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A string attractor is a set of positions in a word such that each 
distinct factor has an occurrence crossing a position from the 
set. This definition comes from the data compression field, 
where the size γ∗ of a smallest string attractor represents 
a lower bound for the output size of a large family of 
string compressors exploiting repetitions in words, including 
BWT-based and LZ-based compressors. For finite words, 
the combinatorial properties of string attractors have been 
studied in 2021 by Mantaci et al.. Later, Schaeffer and Shallit 
introduced the string attractor profile function, a complexity 
function that evaluates for each n > 0 the size γ∗ of the 
length-n prefix of a one-sided infinite word.
A natural development of the research on the topic is to link 
string attractors with other classical notions of repetitiveness 
in combinatorics on words. Our contribution in this sense is 
threefold. First, we explore the relation between the string 
attractor profile function and other well-known combinatorial 
complexity functions in the context of infinite words, such 
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as the factor complexity and the property of recurrence. 
Moreover, we study its asymptotic growth in the case of 
purely morphic words and obtain a complete description in the 
binary case. Second, we introduce two new string attractor-
based complexity functions, in which the structure and the 
distribution of positions in a string attractor are taken into 
account, and we study their combinatorial properties. We 
also show that these measures provide a finer classification 
of some infinite families of words, namely the Sturmian and 
quasi-Sturmian words. Third, we explicitly give the three 
complexities for some specific morphic words called k-bonacci 
words.
A preliminary version of some results presented in this paper 
can be found in [Restivo, Romana, Sciortino, String Attractors 
and Infinite Words, LATIN 2022].

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Repetitiveness is a central notion in the field of Combinatorics on Words, which has 
been approached from various perspectives. For instance, the factor complexity function
is probably the most extensively studied repetitiveness measure [9]. For an infinite word 
x, its factor complexity function px counts, for each n ≥ 0, the number of distinct 
factors of length n. Intuitively, the lower the factor complexity, the more repetitive the 
infinite word. Indeed, a famous theorem by Morse and Hedlund characterizes the words 
with (eventually) constant factor complexity as being eventually periodic, i.e. obtained 
by repeating the same factor, starting after a certain finite prefix. Within the sphere 
of infinite aperiodic words, some of the most studied words are the Sturmian words, 
which are the infinite aperiodic words with the lowest factor complexity function, i.e. 
their factor complexity is n +1 for every n. Quasi-Sturmian words represent the simplest 
generalization of Sturmian words in terms of factor complexity, they are infinite words 
having factor complexity n + d, with d ≥ 1, for every large enough n.

The analysis of repetitiveness in words can also be conducted using the recurrence 
function. It is another powerful measure that, in a complementary way, unveils the 
repetitive structure of infinite words. This notion was initially defined by Morse and 
Hedlund [36] but has found widespread recognition in the literature. See [8] for a survey. 
An infinite word x is recurrent if every factor of x occurs infinitely often. The recurrence 
function Rx for an infinite word x gives, for each n ≥ 0, if it exists, the size of the 
smallest window containing all the length-n factors of x, no matter where this window is 
located in x. Intuitively, it is closely related to the maximum gap between two consecutive 
occurrences of any length-n factor. Essentially, it provides an idea of how quickly factors 
repeat within an infinite word and how distributed the repetitive elements are in the 
word. If Rx(n) is defined for all n, then the word is called uniformly recurrent, and if Rx

is linear, then x is called linearly recurrent.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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In application contexts, repetitiveness has recently become a fundamental concept 
that is gaining increasing relevance [38]. Due to the abundance of highly repetitive data 
and the need to manage them efficiently, being able to effectively evaluate and measure 
the repetitiveness of data is fundamental to optimize processes and resources. For in-
stance, in the realm of indexing massive text collections, defining data structures that 
enable querying data using space proportional to the size of compressed data becomes 
crucial [39]. In such a scenario, finding good measures capable of capturing the level 
of repetitiveness in a text is strongly related to having effective parameters to evaluate 
the performance of such compressed data structures, both in terms of space and time. 
For this reason, the most commonly used measures in this field stem from compression 
schemes, such as the number of phrases in the LZ77 parsing and the number of equal 
letter runs produced by the Burrows-Wheeler Transform [40].

With the aim of unifying existing compressor-based measures, Kempa and Prezza 
proposed in [26] a repetitiveness measure related to combinatorial properties of the text 
instead of being associated with a specific compressor. A string attractor Γ for a text 
w is a set of positions in w such that each factor of w has an occurrence crossing some 
position in Γ. Intuitively, the more repetitive the text, the lower the number of positions 
needed in a string attractor. The measure γ∗(w) is then the minimal size of a string 
attractor for w. On the one hand, it has been proven that γ∗ is a lower bound for all 
other usual compressor-based repetitiveness measures. On the other hand, finding the 
smallest attractor size γ∗ for a given text w is an NP-complete problem.

Recently much interest has been aroused by the combinatorial properties of string 
attractors. Firstly, in [34] the sensitivity of the measure γ∗ with respect to combinatorial 
operations on finite words has been studied. In particular, it has been shown that γ∗

is not monotone, in the sense that the measure γ∗ of a word can be smaller than that 
of its prefixes. Also, the measure γ∗ has been studied for families of finite prefixes of 
well-known infinite words such as Thue-Morse word [30,45], Episturmian words [19], 
k-bonacci-like words [22] and Rote sequences [20], as well as for finite factors of the 
Thue-Morse word [13]. Moreover, a variation of γ∗ in which cyclic factors are considered 
has been used to characterize the necklaces of standard Sturmian words [34], well-known 
infinite families of finite words used as bricks to construct particular Sturmian words, 
called characteristic Sturmian words.

A groundbreaking research connecting the notion of string attractors with previously 
mentioned classical combinatorial notions of repetitiveness for infinite words has been 
presented in [45]. In particular, the string attractor profile function sx of an infinite word 
x is introduced. It measures, for each n ≥ 1, the smallest size of a string attractor for the 
length-n prefix of x. The authors study the behavior of sx when x is linearly recurrent, 
and when x is automatic, i.e., x can be defined through a finite automaton [1].

In this paper, in addition to the size of a string attractor, we also take into account 
the distribution of the positions within the string attractor. This leads to the definition 
of two new measures: for a finite word w, the span of w is the minimal span (or width) of 
a string attractor of w and the leftmost measure of w is the smallest rightmost position 
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of a string attractor of w. Starting from these two notions the new complexity measures 
lmx and spanx can be defined for an infinite word x. In particular, the span complexity 
function spanx(n) and the leftmost complexity function lmx(n) give the value of the span 
and the leftmost measure applied to the length-n prefix of x.

We study the string attractor-based complexities sx, lmx, and spanx with three 
main objectives: understanding their relation with other combinatorial notions of repet-
itiveness, characterizing some families of words using these complexities, and explicitly 
computing them for some particular words. We detail below the main contributions to 
these three topics.

Firstly, when comparing the string attractor-based complexities to repetitiveness prop-
erties, the case of bounded sx, lmx, or spanx is of particular interest. While we can fully 
characterize it for the leftmost complexity, we only obtain necessary conditions for the 
profile function and the span complexity. In particular, we show that aperiodic words 
with bounded profile function are ω-power-free and have linear factor complexity (The-
orem 19). We moreover prove that these conditions are not sufficient, thus answering 
negatively a question raised in [44].

Secondly, we exhibit three families of infinite words that can be characterized us-
ing the two new string attractor-based complexities. Eventually periodic words are the 
words with bounded leftmost complexity (Proposition 40), Sturmian words those with 
unbounded leftmost complexity and span complexity equal to 1 infinitely often (The-
orem 48), and quasi-Sturmian words those having a suffix with unbounded leftmost 
complexity and span complexity equal to some constant infinitely often (Theorem 50).

Finally, we compute the three complexities for two families of words: characteristic 
Sturmian words (Theorem 44) and k-bonacci words (Theorem 58, Proposition 60, and 
Corollary 63). This is done by explicitly providing string attractors realizing these com-
plexities. In particular, we show that the leftmost complexity uniquely determines the 
characteristic Sturmian word up to exchanging the two letters (Proposition 46).

This paper is organized as follows.
Section 2 contains all the preliminary definitions. In Section 3, we investigate in depth 

the connection between the function sx and some well-known notions of repetitiveness 
such as factor complexity, uniform recurrence, or ω-power freeness. For example, we show 
that the values taken by sx for infinitely many lengths of prefixes give an upper bound 
on the factor complexity (Proposition 9), as well as study the case of bounded sx. In 
Section 3.3, we extend a result about the growth of sx known for automatic words to 
binary purely morphic words, namely that sx(n) = Θ(1) or sx(n) = Θ(logn) and we can 
decide whether it is the former or the latter (Theorem 23).

Section 4 introduces the span and leftmost measures of a finite word. We give some 
simple combinatorial observations and study their behaviors when applying a morphism 
(Proposition 34). Studying these measures for prefixes of infinite words leads to the defi-
nition of the span and the leftmost complexities in Section 5. We prove that, analogously 
to the factor complexity, the leftmost complexity characterizes eventually periodic words. 



J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 5
We also study words of minimal span complexity (Proposition 41) and of maximal span 
complexity (Proposition 42).

Section 6 is devoted to the study of Sturmian and quasi-Sturmian words. We first 
focus on characteristic Sturmian words and describe string attractors minimizing all 
three complexities. We then turn to general Sturmian words and quasi-Sturmian words 
and characterize them using the string attractor-based complexities.

In Section 7, we move the focus to the k-bonacci words, a generalization of the well-
known Fibonacci word to an alphabet of size k. We use a new technique to build string 
attractors of minimal size. This recursive procedure can be extended to more general 
families of words obtained by applying morphisms, which represent a classical mechanism 
to generate repetitive words.

We end the paper with remarks and future works in Section 8.
A preliminary version of some of the results can be found in the conference paper [44].

2. Preliminaries

Combinatorics on words. An alphabet is a finite set of letters (of cardinality at least 2). 
A finite (resp., infinite) word on an alphabet Σ is simply a finite (resp., infinite) sequence 
of letters of Σ. To distinguish them from finite words, infinite words are written in bold, 
and we start indexing both finite and infinite words at 1, e.g., we will write x = x1x2 · · · . 
For a finite or infinite word x, let |x| denote its length, i.e., the number of letters in x, 
and alph(x) denote the set of letters appearing in x. The empty word ε is the only word 
that verifies |ε| = 0. Let Σ∗ (resp., Σ+) denote the set of finite (resp., non-empty finite) 
words over Σ. For all n ≥ 0, let Σn denote the set of length-n words over Σ.

Given a word

x =
{
x1x2 · · ·x|x|, if x is finite;
x1x2 · · · , if x is infinite;

an integer 1 ≤ i ≤ |x| is called a position within x. Given two positions 1 ≤ i, j ≤ |x|, 
we use the notation x[i, j] = xixi+1 · · ·xj ; note that x[i, j] = ε if j < i. Such a portion 
x[i, j] for i ≤ j is called a factor of x, which occurs at position i. Let F (x) denote the 
set of factors of x. The factor y ∈ F (x) is proper if y �= x. The word u is a prefix (resp., 
suffix) of x if x = uv (resp., x = vu) for some word v. A factor u of x is right special
(resp., left special) if there exist distinct letters a, b ∈ Σ such that both ua and ub (resp., 
au and bu) are factors of x. The reverse of a finite word x = x1x2 . . . x|x| is the word 
read from right to left, i.e., xR = x|x|x|x|−1 · · ·x1. If x = xR, then x is a palindrome.

String attractor of a finite word. Roughly, a string attractor for a finite word is a set 
of positions within the word such that each of its factors has an occurrence “crossing” 
at least one element of the set. More formally, a string attractor of a finite word x is a 
set Γ of positions within x such that, for every non-empty factor w ∈ F (x), there exist 
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integers i, j such that w = x[i, j] and [i, j] ∩Γ �= ∅. Let γ∗(x) denote the size of a smallest 
string attractor for x. It is easy to see that γ∗(x) ≥ |alph(x)|.

Example 1. Let x = 032100321032 be a word on Σ = {0, 1, 2, 3} (the reason why some 
letters are underlined will become clear later on). The set Γ = {1, 4, 6, 8, 11} is a string 
attractor for x. Note that Γ∗ = Γ \ {1} = {4, 6, 8, 11} is still a string attractor for x
since each factor that crosses position 1 has another occurrence that crosses a different 
position in Γ. The positions of Γ∗ are underlined above. The set Γ∗ is also a smallest 
string attractor since |Γ∗| = |Σ|, so γ∗(x) = 4. Note that {3, 4, 5, 11} and {3, 4, 6, 7, 11}
are also string attractors for x. It is easy to verify that the set Δ = {1, 2, 3, 4} is not a 
string attractor since, for instance, the factor 00 does not intersect any position in Δ.

Factor complexity. For an infinite word x, its factor complexity function px counts, 
for any integer n ≥ 0, the distinct length-n factors of x, i.e., px(n) = |F (x) ∩ Σn| for all 
n ≥ 0.

Periodicity. Given a word x, an integer p ≥ 1 is a period of x if xi = xj whenever i ≡ j

mod p. An infinite word x is eventually periodic if there exist u ∈ Σ∗ and v ∈ Σ+ such 
that x = uvω, i.e., x is the concatenation of u followed by infinite copies of a non-empty 
word v (denoted by vω). If u = ε, then x is said to be periodic. An infinite word is 
aperiodic if it is not eventually periodic. We recall the famous Morse-Hedlund theorem 
(see, for instance, [32, Theorem 1.3.13]).

Theorem 2 (Morse-Hedlund theorem). Let x be an infinite word. The following are equiv-
alent.

1. The word x is eventually periodic.
2. We have px(n + 1) = px(n) for some integer n ≥ 0.
3. The complexity function px is bounded.

Recurrence and appearance functions. An infinite word x is said to be recurrent if 
every factor of x occurs infinitely often (in x). The recurrence function Rx : n 	→ Rx(n)
gives, for each n, the least integer m (or ∞ if no such m exists) such that each length-m
factor of x contains at least an occurrence of each length-n factor of x. An infinite word 
x is uniformly recurrent if Rx(n) < ∞ for each n ≥ 1. Note that Rx(n) − n + 1 is the 
maximum gap between consecutive occurrences of the same factor when all length-n
factors are considered. If Rx(n) is linear, then x is linearly recurrent. It is easy to see 
that a periodic word x is linearly recurrent. On the other hand, if x is eventually periodic 
but not periodic, then x is not recurrent. Therefore, a recurrent word is either aperiodic 
or periodic. For an infinite word x and an integer n, let Ax(n) denote the length of the 
shortest prefix containing all length-n factors of x. The function n 	→ Ax(n) is called the 
appearance function of x.



J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936 7
Example 3. For the binary word x = 11011100101110111 · · · , which is the concatenation 
of all binary representations of the positive integers, the function Ax is easily seen to be 
exponential. This also follows from the fact that px is exponential too, as explained in 
the remark below.

Remark 4. For any infinite word x over Σ, the fact that Σ is finite implies that Ax(n) is 
defined for each n ≥ 1. One then easily sees that px(n) + n − 1 ≤ Ax(n) ≤ Rx(n).

Power freeness. An infinite word x is said to be k-power free for some k > 1 if, for 
every factor w of x, wk is not a factor of x. If for each factor w of x, there exists some 
integer k > 1 such that wk is not a factor of x, then x is ω-power free.

Morphisms. They represent a mechanism to generate infinite families of repetitive 
sequences, which have many mathematical properties [1,3,18]. Let Σ1 and Σ2 be alpha-
bets. A morphism is a map ϕ : Σ∗

1 → Σ∗
2 that satisfies the identity ϕ(uv) = ϕ(u)ϕ(v) for 

all words u, v ∈ Σ∗
1. Given an alphabet Σ, a morphism ϕ : Σ∗ 	→ Σ∗ is prolongable on a 

letter a ∈ Σ if ϕ(a) = au with u ∈ Σ+. If ϕ(a) �= ε for all a ∈ Σ, then the morphism ϕ is 
said to be non-erasing. Given a non-erasing morphism ϕ prolongable on some a ∈ Σ, the 
sequence (ϕi(a))i≥0 of finite words gives an infinite family of prefixes of a unique infinite 
word ϕ∞(a) = limi→∞ ϕi(a), which is called a purely morphic word or a fixed point of 
ϕ. A morphism ϕ is primitive if there exists t ≥ 1 such that b ∈ F (ϕt(a)) for every pair 
of letters a, b ∈ Σ. If there exists k such that |ϕ(a)| = k for every a ∈ Σ, then ϕ is said 
to be k-uniform.

Example 5. Let us consider the Thue–Morse word t = 0110100110010110 · · · which is 
the fixed point of the 2-uniform morphism 0 	→ 01, 1 	→ 10. It is known that the functions 
pt(n), Rt(n) and At(n) are Θ(n). See [1] for details.

Lempel-Ziv factorization. The Lempel-Ziv factorization or parsing (LZ77 parsing in 
short) of a finite word w is its factorization LZ(w) = v1v2 · · · vz built from left to right 
in a greedy way as follows: if a prefix w[1, j−1] = v1v2 · · · vi−1 is already processed, then 
the factor vi (which is also called an LZ-phrase) is either the letter wj if it does not occur 
in w[1, j − 1] or vi is the longest prefix of w[j, |w|] occurring in w at a position h < j. 
Let z(w) denote the number of LZ-phrases in the LZ77 parsing of w. For example, the 
LZ77 parsing of the word w = 0101012 is 0 · 1 · 0101 · 2. Consequently, z(0101012) = 4. 
It naturally induces a measure on infinite words as follows: for an infinite word x, the 
LZ-complexity function zx maps each n ≥ 1 to the number z(x[1, n]) of LZ-phrases of the 
length-n prefix of x. An overview of the relationship between z and other repetitiveness 
measures based on compression schemes can be found in [39].

Remark 6. Note that there are several variants of the Lempel-Ziv factorization; a survey 
can be found in [29] containing an in-depth study of the relationships between the asso-
ciated measures. A well-known variant, originally defined in [31], constructs the parsing 
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of the string w through a similar greedy procedure. However, the phrase vi is now the 
longest prefix of w[j, |w|] such that vi[1, |vi| − 1] has an occurrence at position h < j. 
Using this technique, the word w = 0101012 is factorized as follows: 0 · 1 · 01012. If z′
denotes the number of phrases obtained using such a factorization, then z′(0101012) = 3. 
In [29, Theorem 3], it is shown that z′(w) ≤ z(w) ≤ 2z′(w), for every word w ∈ Σ∗. A 
complexity measure based on z′ is studied for purely morphic words in [12].

The link between string attractors and LZ77 parsings is given in the result below. It 
follows from the fact that any given finite word has a string attractor of size equal to the 
number of its LZ-phrases. In fact, it is enough to consider as a string attractor the set 
of final positions of each LZ-phrase in the Lempel-Ziv factorization. Then, the following 
proposition holds.

Proposition 7 ([39]). For every word w ∈ Σ∗, γ∗(w) ≤ z(w).

3. String attractor profile function, factor complexity and recurrence

In this section, we explore the growth of the size of a smallest string attractor when 
considering increasingly large prefixes of an infinite word. This idea was first considered 
in [45].

Definition 8. Let x be an infinite word. The string attractor profile function of x is the 
map sx : n 	→ γ∗(x[1, n]), i.e. sx(n) is the size of a smallest string attractor for the 
length-n prefix of x.

We study the link between the string attractor profile function and different notions 
measuring the repetitiveness of factors within infinite sequences of symbols. We first 
establish a bond between the appearance, factor complexity, and string attractor profile 
functions, and in particular, we show that upper bounds on sx induce upper bounds on 
px.

Proposition 9. Let x be an infinite word. For all n ≥ 1, we have px(n) ≤ n · sx(Ax(n)).

Proof. Since alphabets are finite, so is the value Ax(n). By definition, sx(Ax(n)) is the 
size of a smallest string attractor Γ of the prefix of length Ax(n). Therefore, each length-n
factor of x crosses at least one element of this string attractor. Since each element of Γ
is crossed by at most n distinct length-n factors of x, one has px(n) ≤ n · sx(Ax(n)). �

Using the link between string attractors and LZ77 parsings, we easily obtain an upper 
bound on sx as follows.

Proposition 10. Let x be an infinite word. Then sx(n) = O
(

n
)
.
logn
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Proof. Using Proposition 7, we have sx(n) ≤ zx(n). To conclude, it suffices to use an 
upper bound on zx(n) that can be derived from [31, Theorem 2]: for a length-n word on 
an alphabet Σ, the number z′ of phrases obtained using the LZ-factorization introduced 
in [31] is bounded by n

(1−εn) log|Σ|(n) , where εn = 2 
1+log|Σ|(log|Σ|(n|Σ|))

log|Σ|(n) . The conclusion 

follows since z(x[1, n]) ≤ 2z′(x[1, n]) for every n (see Remark 6). �
It is possible to construct infinite words x for which there exists an increasing sequence 

of positive integers ni, i ≥ 1, such that sx(ni) = Θ( ni

logni
). For instance, one can take the 

infinite de Bruijn sequence from [4], where for a fixed alphabet Σ of size σ ≥ 3 and for 
all i ≥ 1, the prefix of length σi + i − 1 contains all possible length-i words over Σ. As 
there are σi such words, by Propositions 9 and 10, we have sx(σi + i −1) = Θ(σ

i

i ). Thus, 
by setting ni = σi + i − 1 for all i ≥ 1, we obtain sx(ni) = Θ( ni

logni
). However, having 

information on the values of the string attractor profile function over a sequence (ni)i≥1
does not allow us to determine its entire behavior, especially since sx is not monotone 
(see [34, Proposition 14]). Therefore, the question whether there exist words such that 
sx(n) = Θ( n

logn ) for all sufficiently large n is still open.
The following theorem shows that, if we assume that the appearance function is linear, 

a better bound on the function sx can be given.

Theorem 11 ([45]). Let x be an infinite word. If Ax(n) = Θ(n), then sx(n) = O(logn).

In the following sections we show several examples in which different repetitive-
ness aspects are considered (Section 3.1), we analyze which combinatorial notions of 
repetitiveness are related to the boundedness of the string attractor profile function 
(Section 3.2) and, finally, we study the behavior of the string attractor profile function 
in case of infinite words generated by morphisms (Section 3.3).

3.1. Some examples

In this section, we study the behavior of the string attractor profile function for various 
infinite words, and we focus on the relation with other measures of repetitiveness.

First, let us look at the string attractor profile function of a periodic word, which 
represents the simplest case of repetitiveness.

Example 12. Let us consider the word (01)ω = 01010101 · · · . The word is periodic, and 
therefore p(01)ω(n) = Θ(1) and A(01)ω(n) = n +1. Since each non-empty factor v of (01)ω
has an occurrence starting either in the first or in the second position (respectively when 
v starts with 0 or 1), the set {1, 2} is a string attractor for each prefix of length n ≥ 2
of (01)ω, and therefore s(01)ω(n) = Θ(1).

As shown later in Proposition 20, the previous observation is more general, and every 
infinite word with factor complexity Θ(1) has a bounded string attractor profile function. 
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On the other hand, by Proposition 9, a word with superlinear factor complexity cannot 
have a bounded string attractor profile function. Therefore, the other words considered 
in this section have linear factor complexity.

In the following example, we provide a non-recurrent infinite word having linear com-
plexity function and unbounded string attractor profile function.

Example 13. Let us consider the characteristic sequence c = 1101000100000001 · · · of 
powers of 2, i.e., ci = 1 if i = 2j for some j ≥ 0, ci = 0 otherwise. It is easy to see that 
c is aperiodic and not recurrent (e.g., the factor 11 occurs only once). It is known that 
pc(n) and Ac(n) are Θ(n) [1], while one can prove that sc(n) = Θ(logn) [28,34,45].

Example 14 gives a recurrent (not uniformly) infinite word with linear factor com-
plexity and unbounded string attractor profile function.

Example 14. Let μ : {0, 1}∗ → {0, 1}∗ be the 3-uniform morphism defined by μ(0) = 010
and μ(1) = 111. The infinite word w = μ∞(0) = 010111010111111111010 · · · , known 
in the literature as the Sierpiński word or the Cantor word (see, for instance, [5]), has 
linear factor complexity. Moreover, it is recurrent but not uniformly. Finally, since all 
factors 013k0, k ≥ 1, occur in w and do not overlap with each other, the string attractor 
profile function sw is unbounded. In fact, as a consequence of Theorem 23 (proved in 
Section 3.3), we can conclude that sw(n) = Θ(logn).

In the previous example, the fact that the string attractor profile function is un-
bounded follows from the existence of arbitrary large powers of 1. The example below 
uses the Thue-Morse word to give an ω-power-free infinite word with linear factor com-
plexity and unbounded string attractor profile function.

Example 15. Let ψ : {s, a0, b0, a1, b1}∗ → {s, a0, b0, a1, b1}∗ be the 2-uniform morphism 
defined by ψ(s) = sb0, ψ(ax) = axbx, and ψ(bx) = bxax for all x ∈ {0, 1}, where 
x = 1 − x. Since ψ is 2-uniform, it follows that the infinite word v = ψ∞(s) =
sb0b1a1b0a0a0b0b1a1a1b1 · · · has linear factor complexity [1]. Moreover, one can observe 
that if we consider the coding λ : {s, a0, b0, a1, b1}∗ 	→ {0, 1}∗ defined by λ(s) = λ(a0) =
λ(a1) = 0 and λ(b0) = λ(b1) = 1 and apply it on v, we obtain the Thue-Morse word 
t = 0110100110010110 · · · . Since t is 3-power free [1], it follows that v is ω-power free. 
Finally, since all the factors b0ψ2k−1(b0)b0, k ≥ 1, occur only once in v and do not 
overlap with each other, the string profile function sv is not bounded by a constant.

The previous example is not recurrent, however. To conclude the series of words with 
linear factor complexity and unbounded string attractor profile function, we give one 
example of a uniformly recurrent word. Contrary to the last two examples, it is not 
purely morphic but generated by two morphisms.
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Example 16. Let us consider the two 3-uniform morphisms

μ :
{

0 	→ 010
1 	→ 111

and μ̄ :
{

0 	→ 000
1 	→ 101

and the word q = limn→∞ μ̄ ◦ μ ◦ μ̄2 ◦ μ2 ◦ · · · ◦ μ̄n ◦ μn(0). This word is of linear factor 
complexity [16, Proposition 2.1] and is uniformly recurrent [15, Lemma 7]. Let us show 
that, for all n ≥ 1, the prefix un = μ̄ ◦ μ ◦ μ̄2 ◦ μ2 ◦ · · · ◦ μ̄n ◦ μn(0) of q requires at 
least n − 1 positions in any of its string attractors. Observe that, in μn(0), we have the 
factors 013i0 for all 1 ≤ i ≤ n − 1 which do not overlap one another. Let us show that 
their images under σ = μ̄ ◦ μ ◦ μ̄2 ◦ μ2 ◦ · · · ◦ μ̄n do not overlap either. We first make 
the following observation. By definition of the morphism μ, for any words u and w, if u
contains (at least) a 0, then any occurrence of μ(u) in μ(w) corresponds to an occurrence 
of u in w. In other words, for any u and v containing (at least) a 0 each, μ(u) and μ(v)
overlap in μ(w) if and only if u and v overlap in w. Similarly, for any u and v containing 
(at least) a 1 each, μ̄(u) and μ̄(v) overlap in μ̄(w) if and only if u and v overlap in w. 
As σ is a composition of μ and μ̄, this shows that the factors σ(013i0), 1 ≤ i ≤ n − 1, do 
not overlap in un. We conclude that sq is not bounded.

However, many classical infinite words in the literature have a known string attractor 
profile function bounded by a constant. It is the case of the Thue–Morse word (Ex-
ample 25), the period-doubling word (Example 26), and, as shown in this paper, the 
characteristic Sturmian words (Theorem 44), the k-bonacci words (Theorem 58) and the 
family of words defined by Holub in [25] (Example 17).

Example 17. Let us define an infinite word u introduced by Holub in [25]. For that, let 
(ni)i≥1 be an increasing sequence of positive integers with n1 ≥ 2. We recursively define 
the sequence (ui)i≥0 as u0 = ε and ui = ui−10(ui−11)niui−1. It is proved in [25] that 
u = limi→∞ ui is uniformly recurrent but not linearly recurrent. Moreover, for each i ≥ 1, 
u can be factorized as a product of words ui0 and ui1, i.e., u = uic1uic2uic3 · · · , where 
cj ∈ {0, 1}. More precisely, it has been proved in [25] that each occurrence of ui starts at 
a position that is a multiple of |ui| +1. Using such a property, the word u has exactly two 
right special factors of length n, for each n ≥ 1. They are precisely the length-n suffixes 
of ui−10(ui−11)niui−1 and (ui−11)niui−10ui−1 where |ui−1| + 1 ≤ n ≤ |ui|. By [6], this 
implies that pu(n) = 2n.

Furthermore, we shall prove that, for i ≥ 1, the set

Γ(i) =
{
|ui−1| + 1,

i−1∑
k=0

(|uk| + 1), 2|ui−1| + 2
}

is a string attractor for ui. Given the recursive construction of u, for each non-empty 
factor v of ui, we can find 0 ≤ j ≤ i − 1 such that |uj | < |v| ≤ |uj+1|, and v falls in one 
of the following mutually exclusive cases:
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1. either v = sj(1uj)q10(uj1)q2pj , for some q1, q2 ≥ 0 such that q1 + q2 ≤ nj+1, and for 
some prefix pj and suffix sj of uj ;

2. or v = sj(1uj)h10uj0(uj1)h2pj , for some j < i −1 and h1, h2 ≥ 0 such that h1 +h2 <

nj+1, and for some prefix pj and suffix sj of uj ;
3. or v = sj(1uj)k1pj , for some 0 ≤ k < ni (resp. 0 ≤ k ≤ nj) if j = i − 1 (resp. if 

j < i − 1), and for some prefix pj and suffix sj of uj .

One can observe that for all j < i − 1, the factors v from Case 1 have an occurrence 
crossing position 

∑i−1
k=0(|uk| + 1) ∈ Γ(i), while if j = i − 1 the only occurrence of v in 

ui crosses the position |ui−1| + 1 ∈ Γ(i). Similarly, the factors v that fall in Case 2 have 
an occurrence in ui where the 0 at position |sj | + h1(1 + |uj |) + 1 in v is at position 
|uj | +1 ∈ Γ(i) in ui. Finally, one occurrence of each factor falling in Case 3 can be found 
overlapping the last position in Γ(i), where the last 1 before pj is exactly at position 
2|ui| + 2 ∈ Γ(i), this ends the proof that Γ(i) is a string attractor of ui.

We deduce a string attractor for the length-n prefix of u as follows: if i is such that 
|ui| < n < |ui+1|, we can merge the set Γ(i) with the positions ≤ n in Γ(i+1) to obtain a 
string attractor for the length-n prefix. Such a string attractor can have up to 6 positions, 
and it follows that su(n) = Θ(1).

3.2. The bounded case

Supported by the previous section, it is relevant to detect which combinatorial prop-
erties of infinite words are related to the boundedness of the string attractor profile 
function. Observe that we already know the following result.

Theorem 18 ([45]). For any linearly recurrent infinite word x, we have sx(n) = Θ(1).

The previous theorem is not a characterization. Indeed, Example 17 exhibits uniformly 
(and not linearly) recurrent words x for which sx is bounded. In this section, we gather 
results towards a characterization.

First, we analyze how the boundedness of sx structures the infinite word x, and we 
show that if an infinite word has its string attractor profile function bounded by some 
constant value, then it has at most linear factor complexity. More precisely, we have the 
following result.

Theorem 19. Let x be an infinite word. If sx = Θ(1), then either x is eventually periodic, 
or x is ω-power free and px = Θ(n).

Proof. First, Proposition 9 implies that, if k is such that sx(n) < k for each n ≥ 1, then 
px(n) ≤ n ·k for each n ≥ 1. Therefore, the factor complexity is (at most) linear. Towards 
a contradiction, let us assume that x is aperiodic and not ω-power free. Then there exists 
a factor w of x such that, for every q ≥ 1, wq is factor of x. Moreover, the assumption 
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on x implies that x �= uwω for any u ∈ Σ∗. It follows that there exists an increasing 
sequence (qj)j≥1 of integers such that, for each j, there exist a proper suffix sj and a 
proper prefix pj of w, and two letters aj and bj such that ajsj is not a suffix of w, pjbj is 
not a prefix of w, and ajsjwqjpjbj is a factor of x. As any position (of a string attractor) 
can cover at most two such factors, sx is unbounded. This is a contradiction. �

The following proposition shows that, in the case of eventually periodic words, the 
string attractor profile function is bounded by a constant.

Proposition 20. For any eventually periodic infinite word x, we have sx(n) = Θ(1).

Proof. Let u ∈ Σ∗ and v ∈ Σ+ such that x = uvω. For all n ≥ 1, {1, . . . , min{n, |uv|}}
is a string attractor for the length-n prefix. Therefore, sx(n) ≤ |uv| for all n. �

However, the converse of Theorem 19 does not hold. Indeed, we give in Example 15 an 
ω-power-free word with linear factor complexity and unbounded string attractor profile 
function. Even strengthening the hypotheses by requiring uniform recurrence does not 
guarantee a bounded string profile function, as shown in Example 16. In particular, 
Examples 15 and 16 negatively answer the questions posed in [44]. Thus, the problem 
of finding a complete characterization of the infinite words having a bounded string 
attractor profile function is still open.

We conclude this section with Table 1 showing a synoptic overview of the factor 
complexity, repetitiveness properties, and string attractor profile function for the infinite 
words described in this section and those we consider in the rest of the paper. Apart from 
the periodic word (01)ω, all words considered in the table have linear factor complexity, 
which is a necessary (but not sufficient) condition to have a bounded string attractor 
profile function by Theorem 19. Four of the words have an unbounded string attractor 
profile function. For the others, the exact value of sx(n), for n large enough, is reported in 
the table. This table points out both that different repetitiveness aspects may be hiding 
behind a constant string attractor profile function, and that infinite words with different 
combinatorial structures and properties may have point-wise equal profile functions. This 
observation motivates the use of string attractors to define new complexity measures to 
capture such combinatorial properties, as done in the following sections.

3.3. The case of purely morphic words

Some data compression measures were explored in the particular setting of fixed points 
of morphisms, or more precisely, of iterated images of a morphism. It is the case of the 
number of BWT equal-letter runs [21] and of the LZ-complexity function [12]. Therefore, 
it is natural to wonder if similar results can be obtained for the string attractor profile 
function.

First, we present an upper bound on the string attractor profile function of purely 
morphic words.
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Table 1
The table shows the factor complexity px(n), recurrence properties, ω-power freeness and the string attrac-
tor profile function sx(n) for large enough n, for all the infinite words x considered in Sections 3, 6 and 7, 
namely: the periodic word (01)ω, the characteristic sequence c of powers of 2; the purely morphic word w
generated by the morphism μ defined by μ(0) = 010 and μ(1) = 111; a purely morphic word v generated 
by a 2-uniform morphism; a uniformly recurrent word q defined using μ and its counterpart obtained by 
echanging 0 and 1; an infinite word u introduced by Holub in [25]; any characteristic Sturmian word s; the 
Thue-Morse word t; the period doubling word pd; the k-bonacci word b(k) defined over an alphabet of 
size k.

Infinite word x px(n) Recurrence ω-power
free sx(n)

(01)ω (Ex. 12) Θ(1) linearly
recurrent No 2

c (Ex. 13) Θ(n) not
recurrent No Θ(logn)

w (Ex. 14) Θ(n) recurrent No Θ(logn)
v (Ex. 15) Θ(n) not recurrent Yes Θ(logn)

q (Ex. 16) Θ(n) uniformly
recurrent Yes Θ(logn)

u (Ex. 17) Θ(n) uniformly
recurrent Yes 3

s (Sec. 6) Θ(n) uniformly
recurrent Yes 2

t (Ex. 25) Θ(n) linearly
recurrent Yes 4

pd (Ex. 26) Θ(n) linearly
recurrent Yes 2

b(k) (Sec. 7) Θ(n) linearly
recurrent Yes k

Theorem 21. Let x = ϕ∞(a) be the fixed point of a non-erasing morphism ϕ prolongable 
on a ∈ Σ. Then sx(n) = O(i), where i is such that |ϕi(a)| ≤ n < |ϕi+1(a)|. In particular, 
if there exists ρ > 1 such that |ϕi(a)| = Ω(ρi), then sx(n) = O(logn).

To prove Theorem 21, we use Proposition 7 and the following result about the number 
of LZ-phrases in the LZ77 parsing in purely morphic words, which directly follows from 
[12, Theorem 1] and Remark 6.

Proposition 22. Let x = ϕ∞(a) be the fixed point of a non-erasing morphism ϕ pro-
longable on a ∈ Σ. Then

z(ϕi(a)) =
{

Θ(1), if x is eventually periodic;
Θ(i), otherwise.

Proof of Theorem 21. If x is eventually periodic, then by Proposition 20, sx is bounded, 
so in particular, sx(n) = O(i). Let us consider the case where x is not eventually periodic. 
For all i ≥ 0, define ni = |ϕi(a)|. By Proposition 22, there exist two constants c1, c2 ≥ 1
such that for all n ∈ [ni, ni+1), we have c1 · i ≤ zx(ni) ≤ zx(n) ≤ zx(ni+1) ≤ c2 · i + c2. 
Note that the second and third inequalities follow by the monotonicity of the measure z
(i.e., z(u) ≤ z(uv) for all u, v ∈ Σ∗). This implies that zx(n) = Θ(i), and by Proposition 7
it follows that sx(n) = O(i). In particular, if |ϕi(a)| = Ω(ρi) for some ρ > 1, then one 
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has n ∈ Ω(ρi) or, conversely, i = O(logn) so the conclusion sx(n) = O(i) = O(logn)
follows. �

In the following theorem, we provide a finer result in the case of binary purely morphic 
words.

Theorem 23. Let μ : {0, 1}∗ → {0, 1}∗ be a morphism prolongable on 0 and x = μ∞(0). 
Then either sx(n) = Θ(1) or sx(n) = Θ(logn), and it is decidable whether the former 
or the latter occurs.

Proof. Based on the morphism μ, we can decide in which of the following (mutually 
exclusive) cases we are.

1. The word x is eventually periodic [42, Theorem 4].
2. The word x is aperiodic and there exist a non-erasing morphism τ : Σ∗ → {0, 1}∗

and a primitive morphism ϕ : Σ∗ → Σ∗ such that x = μ∞(0) = τ(ϕ∞(0)) (whenever 
μ is primitive, as well as some decidable cases where μ(1) = 1 by [41, Theorem 4.1]
and its proof).

3. The word x is aperiodic and contains arbitrarily large powers of 1’s (whenever μ(1) =
1k, k ≥ 2, as well as some decidable cases where μ(1) = 1 by [41, Theorem 4.1]).

Let us now show that, in each case, we have either sx(n) = Θ(1) or sx(n) = Θ(logn). 
For the first case, we have sx(n) = Θ(1) as a direct consequence of Proposition 20. In 
the second case, as ϕ is primitive, ϕ∞(0) is linearly recurrent (see [17, Proposition 25]). 
This implies that x is also linearly recurrent and thus that sx(n) = Θ(1) by Theorem 18.

We now turn to the third case. Observe that, by Theorem 19, we cannot have sx(n) =
Θ(1), so we show that sx(n) = Θ(logn). By [21, Proposition 20 and Corollary 27], the 
number of distinct maximal runs of 1’s grows logarithmically with respect to the length 
of the prefixes of x, where a maximal run of 1’s is a factor of the form 01k0. As a 
position in a string attractor can cover at most two different runs of 1’s, this implies that 
sx(n) = Ω(log n). On the other hand, observe that by aperiodicity μ(0) contains at least 
two occurrences of 0. Therefore, |μn(0)| = Ω(2n) and, by Theorem 21, we conclude that 
sx(n) = O(logn) so sx(n) = Θ(logn). �

The same result has been obtained for another class of words, as reported below. In 
short, an infinite word x is k-automatic, with k ≥ 2, if and only if there exist a coding 
τ : Σ → Σ and a k-uniform morphism μk such that x = τ(μ∞

k (a)), for some a ∈ Σ [1]. 
An infinite word is called automatic if it is k-automatic for some k ≥ 2.

Theorem 24 ([45]). Let x be an automatic infinite word. Then, either sx(n) = Θ(1) or 
sx(n) = Θ(logn), and it is decidable whether the former or the latter occurs.
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Examples 13 and 14 show two automatic sequences for which the string attractor 
profile function is Θ(logn).

For some particular automatic words obtained as fixed points of morphisms, string 
attractors may be found using their specific combinatorial structure and properties, as 
recalled in the example below.

Example 25. Let us consider the Thue–Morse word t = 0110100110010110 · · · . It is a 
purely morphic word, as described in Example 5. It has been proven in [45] (cf. also [30,
13]) that st(n) = 4 for all n ≥ 25.

More generally, the authors of [45] show that, in the case of an automatic word with 
bounded string attractor profile function, it is possible to build an automaton returning 
the positions of a smallest string attractor for each prefix. However, this automaton is 
constructed case by case using the theorem-proving software Walnut [37]. This technique 
was used in [45] to find string attractors of minimal size for the prefixes of the automatic 
word considered in the following example.

Example 26. Consider the period-doubling word pd = 101110101011 · · · , which is the 
fixed point of the morphism 1 	→ 10, 0 	→ 11. It has been proven in [45, Theorem 3] that 
spd(n) = 2 for all n ≥ 1. In particular, it has been shown [45, Theorem 4] that for the 
prefix of pd of length n ≥ 6, a string attractor of smallest size is

Γ(pd[1, n]) =
{
{3 · 2i−3, 3 · 2i−2}, if 2i ≤ n < 3 · 2i−1;
{2i−1, 2i}, if 3 · 2i−1 ≤ n < 2i+1.

4. Two new string attractor-based measures

In this section, we introduce two new notions related to the string attractors of a 
word. Indeed, knowing the minimal size of a string attractor is often not sufficient to 
understand the structure of a word or choose interesting string attractors. Therefore, it 
can be relevant to consider the distribution of the positions in the string attractors. This 
is what our new measures capture, and as we will show later, they allow us to distinguish 
families of words.

The first measure is the span of a word, which gives the minimum distance between 
the rightmost and the leftmost positions of any string attractor.

Definition 27. Let w be a finite word and G be the set of all string attractors for w. The 
span of Γ ∈ G is span(Γ) = max Γ − min Γ, and the (string attractor) span of w is the 
value span(w) = minΓ∈G span(Γ).

Example 28. Let us consider the word w = 0122012 on the alphabet Σ = {0, 1, 2}. One 
can see that the sets Γ1 = {4, 5, 6} (underlined positions) and Γ2 = {1, 2, 4} (overlined 
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positions) are two suitable string attractors for w. Both are of minimal size as |Γ1| =
|Γ2| = |Σ| but they have different spans. Moreover, since all of the positions of Γ1 are 
consecutive, it is of minimal span and therefore span(w) = 6 − 4 = 2.

The span can be used to derive an upper bound on the number of distinct factors, as 
shown below.

Proposition 29. For any finite word w over Σ, we have |F (w) ∩ Σn| ≤ n + span(w) for 
all 1 ≤ n ≤ |w|.

Proof. Let Γ be a string attractor of minimal span and write δ = min Γ and δ′ = max Γ. 
Then, the interval Δ = [δ, δ′] contains Γ and is a string attractor for w. Since every factor 
has an occurrence crossing a position in Δ, it is possible to find all length-n factors of w
by considering a window of length n sliding from position max{δ − n + 1, 1} to position 
min{δ′, |w| −n +1}. One can see that this interval is of size at most δ′− (δ−n +1) +1 =
n + span(w). This ends the proof. �

In addition, we may compare string attractors of a given word according to their 
rightmost positions. More specifically, we want string attractors having the smallest 
such position. This gives the notion defined below.

Definition 30. Let w be a finite word and G be the set of all string attractors for w. The 
leftmost string attractor for w is a string attractor Γ ∈ G such that, for all Δ ∈ G, we have 
max Γ ≤ max Δ. The (string attractor) leftmost measure of w is then lm(w) = max Γ, 
where Γ is a leftmost string attractor.

Example 31. We resume Example 28. First, we have 4 = max Γ2 < max Γ1 = 6. Second, 
the set Δ = {1, 2, 3} is not a string attractor for w. Therefore lm(w) = 4.

Examples 28 and 31 show that for the finite word w = 0122012, these two measures 
can be realized by distinct string attractors. In fact, in this case, it is not possible to find 
a leftmost string attractor having minimal span since {2, 3, 4} is not a string attractor.

Similarly to what we did for the span, we can use the leftmost measure to obtain an 
upper bound on the number of distinct factors.

Proposition 32. For any finite word w over Σ, we have |F (w) ∩ Σn| ≤ lm(w) for all 
1 ≤ n ≤ |w|.

Proof. The proof follows the same lines as that of Proposition 29 by considering a left-
most string attractor Γ, and Δ = [1, max Γ] instead. �

From Examples 28 and 31, we formulate the following general observation.
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Proposition 33. Let w be a finite word. Then, γ∗(w) − 1 ≤ span(w) ≤ lm(w) − 1.

Proof. Let Γ1 be a string attractor of w with minimal span. It contains at most max Γ1−
min Γ1 + 1 = span(w) + 1 elements, therefore γ∗(w) ≤ span(w) + 1.

Let Γ2 be a leftmost string attractor of w. Its span is at most maxΓ2−1 = lm(w) −1, 
therefore span(w) ≤ lm(w) − 1. �

The following proposition shows how the size of the smallest string attractor, the 
span, and the leftmost measure of a word yield bounds on the corresponding measures 
for its image under a morphism.

Proposition 34. Let ϕ : Σ∗
1 → Σ∗

2 be a morphism. There exists a constant C ≥ 1 which 
depends only on ϕ such that, for every w ∈ Σ+

1 , the following hold:

1. γ∗(ϕ(w)) ≤ 2γ∗(w) + C;
2. span(ϕ(w)) ≤ C · span(w);
3. lm(ϕ(w)) ≤ C · lm(w).

Proof. Starting from a given string attractor Γ for w, we show how one can build a valid 
string attractor for ϕ(w) in two steps.

Step 1. First, we consider the factors of the images of letters, i.e., the elements of 
Fϕ =

⋃
a∈alph(w) F (ϕ(a)). By definition, for each symbol a ∈ alph(w), there is at least 

one position j ∈ Γ such that wj = a; let ja denote such a position. Then, for each 
a ∈ alph(w), we choose a minimum string attractor Γa of ϕ(a) and overlay it with the 
occurrence of ϕ(wja) to cover the factors of ϕ(a). In other words, every element of Fϕ

has an occurrence in w crossing at least a position in

Tϕ =
⋃

a∈alph(w)

{|ϕ(w[1, ja − 1])| + δ : δ ∈ Γa}.

Step 2. Let us now consider the other factors of ϕ(w), i.e., the elements of F (ϕ(w))
which are not in Fϕ. To cover these factors, we define two sets of positions. Let Tf =
{|ϕ(w[1, j − 1])| + 1 : j ∈ Γ} be the set of positions corresponding to the first letter of 
ϕ(wj), where j is a position in Γ. Analogously, we define the set T� = {|ϕ(w[1, j])| : j ∈ Γ}
as the set of positions corresponding to the last letter of each ϕ(wj) with j ∈ Γ.

Let u ∈ F (ϕ(w)) \ Fϕ and let v be a factor of w of minimal length such that u is a 
factor of ϕ(v). Observe that, by definition of Fϕ, v is of length at least 2. As v is a factor 
of w, it has an occurrence crossing some position j ∈ Γ. By minimality of v, we know 
that u has an occurrence crossing either the first position of ϕ(wj) or the last position 
of ϕ(wj) (or both). Therefore, u crosses a position in Tf or T�.

As a consequence of the previous two steps, Δ = Tϕ ∪ Tf ∪ T� is a string attractor for 
ϕ(w). Recall that this construction can be done starting from any string attractor Γ of w, 
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giving different corresponding string attractors Δ. To obtain the three claimed inequal-
ities, we will consider different string attractors Γ of w. Now let M = maxa∈Σ1 |ϕ(a)|, 
i.e., M is the length of the longest image of a letter.

1. If Γ is such that |Γ| = γ∗(w), then

γ∗(ϕ(w)) ≤ |Δ| ≤ |Tf | + |T�| + |Tϕ| ≤ 2γ∗(w) +
∑

a∈alph(w)

γ∗(ϕ(a)).

2. If Γ is such that δ = min Γ, δ′ = max Γ and δ′ − δ = span(w), then by construction 
we have min Δ = |ϕ(w[1, δ − 1])| + 1 ∈ Tf and max Δ = |ϕ(w[1, δ′])| ∈ T�, and therefore

span(ϕ(w)) ≤ |ϕ(w[1, δ′])| − (|ϕ(w[1, δ− 1])|+ 1) = |ϕ(w[δ, δ′])| − 1 ≤ M · (span(w) + 1).

3. If Γ is such that max Γ = lm(w), then

lm(ϕ(w)) ≤ max Δ = |ϕ(w[1,max Γ])| ≤ M · lm(w).

To end the proof, we can choose the constant C = M(|Σ1| +1) (which is independent 
of w), and the conclusion will follow for all three cases. �
5. Span and leftmost complexities

Based on the two new measures introduced in the previous section, we can define 
related complexity functions for infinite words, respectively called the span complexity
and the leftmost complexity, which allow us to obtain a finer classification of infinite 
words. Indeed, Examples 36 and 45 highlight two infinite words, the period-doubling 
word and the Fibonacci word, which are not distinguishable if we consider their respective 
string attractor profile function as they are eventually equal to 2. However, the situation 
is very different if we look at how the positions within a string attractor are arranged.

Definition 35. Let x be an infinite word. The span and leftmost complexities of x are 
respectively defined by spanx(n) = span(x[1, n]) and lmx(n) = lm(x[1, n]) for all n ≥ 1.

The span complexity for the period doubling word is described below.

Example 36. Consider the period-doubling word pd = 101110101011 · · · described in 
Example 26 in which we recalled that spd(n) = 2 for all n ≥ 2. It has been proven in [45, 
Theorem 10] that

spanpd(n) =
{

1, if 2 ≤ n ≤ 5;
2i, if 3 · 2i ≤ n < 3 · 2i+1 for some i ≥ 1.

For Holub’s words, we can use Example 17 to obtain the span and the leftmost com-
plexities for particular prefixes, as shown below.
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Example 37. Consider the word u from Example 17 in which we proved that, for all 
i ≥ 0, the set Γ(i+1) =

{
|ui| + 1,

∑i
k=0(|uk| + 1), 2|ui| + 2

}
is a string attractor of 

the length-|ui+1| prefix of u. This directly implies that spanu(|ui+1|) ≤ max Γ(i+1) −
min Γ(i+1) = |ui| + 1 and that lmu(|ui+1|) ≤ 2|ui| + 2. Moreover, recall that consecutive 
occurrences of ui in u are separated by at least |ui| + 1 letters. In particular, as ui+1 =
ui0(ui1)niui with ni ≥ 2, the factor ui0 only occurs as a prefix in ui+1, and 1ui1 does 
not occur before position 2|ui| + 2. It follows that spanu(|ui+1|) = |ui| + 1 and that 
lmu(|ui+1|) = 2|ui| + 2.

The next result directly follows from Proposition 33 and establishes the relationship 
between the profile function, the span complexity and the leftmost complexity.

Proposition 38. For any infinite word x, we have sx(n) − 1 ≤ spanx(n) ≤ lmx(n) − 1 for 
all n ≥ 1.

As we did for the string attractor profile function, we now focus on the case where 
these new complexities are “bounded”. More specifically, we will characterize the infinite 
words such that these complexities are bounded infinitely many times.

We first look at the leftmost complexity. We will use the following intermediate result, 
which can be deduced from the proofs of [34, Propositions 12 and 15].

Proposition 39. Let w be a non-empty word and let u = wr, v = ws be fractional powers 
of w with 1 ≤ r ≤ s. If Γ is a string attractor of u, then Γ ∪ {|w|} is a string attractor 
of v.

Proposition 40. For any infinite word x, the following are equivalent:

1. There exists a constant C ≥ 1 such that lmx(n) ≤ C for infinitely many n.
2. The word x is eventually periodic.
3. The leftmost complexity lmx is bounded.

Proof. The implication (1) =⇒ (2) follows from Proposition 32. Indeed, for all m ≥ 1, 
there exists an integer n such that lmx(n) ≤ C and x[1, n] contains all length-m factors. 
Therefore, px(m) ≤ C. Using Theorem 2, this implies that x is eventually periodic.

The implication (2) =⇒ (3) follows from Proposition 39. Indeed, if x = uvω, then for 
all n ≥ 1, {1, 2, . . . , min{n, |uv|}} is a string attractor for the word x[1, n]. Therefore, 
lmx(n) ≤ |uv| for all n ≥ 1.

The implication (3) =⇒ (1) is direct. �
This result gives a new characterization of eventually periodic words. Observe that the 

proof uses the well-known characterization by Morse and Hedlund (Theorem 2). Note 
that, in the following, we will mostly use the contraposition of Proposition 40.

We now look at a similar description for the span.
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Proposition 41. Let x be an infinite word. If there exists a constant C ≥ 1 such that 
spanx(n) ≤ C for infinitely many n, then x is eventually periodic, or it is recurrent and 
there exists d ≤ C such that px(n) = n + d for all large enough n.

Proof. Let us suppose that x is aperiodic. We first show that x is recurrent. Towards a 
contradiction, we assume that x is not recurrent. Therefore, there exists a factor that 
only occurs once in x. Say that this occurrence ends at position k. This implies that, 
for all n ≥ k, any string attractor of x[1, n] contains a position smaller than or equal to 
k. As spanx(n) ≤ C for infinitely many n, then lmx(n) ≤ k + C for infinitely many n, 
which contradicts Proposition 40.

We now show that x has the claimed factor complexity. For all m ≥ 1, there exists an 
integer n such that spanx(n) ≤ C and x[1, n] contains all length-m factors. By Proposi-
tion 29, we have px(m) ≤ m + C. Using Theorem 2 and as x is aperiodic, we conclude 
that px(m) = m + d for all large enough m and for some d ≤ C. �

Note that a converse-like characterization will be given in Theorem 50.
On the other hand, some infinite words have maximal span complexity, as stated in 

the following result.

Proposition 42. For any linearly recurrent word x, if px(n) = n +Ω(n), then spanx(n) =
Θ(n).

Proof. Since x is linearly recurrent, by Remark 4, there exists an integer A such that, 
for all m, the length-(Am) prefix of x contains all length-m factors of x. For all n, if m
is such that n ∈ [Am +1, A(m +1)], Proposition 29 implies that spanx(n) ≥ px(m) −m. 
By assumption on the factor complexity function, we have px(m) ≥ Cm for a constant 
C > 1. Therefore spanx(n) ≥ (C−1)m ≥ (C−1) (n/A− 1). This shows that spanx(n) =
Ω(n). But since we trivially have spanx(n) = O(n), the conclusion follows. �
6. The case of Sturmian words

Sturmian words are famous combinatorial objects having several mathematical prop-
erties and characterizations. To name one of them, they approximate straight lines [32, 
Chapter 2]. Among aperiodic binary infinite words, Sturmian words have minimal factor 
complexity, i.e., an aperiodic infinite word x is Sturmian if px(n) = n + 1, for all n ≥ 0. 
Moreover, Sturmian words are uniformly recurrent.

In this section, we study the three string attractor-related complexities in the context 
of Sturmian words and two related families of infinite words. On the one hand, we 
consider the subfamily of characteristic Sturmian words, defined as follows: a Sturmian 
word s is characteristic if both 0s and 1s are Sturmian words. On the other hand, 
we investigate the superfamily of quasi-Sturmian words, which can be considered the 
simplest generalization of Sturmian words in terms of factor complexity. Indeed, they 
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are defined as follows [7]: a word x is quasi-Sturmian if there exist integers d and n0 such 
that px(n) = n + d, for each n ≥ n0. The infinite words with factor complexity n + d

were also studied in [24] under the name of “words with minimal block growth”.

6.1. On the string attractor-based complexities for characteristic Sturmian words

We first focus on the family of characteristic Sturmian words, for which we can ex-
plicitly give the string attractor profile function, the span complexity, and the leftmost 
complexity. To do so, we provide string attractors realizing them and based on the con-
struction of characteristic Sturmian words via particular finite words called standard 
Sturmian words. These words have many interesting combinatorial properties and ap-
pear as extreme cases for several algorithms and data structures [11,10,27,35,46]. The 
standard Sturmian words are defined recursively as follows [43].

Definition 43. A directive sequence is an infinite sequence of integers (qi)i≥0 such that 
q0 ≥ 0 and qi ≥ 1 for all i ≥ 1. The corresponding sequence of standard Sturmian words
(xi)i≥0 is defined by x0 = 1, x1 = 0, and xi+1 = x

qi−1
i xi−1 for all i ≥ 1.

The limits s = limi→∞ xi of such sequences of standard Sturmian words are precisely 
the characteristic Sturmian words [32, Proposition 2.2.24]. Note that s starts with the 
letter 0 if and only if q0 ≥ 1. We let E : {0, 1}∗ → {0, 1}∗ be the exchange morphism, i.e., 
E(0) = 1 and E(1) = 0. A well-known property of characteristic Sturmian words is the 
following: s starts with a letter 0 and has (qi)i≥0 as directive sequence if and only if E(s)
starts with a letter 1 and has (q′i)i≥0 as directive sequence with q′0 = 0 and q′i+1 = qi
for all i ≥ 0 [33, Section 2]. Therefore, in what follows, we only consider the case where 
q0 ≥ 1.

The following result shows that each prefix of a characteristic Sturmian word has a 
smallest string attractor of span 1, i.e., consisting of two consecutive positions.

Theorem 44. Consider a directive sequence (qi)i≥0 with q0 ≥ 1, the corresponding se-
quence (xi)i≥0 of standard Sturmian words and the associated characteristic Sturmian 
word s = limi→∞ xi as in Definition 43. Then we have

ss(n) =
{

1, if n < |x2|;
2, if n ≥ |x2|;

spans(n) =
{

0, if n < |x2|;
1, if n ≥ |x2|;

and

lms(n) =
{

1, if n < |x2|;
|xk|, if |xk| + |xk−1| − 1 ≤ n ≤ |xk+1| + |xk| − 2 for some k ≥ 2.

More precisely, for all n ≥ 1, the following string attractor for s[1, n] witnesses the above 
equalities:
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Γn =
{
{1}, if n < |x2|;
{|xk| − 1, |xk|}, if |xk| + |xk−1| − 1 ≤ n ≤ |xk+1| + |xk| − 2 for some k ≥ 2.

Proof. We start the proof by showing the last part of the statement, i.e., we show that, 
for all n ≥ 1, the given Γn is a string attractor for s[1, n]. Observe first that, if n < |x2|, 
then s[1, n] = 0n, so {1} is directly a string attractor. For the case n ≥ |x2|, we need 
the following notation. For all k ≥ 2, using [33, Theorem 3], we factorize the standard 
Sturmian word xk into xk = ykuk where yk is a palindrome and uk = 01 if k is even and 
uk = 10 if k is odd. We also recall the following observation: for all k ≥ 2, since we have

s[1, |xk+1| + |xk| − 2] = xk+1yk = yk+1uk+1yk,

then [32, Theorem 2.2.11] implies that s[1, |xk+1| +|xk| −2] is periodic of period |yk| +2 =
|xk|.

Assume now that n ≥ |x2|, and let k ≥ 2 be such that |xk| + |xk−1| − 1 ≤ n ≤
|xk+1| + |xk| −2 (such a k exists since |x2| + |x1| −1 = |x2|). Since s[1, |xk+1| + |xk| −2] is 
periodic of period |xk|, then it is a fractional power of xk. Therefore, using Proposition 39, 
it is enough to show that Γn = {|xk| − 1, |xk|} is a string attractor of the length-(|xk| +
|xk−1| − 1) prefix of s, denoted by pk.

If k = 2 or k = 3, the conclusion is direct as p2 = x2 = 0q01 and p3 = (0q01)q100q0 . If 
k ≥ 4, we use the fact that a similar result was proved for the standard Sturmian words 
in [34, Theorem 22]. Namely, Γn is a string attractor for xk+1. To show that Γn is also 
a string attractor for pk, we will show that w := s[|xk|, |pk|] does not occur elsewhere in 
pk. Indeed, this will imply that for each factor of pk its occurrence that was covered by 
Γn in xk+1 is an occurrence in pk (also covered by Γn).

Observe that, as k ≥ 4, w = ayk−1a where a is the last letter of uk and the first letter 
of uk−1. Note that w is not a suffix of s[1, |pk| − 1] = xkyk−1 as xk ends with uk = ba, 
b �= a. Therefore, if w is a factor of xkyk−1, it is followed by a since xkyk−1 is periodic 
of period |xk−1| = |w|. In particular, yk−1aa and yk−1ab = xk−1 are factors of xkyk−1. 
This implies that yk−1a is right special and, by [32, Proposition 2.1.23], ayk−1 is a prefix 
of xk. As yk−1a is also a prefix of xk, this implies that yk−1 is periodic of period 1, a 
contradiction as k ≥ 4. This ends the proof that w is not a factor of xkyk−1 and, with 
it, the proof that Γn is a string attractor of s[1, n].

Moreover, we directly have that Γn is of minimal size and of minimal span among the 
string attractors of s[1, n]. It is also a leftmost string attractor as each string attractor 
of s[1, n] will contain a position greater than or equal to |xk| to cover w. This proves the 
three claimed complexities. �
Example 45. Consider the infinite Fibonacci word f = 01001010010010100 · · · , which is 
a characteristic Sturmian word with directive sequence (1)i≥0. In Table 2, for 1 ≤ n ≤ 8, 
we exhibit the length-n prefixes of f and their respective leftmost string attractor Γn. 
The underlined positions in f [1, n] correspond to those in Γn, while the first few lengths 
|xk|, k ∈ [1, 5] are given by {1, 2, 3, 5, 8}.
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Table 2
For n ∈ [1, 8], the length-n prefix of the Fibonacci word f = 010010100100 · · · and its leftmost string 
attractor Γn.

n 1 2 3 4 5 6 7 8
f [1, n] 0 01 010 0100 01001 010010 0100101 01001010
Γn {1} {1, 2} {1, 2} {2, 3} {2, 3} {2, 3} {4, 5} {4, 5}

Note that different size-2 string attractors are obtained in Section 7.2.

While infinitely many characteristic Sturmian words have the same string attractor 
profile function (resp., the same span complexity), the leftmost complexity uniquely 
determines the characteristic Sturmian word (up to exchanging the letters 0 and 1, 
captured by the exchange morphism E). This is the object of the result below.

Proposition 46. Let s and s′ be two characteristic Sturmian words such that lms = lms′ . 
Then, either s = s′ or s = E(s′).

Proof. As in Definition 43, let (qi)i≥0 and (pi)i≥0 be two directive sequences and let 
(xi)i≥0 and (yi)i≥0 be the corresponding sequences of standard Sturmian words that are 
prefixes of s and s′ respectively. Now consider the associated characteristic Sturmian 
words s and s′. Due to the observation made after Definition 43, we may assume that, 
up to exchanging 0 and 1, both s and s′ start with the letter 0 (i.e., q0, p0 ≥ 1). The 
assumption that lms = lms′ together with Theorem 44 now implies that the sequences 
(|xi|)i≥0 and (|yi|)i≥0 are equal. A simple induction shows that qi = pi for all i, therefore 
s = s′. �

Observe that Theorem 44 is only true for characteristic Sturmian words since some 
prefixes of non-characteristic Sturmian words do not admit any string attractor of span 
1, as shown in the following example.

Example 47. Let s = 0000001000000100000001 · · · be a characteristic Sturmian word 
whose directive sequence begins with q0 = 6 and q1 = 2 and let x be the non-
characteristic Sturmian word such that s = 0000 ·x, hence x = 001000000100000001 · · · . 
We consider the prefix x[1, 14] = 02106104. Since 1 occurs only at positions 3 and 10
and the factor 06 only in x[4, 9], the candidates as string attractor with two consecutive 
positions are Γ1 = {3, 4} and Γ2 = {9, 10}. However, one can check that the factors 0001
and 105 do not cross any position in Γ1 and Γ2 respectively, showing that spanx(14) ≥ 2. 
Nonetheless, x[1, 14] admits a string attractor of size 2 (but with a larger span), i.e., 
Γ = {4, 10}.

6.2. Characterization of Sturmian and quasi-Sturmian words

We now turn to the families of Sturmian and quasi-Sturmian words. For each, we 
provide a new characterization in terms of both the span and leftmost complexities.
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We start with Sturmian words.

Theorem 48. An infinite word x is Sturmian if and only if lmx is unbounded and 
spanx(n) = 1 for infinitely many n ≥ 1.

Proof. For the first implication, let x be a Sturmian word. Since x is aperiodic, Proposi-
tion 40 implies that lmx is unbounded. We now establish the claimed property on spanx. 
As x is aperiodic and recurrent, it has infinitely many right special prefixes. Moreover, 
for each such prefix v, there is a characteristic Sturmian word s (depending on v) having 
vR as a prefix [32, Proposition 2.1.23]. Therefore, span(v) = span(vR) = 1 for all long 
enough v by Theorem 44 and the proof of [34, Proposition 11].

For the other implication, consider an infinite word x satisfying the assumptions. 
First, it is aperiodic by Proposition 40. For all m ≥ 1, there exists an integer n such 
that x[1, n] contains all length-m factors. By assumption, we can moreover presume that 
spanx(n) = 1. Therefore, px(m) ≤ m + 1 by Proposition 29. The fact that x is Sturmian 
follows from Theorem 2. �

We now turn to quasi-Sturmian words. As announced, we prove a sort of converse 
of Proposition 41. We will make use of the following characterization of quasi-Sturmian 
words [7].

Theorem 49 ([7]). An infinite word x over the alphabet Σ is quasi-Sturmian if and only 
if it can be written as x = wϕ(s), where w is a finite word, s is a Sturmian word on the 
alphabet {0, 1}, and ϕ is a morphism from {0, 1}∗ to Σ∗ such that ϕ(01) �= ϕ(10).

Theorem 50. An infinite word x is quasi-Sturmian if and only if lmx is unbounded and 
there exist a suffix y of x and a constant C ≥ 1 such that spany(n) ≤ C for infinitely 
many n ≥ 1.

Proof. For the first implication, as quasi-Sturmian words are aperiodic by Theorem 2, 
lmx is unbounded by Proposition 40. In addition, by Theorem 49, there exist a finite 
word w, a Sturmian word s, and a morphism ϕ such that x = wϕ(s). Consider the suffix 
y = ϕ(s). By Theorem 48, there are infinitely many integers n such that spans(n) = 1, 
and by Proposition 34, there exists a constant C ≥ 1 such that, for all N = |ϕ(s[1, n])|,

spany(N) = span(ϕ(s[1, n])) ≤ C · span(s[1, n]) = C.

For the other implication, by Propositions 40 and 41, py(n) = n +D with D ≤ C for 
all large enough n. Since x = wy for some finite word w, we have px(n) ≤ py(n) + |w| =
n +D+|w| for all large enough n. We conclude by Theorem 2 that x is quasi-Sturmian. �
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Table 3
The first few finite Tribonacci words (b(3)n )0≤n≤5 (some particular decomposition is highlighted for a later 
purpose, see Proposition 52).

n 0 1 2 3 4 5
b(3)n 0 0 1 01 0 2 0102 01 0 0102010 0102 01 0102010010201 0102010 0102

7. String attractors and complexities for k-bonacci words

In this section, we study string attractors of prefixes of some purely morphic words 
over an alphabet of size k ≥ 2, namely the so-called k-bonacci words. The case k = 2
corresponds to the famous Fibonacci word, which is a Sturmian word and for which 
string attractor-related concepts have already been studied. For k = 3, each prefix of the 
Tribonacci word admits a string attractor of size at most 3 as shown in [45].

More generally, as k-bonacci words are episturmian, Dvořáková showed that each 
prefix admits a string attractor of size at most k using palindromes [19, Theorem 10]. 
We also provide (different) string attractors of size at most k, using an approach that 
differs from the techniques used to obtain string attractors for the Thue–Morse word, 
the period-doubling word, and standard Sturmian words and may be extended to other 
purely morphic words. Moreover, we precisely describe our string attractors in terms of 
the corresponding k-bonacci numbers, which opens the door to considerations related 
to numeration systems. In fact, a first attempt towards these considerations was done 
in [22] using a similar construction.

Furthermore, we then study the leftmost and the span complexities of the k-bonacci 
words.

7.1. Useful definitions and intermediate results

Let us consider an integer k ≥ 2 and the morphism μk : {0, . . . , k− 1}∗ → {0, . . . , k−
1}∗ defined by μk(i) = 0(i +1) for all i ∈ {0, 1, . . . , k−2} and μk(k−1) = 0. The infinite 
k-bonacci word b(k) is defined as the fixed point b(k) = μ∞

k (0). The cases k = 2 and 
k = 3 correspond to the Fibonacci and Tribonacci words respectively.

Furthermore, for all n ≥ 0, we let b(k)
n = μn

k (0) denote the nth finite k-bonacci word. 
We also set b(k)

n = ε for all −k ≤ n < 0. For any n ≥ 0, we let B(k)
n = |b(k)

n | denote the 
length of the nth finite k-bonacci word. The sequence (B(k)

n )n≥0 will be referred to as the 
sequence of k-bonacci numbers. When the context is clear, we will drop the superscript 
(k) in all notation.

Example 51. For k = 3, we write the first few non empty finite Tribonacci words in 
Table 3.

Another way of seeing the sequence (b(k)
n )n≥−k is the following, which can be proven 

by an easy induction. See Table 3 for an example with k = 3.
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Proposition 52. We have

b(k)
n =

⎧⎨
⎩
(∏k

i=1 b
(k)
n−i

)
· n =

(∏n
i=1 b

(k)
n−i

)
· n, if 0 ≤ n ≤ k − 1;∏k

i=1 b
(k)
n−i, if n ≥ k.

We now define two sequences of integers (L(k)
n )n≥0 and (U (k)

n )n≥0 linked to k-bonacci 
numbers that will help us partition N.

Definition 53. For all n ≥ 0, we set

L(k)
n =

{
B

(k)
n , if n ≤ k;

B
(k)
n + B

(k)
n−k−1 − 1, otherwise;

and

U (k)
n =

n∑
i=0

B
(k)
i .

Example 54. When k = 3, we obtain (L(3)
n )n≥0 = 1, 2, 4, 7, 13, 25, 47, 87, . . . and 

(U (3)
n )n≥0 = 1, 3, 7, 14, 27, 51, 95, 176, . . . .

For any k ≥ 2, one can show that (U (k)
n )n≥0 gives the lengths of palindromic prefixes 

of the k-bonacci word (note that the case k = 3 gives the sequence [47, A027084]).

Remark 55. Observe that, by Proposition 52, if 1 ≤ n ≤ k − 1, then Un−1 = Bn −
1 = Ln − 1, and if n = k, then Uk−1 = Bk = Lk. Moreover, for n > k, we have 

Ln =
(∑n−1

i=n−k−1 Bi

)
− 1 ≤ Un−1. As L0 = 1, this implies that the intervals [Ln, Un], 

n ≥ 0 cover the set of integers m ≥ 1.

7.2. String attractor profile function

We now study the string attractor profile function of the k-bonacci word b(k). To do 
so, we will make use of Proposition 39 therefore we look at prefixes obtained as fractional 
powers. More specifically, as the string attractors positions will be elements of (Bn)n≥0, 
we study fractional powers of the words bn, n ≥ 0.

Proposition 56. For all n ≥ 0, b(k)[1, U (k)
n ] =

∏n
i=0 b

(k)
n−i. Moreover, b(k)[1, U (k)

n ] is a 

fractional power of b(k)
n .

Proof. For n = 0, we directly have b[1, U0] = b[1, 1] = b0, so both claims hold in this 
case. Assume that the result is true for n, and let us prove it for n +1. By the induction 
hypothesis, we have



28 J. Cassaigne et al. / Journal of Combinatorial Theory, Series A 208 (2024) 105936
μk(b[1, Un]) = μk

(
n∏

i=0
bn−i

)
=

n∏
i=0

bn+1−i.

As b is a fixed point of μk, μk(b[1, Un]) is a prefix of b, and it is followed by the image 
of a letter, thus by the letter 0. Therefore,

b[1, Un+1] = b
[
1,

n+1∑
i=0

Bi

]
=

(
n∏

i=0
bn+1−i

)
· 0 =

n+1∏
i=0

bn+1−i.

Moreover, since b[1, Un] is a fractional power of bn by the induction hypothesis, so 
is b[1, Un] · a for some letter a ∈ {0, 1, . . . , k − 1}. By applying the morphism μk on 
both words, we can conclude that b[1, Un+1] = μk(b[1, Un]) · 0 is a fractional power of 
bn+1 = μk(bn). �

Using Proposition 39, we then directly have the following corollary.

Corollary 57. For all n ≥ 0, if Γ is a string attractor for b(k)[1, L(k)
n ] and if B(k)

n ∈ Γ, 
then Γ is a string attractor for b(k)[1, m] for all m ∈ [L(k)

n , U (k)
n ].

We now exhibit a minimum string attractor of size at most k for each prefix of b(k)

and deduce the string attractor profile function.

Theorem 58. For all n ≥ 0, the set

Γn =
{
{B(k)

0 , . . . , B
(k)
n }, if n ≤ k − 1;

{B(k)
n−k+1, . . . , B

(k)
n }, if n ≥ k;

is a minimum string attractor for b(k)[1, m], for all m ∈ [L(k)
n , U (k)

n ]. In particular, the 
string attractor profile function for b(k) is given by

sb(k)(n) =
{
i + 1, if B(k)

i ≤ n < B
(k)
i+1 for some i ≤ k − 2;

k, if n ≥ B
(k)
k−1.

Proof. Using Proposition 52, a simple induction shows that, for all n ≥ 0, the positions 
of Γn correspond to different letters, which implies that, if Γn is a string attractor of 
a prefix, it is minimum. We prove that it is a string attractor of the length-m prefix, 
m ∈ [Ln, Un], by induction on n ≥ 0. More precisely, the induction step is divided into 
three intermediary claims (where we take the convention that Γ−1 = ∅):

1. Γn−1 ∪ {Bn} is a string attractor for b[1, Ln];
2. Γn is a string attractor for b[1, Ln];
3. Γn is a string attractor for b[1, m] for all m ∈ [Ln, Un].
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b[1, Ln] = bn u

bn−k u

Bn−k

bn−k u

Bn

Fig. 1. Case 1 in the proof of Theorem 58.

First, notice that for n ≤ k−1, the first two claims are identical. Second, observe that 
for all n, the third claim is a direct consequence of the second claim and of Corollary 57.

Let us now proceed to the induction. If n = 0, we directly conclude that {1} is a string 
attractor for b[1, 1], which shows the first claim (and the other two follow as explained 
above).

If 1 ≤ n ≤ k−1, then Ln = Un−1+1 = Bn. Since Γn−1 is a string attractor of b[1, Un]
by the induction hypothesis on the third claim, this directly implies that Γn−1 ∪ {Bn}
is a string attractor for b[1, Ln]. Once again, the other two claims directly follow.

Assume now that n ≥ k and let us prove the first claim. Then Ln ∈ [Ln−1, Un−1], 
which implies as above that Γn−1 ∪ {Bn} is a string attractor for b[1, Ln].

Let us prove the second claim, and let b[1, Ln] = bnu, where u = ε if n = k or 
u is bn−k−1 without its last letter if n ≥ k + 1. Using the first claim, it remains to 
show that the position Bn−k is not needed in the string attractor, i.e., the factors of 
b[1, Ln] that are covered by position Bn−k are still covered by Γn. As the first position 
in Γn is Bn−k+1, it suffices to consider the factor occurrences crossing position Bn−k in 
b[1, Bn−k+1 − 1]. As b[1, Bn−k+1 − 1] is bn−k+1 without its last letter, Proposition 52
implies that they are occurrences in

k∏
i=1

bn−k+1−i = bn−kbn−k−1

k∏
i=3

bn−k+1−i.

Note that bn−ku is a prefix of this word. We consider two cases: either the considered 
occurrence is entirely contained in bn−ku or it crosses position Bn−k +Bn−k−1. Observe 
that, if n ≥ k + 1, these two cases are mutually exclusive.

Case 1. Since bn−k is a suffix of bn by Proposition 52, the factors having an occurrence 
in bn−ku crossing position Bn−k have an occurrence in bnu crossing position Bn, so they 
are covered by Γn. See Fig. 1.

Case 2. Similarly, by Proposition 52, bn−kbn−k−1 is a suffix of bn−1 and 
∏k

i=3 bn−k+1−i

=
∏k−2

i=1 bn−k−1−i is a prefix of bn−k−1, so of bn−2 (as the finite k-bonacci words are 
prefixes of each other). As bn−1bn−2 is a prefix of bn, we conclude that the factors having 
an occurrence in b[1, Bn−k+1 − 1] crossing position Bn−k +Bn−k−1 have an occurrence 
in bn crossing position Bn−1, so they are covered by Γn. See Fig. 2. This ends the proof 
of the second claim.
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b[1, Ln] = bn−1 bn−2 · · · bn−k u

bn−kbn−k−1 v

Bn−k + Bn−k−1

bn−kbn−k−1 v

Bn−1

Fig. 2. Case 2 in the proof of Theorem 58 with v =
∏k

i=3 bn−k+1−i.

The third claim then follows, and this ends the proof that, for all n ≥ 0 and for all 
m ∈ [Ln, Un], Γn is a string attractor of the length-m prefix of b. Finally, the string 
attractor profile function follows from Remark 55. �
Remark 59. In the Tribonacci case, the elements in our string attractors are the same as 
in [45, Theorem 6]. The corresponding intervals of prefix lengths are also linked. Indeed, 
our sequence (U (3)

n )n≥0 is related to the sequence (Wn)n≥4 defined in [45, Theorem 6]
as follows: we have Wn+3 = U

(3)
n+1 for all n ≥ 1. Therefore, our upper bounds and that 

of Schaeffer and Shallit coincide. However, our lower bounds are smaller than theirs. On 
the other hand, the string attractors obtained for the palindromic prefixes in [19] are 
different from ours. For instance, the case k = 3 is treated in [19, Example 8].

7.3. Leftmost complexity

We can further prove that the string attractor from Theorem 58 is actually a leftmost 
string attractor. For the following few results, we set U (k)

−1 = 0.

Proposition 60. The leftmost complexity of b(k) satisfies lmb(k)(m) = B
(k)
n for all n ≥ 0

and m ∈ [U (k)
n−1 + 1, U (k)

n ].

Proof. We show that the factor b[Bn, Un−1 + 1] does not occur in b before position 
Bn. This implies that, for all m ≥ Un−1 + 1, any string attractor of b[1, m] contains 
a position at least equal to Bn and, combined with Theorem 58, proves the claimed 
leftmost complexity.

The claim is direct for n = 0 as B0 = 1 = U−1 + 1. Assume that it is true for n, 
and let us prove it for n + 1. By construction, the Bn+1th letter of b is the last letter 
of the image of the Bnth letter under μk, and, by Proposition 56, b[Bn+1 + 1, Un + 1]
is the image of b[Bn + 1, Un−1 + 1], potentially followed by a letter 0 (this occurs when 
b[Bn, Un−1 +1] ends with the letter k−1). Therefore, each occurrence of b[Bn+1, Un+1]
in b is associated with the image of an occurrence of b[Bn, Un−1+1]. Using the induction 
hypothesis, we conclude that b[Bn+1, Un + 1] does not occur before position Bn+1. �
7.4. Span complexity

For the k-bonacci words b(k), the factor complexity function is given by pb(k)(n) = (k−
1)n +1 (see, for instance, [14,23]). Therefore, when k ≥ 3, Proposition 42 implies that the 
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span complexity is linear. However, the string attractors described in Section 7.2 do not 
have the smallest difference between their extreme positions. In what follows, we compute 
the span for infinitely many prefixes and describe string attractors (of unbounded size) 
having that span.

We first make the following observation which gives a lower bound on the span. Recall 
that we have set U (k)

−1 = 0.

Proposition 61. Let k ≥ 2. For all n ≥ 2, the factors b(k)[i, i +U
(k)
n−3] are distinct for all 

i ∈ [B(k)
n−2 + 1, B(k)

n ].

Proof. Let us prove the result by induction on n. For n = 2, we need to consider the 
letters in u = b[2, B2]. If k = 2, then u = 10, and if k ≥ 3, then u = 102. In both cases, 
the letters are indeed distinct.

Let us now assume that the claim is true for n ≥ 2 and let us prove it for n + 1. We 
proceed by contradiction and assume that there exist i, j ∈ [Bn−1 + 1, Bn+1] minimal 
such that i < j and b[i, i + Un−2] = b[j, j + Un−2]. As Bn−1 + 1 marks the beginning 
of the image of a letter in b and i and j are taken minimal, we know that the factor 
u = b[i, i +Un−2] = b[j, j+Un−2] begins with 0. We may also assume that it does not end 
with 0. Indeed, otherwise, we consider the word u = b[i, i +Un−2−1] = b[j, j+Un−2−1]
instead.

As the word u starts with 0, there exist i′ < j′ such that μk(b[1, i′ − 1]) = b[1, i − 1]
and μk(b[1, j′ − 1]) = b[1, j − 1]. Moreover, as Un−2 + 1 ≥ 2 and as u does not end with 
a 0, it can be uniquely desubstituted (i.e., its preimage under μk is unique). There thus 
exists 
 such that b[i′, i′ + 
] = b[j′, j′ + 
] and μk(b[i′, i′ + 
]) = u.

As |μk(b[1, i′ − 1])| = i − 1 ∈ [Bn−1, Bn+1 − 1], we have i′ ∈ [Bn−2 + 1, Bn]. The 
same holds for j′. Therefore, by the induction hypothesis, we have b[i′, i′ + Un−3] �=
b[j′, j′+Un−3]. Let us take 
′ ∈ [
, Un−3−1] maximal such that b[i′, i′+
′] = b[j′, j′+
′]
and let v = b[i′, i′+
′]. By maximality of 
′, v is right special. Moreover, the set of factors 
of b is stable under reversal [14, Theorem 5], i.e., the reversal of any factor of b is also a 
factor. In particular, vR is a left special factor of b. Furthermore, the left special factors 
of b are exactly its prefixes [14, Proposition 5], so vR is a prefix of b and also of b[1, Un−3]
as 
′ ≤ Un−3 − 1. However, we have

|μk(vR)| = |μk(v)| ≥ |μk(b[i′, i′ + 
])| ≥ Un−2

by definition of 
. This is a contradiction. In fact, by Proposition 56, we have |μk(vR)| ≤
|μk(b[1, Un−3])| < Un−2. �

We now describe a new string attractor for prefixes of the k-bonacci word.

Proposition 62. Let k ≥ 2. For all n ≥ 1 and for all m ∈ [U (k)
n−1 + 1, U (k)

n ], Γn =
{U (k)

n−2 + 1, U (k)
n−2 + 2, . . . , B(k)

n } is a string attractor of b(k)[1, m].
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Proof. We proceed by induction on n ≥ 1. For the base case n = 1, the interval [U1−1 +
1, U2] becomes [2, 3], and Γ1 = {1, 2}, so the conclusion follows.

Now assume that the result is true for n ≥ 1, and we show it also holds for n +1. To do 
so, we will use the following observation. From Proposition 56 and [2, Proposition 4.4], 
one may prove that b[1, Un] is a palindrome for all n ≥ −1. By the induction hypothesis, 
Γn is a string attractor for b[1, Un]. As this word is a palindrome, it also has the string 
attractor

ΓR
n = {Un + 1 −Bn, . . . , Un + 1 − Un−2 − 1} = {Un−1 + 1, . . . , Bn + Bn−1}.

In particular, Γn+1 ⊇ ΓR
n is a string attractor of b[1, Un] when Bn+1 ≤ Un. If Bn+1 > Un, 

then n ≤ k − 1 and Bn+1 = Un + 1, so Γn+1 is a string attractor of b[1, Un + 1]. In 
both cases, Propositions 39 and 56 imply that Γn+1 is a string attractor of b[1, m] for 
all m ∈ [Un + 1, Un+1]. �
Corollary 63. Let k ≥ 2. For all n ≥ 2 and for all m ∈ [U (k)

n − B
(k)
n−1 − B

(k)
n−2, U

(k)
n ], we 

have spanb(k)(m) = B
(k)
n − U

(k)
n−2 − 1. In particular, for infinitely many prefixes, there is 

a factor length for which the bound given by Proposition 29 is tight.

Proof. Using Propositions 61 and 29, we know that for m ≥ Bn + Un−3, we have 
spanb(m) ≥ Bn − Bn−2 − Un−3 − 1 = Bn − Un−2 − 1. Observe that Bn + Un−3 =
Un − Bn−1 − Bn−2. On the other hand, using Proposition 62, we know that for 
m ∈ [Un−1 + 1, Un], we have spanb(m) ≤ Bn − Un−2 − 1.

If k ≥ 3, then Bn + Un−3 ≥ Un−1 + 1 so, for all m ∈ [Un − Bn−1 − Bn−2, Un], we 
have spanb(m) = Bn − Un−2 − 1, as desired. It remains to consider k = 2. In that 
case, Bn − Un−2 − 1 = 1 which does not depend on n. Therefore spanb(m) ≥ 1 for all 
m ≥ B2 + U−1 = 3 and spanb(m) ≤ 1 for all m ≥ U0 + 1 = 2. Therefore, the conclusion 
follows for all m ≥ 3. �

Observe that, for the Fibonacci word, we once again obtain that spanb(2) = 1, as in 
Theorem 44.

8. Conclusions

In this paper, we emphasized the close relationship between string attractor-based 
measures and classical notions of repetitiveness on infinite words, such as the factor 
complexity and the recurrence function. In particular, we identified some combinatorial 
properties needed to have a bounded string attractor profile function. Nonetheless, a 
complete characterization of these words is still missing.

Furthermore, we used the new leftmost and span complexities to obtain novel char-
acterizations of particular infinite words, such as periodic words and the families of 
Sturmian and quasi-Sturmian words. We wonder if one can use different string attractor-
based measures to characterize other combinatorial properties or families of words.
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Finally, for the characteristic Sturmian words and the k-bonacci words, we have shown 
how to construct, for each prefix, a string attractor with minimum size, minimum leftmost 
measure, or minimum span. The methods presented for the k-bonacci words rely on the 
properties they inherit from their morphic construction. A future perspective of research 
could be a generalization of such a strategy to extend the construction of a smallest 
string attractor to other families of morphic sequences.
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