, in: V. Berthé, M. Rigo (Eds.), Combinatorics, Automata

and Number Theory, vol. 135, Cambridge University Press, 2010, pp. 163–247.
[10] G. Castiglione, A. Restivo, M. Sciortino, Hopcroft’s algorithm and cyclic automata, in: LATA,

Springer, 2008, pp. 172–183.
[11] G. Castiglione, A. Restivo, M. Sciortino, Circular Sturmian words and Hopcroft’s algorithm, Theor.

Comput. Sci. 410 (2009) 4372–4381.
[12] S. Constantinescu, L. Ilie, The Lempel–Ziv complexity of fixed points of morphisms, SIAM J.

Discrete Math. 21 (2007) 466–481.
[13] F. Dolce, String attractors for factors of the Thue-Morse word, in: WORDS, Springer, 2023,

pp. 117–129.
[14] X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy,

Theor. Comput. Sci. 255 (2001) 539–553.

http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA2596E35810ACCC58B2D52EDF848FF9Cs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA2596E35810ACCC58B2D52EDF848FF9Cs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA855A19299B016AA081E4EDE1D49D9D6s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA855A19299B016AA081E4EDE1D49D9D6s1
https://doi.org/10.1016/j.jcss.2024.103529
https://doi.org/10.1016/j.ipl.2011.06.013
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib64CD0917991C79575EDDC7499AD52230s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib64CD0917991C79575EDDC7499AD52230s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibDD6E446E5CCEF23B6A84C2383005C185s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib5555CE57538E5D00A953F90DDD662CF7s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib5555CE57538E5D00A953F90DDD662CF7s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib3BA716423223C6B7C0B2027A871C8FD9s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib0ACA6F97FFDE240A6E70564A87899D4Es1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib0ACA6F97FFDE240A6E70564A87899D4Es1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibAAF3AC16A52CFF77D5B691476A22889Fs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibAAF3AC16A52CFF77D5B691476A22889Fs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib07434688A7B0D39981A90FE9632D6407s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib07434688A7B0D39981A90FE9632D6407s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibE7EF41A626C1726B5EB58423DF35315Es1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibE7EF41A626C1726B5EB58423DF35315Es1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA818C3478F42F5CE7E24041E8D462F31s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA818C3478F42F5CE7E24041E8D462F31s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibC1970C4361D290D6C20C4E72A6DCCC97s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibC1970C4361D290D6C20C4E72A6DCCC97s1

34 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
[15] F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergod.
Theory Dyn. Syst. 20 (2000) 1061–1078.

[16] F. Durand, Corrigendum and addendum to: “Linearly recurrent subshifts have a finite number
of non-periodic subshift factors” [Ergodic Theory Dynam. Systems 20 (2000), no. 4, 1061–1078,
MR1779393 (2001m:37022)], Ergod. Theory Dyn. Syst. 23 (2003) 663–669, https://doi .org /10 .1017 /
S0143385702001293.

[17] F. Durand, B. Host, C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension
groups, Ergod. Theory Dyn. Syst. 19 (1999) 953–993.

[18] F. Durand, D. Perrin, Dimension Groups and Dynamical Systems: Substitutions, Bratteli Diagrams
and Cantor Systems, Cambridge Studies in Advanced Mathematics, Cambridge University Press,
2022.

[19] Ľ. Dvořáková, String attractors of episturmian sequences, Theor. Comput. Sci. 986 (2024) 114341,
https://doi .org /10 .1016 /j .tcs .2023 .114341.

[20] Ľ. Dvořáková, V. Hendrychová, String attractors of Rote sequences, https://doi .org /10 .48550 /arXiv .
2308 .00850, 2023.

[21] A. Frosini, I. Mancini, S. Rinaldi, G. Romana, M. Sciortino, Logarithmic equal-letter runs for BWT
of purely morphic words, in: DLT, Springer, 2022, pp. 139–151.

[22] F. Gheeraert, G. Romana, M. Stipulanti, String attractors of fixed points of k-bonacci-like mor-
phisms, in: WORDS, Springer, 2023, pp. 192–205.

[23] A. Glen, On Sturmian and episturmian words, and related topics, Ph.D. thesis, University of Ade-
laide, Australia, 2006.

[24] A. Heinis, Languages under substitutions and balanced words, J. Théor. Nr. Bordx. 16 (2004)
151–172.

[25] Š. Holub, Words with unbounded periodicity complexity, Int. J. Algebra Comput. 24 (2014) 827–836.
[26] D. Kempa, N. Prezza, At the roots of dictionary compression: string attractors, in: STOC, ACM,

2018, pp. 827–840.
[27] D.E. Knuth, J.H.M. Jr., V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1977)

323–350.
[28] T. Kociumaka, G. Navarro, N. Prezza, Toward a definitive compressibility measure for repetitive

sequences, IEEE Trans. Inf. Theory 69 (2023) 2074–2092.
[29] D. Kosolobov, A.M. Shur, Comparison of LZ77-type parsings, Inf. Process. Lett. 141 (2019) 25–29.
[30] K. Kutsukake, T. Matsumoto, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, On repetitiveness

measures of Thue-Morse words, in: SPIRE, Springer, 2020, pp. 213–220.
[31] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans. Inf. Theory 22 (1976) 75–81.
[32] M. Lothaire, Algebraic Combinatorics on Words, vol. 90, Cambridge University Press, 2002.
[33] A. de Luca, F. Mignosi, Some combinatorial properties of Sturmian words, Theor. Comput. Sci. 136

(1994) 361–385.
[34] S. Mantaci, A. Restivo, G. Romana, G. Rosone, M. Sciortino, A combinatorial view on string

attractors, Theor. Comput. Sci. 850 (2021) 236–248.
[35] S. Mantaci, A. Restivo, M. Sciortino, Burrows-Wheeler transform and Sturmian words, Inf. Process.

Lett. 86 (2003) 241–246.
[36] M. Morse, G.A. Hedlund, Symbolic dynamics, Am. J. Math. 60 (1938) 815–866.
[37] H. Mousavi, Automatic theorem proving in Walnut, https://doi .org /10 .48550 /arXiv .1603 .06017,

2016.
[38] G. Navarro, The compression power of the BWT: technical perspective, Commun. ACM 65 (2022)

90.
[39] G. Navarro, Indexing highly repetitive string collections, part I: repetitiveness measures, ACM

Comput. Surv. 54 (2022) 29:1–29:31.
[40] G. Navarro, Indexing highly repetitive string collections, part II: compressed indexes, ACM Comput.

Surv. 54 (2022) 26:1–26:32.
[41] J.J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphimes itérés, in: ICALP,

Springer, 1984, pp. 380–389.
[42] J.J. Pansiot, Decidability of periodicity for infinite words, RAIRO Theor. Inform. Appl. 20 (1986)

43–46.
[43] G. Rauzy, Mots infinis en arithmetique, in: M. Nivat, D. Perrin (Eds.), Automata on Infinite Word,

vol. 192, Springer Berlin Heidelberg, 1985, pp. 164–171.
[44] A. Restivo, G. Romana, M. Sciortino, String attractors and infinite words, in: LATIN, Springer,

2022, pp. 426–442.

http://refhub.elsevier.com/S0097-3165(24)00075-X/bib3E41FDC971F196933813FC14F6A48889s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib3E41FDC971F196933813FC14F6A48889s1
https://doi.org/10.1017/S0143385702001293
https://doi.org/10.1017/S0143385702001293
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA33D98A22BB90F863E127B5386DF9A57s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA33D98A22BB90F863E127B5386DF9A57s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib0624276D4C2C72E42C1BC2EF1785442As1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib0624276D4C2C72E42C1BC2EF1785442As1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib0624276D4C2C72E42C1BC2EF1785442As1
https://doi.org/10.1016/j.tcs.2023.114341
https://doi.org/10.48550/arXiv.2308.00850
https://doi.org/10.48550/arXiv.2308.00850
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib12F5A8D26B5DDA03A7851AB9057833F3s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib12F5A8D26B5DDA03A7851AB9057833F3s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib8F9564C865AD6F48BCC9086BFEC6B5BCs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib8F9564C865AD6F48BCC9086BFEC6B5BCs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib09F134E2CD8110E01774183AF73F90BBs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib09F134E2CD8110E01774183AF73F90BBs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibE44127D20C40CD2C1FB0866235D6DCBDs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibE44127D20C40CD2C1FB0866235D6DCBDs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibBD3BB6C9BCC92E793FE5E354EB27C8E1s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibBD72DE8482EE7DBCCF87FD9C067D7F87s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibBD72DE8482EE7DBCCF87FD9C067D7F87s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib9E7EE0A5928B291A2ED07971605B3587s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib9E7EE0A5928B291A2ED07971605B3587s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibED318D84E1B6FB774D74A747628558F4s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibED318D84E1B6FB774D74A747628558F4s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib91B3D20225D4607EA5E000613F3A6E34s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib041EE7BEBB69AB352778C317AE2F08F4s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib041EE7BEBB69AB352778C317AE2F08F4s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib432D9C387C28DABF1E378F48E85BB1ACs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibB9A82CB2949792244F5A29D8F3246BCDs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib816CD43E8867CE2F76971DA1F3356676s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib816CD43E8867CE2F76971DA1F3356676s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib0A8835E1FD3B402A1CF61DF3EEDC4DE4s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib0A8835E1FD3B402A1CF61DF3EEDC4DE4s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib5BC68FC4C221EEDABF37FE2321B9B99Es1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib5BC68FC4C221EEDABF37FE2321B9B99Es1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib34A375C3AA362E2F8AD056A8929DE4BBs1
https://doi.org/10.48550/arXiv.1603.06017
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib05557DEDAB685B845DE48FE74F5BE180s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib05557DEDAB685B845DE48FE74F5BE180s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA69B2C42C86F636883E8D96D6EA3530Ds1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibA69B2C42C86F636883E8D96D6EA3530Ds1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib4409E7F3C2D0BD6B7E3D10367C529724s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib4409E7F3C2D0BD6B7E3D10367C529724s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib08C9A8C7AFCA36FB3CDA58B4E21B1041s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib08C9A8C7AFCA36FB3CDA58B4E21B1041s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib99BB038738FB1FD666BBEC3291DF30B0s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib99BB038738FB1FD666BBEC3291DF30B0s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib9886ED0049319584367F7E13A63DE305s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib9886ED0049319584367F7E13A63DE305s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib0A385B61C6B84BEC5A35BF6F0A2B6765s1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bib0A385B61C6B84BEC5A35BF6F0A2B6765s1

J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 35
[45] L. Schaeffer, J.O. Shallit, String attractors for automatic sequences, https://doi .org /10 .48550 /
arXiv .2012 .06840, 2021.

[46] M. Sciortino, L.Q. Zamboni, Suffix automata and standard Sturmian words, in: Developments in
Language Theory, Springer, 2007, pp. 382–398.

[47] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis .org, 1964.

https://doi.org/10.48550/arXiv.2012.06840
https://doi.org/10.48550/arXiv.2012.06840
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibF853F81BB898F96580AB4A836D0C77BFs1
http://refhub.elsevier.com/S0097-3165(24)00075-X/bibF853F81BB898F96580AB4A836D0C77BFs1
http://oeis.org

	New string attractor-based complexities for infinite words
	1 Introduction
	2 Preliminaries
	3 String attractor profile function, factor complexity and recurrence
	3.1 Some examples
	3.2 The bounded case
	3.3 The case of purely morphic words

	4 Two new string attractor-based measures
	5 Span and leftmost complexities
	6 The case of Sturmian words
	6.1 On the string attractor-based complexities for characteristic Sturmian words
	6.2 Characterization of Sturmian and quasi-Sturmian words

	7 String attractors and complexities for k-bonacci words
	7.1 Useful definitions and intermediate results
	7.2 String attractor profile function
	7.3 Leftmost complexity
	7.4 Span complexity

	8 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

