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Abstract. We consider Dirichlet boundary value problems for equations involving
the (p(z), q(z))-Laplacian operator in the principal part and prove the existence of
one and three nontrivial weak solutions, respectively. Here, the nonlinearity in the
reaction term is allowed to depend on the solution, but does not satisfy the Ambrosetti-
Rabinowitz condition. The hypotheses on the reaction term ensure that the Euler-
Lagrange functional, associated to the problem, satisfies both the (Cc)-condition and
a mountain pass geometry.

1. Introduction

We study the following Dirichlet boundary value problem:

(Pg)

{
−∆p(z)u(z)−∆q(z)u(z) = g(z, u(z)) in Ω,

u = 0 on ∂Ω,

where ∆k(z)u := div(|∇u|k(z)−2∇u) is the k(z)-Laplacian, g : Ω × R → R is the

nonlinearity, Ω ⊂ Rn is an open bounded domain with smooth boundary, p, q ∈ C(Ω)
are such that q(z) < p(z) for all z ∈ Ω and

1 < q− := inf
z∈Ω

q(z) ≤ q(z) ≤ q+ := sup
z∈Ω

q(z) < +∞,

1 < p− := inf
z∈Ω

p(z) ≤ p(z) ≤ p+ := sup
z∈Ω

p(z) < +∞.

Here, g(z, ξ) (reaction term) is a Carathéodory function (i.e., for each ξ ∈ R, z → g(z, ξ)
is measurable and for a.a. z ∈ Ω, ξ → g(z, ξ) is continuous). We make the following
assumptions:

(g1) there exist a1, a2 ∈ [0,+∞[ and α ∈ C(Ω) with p+ < α− ≤ α+ < p∗(z) for all
z ∈ Ω, satisfying

|g(z, ξ)| ≤ a1 + a2|ξ|α(z)−1 for all (z, ξ) ∈ Ω× R,

with p∗(z) =
np(z)

n− p(z)
if p(z) < n and p∗(z) = +∞ if p(z) ≥ n;

(g2) if G(z, t) =
∫ t

0
g(z, ξ)dξ, then we have

lim
|t|→+∞

G(z, t)

|t|p+
= +∞ uniformly for a.a. z ∈ Ω;

(g3) lim
t→0

g(z, t)

|t|p+−1
= 0 uniformly for a.a. z ∈ Ω;
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(g4) if e(z, t) = g(z, t)t− p+G(z, t), then there exists d ∈ L1(Ω) satisfying

e(z, t) ≤ e(z, s) + d(z) for a.a. z ∈ Ω, all 0 < t < s or s < t < 0.

Let W 1,p(z)(Ω) be the generalized Lebesgue−Sobolev space given in Section 2 and

W
1,p(z)
0 (Ω) be the closure of C∞

0 (Ω) in W 1,p(z)(Ω). We recall that for a weak solution of

the problem (Pg) we mean a function u ∈ W
1,p(z)
0 (Ω) satisfying∫

Ω

|∇u|p(z)−2∇u∇vdz +

∫
Ω

|∇u|q(z)−2∇u∇vdz =

∫
Ω

g(z, u)vdz, for each v ∈ W
1,p(z)
0 (Ω).

Recently there has been considerable interest on the existence and multiplicity of
solutions of equations driven by the sum of a p-Laplacian and of a q-Laplacian with 1 <
p < q < +∞, known as (p, q)-elliptic equations. Such equations were studied exclusively
in the framework of constant exponents for the differential operators. We mention the
works of Barile-Figueiredo [1], Chaves-Ercole-Miyagaki [2], Cingolani-Degiovanni [3],
Marano-Mosconi-Papageorgiou [16], Motreanu-Vetro-Vetro [18], Mugnai-Papageorgiou
[19], Sun-Zhang-Su [22] and the references therein. To the best of our knowledge there
have been no works on such equations with variable exponents. Also, problems with a
superlinear reaction term not satisfying the AR-condition were studied by Iturriaga-
Lorca-Ubilla [13], Li-Yang [14], Mugnai-Papageorgiou [19], Papageorgiou-Rǎdulescu
[20], Sun [21] (constant exponent equations) and Gasiński-Papageorgiou [11], Tan-Fang
[23], Zhou [24] (variable exponent equations). The last three papers use p(z)-Laplace-
type differential operators and the conditions on the reaction term are more restrictive
(see hypothesis (f 3

∞) in [23] and hypothesis (h4) in [24]).
Our approach uses variational methods based on critical point theory together with

Morse theory (critical groups). We prove an existence theorem and a multiplicity
theorem producing three nontrivial smooth solutions.

2. Mathematical background

We fix the notation as follows. By X and X∗ we mean a Banach space and its
topological dual, respectively. In addition, by Lp(z)(Ω) and W 1,p(z)(Ω) we mean the
variable exponent Lebesgue space and the generalized Lebesgue−Sobolev space, respectively.
Precisely, we have the variable exponent Lebesgue space Lp(z)(Ω) given as

Lp(z)(Ω) =

{
u : Ω → R : u is measurable and ρp(u) :=

∫
Ω

|u(z)|p(z)dz < +∞
}
,

endowed with the norm

∥u∥Lp(z)(Ω) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(z)λ

∣∣∣∣p(z) dz ≤ 1

}
.

On the other hand, we consider the generalized Lebesgue−Sobolev space W 1,p(z)(Ω)
defined by

W 1,p(z)(Ω) := {u ∈ Lp(z)(Ω) : |∇u| ∈ Lp(z)(Ω)},
endowed with the norm

∥u∥W 1,p(z)(Ω) = ∥u∥Lp(z)(Ω) + ∥ |∇u| ∥Lp(z)(Ω).

It is well-known that, for specific constant m,

∥u∥Lp(z)(Ω) ≤ m∥∇u∥Lp(z)(Ω) for all u ∈ W
1,p(z)
0 (Ω),
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(see Theorem 8.2.18, p. 263, Diening-Harjulehto-Hästö-Rŭz̆icka [5]). Then ∥u∥W 1,p(z)(Ω)

and ∥ |∇u| ∥Lp(z)(Ω) are equivalent norms on W
1,p(z)
0 (Ω). So, we will use ∥ |∇u| ∥Lp(z)(Ω)

to replace ∥u∥W 1,p(z)(Ω) and put

∥u∥ = ∥ |∇u| ∥Lp(z)(Ω) in W
1,p(z)
0 (Ω).

We note that both Lp(z)(Ω) and W 1,p(z)(Ω), endowed with the above norms, are
separable, reflexive and uniformly convex Banach spaces (see Fan-Zhang [7]). Also, the
classical Sobolev embedding theorem was generalized by Fan-Zhao [9] in the following
way.

Proposition 1. Assume that p ∈ C(Ω) with p(z) > 1 for each z ∈ Ω. If α ∈ C(Ω) and
1 < α(z) < p∗(z) for all z ∈ Ω, then there exists a continuous and compact embedding
W 1,p(z)(Ω) ↪→ Lα(z)(Ω).

In addition, from Theorem 1.11 of [9], we deduce that the embedding Lp(z)(Ω) ↪→
Lq(z)(Ω) is continuous, whenever q, p ∈ C(Ω) and 1 < q(z) < p(z) for all z ∈ Ω. We
recall another theorem from Fan-Zhao [9] (say, Theorem 1.3), which links ∥ · ∥Lp(z)(Ω) to
ρp(·).

Theorem 1. Let u ∈ Lp(z)(Ω). Then, the following relations hold:

(i) ∥u∥Lp(z)(Ω) < 1 (= 1, > 1) ⇔ ρp(u) < 1 (= 1, > 1);

(ii) if ∥u∥Lp(z)(Ω) > 1, then ∥u∥p
−

Lp(z)(Ω)
≤ ρp(u) ≤ ∥u∥p

+

Lp(z)(Ω)
;

(iii) if ∥u∥Lp(z)(Ω) < 1, then ∥u∥p
+

Lp(z)(Ω)
≤ ρp(u) ≤ ∥u∥p

−

Lp(z)(Ω)
.

Now, we consider the function G : Ω× R → R given as

G(z, t) =

∫ t

0

g(z, ξ)dξ for all t ∈ R, z ∈ Ω,

and the functional B : W
1,p(z)
0 (Ω) → R given as

B(u) =

∫
Ω

G(z, u(z)) dz, for all u ∈ W
1,p(z)
0 (Ω).

By the assumption (g1), we deduce that B ∈ C1(W
1,p(z)
0 (Ω),R). From Proposition 1 we

have that B admits the following compact derivative

⟨B′(u), v⟩ =
∫
Ω

g(z, u(z))v(z) dz, for all u, v ∈ W
1,p(z)
0 (Ω).

Define the functionals A1, A2 : W
1,p(z)
0 (Ω) → R by

A1(u) =

∫
Ω

1

p(z)
|∇u(z)|p(z)dz and A2(u) =

∫
Ω

1

q(z)
|∇u(z)|q(z)dz for all u ∈ W

1,p(z)
0 (Ω).

Clearly, A1, A2 ∈ C1(W
1,p(z)
0 (Ω),R) and

⟨A′
1(u), v⟩ =

∫
Ω

|∇u|p(z)−2∇u∇vdz and ⟨A′
2(u), v⟩ =

∫
Ω

|∇u|q(z)−2∇u∇vdz

for all u, v ∈ W
1,p(z)
0 (Ω).
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Remark 1. A′
1 : W

1,p(z)
0 (Ω) → W

1,p(z)
0 (Ω)∗ is a mapping of type (S+), that is, if un

w−→ u

in W
1,p(z)
0 (Ω) and lim supn→+∞⟨A′

1(u), un − u⟩ ≤ 0, then un → u in W
1,p(z)
0 (Ω). The

same holds for A′
2. Consequently, A

′
1 + A′

2 is a mapping of type (S+).

We consider the functional I : W
1,p(z)
0 (Ω) → R given as

I(u) = A1(u) + A2(u)−B(u) for all u ∈ W
1,p(z)
0 (Ω),

and point out that I(0) = 0.

3. Main results

In this section, we prove that the problem (Pg) has at least one nontrivial weak
solution. We need the following notion of (Cc)-condition.

Definition 1. Let X be a real Banach space and I ∈ C1(X,R). We say that I satisfies
the (Cc)-condition if any sequence {un} ⊂ X such that I(un) → c ∈ R and (1 +
∥un∥)I ′(un) → 0 in X∗ as n → +∞ has a convergent subsequence.

Now, we prove the following lemma.

Lemma 1. Let the assumptions (g1), (g2), (g4) be satisfied. Then the functional I
satisfies the (Cc)-condition for each c > 0.

Proof. Let {un} ⊂ W
1,p(z)
0 (Ω) be a sequence satisfying the (Cc)-condition with respect

to the functional I. So, we have

(1) c = I(un) + cn, ⟨I ′(un), un⟩ → 0 as n → +∞,

where cn → 0 as n → +∞.
We show that {un} is a bounded sequence in W

1,p(z)
0 (Ω). We argue by contradiction.

So, suppose that {un} is unbounded. We may assume that ∥un∥ → +∞ as n → +∞,
by considering a subsequence if necessary. Also, we put

vn =
un

∥un∥
for all n ∈ N.

Clearly, ∥vn∥ = 1 for all n ∈ N. Thus, we suppose that there exists v ∈ W
1,p(z)
0 (Ω) such

that

vn
w−→ v in W

1,p(z)
0 (Ω);

vn → v in Lp+(Ω) and Lα(z)(Ω).

Let Ω0 := {z ∈ Ω : v(z) ̸= 0}. We claim that |Ω0| = 0 (|Ω0| denotes the Lebesgue
measure of Ω0). We argue by contradiction again. So, suppose that |Ω0| > 0. We note
that

|un(z)| → +∞ for a.a. z ∈ Ω0 as n → +∞,

since vn → v ̸= 0 in Ω0. Now, using (g2), that is

lim
|t|→+∞

G(z, t)

|t|p+
= +∞ uniformly for a.a. z ∈ Ω,

we get

(2) lim
n→+∞

G(z, un(z))

∥un∥p+
= lim

n→+∞

G(z, un(z))

|un(z)|p+
|vn(z)|p

+

= +∞ for a.a. z ∈ Ω0.
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Using (g1) and (g2), we deduce that there exists a constant K such that

G(z, t) +K ≥ 0 for a.a. z ∈ Ω, all t ∈ R.

From (2) (assumptions (g1) and (g2) permit us to use Fatou’s lemma), we obtain

lim
n→+∞

∫
Ω0

G(z, un(z))

∥un∥p+
dz = +∞.

Consequently, we have

lim
n→+∞

∫
Ω

G(z, un(z))

∥un∥p+
dz = lim

n→+∞

∫
Ω

G(z, un(z)) +K

∥un∥p+
dz

≥ lim
n→+∞

∫
Ω0

G(z, un(z)) +K

∥un∥p+
dz

= lim
n→+∞

∫
Ω0

G(z, un(z))

∥un∥p+
dz = +∞.(3)

From (1), we get

c = I(un) + cn

=

∫
Ω

1

p(z)
|∇un|p(z)dz +

∫
Ω

1

q(z)
|∇un|q(z)dz −

∫
Ω

G(z, un(z))dz + cn

≥ 1

p+
∥un∥p

− −
∫
Ω

G(z, un(z))dz + cn,

for all n ∈ N such that ∥un∥ ≥ 1. Thus, we have

(4)

∫
Ω

G(z, un(z))dz ≥ 1

p+
∥un∥p

− − c+ cn → +∞ as n → +∞.

Again from (1), we get

c = I(un) + cn

=

∫
Ω

1

p(z)
|∇un|p(z)dz +

∫
Ω

1

q(z)
|∇un|q(z)dz −

∫
Ω

G(z, un(z))dz + cn

≤ 1

p−
∥un∥p

+

+
1

q−
max

{
∥∇un∥q

+

Lq(z)(Ω)
, ∥∇un∥q

−

Lq(z)(Ω)

}
−
∫
Ω

G(z, un(z))dz + cn

(by Theorem 1)

≤ K0∥un∥p
+ −

∫
Ω

G(z, un(z))dz + cn for all n ∈ N such that ∥un∥ ≥ 1,

where K0 =
1
p−

+ 1
q−

max{Kq−
q , Kq+

q } with Kq to denote the constant of the continuous

embedding Lp(z)(Ω) ↪→ Lq(z)(Ω). Thus, by (4), there exists n0 ∈ N such that

∥un∥p
+ ≥ c

K0

+
1

K0

∫
Ω

G(z, un(z))dz −
cn
K0

> 0 for all n ≥ n0.

Therefore

(5) lim
n→+∞

∫
Ω

G(z, un(z))

∥un∥p+
dz ≤ lim

n→+∞

∫
Ω
G(z, un(z))dz

c
K0

+ 1
K0

∫
Ω
G(z, un(z))dz − cn

K0

= K0,
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which leads to contradiction with (3) and hence |Ω0| = 0. Then we have v(z) = 0 for
a.a. z ∈ Ω. Since I(tun) is a continuous function on [0, 1] with respect to the variable
t, for each n ∈ N there exists tn ∈ [0, 1] such that

I(tnun) = max
t∈[0,1]

I(tun).

For k > 1, we set

rn = k
1

p− vn for all n ∈ N.
Since vn → 0 in Lα(z)(Ω) and vn(z) → 0 for a.a. z ∈ Ω as n → +∞, using (g1)
and Krasnoselskii’s theorem (see, for example, Gasiński-Papageorgiou [11], p. 407), we
deduce that

lim
n→+∞

∫
Ω

G(z, rn(z))dz = 0.

So, there exists n1 ∈ N such that
∫
Ω
G(z, rn(z))dz < k

2p+
for all n ≥ n1. Since ∥un∥ →

+∞, we can find n2 ∈ N (with n2 ≥ n1) such that 0 < k
1

p+ 1
∥un∥ ≤ 1 for all n ≥ n2.

Then

I(tnun) ≥ I(rn)

=

∫
Ω

1

p(z)
|∇rn|p(z)dz +

∫
Ω

1

q(z)
|∇rn|q(z)dz −

∫
Ω

G(z, rn(z))dz

≥ 1

p+
∥rn∥p

− −
∫
Ω

G(z, rn(z))dz (∥rn∥ = k
1

p− > 1)

≥ 1

p+
k − 1

2p+
k =

1

2p+
k for all n ≥ n2.

Now, k > 1 is arbitrary and hence we infer that

(6) I(tnun) → +∞ as n → +∞.

From
I(0) = 0 and c = I(un) + cn,

we deduce that there exists n3 ∈ N such that tn ∈]0, 1[ for n ≥ n3. It follows that

d

d t
I(tun)

∣∣
t=tn = 0 ⇒ ⟨I ′(tnun), tnun⟩ = 0 for all n ≥ n3.

Thus

I(tnun) = I(tnun)−
1

p+
⟨I ′(tnun), tnun⟩

=

∫
Ω

1

p(z)
|∇tnun|p(z)dz +

∫
Ω

1

q(z)
|∇tnun|q(z)dz −

∫
Ω

G(z, tnun(z))dz

−
∫
Ω

1

p+
|∇tnun|p(z)dz −

∫
Ω

1

p+
|∇tnun|q(z)dz +

1

p+

∫
Ω

g(z, tnun(z))tnun(z)dz

=

∫
Ω

[
1

p(z)
− 1

p+

]
tp(z)n |∇un|p(z)dz +

∫
Ω

[
1

q(z)
− 1

p+

]
tq(z)n |∇un|q(z)dz

+
1

p+

∫
Ω

[g(z, tnun(z))tnun(z)− p+G(z, tnun(z))]dz

≤
∫
Ω

[
1

p(z)
− 1

p+

]
|∇un|p(z)dz +

∫
Ω

[
1

q(z)
− 1

p+

]
|∇un|q(z)dz
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+
1

p+

∫
Ω

([g(z, un(z))un(z)− p+G(z, un(z))] + d(z))dz (by (g4))

= I(un)−
1

p+
⟨I ′(un), un⟩+

1

p+
∥d∥L1(Ω) → c+

1

p+
∥d∥L1(Ω) as n → +∞,

a contradiction by (6). It follows that {un} is a bounded sequence in W
1,p(z)
0 (Ω). Note

that W
1,p(z)
0 (Ω) is a reflexive Banach space, and so, by considering a subsequence if

necessary, there exists u ∈ W
1,p(z)
0 (Ω) such that un

w−→ u in W
1,p(z)
0 (Ω) and un → u in

Lα(z)(Ω). By using the Hölder inequality, we get∫
Ω

g(z, un(z))(un(z)− u(z))dz ≤
∫
Ω

|g(z, un(z))| |un(z)− u(z)|dz

≤
∫
Ω

(a1 + a2|un(z)|α(z)−1)|un(z)− u(z)|dz

≤ 2∥a1 + a2|un|α(z)−1∥Lα′(z)(Ω)∥un − u∥Lα(z)(Ω).

So, we have

lim
n→+∞

∫
Ω

g(z, un(z))(un(z)− u(z))dz = 0.

Now, by (1), we deduce that ⟨I ′(un), un − u⟩ → 0 as n → +∞. It follows that

⟨A′
1(un), un − u⟩+ ⟨A′

2(un), un − u⟩

=

∫
Ω

|∇un|p(z)−2∇un∇(un − u)dz +

∫
Ω

|∇un|q(z)−2∇un∇(un − u)dz

=

∫
Ω

g(z, un)(un − u)dz + ⟨I ′(un), un − u⟩ → 0 as n → +∞.

Since A′
1 + A′

2 is a mapping of type (S+), we obtain that un → u in W
1,p(z)
0 (Ω). So, I

satisfies the (Cc)-condition on W
1,p(z)
0 (Ω). □

Our second result is the following lemma.

Lemma 2. Let the assumptions (g1) − (g3) be satisfied. Then the following assertions
hold:

(i) there exist ρ > 0 and δ > 0 such that I(u) ≥ δ for each u ∈ W
1,p(z)
0 (Ω) with

∥u∥ = ρ;

(ii) there exists v ∈ W
1,p(z)
0 (Ω) such that I(v) < 0 and ∥v∥ > ρ.

Proof. (i): We say that the embeddings W
1,p(z)
0 (Ω) ↪→ Lp+(Ω) and W

1,p(z)
0 (Ω) ↪→

Lα(x)(Ω) are continuous and so there exist two constants Cp+ and Cα such that

(7) ∥u∥Lp+ (Ω) ≤ Cp+∥u∥ and ∥u∥Lα(x)(Ω) ≤ Cα∥u∥.

Combining (g1) and (g3), we can verify that, for each ε > 0, there exists a constant Cε

such that

(8) G(z, t) ≤ ε

p+
|t|p+ + Cε|t|α(z) for a.a. z ∈ Ω, all t ∈ R.

If u ∈ W
1,p(z)
0 (Ω) is such that ∥u∥ < 1, using (7) and (8), we obtain

I(u) =

∫
Ω

1

p(z)
|∇u|p(z)dz +

∫
Ω

1

q(z)
|∇u|q(z)dz −

∫
Ω

G(z, u)dz
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≥ 1

p+

∫
Ω

|∇u|p(z)dz − 1

p+
ε

∫
Ω

|u|p+dz − Cε

∫
Ω

|u|α(z)dz

≥ 1

p+
∥u∥p+ − 1

p+
εCp+

p+ ∥u∥
p+ − CεC

α−

α ∥u∥α−

=
1

p+
(1− εCp+

p+ )∥u∥
p+ − CεC

α−

α ∥u∥α−

=

[
1

p+
(1− εCp+

p+ )− CεC
α−

α ∥u∥α−−p+
]
∥u∥p+ .

Now, we choose ε > 0 and ρ > 0 such that

σ =
1

p+
(1− εCp+

p+ )− CεC
α−

α ρα
−−p+ > 0.

Then I(u) ≥ σρp
+
= δ > 0 for every u ∈ W

1,p(z)
0 (Ω) with ∥u∥ = ρ.

(ii): Using (g1) and (g2), we deduce that, for all M > 0, there exists CM > 0 such that

(9) G(z, t) ≥ M |t|p+ − CM for a.a. z ∈ Ω, all t ∈ R.

Let ζ ∈ W
1,p(z)
0 (Ω) such that ζ(z) > 0 for all z ∈ Ω, that is, ζ > 0. From (9), for all

t > 1, we get

I(tζ) =

∫
Ω

tp(z)

p(z)
|∇ζ|p(z)dz +

∫
Ω

tq(z)

q(z)
|∇ζ|q(z)dz −

∫
Ω

G(z, tζ)dz

≤ tp
+

[∫
Ω

1

p(z)
|∇ζ|p(z)dz +

∫
Ω

1

q(z)
|∇ζ|q(z)dz −M

∫
Ω

ζp
+

dz

]
+ CM |Ω|.

If we choose M > 0 such that∫
Ω

1

p(z)
|∇ζ|p(z)dz +

∫
Ω

1

q(z)
|∇ζ|q(z)dz −M

∫
Ω

ζp
+

dz < 0,

we obtain that limn→+∞ I(tζ) = −∞. It follows that there exists v = t0ζ ∈ W
1,p(z)
0 (Ω)

such that I(v) < 0 and ∥v∥ > ρ. □

Now, we recall the following version of the “Mountain Pass Theorem” (see Theorem
5.40, p. 118, Motreanu-Motreanu-Papageorgiou [17]).

Theorem 2. If I ∈ C1(X,R) satisfies the (Cc)-condition, there exist u0, u1 ∈ X and
ρ > 0 such that

∥u1 − u0∥ > ρ, max{I(u0), I(u1)} < inf{I(u) : ∥u− u0∥ = ρ} = mρ,

and c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},

then c ≥ mρ and c is a critical value of I (i.e., there exists û ∈ X such that I ′(û) = 0
and I(û) = c).

Remark 2. A point u ∈ W
1,p(z)
0 (Ω) is a local W

1,p(z)
0 (Ω) minimizer of I, whenever we

can find ρ > 0 such that I(u) ≤ I(u + h) for all h ∈ W
1,p(z)
0 (Ω) with ∥h∥ ≤ ρ. So, by

the proof of Lemma 2(i), we get trivially that u = 0 is a local W
1,p(z)
0 (Ω) minimizer of

I.
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Lemmas 1 and 2 ensure that I satisfies the hypotheses of Theorem 2 and hence I
has a critical value c ≥ δ. Now we are ready for the existence theorem which produces
one nontrivial weak solution for problem (Pg). The solution by Lemma 4.1 of Fukagai-
Nurakawa [10] is in C1

0(Ω).

Theorem 3. Let the assumptions (g1) − (g4) be satisfied. Then problem (Pg) has at
least one nontrivial weak solution u0 ∈ C1

0(Ω).

We recall some auxiliary notions and notation. The Banach space C1
0(Ω) is an ordered

Banach space with positive (order) cone given by

C+ = {u ∈ C1
0(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

Let X be a Banach space, I ∈ C1(X,R), c ∈ R. We introduce the sets:

KI = {u ∈ X : I ′(u) = 0}, Kc
I = {u ∈ KI : I(u) = c}, Ic = {u ∈ X : I(u) ≤ c}.

Let (Y1, Y2) be a topological pair with Y2 ⊂ Y1 ⊂ X. For every k ∈ N0, let Hk(Y1, Y2) be
the kth-relative singular homology group with integer coefficients (for k ∈ −N, we have
Hk(Y1, Y2) = 0). Let u0 ∈ Kc

I be isolated. The critical groups of I at u0 are defined by

Ck(I, u0) = Hk(I
c ∩ U, Ic ∩ U \ {u0}) for all k ∈ N0,

with U a neighborhood of u0 such that KI ∩ Ic ∩ U = {u0}. The excision property of
singular homology implies that this definition is independent of the isolating neighborhood
U . Suppose I ∈ C1(X,R) satisfies the (Cc)-condition and inf I(KI) > −∞. Let
c < inf I(KI). The critical groups of I at infinity are defined by

Ck(I,∞) = Hk(X, Ic) for all k ∈ N0.

This definition is independent of the choice of c < inf I(KI) (see [17], Remark 6.60, p.
159). Next we compute the critical groups of the energy functional I at infinity.

Proposition 2. Let the assumptions (g1)− (g4) be satisfied. Then Ck(I,∞) = 0 for all
k ∈ N0.

Proof. Let ∂B1 = {u ∈ W
1,p(z)
0 (Ω) : ∥u∥ = 1}. By the assumptions (g1) and (g2), for all

M > 0 there exists CM > 0 such that

(10) G(z, t) ≥ M |t|p+ − CM for a.a. z ∈ Ω, all t ∈ R.
Then for u ∈ ∂B1 and t > 1, we have

I(tu) ≤ tp
+

[∫
Ω

1

p(z)
|∇u|p(z)dz +

∫
Ω

1

q(z)
|∇u|q(z)dz −M

∫
Ω

|u|p+dz
]
+ CM |Ω|.

Recall that M > 0 is arbitrary. Hence we infer that

I(tu) → −∞ as t → +∞.

Now, for u ∈ ∂B1 and t > 1, we have

d

dt
I(tu) = ⟨I ′(tu), u⟩ = 1

t
⟨I ′(tu), tu⟩

=
1

t

[∫
Ω

|∇tu|p(z)dz +
∫
Ω

|∇tu|q(z)dz −
∫
Ω

g(z, tu) tu dz

]
≤1

t

[
p+

∫
Ω

1

p(z)
|∇tu|p(z)dz + p+

∫
Ω

1

q(z)
|∇tu|q(z)dz − p+

∫
Ω

G(z, tu)dz
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−
∫
Ω

e(z, u)dz + ∥d∥L1(Ω)

]
(by (g4))

=
1

t

[
p+I(tu)−

∫
Ω

e(z, u)dz + ∥d∥L1(Ω)

]
→ −∞ as t → +∞.

It follows that d
dt
I(tu) < 0 for all t > 1 big. The implicit function theorem implies that

we can find s ∈ C(∂B1) such that s > 0 and I(s(u)u) = ρ0, where

p+ρ0 −
∫
Ω

e(z, u)dz + ∥d∥L1(Ω) < 0.

We extend s(·) on W
1,p(z)
0 (Ω)\{0} by s0(u) =

1
∥u∥s(

u
∥u∥) for all u ∈ W

1,p(z)
0 (Ω)\{0}. We

have s0 ∈ C(W
1,p(z)
0 (Ω) \ {0}) and I(s0(u)u) = ρ0. Also, we have

(11) I(u) = ρ0 ⇒ s0(u) = 1.

Therefore, if we define

(12) ŝ0(u) =

{
1 if I(u) ≤ ρ0,

s0(u) if ρ0 < I(u),

then we have ŝ0 ∈ C(W
1,p(z)
0 (Ω) \ {0}) (see (11)). Next, we consider the deformation

h : [0, 1]× (W
1,p(z)
0 (Ω) \ {0}) → W

1,p(z)
0 (Ω) \ {0} defined by

h(t, u) = (1− t)u+ tŝ0(u)u for all t ∈ [0, 1], all u ∈ W
1,p(z)
0 (Ω).

We have:

• h(0, u) = u for all u ∈ W
1,p(z)
0 (Ω) \ {0},

• h(1, u) = ŝ0(u)u+ Iρ0 (see (12)),

• h(t, ·)
∣∣
Iρ0

= id
∣∣
Iρ0

(see (11), (12)).

From these facts we infer that

(13) Iρ0 is a strong deformation retract of (W
1,p(z)
0 (Ω) \ {0}).

Consider the radial retraction r1 : (W
1,p(z)
0 (Ω) \ {0}) → ∂B1 defined by

r1(u) =
u

∥u∥
for all u ∈ (W

1,p(z)
0 (Ω) \ {0}).

We introduce the deformation ĥ : [0, 1]× (W
1,p(z)
0 (Ω)\{0}) → (W

1,p(z)
0 (Ω)\{0}) defined

by

ĥ(t, u) = (1− t)u+ t r1(u) for all t ∈ [0, 1], all u ∈ (W
1,p(z)
0 (Ω) \ {0}).

With this deformation we see that

(14) (W
1,p(z)
0 (Ω) \ {0}) is deformable into ∂B1.

In addition using radial retraction r1(·), we see that

(15) ∂B1 is a retract of (W
1,p(z)
0 (Ω) \ {0}).

From (14), (15) and Theorem 6.5, p. 325 of Dugundji [6], we infer that

(16) ∂B1 is a deformation retract of (W
1,p(z)
0 (Ω) \ {0}).
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From (13) and (16), it follows that

Iρ0 and ∂B1 are homotopy equivalent,

⇒ Hk(W
1,p(z)
0 (Ω), Iρ0) = Hk(W

1,p(z)
0 (Ω), ∂B1) for all k ∈ N0(17)

(see Motreanu-Motreanu-Papageorgiou [17], p. 143).

The Sobolov space W
1,p(z)
0 (Ω) is infinite dimensional. Hence

∂B1 is contractible (see Gasiński-Papageorgiou [12], Problems 4.154, 4.159]),

⇒ Hk(W
1,p(z)
0 (Ω), ∂B1) = 0 for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [17], p. 147),

⇒ Hk(W
1,p(z)
0 (Ω), Iρ0) = 0 for all k ∈ N0 (see (17)).

As usual we assume thatKI is finite (or otherwise we already have a infinity of nontrivial
solutions which are in C1

0(Ω) by the nonlinear regularity theory, see [10]). So, choosing
ρ0 such that p+ρ0 −

∫
Ω
e(z, u)dz + ∥d∥L1(Ω) < 0, we get

Ck(I,∞) = Hk(W
1,p(z)
0 (Ω), Iρ0) for all k ∈ N0,

⇒ Ck(I,∞) = 0 for all k ∈ N0.

□

4. Three nontrivial weak solutions

In this section, we establish the existence of at least three nontrivial weak solutions,
by using an additional assumption on the reaction term g(z, ξ). Precisely, we have:

(g5) g(z, 0) = 0 for all z ∈ Ω and g(z, ξ) ≥ 0 for all z ∈ Ω, all ξ ∈ [0,+∞[.

Now, we consider the function G+ : Ω× R → R given as

G+(z, t) =

∫ t

0

g(z, ξ+)dξ for all t ∈ R, z ∈ Ω,

and the functional J : W
1,p(z)
0 (Ω) → R given as

J(u) = A1(u) + A2(u)−
∫
Ω

G+(z, u(z)) dz, for all u ∈ W
1,p(z)
0 (Ω).

By the assumptions (g1)− (g5), we deduce that J ∈ C1(W
1,p(z)
0 (Ω),R) and

⟨J ′(u), v⟩ = ⟨A′
1(u), v⟩+ ⟨A′

2(u), v⟩ −
∫
Ω

g(z, u+(z))v(z) dz, for all v ∈ W
1,p(z)
0 (Ω).

Assume that {un} ⊂ W
1,p(z)
0 (Ω) is such that (1 + ∥un∥)J ′(un) → 0 as n → +∞. Then,

there exists a sequence {εn} of nonnegative real numbers such that εn → 0 as n → +∞
and

|⟨J ′(un), v⟩| ≤
ε∥v∥

1 + ∥un∥
for all n ∈ N , all v ∈ W

1,p(z)
0 (Ω).

If v = vn = min{0, un}, then we get∫
Ω

|∇vn|p(z)dz ≤
∫
Ω

|∇vn|p(z)dz +
∫
Ω

|∇vn|q(z)dz ≤ εn∥vn∥
1 + ∥un∥

for all n ∈ N,

(since g(z, u+(z))vn(z) = 0 for all z ∈ Ω)
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⇒ min
{
∥∇vn∥p

+

Lp(z)(Ω)
, ∥∇vn∥p

−

Lp(z)(Ω)

}
→ 0 as n → +∞,

⇒ ∥vn∥ = ∥∇vn∥Lp(z)(Ω) → 0 as n → +∞.

It follows that the functional J satisfies the (Cc)-condition if and only if it satisfies the

(Cc)-condition with respect to all the sequences {un} ⊂ W
1,p(z)
0 (Ω) such that un(z) ≥ 0

for all z ∈ Ω, all n ∈ N. Now, for all u ∈ W
1,p(z)
0 (Ω) such that u(z) ≥ 0 for all z ∈ Ω,

we have

J(u) = A1(u) + A2(u)−
∫
Ω

G+(z, u(z)) dz

= A1(u) + A2(u)−
∫
Ω

G(z, u(z)) dz = I(u),

since G+(z, u(z)) =
∫ u(z)

0
g(z, ξ+)dξ =

∫ u(z)

0
g(z, ξ)dξ = G(z, u(z)) for all z ∈ Ω. By

Lemma 1 the functional J satisfies the (Cc)-condition for all the sequences {un} ⊂
W

1,p(z)
0 (Ω) such that un(z) ≥ 0 for all z ∈ Ω, all n ∈ N. Clearly, Lemma 2 also holds for

the functional J . The above facts (by Theorem 2) imply that there exists a function

u0 ∈ W
1,p(z)
0 (Ω) such that

⟨A′
1(u0), v⟩+ ⟨A′

2(u0), v⟩ =
∫
Ω

g(z, u+
0 (z))v(z) dz, for all v ∈ W

1,p(z)
0 (Ω).

If we choose v = min{0, u0}, we deduce that v = 0, since g(z, u+
0 (z))v(z) = 0 for all

z ∈ Ω. It follows that u0(z) ≥ 0 for all z ∈ Ω and hence g(z, u+
0 (z)) = g(z, u0(z)) for all

z ∈ Ω. So, the function u0 satisfies

⟨A′
1(u0), v⟩+ ⟨A′

2(u0), v⟩ =
∫
Ω

g(z, u0(z))v(z) dz, for all v ∈ W
1,p(z)
0 (Ω),

and this implies that u0 is a nonnegative nontrivial weak solution of problem (Pg).

Finally we give the existence theorem which produces one nonnegative nontrivial
weak solution for problem (Pg).

Theorem 4. Let the assumptions (g1) − (g5) be satisfied. Then problem (Pg) has at
least one nonnegative nontrivial weak solution.

Next, we can compute the critical groups of the energy functional J at the constant
sign solution u0. In the sequel, by δk,m we denote the Kronecker symbol defined by
δk,m = 1 if k = m and δk,m = 0 if k ̸= m, where m is the Morse index of u0.

Proposition 3. Let the assumptions (g1)− (g4) be satisfied. Then Ck(J, u0) = δk,1Z for
all k ∈ N0.

Proof. ClearlyKJ ⊆ C+, hence without loss of generality, we suppose thatKJ = {0, u0}.
Since u = 0 is a local minimizer of J and u0 a critical point of J of mountain pass type,
there exists δ > 0 (see proof of Lemma 2(i)) such that

0 = J(0) < δ ≤ J(u0).

Let ν− < 0 < ν+ < δ and consider the inclusions Jν− ⊆ Jν+ ⊆ W
1,p(z)
0 (Ω). Next, we

consider the following corresponding long exact sequence of singular homology groups
(see [17], p. 129):

(18) · · · → Hk(W
1,p(z)
0 (Ω), Jν−)

i∗−→ Hk(W
1,p(z)
0 (Ω), Jν+)

∂∗−→ Hk−1(J
ν+ , Jν−) → · · · ,
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with i∗ being the homomorphism induced by the inclusion i : (W
1,p(z)
0 (Ω), Jν−) →

(W
1,p(z)
0 (Ω), Jν+) and ∂∗ is the boundary homomorphism. Since KJ = {0, u0} and

ν− < 0 = J(0), we have (by Proposition 2)

(19) Hk(W
1,p(z)
0 (Ω), Jν−) = Ck(J,∞) = 0 for all k ∈ N0.

Also, we have 0 = J(0) < ν+ < J(u0). So, we have

(20) Hk(W
1,p(z)
0 (Ω), Jν+) = Ck(J, u0) for all k ∈ N0.

Analogously, we get

(21) Hk−1(J
ν+ , Jν−) = Ck−1(J, 0) = δk−1,0Z = δk,1Z for all k ∈ N0.

From (19)-(21) and the exactness of (18), we infer that only the tail of that chain (i.e.,
k = 1) is nontrivial. From the rank theorem, the exactness of (18), and using (19) and
(21), we obtain
(22)

rank H1(W
1,p(z)
0 (Ω), Jν+) = rank ker ∂∗ + rank im ∂∗ = rank im i∗ + rank im ∂∗ ≤ 1.

Since u0 is a critical point of J of mountain pass type. So,

(23) C1(J, u0) ̸= 0.

Form (20), (22), (23) and recalling that only for k = 1 the chain (18) is nontrivial, we
deduce that Ck(J, u0) = δk,1Z for all k ∈ N0. □

Proposition 4. Let the assumptions (g1)−(g5) be satisfied. Then Ck(I, u0) = Ck(J, u0)
for all k ∈ N0.

Proof. Consider the homotopy

h(t, u) = (1− t)I(u) + tJ(u) for all (t, u) ∈ [0, 1]×W
1,p(z)
0 (Ω).

Assume there exist {tn} ⊂ [0, 1] and {un} ⊂ W
1,p(z)
0 (Ω) such that

(24) tn → t, un → u0 in W
1,p(z)
0 (Ω) and h′

u(tn, un) = 0 for all n ∈ N.
By (24) we get

(1− tn)
[
⟨A′

1(un), v⟩+ ⟨A′
2(un), v⟩ −

∫
Ω
g(z, un(z))v(z) dz

]
+tn

[
⟨A′

1(un), v⟩+ ⟨A′
2(un), v⟩ −

∫
Ω
g(z, u+

n (z))v(z) dz
]
= 0,

for all v ∈ W
1,p(z)
0 (Ω), which leads to

⟨A′
1(un), v⟩+ ⟨A′

2(un), v⟩ =
∫
Ω

g(z, u+
n (z))v(z) dz + (1− tn)

∫
Ω

g(z,−u−
n (z))v(z) dz

for all v ∈ W
1,p(z)
0 (Ω). Therefore{

−∆p(z)un(z)−∆q(z)un(z) = g(z, u+
n (z)) + (1− tn)g(z,−u−

n (z)) for a.a. z ∈ Ω,

un = 0 on ∂Ω.

We know that there exist a ∈]0, 1[ and M > 0 such that

un ∈ C1,a(Ω) and ∥un∥C1,a(Ω) ≤ M for all n ∈ N.

By (24) and as C1,a(Ω) is compactly embedded in C1(Ω), it follows that un → u0 in
C1(Ω).
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Now, since u0 ∈ D+, we can find n0 ∈ N such that un ∈ D+ for all n ≥ n0. Then
{un : n ≥ n0} are distinct positive solutions of (Pg), which leads to contradiction as KJ

must be finite (by assumption). Consequently (24) can not happen and hence we obtain
that Ck(I, u0) = Ck(J, u0) for all k ∈ N0 (it is a direct consequence of the homotopy
invariance of critical groups, see [4, Theorem 5.2]). □

By reasoning in a similar way as above, but using the function G− : Ω×R → R given
as

G−(z, t) =

∫ t

0

g(z,−ξ−)dξ for all t ∈ R, z ∈ Ω,

and the functional Ĵ : W
1,p(z)
0 (Ω) → R given as

Ĵ(u) = A1(u) + A2(u)−
∫
Ω

G−(z, u(z)) dz, for all u ∈ W
1,p(z)
0 (Ω),

one can derive the existence of nonpositive solutions for problem (Pg). Indeed, it is

immediate to show that the functional Ĵ satisfies the (Cc)-condition if and only if it

satisfies the (Cc)-condition with respect to all the sequences {un} ⊂ W
1,p(z)
0 (Ω) such

that un(z) ≤ 0 for all z ∈ Ω, all n ∈ N. Clearly, Lemma 2 also holds for the functional

Ĵ . The above facts (by Theorem 2) imply that there exists a function v0 ∈ W
1,p(z)
0 (Ω)

that is a nonpositive nontrivial weak solution of problem (Pg).

Theorem 5. Let the assumptions (g1) − (g5) be satisfied. Then problem (Pg) has at
least one nonpositive nontrivial weak solution v0 ∈ −C+.

Remark 3. The weak solution v0 given by Theorem 5 is such that v0 ∈ −D+.

A similar line of reasoning as in Proposition 3 allows us to establish the following
proposition.

Proposition 5. Let the assumptions (g1)−(g4) be satisfied. Then Ck(I, v0) = Ck(Ĵ , v0)
for all k ∈ N0.

Finally we give the existence theorem which produces three nontrivial weak solutions
for problem (Pg).

Theorem 6. Let the assumptions (g1) − (g5) be satisfied. Then problem (Pg) has at
least three nontrivial weak solutions.

Proof. From Theorems 4 and 5, by reasoning as in the proof of Proposition 3, we retrieve
the two constant sign solutions u0 ∈ D+ and v0 ∈ −D+. If we assume KI = {0, u0, v0}
which means that u0 and v0 are the only nontrivial solutions of Pg, then by Proposition
3 we have

(25) Ck(I, u0) = Ck(I, v0) = δk,1Z for all k ∈ N0.

In addition, we have

(26) Ck(I,∞) = 0 for all k ∈ N0.

Finally, we recall that u = 0 is local minimizer of I(·). Hence
(27) Ck(I, 0) = δk,0Z for all k ∈ N0.

From (25)-(27) and the Morse relation∑
u∈KI

∑
k∈N0

rank Ck(I, u)t
k =

∑
k∈N0

rank Ck(I,∞)tk + (1 + t)
∑
k∈N0

βkt
k for all t ∈ R,
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where βk ∈ N, we infer that there must be a third solution. Indeed for t = −1 we get
2(−1)1 + (−1)0 = 0 which leads to the contradiction (−1)1 = 0. Hence, we can find
w0 ∈ KI with w0 ̸∈ {0, u0, v0}. This completes the proof, since w0 is the third nontrivial
solution of Problem (Pg). □
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