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ABSTRACT

The advent of pervasive wireless systems faces several challenges

due to the massive data tra�c growth resulting from the intercon-

nection of billions of new devices. This makes it essential to provide

smart decision-making in identifying available spectrum resources

by sensing the radio frequency environment. In this study, we aim

to improve the spectrum sensing process and enhance the detec-

tion e�ciency of secondary users (sensing devices) in identifying

primary users (transmitting devices). We consider a scenario in

which secondary users are a�ected by noise and fading, and em-

ploy distributed detection and data fusion to combine data from

geographically distributed sensors. The results show that collabo-

rative spectrum sensing, where multiple SUs share their sensing

data, signi�cantly enhances detection performance. By applying

optimization techniques to assign optimal weight vectors to the

sensors, we further increase the detection performance of the pri-

mary user, where each one is a�ected by di�erent noise factors. The

study reveals that detection performance improves as more users

collaborate, and this improvement is validated through scenarios

with varying SNR values.
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1 INTRODUCTION

As wireless communications continue to grow with the advent

of 5G technologies, new intelligent systems will be necessary to

help organization, managing, and interact with the surrounding

Radio Frequency (RF) environment. This trend is becoming even

more demanding as new wireless services are rising, such as vir-

tual/augmented reality, autonomous driving, smart industry and

agriculture, Internet of Things, etc. This growth may pose potential

risks in communication networks, leading to severe interference

[1]. A possible solution to go beyond this issue is to employ cog-

nitive radio (CR) systems, where a device can learn and adapt to

its RF environment. The reason is that current �xed spectrum as-

signment policies often result in ine�cient spectrum utilization.

Cognitive radio technology enables access to unused frequency

bands, known as spectrum holes, to improve spectrum allocation

e�ciency, a process called spectrum sensing [2]. Spectrum sensing

has two aims: (i) e�ciently identifying and exploiting spectrum

holes; (ii) SU trying to avoid harmful interference to primary users

(PU) by switching to available bands or exploiting spectrum holes.

Consequently, detection performance in spectrum sensing is crucial

for the performance of both primary and SUs in cognitive radio

networks.

A crucial aspect of CRs involves selecting appropriate sensing

techniques for each scenario. Energy detection [3] is a widely used

non-coherent detection technique in spectrum sensing, because

it does not require prior knowledge of primary user signals and

o�ers implementation simplicity. However, energy detection has

some drawbacks. For example, it often requires considerable time

to achieve the desired detection accuracy, and the performance is

impacted by variations in noise power. A signi�cant limitation is

its inability to distinguish PU signals from SU signals, or spread

spectrum signals with low signal-to-noise ratio (SNR) [4]. Finally,

the performance of energy detection algorithms heavily relies on
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environmental conditions [2, 4, 5], where noise sources and imper-

fections like multipath fading, shadowing, and receiver uncertainty

issues may substantially impact the detection performance of spec-

trum sensing [6].

Considering these practical challenges, it becomes crucial to

develop strategies that enhance the e�ciency and reliability of

spectrum sensing techniques, and ensure optimal performance in

cognitive radio networks. One approach to overcome this limitation

is by utilizing cooperative sensing technology in CR networks. In

this scenario, SUs can cooperate and share the sensing results with

other SUs, compensating the limitations of individual observations

made by each user. As a result, the overall detection performance

can be signi�cantly enhanced. This is the reason why cooperative

spectrum sensing is considered a powerful and e�cient strategy

to tackle issues like multipath fading and shadowing, and to re-

duce the uncertainty of the measurements. Several elements can

a�ect the cooperation gain including cooperation strategy, sensing

techniques, control channel and reporting, data fusion, hypothesis

testing, user selection and knowledge base [4].

In this paper, we propose a simple cooperation model where SUs

collaboratively detect the presence of PUs through a parallel fusion

network, i.e. we neglect the presence of data tra�c to focus on the

detection performance. The local SU measurements are forwarded

to a Fusion Center (FC), which combines the reported data through

data fusion and can therefore make global decisions using binary

hypothesis testing. The rest of the paper is organized as follows: sec.

2 provides some background information on cooperative sensing

and discusses related works; sec. 3 analyzes the problem of cooper-

ative spectrum sensing and in sec. 4 we focus on the methodology

used; sec. 5 presents the results obtained; �nally, sec. 6 concludes

the paper and discusses possible future works.

2 BACKGROUND AND RELATED WORK

Cooperative spectrum sensing has proven to be an e�ective ap-

proach in mitigating issues in traditional spectrum sensing tech-

niques, particularly fading and shadowing e�ects [7]. Nonetheless,

the focus of spectrum sensing may vary depending on the speci�c

technologies employed and the radio frequency environment, high-

lighting the need for adaptability and customization in sensing

techniques. Typically, cooperative sensing involves three main pro-

cesses: local sensing, reporting, and data fusion. In local sensing,

a SU monitors the immediate spectral environment to detect the

presence or absence of PUs. Reporting is the process where the

SUs share their local sensing results with other SUs or a FC. Finally,

data fusion involves merging sensing data from multiple SUs to

form a comprehensive detection result.

Based on how the SUs communicate and share their sensing

information, we can divide the cooperation strategies into three cat-

egories, where each of these methods introduces di�erent overhead

and achieves various levels of cooperative gain. (i) Centralized coop-

erative spectrum sensing is based on a central node, often referred

as FC, which controls the process of cooperative sensing [6, 8, 9].

It collects all the local sensing information from the participating

SUs to determine the presence of PUs. The centralized approach im-

proves the precision of detection by joining the combined sensing

abilities of numerous SUs. Nonetheless, it brings about considerable

overhead as it requires all SUs to relay information to the FC, which

can result in bottlenecks and delays. (ii) Distributed cooperative

spectrum sensing, in which SUs collaborates directly with each

other, without relying on a FC [10]. Each SU shares its sensing data

with other SUs, combines its own data with the received informa-

tion, and repeatedly sends the combined results to other SUs until a

certain local criterion is met. This method enhances scalability and

robustness but requires sophisticated protocols and algorithms. De-

spite these advantages, it can still introduce higher overhead than

centralized cooperative spectrum sensing. (iii) Relay-assisted lies

between centralized and distributed cooperative sensing [11, 12].

In scenarios where some SUs have poor reporting channels and

cannot share their sensing information, the overall cooperative gain

drops. In such cases, the relay-assisted method can improve the

cooperative gain. For example, SUs with poor reporting channels

can use nearby SUs with strong reporting channels as relays to

assist in forwarding the sensing results.

In order to combine local sensing information and detect unoc-

cupied frequencies in the spectrum, two primary methods have

been introduced: soft combining and hard combining. The soft com-

bining method involves cooperating SUs sending their entire local

sensing samples to the FC. This approach o�ers higher accuracy

but is more complex. Conversely, in the hard combining method,

the cooperating SUs make local decisions and transmit only the de-

cision bits to the FC. Although this method is less complex, it tends

to have lower accuracy compared to the soft combining approach.

Cooperative strategies often use linear combinations of estimates

gathered from several SUs to provide the sensing result. There are

numerous optimization approaches that can be implemented in

these strategies, such as maximal ratio combining [13], Neyman-

Pearson criterion [13], adaptive exponential-weighting windows

[14], or methods based on minimizing the mean-squared error [15].

In the speci�c context of spectrum sensing in fading environ-

ments, a study investigated the optimization of cooperative spec-

trum sensing over Rayleigh fading channels with perfect feedback

channels [16]. This work was later extended to incorporate Lee’s

imperfect feedback channels and hard decision combining [17],

as well as optimization over various non-composite and compos-

ite fading channels [18]. Reference [19] presents a comparative

study of di�erent decision fusion rules in the context of wide-band

spectrum sensing, taking into account various channel errors. This

study focuses on the evaluation of miss-detection and overall error

probability. In another work, [20], the optimization of coopera-

tive spectrum sensing based on energy detection is investigated,

considering noise and generalized fading channels. On the other

hand, [21] proposes a fusion decision approach that employs a

weighted strategy. In this method, the FC breaks down spectrum

sensing into time intervals to improve the accuracy of coopera-

tive decisions. More recently, the k-means clustering algorithm

[22], has been employed to evaluate cooperative spectrum sensing

performance in generalized fading channels. Moreover, machine

learning techniques and the application of neural networks for

decision-making in cooperative spectrum sensing aims to develop

an adaptable model capable of delivering optimal classi�cation accu-

racy in changing radio environments [23]. Finally, in [24], authors

propose a federated learning-based spectrum sensing (FLSS) algo-

rithm to improve the e�ciency of training and testing the neural
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Figure 1: The cooperative sensing model of parallel fusion.

network model and to reduce communication overhead between

the FC and SUs. Independently of the technique used, in this paper

we quantify the performance of cooperative spectrum sensing in

fading environments and study the gain of collaboration.

3 COOPERATIVE SENSING SCENARIO

The objective of the present study is to optimize the sensing proce-

dure at the central FC and enhance the detection e�ciency when

SUs attempt to detect a single PU. As shown in Fig. 1, we consider

a given topology where the SUs are a�ected by di�erent noise and

fading factors, or where signal are re�ected by Recon�gurable In-

telligent Surfaces (RIS). In the end, all SUs will transmit all their

sensing information to a central location. Here, the FC will make de-

cisions aimed at optimizing the detection performance, taking into

account the varying situations and Signal-to-Noise Ratios (SNRs)

that each SU encounters.

There are di�erent methodologies that can be used to represent

the cooperation of CR devices in spectrum sensing, with the main

emphasis being on how SUs collaborate to obtain the best possible

performance. As illustrated in Fig. 1, the distributed detection and

data fusion (or parallel fusion model) is the most often used method.

Parallel fusion models determine how data are combined and deci-

sions are made in an e�ort to improve detection performance in dis-

tributed signal processing techniques. A central processor receives

observations of SUs from a number of geographically dispersed

sensors. In the �gure, the solid lines indicate signals originated

from PU_Tx, or re�ected from the physical environment, and then

local observations from the SUs are reported to the FC displayed

with a black line again. The FC uses the data fusion to merge the

sensing measurements and performs binary hypothesis testing to

reach a global decision. Thus, the SUs report their sensing results

and the FC takes the decision on the channel or frequency band

of interest. Once this local sensing data has been combined, the

FC broadcasts its cooperative conclusion to all collaborating SUs.

In general, from Fig. 1 the entire process of cooperative sensing

is clear, i.e. local sensing, data reporting and data fusion [4]. Note

that, in the present paper, we neglect communication overhead and

latency introduced by the cooperative sensing process, which will

be analyzed and optimized in future work.

4 PROPOSED METHODOLOGY

The cooperative sensing process begins with individual spectrum

sensing performed by each SU, referred to as local sensing. Let<

denote the number of collaborating SUs. In general, local sensing for

primary signal detection can be represented as a binary hypothesis

problem, which can be expressed as follows:

G< (=) =

{

a (=), if �0 holds

ℎ<B (=) + a (=), if �1 holds
. (1)

Here, G< (=) represents the signal received at the<-th SU. The trans-

mitted PU signal is denoted by B (=). Also, a (=) refers to the zero-

mean additive white Gaussian noise (AWGN), given as N
(

0, f2<
)

.

The hypotheses �0 and �1 correspond to the absence and presence,

respectively, of the PU signal in the frequency band of interest.

Additionally, the signal is a�ected by a channel gain/attenuation

ℎ< which directly depends on the fading and shadowing in the CR

network environment. To incorporate these e�ects, the PU signal

is modelled as ℎ< (=) =

√

V
(

30
3<

)U
10

−
k<
10 . In this model, V rep-

resents a constant related to antenna characteristics and average

attenuation, U is the path-loss exponent, 3< denotes the distance

between the<-th secondary user (SU-m) and the PU , 30 is the ref-

erence distance, andk< is a Gaussian-distributed random variable

with zero mean and variance f2< to account for the shadow fading

of the channel between the PU and SU-m [25].

In a collaborative scheme [26], the test statistic consists of a

set of energy statistics denoted by ~ = {)1 (G),)2 (G), . . . ,)< (G)},

which comprises energy estimates from all< participating nodes.

The energy statistics can be represented as

)< (G) =

#
∑

==0

|G (=) |2
�1

⪌
�0

W< (2)

where W< denotes the test threshold for distinguishing between the

hypotheses.

The central limit theorem [3] suggests that the summation of

statistics can be approximated to a normal distribution when N

is large enough (typically, # ≥ 20 is adequate in practical scenar-

ios). Then, under the two hypotheses, we obtain ~ ∼ N (`0, Σ0)

under �0 and N ∼ (`1, Σ1) under �1. The mean values for hy-

potheses �0 and �1 are given by `0 = #
[

f2
1
, f2

2
, . . . , f2<

])
and

`1 =

[

(# + [1) f
2

1
, (# + [2) f

2

2
, . . . , (# + [<) f2<

])
, respectively.

Here, [< is the Signal-to-Noise Ratio (SNR) at the m-th SU node,

given as

[< =

|ℎ< |2

f2<

#−1
∑

==0

|B= |
2 . (3)

Also, the variances of the statistics are given by Σ0 = 2# ·

diag[f4
1
, f4

2
, . . . , f4<]) , and Σ1 = diag[2f4

1
(# + 2[1) , 2f

4

2
(# +2[2),

. . . , 2f4< (# + 2[<)]) under hypotheses �0 and �1, respectively.

It is worth recalling that the diag[] operator creates the diagonal

of a square matrix with the elements of a given vector, while [])

represents the transpose operation for vectors or matrices.

In order tomitigate the errors introduced bymultipath fading and

shadowing, and to extend beyond the scope of a single sensor, we

can adopt an optimized operative scheme [27]. A detector structure
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is then employed in this scheme, which can be expressed as ! =

l)~, where ! is the global decision statistic, l is a weight vector

that needs to be determined, and ~ is the vector of local energy

detected by individual nodes. The weight vector l represents the

contribution of each SU to the global decision. For instance, if a

node produces a high SNR observation, which is more likely to lead

to a correct decision, it should be assigned a larger weight in the

weight vector l .

In order to assess the detection performance, we de�ne the

probabilities of detection and false alarm as %3 = % (�1 |�1) and

%5 = % (�0 |�1), respectively. For a large number of samples, the

linear combination of multiple Gaussian random variables remains

Gaussian, allowing us to approximate the probability of false alarm

and the probability of detection as follows:

%5 = % (�0 |�1) =&

(

W − `)
0
l

√

lΣ0l)

)

,

%3 = % (�1 |�1) =&

(

W − `)
1
l

√

lΣ1l)

) (4)

where & (G) = 1

2c

∫ ∞

G
4−

g2

2 3g is the Q-function. As an important

note, we make the assumption that each node can estimate the

noise variance, denoted as f2< , and share it along with its energy

estimations, )< (G), with its neighbors in the CR network. This

allows each node to experience di�erent SNRs, depending on the

varying conditions each node encounters.

We can formulate an optimization problem to maximize the

probability of detecting the spectral hole, thereby increasing the

opportunistic spectrum utilization of the targeted frequency band.

This optimization is subject to a constraint on the false alarm prob-

ability, ensuring that the sensing process remains within acceptable

limits. The problem can be formulated as:

max
l

%3

s.t. %5 ≤ n
(5)

where n represents the maximum threshold on false alarms.

5 RESULTS

Before exploring the cooperative multi-sensor scenario, let’s con-

sider a simpler case involving a single SU and a single PU. This will

help to lay the foundation for understanding more complex situa-

tions, involving multiple sensors and users. Notably, the ultimate

detection performance of any spectrum sensor is directly impacted

by the SNR, commonly referred to as the SNR wall. As indicated in

Eq. 3, this SNR factor is closely related to the fading environment

and signal power. To illustrate this relationship, we plot the miss-

detection probability, i.e., 1 − %3 , in terms of predetermined false

alarm probability, in Fig. 2 (a) for two SNR values, 3 and 10 dB. Form

the �gure, it is evident that the optimum detection performance,

characterized by a minimum miss-detection probability, can be at-

tained by adjusting the false probability value. Indeed, this optimal

performance directly depends on the SNR values, as demonstrated

in Fig. 2 (b). Here, for a given false probability, we observe that the

detection probability increases as the SNR increases.

0 0.5 1
Pf

0

0.5

1

1
!

P
d

(a)
3 dB
10 dB

-30 -20 -10 0 10
SNR dB

0

0.5

1

P
d

(b)

Pf = 0:05
Pf = 0:1

Figure 2: Spectrum sensing detection under noise uncertainty

for a single SU. (a) Missed detection probability, i.e., (1 − %3 ),

as a function of false alarm probability for two SNR values:

3 and 10 dB. (b) Detection probability, i.e., (%3 ), as a function

of SNR for given false alarm probabilities: (%5 = 0.05) and

(%5 = 0.1).

To improve spectrum sensing performance, we now enable multi-

ple SUs to collaborate by sharing their decision statistics with a cen-

tral FC. For simplicity, we initially assume that all< SUs experience

independent and identically distributed fading/shadowing with the

same average SNR. In this scenario, the enhancement in detection

performance, in terms of detection and false-alarm probabilities for

the collaborative scheme, can be expressed as 1 − (1 − %3 )
< and

1−(1−%5 )
< , respectively. It becomes evident that the collaborative

scheme increases both the detection probability and false-alarm

probability compared to local sensing. However, the overall out-

come is an improvement in detection performance, as depicted

in Fig. 3 (a). As Fig. 3 (a) shows, as< increases, the collaborative

scheme is capable of outperforming local sensing< = 1. This is

because, with a larger<, the high probabilities are aggregated. The

results indicate a signi�cant improvement in the required average

SNR for detection.
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Figure 3: Cooperative spectrum sensing detection under

noise uncertainty. (a)Missed detection probability, i.e., (1−%3 ),

as a function of false alarm probability for one (< = 1), three

(< = 3), and �ve (< = 5) SUs with identical SNR value of 3 dB.

(b) Missed detection probability, i.e., (1 − %3 ), as a function of

false alarm probability with �ve sensors (< = 5), in two cases:

even weights and optimized weights in a non-uniform SNR

scenario with -20.00, -1.20, 1.77, 3.52, and 4.77 dB, for the �ve

SUs respectively.

In a more realistic scenario, all sensors may experience di�erent

environmental conditions and can be a�ected by varying fading

and shadowing factors. For example, as depicted in Fig. 3 (b), SU1,

SU2, SU3, SU4, and SU5 are subject to multipath and shadow fading.

This will potentially decrease their e�ciency in detecting the PUs.

Additionally, SU5 is assumed to be not in range of the primary

receiver (PU_Rx). This may result in interference between SU5’s

transmissions and reception at PU_Rx. However, due to spatial

diversity, it is unlikely that all spatially distributed SUs will face

fading or receiver issues simultaneously. If a certain SU, such as

SU2 in Fig. 1, detects a strong PU signal and collaborates by sharing

its sensing results, the proposed cooperative scheme enhances the

overall detection performance. This is why we employ the opti-

mization protocol described in Eq. 5, to assign an optimal vector

weight (l) and improve performance. Indeed, the extent of this

improvement also depends on the speci�c optimization techniques

utilized.

Fig. 3 (b) shows a scenario with �ve SUs and one PU, each having

di�erent SNR values: -20, -1.20, 1.77, 3.52, and 4.77 dB. Initially, we

assign equal weights to the SUs and plot the missed detection prob-

ability versus the false alarm probability. Note that equal weights

are optimal when all users have the same SNR. However, nodes

experience di�erent SNR, optimizing the weight vector can sig-

ni�cantly enhance performance compared to using equal weights.

Indeed, we tested this algorithm for other combinations of SNRs,

and the optimization always resulted in better performance in cases

of non-uniform SNRs.

6 CONCLUSIONS

Due to the exponential growth in wireless communications, the

implementation of intelligent decision-making processes to identify

available spectrum is needed. The present study proposes a cooper-

ative spectrum sensing scheme to improve the detection e�ciency,

particularly in scenarios where SUs are impacted by noise and fad-

ing factors. Exploiting data fusion techniques to aggregate data from

geographically dispersed sensors, our �ndings demonstrate that

collaborative spectrum sensing markedly increases detection prob-

ability. Moreover, we propose optimization techniques to assign

optimal weight vectors to the SUs, improving the performance of

the proposed scheme. Indeed, our study highlights the importance

of optimizing weight vectors in non-uniform SNR environments,

which signi�cantly boosts detection accuracy.

Future research could explore the integration of machine learn-

ing algorithms to further re�ne the spectrum sensing process and

adapt to dynamic network environments. Also, federated learning

could be exploited to reduce communication overhead between

the FC and SUs, still maintaining good performance. Overall, the

present work demonstrates that collaborative and optimized spec-

trum sensing is a powerful tool to address the challenges posed

by 5G networks and paves the way for more e�cient and reliable

wireless communication systems.
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