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ABSTRACT Organoids, derived from primary donor or stem cells, closely replicate the composition and
function of their in vivo counterparts. This quality makes them a reliable model for validating hypotheses on
disease-related biological processes and mechanisms. To date, the classification of organoids is performed
manually by microscope and, therefore, in a data-driven application, is time-consuming, inaccurate, and
difficult to morphological analysis process. The use of deep learning (DL) in organoid image analysis
becomes crucial to handle complexity, variability, and large amounts of data efficiently and accurately,
overcoming the limitations of traditional image processing approaches. In this paper, five CNN-based DL
models such as MobileNet, DenseNet, ResNet, Inception, VGG, and the very recent Vision Transformers
(ViT) were analyzed using a publicly available dataset for the morphological classification of intestinal
organoids. Additionally, traditional ML models, such as SVM and RF, were tested for comparison using
a feature set similar to conventional image processing tools. The systematic performance evaluation is
designed to guide users in choosing the most suitable model for processing organoid images. Among
all models, ViT achieved the highest accuracy of 86.95%, demonstrating its effectiveness in organoid
classification. Inception and DenseNet also exhibited strong performance, with accuracy values of 86.10%
and 86.47%, respectively. Rather, SVM and RF performed significantly worse, showing an accuracy
approximately 20% lower than the selected DL models. Considering efficiency, ViT had the highest
accuracy but required more resources (0.0437 sec/image, 343 MB), while MobileNet, the lightest model
(35.6 MB), had the fastest inference time (0.0063 sec/image). The findings highlight the potential of DL
models in enhancing the accuracy of organoid classification while emphasizing the importance of balancing
performance with computational efficiency for real-time applications.

INDEX TERMS Deep learning, image classification, intestinal organoids, stem cells, cancer.

I. INTRODUCTION CRC cases is estimated to be about 3 million in the next
Cancer is one of the leading causes of death worldwide, 15 years [1], [2]. Organoid culture provides a physiologically
especially the incidence of colorectal cancer (CRC) is the relevant model that maintains the cellular composition
highest in developed countries; based on ageing, population and genetic profiles of the original tissue over multiple
growth, and human development, the global number of new passages [3], [4]. Since organoids mimic a solid tumor in vivo,
they are a useful approach as a tool to study tumor biology,
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patients, from the primary tumor or metastasis to ascites and
pleural fluid. Unlike whole tissue samples, they do not require
intensive tissue digestion and result in a miniature organ
that is reconstituted and incorporated into the extracellular
matrix in an attempt to maintain the constitution of the
tumor microenvironment. Therefore, organoids reproduce
the architecture of the original tumor, and even long-term
culture maintains gene stability and preserves the mutational
profile of the original tumors [7], [8]. Organoids have played
an important role in current cancer research, especially in
the study of the tumor development process, improving the
efficiency of tumor therapy and tumor heterogeneity [9].
Classification and quantitative analysis of organoids are
instrumental in studying the physical and molecular charac-
teristics of a complex phenomenon such as CRC.

In recent years, organoids have been widely used in cancer
research [10], [11], [12], [13], [14], in fact, they mimic and
recapitulate several functional and structural aspects of a
number of carcinomas, for example, intestinal organoids can
develop crypt-like structures similar to those in the native
colon, these structures are fundamental for the regeneration
of the epithelium in vivo. Organoids are self-organizing
and self-renewing structures in 3D culture in vitro that are
embedded in a biological matrix to create an extracellular
environment that provides structural support and essential
growth factors [15], [16].

Although studying the physical and molecular charac-
teristics of complex phenomena such as CRC through the
classification and quantitative analysis of organoids is ben-
eficial, the study of metrics such as changes in morphology,
number, and size can be challenging and time-consuming in
large data-driven experiments [17], [18]. This is due to the
need for manual detection, labeling, and analysis of numerous
images. Consequently, developing an automated pipeline
for processing organoid images is difficult, as it involves
addressing issues such as overlap, collapse, and out-of-focus
problems. These issues, usually encountered in live imaging
modality, can lead to overlapping structures that are difficult
to distinguish individually and to the structural collapse of
organoids, potentially distorting their morphology by making
accurate analysis challenging. Organoid morphology offers
valuable insights into colon physiology and pathophysiology
in vivo. For instance, opacity and budding are key indicators
used to assess the maturity of colon organoids, while cystic
organoids, which possess thinner walls, are more transparent,
whereas colon organoids tend to be more opaque.

The challenges inherent in organoid image analysis,
such as the detection of complex morphologies, variabil-
ity between samples, and focus issues, make traditional
approaches to image processing suboptimal. In such a
context, the move to Machine Learning (ML) and the subset
Deep Learning (DL) is not just a trend but a necessity,
as these data-driven approaches can leverage advanced
models to overcome the traditional limitations of image
processing, enabling more nuanced and automated analysis
of morphological complexities.

62268

This work aims to provide the research community with
valuable insights into the performance and applicability
of various DL models for the automatic classification of
intestinal organoids. Specifically, the experimental design
incorporated six DL techniques for classification tasks,
including the most used Convolutional Neural Networks
(CNN)-based approaches like MobileNetV2, DenseNet169,
ResNet50v2, InceptionV3, and VGGI16, along with the
cutting-edge DL methods, such as Vision Transformers
(ViT), which have recently gained significant traction in
the field of image classification. All experiments were
conducted using a publicly available dataset (described
in Section III). To provide a more comprehensive eval-
uation, comparisons with conventional ML models, such
as Support Vector Machines (SVM) and Random Forest
(RF), are included, utilizing a feature set similar to those
employed in conventional image processing tools. The
results indicate that ViT model, albeit slightly, outperformed
traditional CNN-based models in terms of accuracy, pre-
cision, recall, specificity, and Fl-score. However, these
DL-based computational models offer a more efficient
alternative to labor-intensive and time-consuming high-
throughput experimental techniques currently used to study
organoids.

This research marks a significant shift in focus from the
development of algorithms and models for organoid analysis
to the comprehensive application and evaluation of existing
DL models for organoid classification, thereby not only
establishing a benchmark for DL algorithms in this domain
but also significantly contributing to the advancement of
automated analysis methodologies and technologies in the
field of cell culture models. In more specific terms, the main
contributions of this work are five-fold:

i) This work expands upon existing DL models by devel-
oping or adapting algorithms capable of identifying
intestinal organoids from low-resolution transmitted-
light images across a broader range of tissues;

ii) A high-level workflow is proposed for evaluating
DL models based on three critical aspects: model
configuration, model accuracy, and model efficiency.
This workflow is designed to serve as a benchmark for
future DL model assessments in organoid classification;

iii) The dataset obtained from the image extraction
algorithm has been released to the research community
for further investigation;

iv) A systematic comparison of various DL models is
provided to help researchers meticulously assess the
strengths and weaknesses of each DL model. Addition-
ally, a comparative analysis of traditional ML models is
included to highlight the advantages of DL approaches
over conventional methods. This comparison serves as
a decision-making tool to guide researchers toward the
most suitable model for accurate intestinal organoid
classification;

v) The analysis identifies the ViT as the model with the
best overall performance in organoid classification. This
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finding underscores the potential of ViT as a leading
model in the field and sets a precedent for its application
to similar tasks.

These contributions collectively enhance the understand-
ing and development of automated analysis methodologies
in the field of intestinal organoid classification, paving the
way for future exploration of large-scale DL applications
in cell culture models. The rest of the paper is structured
as follows. Section II provides an overview of the existing
approaches in the field of computational biology. Section III
details the materials and the methodology employed in
this work, outlining the complete handling of the data,
followed by an in-depth discussion of the proposed models.
Section IV presents the experimental results by rating the
performance of all the proposed models. Section V examines
the implications of the results, comparing the performance
of the proposed models and highlighting their advantages
and limitations. Finally, Section VI concludes the work
with a summary of the key findings and future research
directions.

Il. RELATED WORKS

The evolving field of computational biology and biomedical
informatics has brought forward advanced algorithms capa-
ble of dissecting the intricate data derived from organoid
studies [19], [20]. To such evidence, authors in [21]
simplify the complexity of genetic and cellular organization
by analyzing over 200.000 live cells using the WTC-11
hiPSC Single-Cell Image Dataset v1, focusing on key
cellular structures to map distinct organelles and functional
machines. This approach opened a new pathway for biolog-
ical data exploration through novel data-driven approaches,
enabling human-interpretable, dimensionally reduced quanti-
tative measurements while embracing cell-to-cell variability
observed in normal populations. In [22], the authors introduce
a data-driven approach to address the challenge of intratumor
phenotypic and functional heterogeneity in acute myeloid
leukemia (AML) by using mass cytometry to profile surface
and intracellular signalling proteins across millions of cells.
Using PhenoGraph, a partitional algorithmic tool developed
to define phenotypes in high-dimensional single-cell data,
the research uncovers that surface phenotypes of leukemic
blasts do not reliably indicate their intracellular state. This
methodology enables the identification of a signaling-based
cellular phenotype, leading to the discovery of a gene expres-
sion signature predictive of survival in AML, offering new
insights into its pathophysiology and enhancing large-scale
analysis of single-cell heterogeneity.

Recent breakthroughs in automated microscopy have
transformed high-throughput cell biology, enabling complex
image-based screenings that are better navigated through
ML methods [23]. These approaches leverage data structures
and biologist annotations to develop versatile analytical
models [24], [25]. Integrating high-throughput imaging and
ML approaches has revolutionized phenotypic profiling in
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drug discovery, offering new insights into the mechanisms,
efficacy, and toxicity of small molecules [26].

Numerous studies have applied ML approaches to
organoid research. Authors in [27] utilized linear support
vector machines to distinguish correctly segmented organoids
from those with artefacts, using features like PhenoGraph
analysis and Zernike polynomials. Although ML techniques
have proven useful, DL models, particularly convolutional
neural networks (CNNs), often outperform traditional ML
in image analysis and pattern recognition tasks. Neural net-
works excel at analyzing complex morphologies, providing a
scalable solution suitable for organoid analysis. For instance,
OrgaQuant [28] and OrganolD [29] were developed to
automate the detection and tracking of organoids, facilitating
high-throughput studies in drug discovery and personalized
medicine.

In addition, several organoid image analysis software
and tools have been proposed over the years, ranging
from visualizers like Fiji/ImageJ [30], Napari [31] or
QuPath [32] to comprehensive software that use specific algo-
rithms/models for advanced tasks such as automated organoid
segmentation and feature extraction, like MOrgAna [33],
OrganoidTracker [34], ilastik [35] and CellProfiler [36].
These tools, however, often require extensive domain exper-
tise to fine-tune analysis pipelines for complex morphological
patterns.

Several more recent studies have introduced DL
approaches for organoid analysis. Authors in [37] harness
electron microscopy (EM) to provide an intricate view
of cellular morphology, surpassing traditional analysis
limitations with a novel unsupervised neural network
approach for learning morphological features directly
from 3D EM data. In [38], the authors leverage the
unsupervised geometric DL approach to capture 3D cell
shape representations from microscopy images of metastatic
melanoma cells, addressing the need for comprehensive 3D
shape quantification in medical research. In [39], the authors
employed high-throughput, image-based profiling (by using
a deep convolutional neural network - DCNN) to analyze over
5 million individual CRC organoids treated with more than
500 small molecules, revealing key axes of morphological
variation influenced by IGF1 receptor signalling and
LGRS+ stemness.

Authors in [40] introduced an organoid image dataset
and an innovative deep neural network for automated
detection and tracking of organoids, setting a new stan-
dard for efficiency in organoid research methodologies.
In [41], a DL model was developed using bright-field
images to predict retinal differentiation in stem cell-derived
organoids, outperforming experts with an 84% accuracy.
Authors in [42] explored how CNNs can offer faster
and more accurate approaches to organoid morphology.
In [43], the authors introduced a morphological screening
method using deep neural networks to identify drugs
reversing epithelial-mesenchymal transition in mammary
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tumor organoids. Recent advances in computer vision have
led to more sophisticated and accurate image classification
and detection procedures on organoids [44], [45]. The recent
emergence of Vision Transformer (ViT) models marks a
significant change from traditional CNNs, however, which
have long dominated this field. Authors in [46] developed
TransOrga method, exploiting the transformer architecture,
offering an advanced tool for noninvasive segmentation of
organoids. In [47], the authors developed the RDAU-Net
model, an advanced DL tool designed to enhance the accuracy
and efficiency of organoid-based drug screenings using
improved dynamic convolution and attention mechanisms.
Despite these advancements, a comprehensive benchmarking
of DL models for organoid classification remains critical.
Benchmarking serves multiple purposes: it helps identify the
most effective models, ensures consistent and accurate anal-
ysis, and highlights the strengths and limitations of different
approaches. This process is vital for several reasons. Firstly,
it standardizes the evaluation of DL models, facilitating
their adoption in diverse research settings. Secondly, it can
enhances the reliability of phenotypic profiling, which is
crucial for understanding disease mechanisms and responses
to treatments. Lastly, it can accelerate the drug discovery
process by providing robust tools for high-throughput
screening of organoids.

Ill. MATERIALS AND METHODS

Figure 1 presents the high-level workflow aimed at image
classification of organoids. It consists of five main stages:
i) Data source, ii) Data pre-processing and labeling, iii)
Datasets partition, iv) Model selection, and v) Model
evaluation. The details and complexities of each step in such
workflow are explained in the following sections.

A. DATA SOURCE

As a data source, a well-established dataset specifically
designed and validated for the organoid detection task
by Tellu [48] was utilized. This dataset, developed by
Domenech-Moreno et al., is publicly available on Zenodo
repository (YOLO format) at https://doi.org/10.528 1/zenodo.
6768583. It was generated using an EVOS FL micro-
scope (Thermo Fisher) with a 4x objective and consists
of 840 transmitted-light microscopy images of intestinal
organoids taken during different stages. The authors used the
Python library labllmg to annotate images in four classes,
in particular, they coded with ClassO for organoid0O the
class “Cyst” that represents a very early stage, small,
cystic, non-budding organoids with thick wall, with Class]
for organoidl the class “Ealy organoid” indicating early,
budding organoids with 1-2 crypts (buds), with Class2
for organoid3 the class “Late organoid” containing large,
budding organoids with 3 or more crypt units and finally
Class3 for spheroid for a class ‘““Spheroid” showing
large, circular, thin-welled organoids representing e.g. fetal,
regenerating, tumorigenic or hyperstimulated organoids.
The entire original dataset (described in Table 1) contains
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23.065 annotations, however, the four classes are not equally
distributed because all organoids start from a cystic shape.
In detail, the dataset was composed in ClassO for 52%
with 11.922 instances, Classl for 24% with 5.510 instances,
Class2 for 14% with 3.367 instances, and then Class3 with
10% with 2.266 instances.

B. DATA PRE-PROCESSING AND LABELING

To evaluate the performance of the models, a comprehensive
data pre-processing and labeling strategy was implemented,
utilizing a custom Python script available in the GitHub
repository (extract.py file in “Python scripts” folder) at
the following URL: https://github.com/gcicceri/Organoids-
Classification-). This script was specifically designed to
handle images of intestinal organoids by cropping each image
to a standard size of 224 x 224 pixels, which is a common
input size for DL models. [49]. This standardization to a
fixed resolution was essential to maintaining consistency
across models, reducing variability in feature extraction, and
ensuring compatibility with the pre-trained DL architectures.

In detail, the script operates by reading the bounding
box coordinates from the original annotation files to extract
the relevant image sections and associate them with their
respective labels. During this process, two annotations within
ClassO were identified as inconsistent, as the specified
coordinate pairs did not produce a valid 224 x 224 clipping
mask.

Upon closer inspection, it was evident that these bounding
boxes corresponded to regions that did not contain any
organoids. Specifically, Image 18 and Image 710 were
identified as problematic. These two images can be viewed
in the GitHub repository, where the problematic regions have
been highlighted as areas that do not enclose any organoids.

As a result, these images were excluded from subsequent
partitioning and, consequently, from the final dataset. Specif-
ically, this exclusion ensured that only correctly labeled
and properly segmented organoid images were used for
training, thus preventing potential sources of noise that could
mislead the learning process. Nevertheless, their removal had
anegligible impact on overall classification performance. The
resulting dataset comprises 23,063 images, each associated
with a class label (Class0, Class1, Class2, Class3), and was
used for training and testing the models.

Figure 2 shows a representative subset of the large
set of images of the four classes, specifically selected to
demonstrate the different morphology of organoids in the
distinguished classes.

C. DATASETS PARTITION

To facilitate more efficacious learning and testing processes,
the dataset (shown in Table 2) was partitioned into three
subsets: i) training set composed of 18.537 images, ii)
validation set containing 2.058 images and iii) fest set
including 2.468 images. This structured partitioning is a
pivotal element in the performance assessment of DL
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FIGURE 1. The proposed High-Level workflow.
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TABLE 1. Data source distribution for organoido (Class0), organoid1 (Class1), organoid3 (Class2) and spheroid (Class3).

Class0

Classl

Class2

Class3

Total

Data source [48]

11.922 (52%)

5.510 (24%)

3.367 (14%)

2.266 (10%)

23.065

TABLE 2. Images annotated distribution in a train, validation, and test set for organoido0 (Class0), organoid1 (Class1), organoid3 (Class2) and spheroid

(Class3).
Data Class0 Classl Class2 Class3 Total
Train 9.564 (51.60%) | 4.466 (24.10%) | 2.670 (14.40%) | 1.837 (9.90%) | 18.537
Validation | 1.062 (51.60%) 496 (24.10%) 296 (14.39%) 204 (9.91%) 2.058
Test 1.294 (52.43%) 548 (22.20%) 401 (16.25%) 225 (9.12%) 2.468

architectures. The training dataset is utilized for the initial
fitting of the model, enabling it to learn from the data.
Subsequently, the validation dataset plays an integral role in
hyperparameters optimization, facilitating the refinement of
the model. Finally, the test dataset serves as the benchmark
for evaluating the efficacy of the models, providing an
unbiased assessment of their predictive capabilities. The final
dataset has been made publicly available to the research
community. It can be accessed through the Zenodo repository
(see https://doi.org/10.5281/zenodo.14725323).

D. MODEL SELECTION

To accurately classify organoids, a set of six state-of-the-
art DL models was employed. Specifically, five recent
Convolutional Neural Network (CNN)-based DL models like
MobileNet, DenseNet, ResNet, Inception, VGG, and the very
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recent Vision Transformers (ViT). These selected DL models
represent distinct architectural paradigms, enabling a com-
prehensive evaluation of organoid classification strategies.
Each model excels in feature extraction, computational effi-
ciency, or classification accuracy, offering a complementary
assessment. A concise overview of each model’s role in
the multi-class classification task follows. To enhance com-
parison and validate DL efficacy, conventional ML models
(SVM and RF) were also included using manually extracted
features. The following presents a detailed summary of each
selected DL/ML model.

1) DenseNet169

DenseNet169 is a variant of the Dense Convolutional
Network (DenseNet), a type of CNN introduced by
Gao Huang et al. [50], [51], and known for its dense
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FIGURE 2. Sample images of organoid morphology across the four different classes: A) Class0 - organoido. B) Class1 -

organoid]. C) Class2 - organoid3. D) Class3 - spheroid.

connectivity pattern. DenseNet169, commonly used for
image classification tasks, refers to a DenseNet architecture
with 169 layers if one counts each of normalization,
nonlinearity, pooling, and convolution as separate layers,
and has the advantage of requiring fewer parameters than
other CNN architectures, often achieving better performance.
Unlike traditional CNNs, where each layer is only connected
to the next layer, in DenseNet, for each layer, the feature
maps of all preceding layers are used as inputs, and its
own feature maps are used as inputs into all subsequent
layers. This helps with gradient flow and allows for more
efficient use of parameters. This design improves information
flow and feature propagation, enabling better performance
even with fewer layers. Its densely connected layers improve
feature reuse and gradient flow, enhancing the model’s ability
to capture fine-grained morphological details in organoid
structures.

2) ResNet50v2
ResNet50v2 is a variant of the ResNet (Residual Network)
architecture, the family originally introduced by Kaiming
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He and his team in 2015 [52] for practical applications
such as medical image analysis, autonomous driving, and
object detection. It is a CNN-based model designed to tackle
the challenges associated with training very deep networks.
ResNet50 uses “residual connections”, which bypass one
or more layers and are added back to the output. This
idea enables the training of much deeper networks (even
hundreds or thousands of layers) without severe degradation
of training accuracy. The “v2” in ResNet50v2 [53], proposed
in this study as the comparison model, refers to the second
version of the original ResNet50. The difference between
original ResNet vl and ResNet v2 is in the block design.
Specifically, in v1, the skip connection skips over the weight
layers. In v2, the order of operations in the residual block
is changed to start with batch normalization and rectified
linear unit (ReLU) before convolution, which is claimed to
give better accuracy. The architecture of ResNet50 consists of
50 layers stacked neatly in an efficient architecture, including
convolutional layers, batch normalization, ReLU activation
functions, and fully connected layers. Each “‘residual block”
of the architecture consists of a set of layers whose output is
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added to the input, making up the ‘“‘residual connection”. By
utilizing residual learning, ResNet50v2 mitigates vanishing
gradient issues and preserves both low- and high-level spatial
features, improving classification accuracy, particularly in
ambiguous cases, such as organoid morphologies with
overlapping or unclear structural characteristics. ResNet50
revolutionized the approach to DL models, paving the way
for later architectures such as DenseNet (outlined above), and
solving major challenges in training deep networks.

3) MobileNetVv2

MobileNetV2 is another neural network model used in
this study. MobileNetV2, introduced in [54], designed
specifically for mobile and other low-computational-power
devices, where computational resources are limited, repre-
sents an evolution of the original MobileNet model [55]
and offers improved performance and efficiency. Its opti-
mized characteristics make it particularly suitable for
real-time organoid classification and deployment in resource-
constrained environments. MobileNetV2 architecture is
based on the “inverted residuals” procedure, unlike tradi-
tional residual blocks, in which the channel size is first
reduced and then expanded, MobileNetV2 does the opposite,
that is, it first expands the size (using a 1 x 1 convolution),
then applies the convolution in-depth, and finally reduces
the size. Moreover, after the depthwise convolution, instead
of applying a ReLU activation before the pointwise con-
volution, the model maintains a linear connection, helping
to preserve the information. MobileNetV2 also employs
depthwise separable convolutions to reduce the number of
parameters and computations. This involves separating the
convolution operation into a depthwise convolution followed
by a pointwise convolution.

4) InceptionV3

The Inception model, introduced by Google researchers,
has emerged as one of the most innovative models com-
puter vision field, radically challenging traditional standards
CNNs [56]. InceptionV3 is the third iteration of the
Inception architecture [57] and includes improvements and
refinements over the previous versions. The architecture
of InceptionV3 introduced several advancements, such as
factorized convolutions and label smoothing, which led to
better performance and efficiency, particularly in the context
of image recognition tasks. Leveraging multi-scale feature
extraction, this model effectively handles the heterogeneity
of organoid shapes, making it a robust choice for complex
image classification tasks, while its regularization techniques
contribute to improved generalization and training stability.
Specifically, key aspects of InceptionV3 involve factorization
into smaller convolutions, where large convolutions are
factorized into smaller, more manageable operations, and
spatial factorization into asymmetric convolutions, in which
InceptionV3 often uses asymmetric convolutions, such as
1 x 3 followed by 3 x 1 convolutions, instead of larger square
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convolutions. In addition, the net employs auxiliary classi-
fiers (with batch normalization) during training, improving
faster convergence, providing additional regularization, and
helping to solve the vanishing gradient problem, making
it efficient and scalable in terms of both computational
resources and performance.

5) VGG16

VGG16 is a variant of the VGG model, developed by
the Visual Geometry Group (VGG) at the University of
Oxford in 2014 [58]. Its DL architecture quickly garnered
attention for its excellent performance in the ImageNet
Large-Scale Visual Recognition Challenge. As one of the
earliest deep CNN architectures, VGG16 serves as a crucial
benchmark in organoid classification, offering a straight-
forward and interpretable structure for feature extraction.
VGG16’s architecture consists of 16 weight layers and
consists of a series of convolutional layers with small
3 x 3 receptive fields, followed by max-pooling layers
for spatial down-sampling. Several layers are connected
in this fashion, culminating in a softmax output layer.
This uniformity provides simplicity and depth, which were
significant factors in the network’s successful performance.
Its structured feature hierarchy enables effective extraction
of morphological patterns in organoid images, making it
a valuable baseline for comparison with more complex
architectures. Despite VGG16 has a very high number of
parameters (138 million), which makes it computationally
intensive and memory demanding its uniform structure has
made it a popular choice for transfer learning in various
computer vision tasks, and its impact continues to influence
subsequent models, making it a foundational architecture in
DL.

6) VISION TRANSFORMERS

The Vision Transformers (ViT) is an innovative approach
to computer vision applications that adapts the transformer
architecture by simulating neural processing in the human
brain [59]. It had previously been highly successful in
natural language processing tasks, showing the full power
of transformers for image classification tasks, a domain
traditionally dominated by CNNs, and for this reason,
compared in this work with the latter. Unlike traditional
CNNs, which process images using a hierarchical approach,
ViT begins by splitting the input image into fixed-size
patches (in pixels). The tokenized and embedded patches
are then fed into a series of transformer encoder layers. The
transformer processes these tokens in parallel, attending to
different patches based on their content and relative positions,
similar to what is done in natural language processing (NLP)
transformers. Specifically, in the learning phase, ViT dissects
each image into smaller patches, converts them into vectors,
and processes them through layers employing the Multi-Head
Attention mechanism [60]. This approach adeptly captures
local features while maintaining an awareness of the overall
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image context, enabling a more holistic understanding of
organoid morphology. ViT’s efficacy has been validated
in multiple clinical use cases, particularly for image clas-
sification tasks [61], [62], [63]. Due to its demonstrated
effectiveness, ViT was chosen as the reference model for this
multi-class organoid classification task.

7) SUPPORT VECTOR MACHINES

Support Vector Machines (SVM) model was used as basic
comparison with the proposed DL-based models. SVM is a
supervised ML model designed for both binary and multi-
classification tasks [64]. It works well for both linearly and
non-linearly separable data, and it has been widely applied
to various kinds of problems, including image classification.
SVM model aims to find a hyperplane that optimally
separates the different classes while maximizing the margin
between them. Unlike CNNs, SVM do not automatically
handle the spatial hierarchies of images, so to use SVM for
traditional image classification problems, it is necessary to
extract image feature descriptors such as color histograms,
textures, shape, and so on. One of the most important aspects
to emphasize about SVM is the ability to use kernel functions
to transform the feature space into higher dimensions in
which classes are linearly separable.

8) RANDOM FOREST

Random Forest (RF) is an additional conventional ML model.
It was used as a further comparison to the DL-based models
for the organoid classification task. RF [65] is an ensemble
learning algorithm that constructs a multitude of decision
trees during the training process. Each tree is built using
a sample drawn from the original dataset, which means
that some data points may be repeated while others are
omitted in each tree’s training. Additionally, at each decision
node, the algorithm selects a random subset of features to
determine the best split. This feature selection process plays a
crucial role in mitigating overfitting, as it prevents any single
tree from being overly dependent on any particular set of
features. By limiting the number of features considered at
each split, the model enhances its generalization capabilities,
thereby reducing the risk of overfitting and improving overall
performance.

E. IMAGE FEATURE EXTRACTION FOR ML MODELS

Feature extraction is a pivotal step in image processing,
converting raw data into meaningful quantitative information.
In this study, feature extraction played a key role in
distinguishing organoid classes based on their characteristics
and was instrumental in training the two proposed ML
models. The selected features were carefully chosen to align
with those used in traditional tools such as ilastik, ensuring
consistency and relevance in the comparative analysis. The
extracted features (detailed in Table 3) were grouped into
three primary categories: texture, shape, and color. Texture
features captured the complex patterns within organoid

62274

structures. Shape features quantified the geometry and size
of the organoids. Color features provided a quantitative view
of the image’s color properties. Collectively, the extracted
features (in total 28) offered a robust approach for the
detailed characterization of organoid images, ensuring that
the organoids were classified not only by developmental
stage but also by their morphological traits. Segmentation
was performed to ensure accurate background removal
and isolate the regions of interest (ROIs) corresponding
to the organoids. The segmentation process was crucial
in preventing background interference from affecting the
extracted features, thereby ensuring that only the organoid
structures themselves were analyzed. The segmentation step,
integrated into the feature extraction workflow, allowed for
precise measurement of both geometric and texture-based
features. The dataset of extracted features is available on the
aforementioned GitHub repository.

F. MODELS TRAINING AND EVALUATION

Following data pre-processing to ensure high-quality and
uniform organoid images, all selected DL/ML models were
trained using Jupyter notebooks on Google Colab, leveraging
a Tesla V100-SXM2-16GB GPU with 51.0 GB of system
RAM. These notebooks are available on the aforementioned
GitHub repository.

To evaluate the performance of the different algorithms
on the dataset, the true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) values were
analyzed. Based on these, classical performance metrics such
as Accuracy, Precision, Recall (Sensitivity), Specificity, and
F1-score were computed as follows:

TP + TN

Accuracy = (1)
TP+ TN + FP + FN
. TP
Precision = ——— 2)
TP + FP
TP
Recall = —— 3)
TP + FN
Specificit N 4
ecificity = ————
P YT IN Y FP
F1-Score — 2 x Precision x Recall )

Precision + Recall

Moreover, the similarity performance of different classi-
fication algorithms was estimated using the MCC (Matthew
Correlation Coefficient), also known as Phi Coefficient.
This statistical tool, commonly used for model evaluation,
provides a value ranging within the interval [—1, 4-1], and
is calculated as follows:

(TPxTN)—(FPxFN)
~ J(TP+FP)x(TP+FN)x (IN+FP)x(IN+FN)

(6)

Furthermore, a detailed comparison of the specifications
and performance characteristics of six DL models is pre-
sented, emphasizing their size (measured in megabytes),
complexity (determined by the number of parameters),

Mcc
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TABLE 3. Key Features extracted for organoid analysis: texture, shape, and color.

mean_convex_area
mean_equivalent_diameter
mean_perimeter
mean_irregularity_index

Feature Description

Texture

contrast Pixel intensity contrast across the organoid.

correlation Intensity correlation between adjacent pixels.

dissimilarity Variation in pixel values.

energy Texture uniformity from GLCM (Gray-Level Co-occurrence Matrix).
homogeneity Uniformity in texture.

Shape

max_solidity Organoid area to convex hull area ratio.

mean_area Average organoid area in images.

Convex hull area of the organoid.

Circle diameter with same area as organoid.
Average boundary length of organoids.
Deviation from a regular geometric shape.

Color
mean_intensity
std_intensity

Average pixel brightness within the organoid.
Standard deviation of pixel intensities.

network depth (layer count), and inference speed (based on
average inference time per image in seconds). All evaluations
were conducted on the aforementioned GPU platform.

To estimate the similarity of the different models in the
organoid classification, the Jaccard similarity coefficient was
calculated for each pair of DL models across all classes of
organoids such as follows:

|AN B

J(A, B) =
@, B) |AU B

(N

where A and B are the subsets of organoids identified by the
model My and Mg in each class, respectively.

IV. EXPERIMENTAL RESULTS

A comparative analysis of six DL and two ML models
was performed to classify intestinal organoids. Each model
was carefully fine-tuned with a set of optimized training
hyperparameters, selected to enhance learning efficiency
and model performance. The accuracy of the models was
assessed using classical performance metrics. Furthermore,
the computational efficiency of each model was examined
by measuring runtime and execution time, providing a
comprehensive evaluation of both predictive power and
practical viability.

A. MODELS CONFIGURATION AND HYPERPARAMETERS
TUNING

All DL models were used with pre-trained ImageNet weights,
excluding the upper layers, and including 2D Global Average
Pooling and a dense layer with 512 units, before a final
dense layer corresponding to the four classes with a softmax
activation function.

The training process employs data augmentation (with
horizontal flips, rotation, width and height shifts, zoom
and color jitter) to enhance model generalization and
reduce overfitting, paired with optimization and categorical
crossentropy loss, with validation loss monitoring for early
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stopping, and model checkpointing to preserve the best-
performing model.

Table 4 shows the summary of the hyperparameters
(with ranges and optimal values highlighted in bold) of
all the DLML models exploited in the training step. Such
hyperparameters were determined empirically by iteratively
fine-tuning values within established ranges, selecting the
optimal settings based on performance enhancement. This
involved running multiple experiments with different hyper-
parameter combinations and analyzing the resulting perfor-
mance metrics described in the next section. Specifically,
the impact of hyperparameter values on model performance
was assessed by observing changes in key performance
metrics. This empirical approach was guided by preliminary
experiments that focused on achieving a balance between
model performance and computational efficiency. However,
while the variations observed were minimal and did not
significantly affect the overall results, the ranges of hyperpa-
rameter values provide transparency about the tuning process.
This ensures reproducibility and highlights the robustness of
the models performance across a range of values.

B. MODELS PERFORMANCE EVALUATION

This section provides a comprehensive performance eval-
uation of the proposed DL/ML models. The comparative
analysis is outlined below, highlighting the strengths and
limitations of each of them.

Each DL/ML model has been assessed based on the
above-mentioned key performance metrics. For each intesti-
nal organoid class, the ability of the DL/ML models to
accurately identify images annotated with the correct class
was evaluated. Additionally, metrics derived from the Tellu
confusion matrix [48] were incorporated into the analysis,
providing a meaningful comparison. The inclusion of the
Tellu study served as a benchmark for evaluating the
proposed DL and ML models against an established method
specifically developed for organoid classification tasks.
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TABLE 4. Overview of hyperparameter ranges and the optimal values selected for each proposed DL/ML model. The table delineates DL hyperparameters
such as learning rate, number of training epochs, type of optimizer, early stopping patience, and batch size, with the optimal values marked in bold. For
ML models (SVM and RF), it includes parameters like C, gamma, kernel type, max depth, and min samples split. These configurations were determined

through empirical testing to balance model performance and training efficiency.

TABLE 5. Comparative metrics of model performance, presenting accuracy, precision, recall, specificity, and F1-score for each tested DL/ML model. The
highest values for each metric are highlighted in bold, offering a snapshot of each model’s strengths in the organoid classification task.

DL/ML Model Hyperparameter Range with optimal
Learning rate [0.0001, 0.001, 0.01, 0.1]
Training epochs [20, 40, 80, 100, 200]
MobileNetV2 Optimizer [rmsprop, adam]
Early Stopping patience [2,5,8,10]
Batch size [16, 32, 64, 128, 256]
Learning rate [0.0001, 0.001, 0.01, 0.1]
Training epochs [20, 40, 80, 100, 200]
DenseNet169 Optimizer [rmsprop, adam]
Early Stopping patience [2,5,8,10]
Batch size [16, 32, 64, 128, 256]
Learning rate [0.0001, 0.001, 0.01, 0.1]
Training epochs [20, 40, 80, 100, 200]
ResNet50v2 Optimizer [rmsprop, adam]
Early Stopping patience [2,5,8,10]
Batch size [16, 32, 64, 128, 256]
Learning rate [0.0001, 0.001, 0.01, 0.1]
Training epochs [20, 40, 80, 100, 200]
InceptionV3 Optimizer [rmsprop, adam]
Early Stopping patience [2,5,8,10]
Batch size [16, 32, 64, 128, 256]
Learning rate [0.0001, 0.001, 0.01, 0.1]
Training epochs [20, 40, 80, 100, 200]
VGG16 Optimizer [rmsprop, adam]
Early Stopping patience [2,5,8,10]
Batch size [16, 32, 64, 128, 256]
N. of layers [16, 24, 30]
Learning rate [0.0001, 0.001, 0.01, 0.1]
ViT Training epochs [20, 40, 80, 100, 200]
Optimizer [rmsprop, adam]
Early Stopping patience [2, 5,8, 10]
Batch size [16, 32, 64, 128, 256]
C [0.1, 1, 10]
SVM gamma [scale, auto, 0.1, 1]
kernel [rbf, poly, linear, sigmoid]
RF max_depth [None, 10, 20]
min_samples_split 2,5, 10]

DL/ML Model | Accuracy | Precision | Recall | Specificity | F1-score | MCC
Tellu [48] 83.63% 79.07% 82.10% 94.04% 80.45% 0.74
MobileNetV?2 85.41% 82.51% 83.34% 94.84% 82.62% 0.77
DenseNet169 86.47% 84.35% 81.69% 94.77% 82.71% 0.78
ResNet50v2 79.21% 76.27% 76.11% 92.62% 74.05% 0.68
InceptionV3 86.10% 83.38% 83.92% 94.98% 83.55% 0.78
VGG16 84.19% 81.86% 79.16% 93.91% 79.98% 0.74
ViT 86.95% 87.29% | 86.95% 95.30% 87.05% 0.80
RF 64.42% 61.76% 51.15% 84.30% 54.41% 0.41
SVM 68.44% 66.04% 55.90% 86.21% 59.29% 0.48

The following are some observations based on the provided
Table 5. Overall, the ViT DL-based model appears to be
the most effective across all evaluated metrics, achieving
an accuracy of 86.95%, precision of 87.29%, recall of
86.95%, specificity of 95.30%, and an F1-score of 87.05%.
This indicates a strong overall performance, marking its
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dominance and the most reliable option for organoid image
classification tasks. Among the other DL models, Incep-
tionV3 and DenseNet169 also showed strong performances.
InceptionV3 achieved an accuracy of 86.10%, precision of
83.38%, recall of 83.92%, and an F1-score of 83.55%, with a
high specificity of 94.98%. DenseNet169, on the other hand,
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TABLE 6. MCC score performance. The best score is highlighted in bold.

DL/ML Model | Class0 | Classl | Class2 | Class3
Tellu [48] 0.79 0.63 0.78 0.76
MobileNetV2 0.83 0.66 0.82 0.80
DenseNet169 0.84 0.70 0.83 0.75
ResNet50v2 0.75 0.64 0.70 0.62

InceptionV3 0.82 0.71 0.84 0.77
VGG16 0.81 0.64 0.80 0.73
ViT 0.85 0.70 0.82 0.83
SVM 0.55 0.31 0.57 0.50
RF 0.46 0.26 0.46 0.48

demonstrated slightly higher metrics, with an accuracy of
86.47%, precision of 84.35%, and an Fl-score of 82.71%.
It also maintained a high specificity of 94.77%, indicating
its robustness in accurately classifying organoid images.
Although Tellu did not outperform the top DL models,
it demonstrated a competitive performance, particularly in
terms of specificity (94.04%) and F1-score (80.45%). The
two ML-based models, RF and SVM, fail to reach in all
metrics of the other proposed DL models, where it is possible
to notice about 20% less in performance. However, SVM
shows superior performance, compared to RF, in all metrics.
The lowest value for both is in Recall, 51%-55% where DL
models are between 76%-87%, while they reach the highest
value in Specificity 84%-86% here instead DL models are
between 93%-96%.

The performance of each DL/ML model was evaluated
using the MCC score across all classes (see Table 6),
where the extreme values of —1 and +1 indicate perfect
misclassification and perfect classification, respectively.

Among all models, ViT demonstrated the best overall per-
formance, achieving the highest MCC score in Class0 (0.85)
and Class3 (0.83) compared with other models. However,
in Classl and Class2, InceptionV3 outperformed the other
models, achieving MCC scores of 0.71 and 0.84, respectively.
DenseNet169 also exhibited strong performance, particularly
in Class0 with an MCC score of 0.84 and in Class2 with 0.83,
positioning it among the top-performing models alongside
ViT and InceptionV3. MobileNetV2 demonstrated solid
performance across several classes, notably in ClassO with
an MCC score of 0.83 and Class3 with 0.80, showing its
capability despite being a more lightweight model. Tellu also
performed well, particularly in ClassO with an MCC score
of 0.79 and Class2 with a score of 0.78, highlighting the
strengths of DL models over traditional ML models like
SVM and RF, which demonstrated limitations in all classes,
particularly in Class1 and Class3.

This underscores the power of DL in handling com-
plex image data. Hence also the motivation to base this
work mainly on the DL approaches, as they consistently
demonstrated superior performance in classifying organoid
images, even in the presence of high inter-class variability
and subtle morphological differences. The ability of DL
models to automatically learn and extract relevant features
from raw data, without requiring manual feature engineering,
is a significant advantage over traditional ML methods.
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Furthermore, the robustness of DL models across various
performance metrics highlights their adaptability to different
data distributions and imaging conditions.

However, the choice of DL model could depend on the
specific use case. It is also noteworthy that the differences
in performance are relatively modest across DL models,
which indicates that each has its merits and could be useful
in different scenarios or with different optimization and
tuning efforts. The flexibility and scalability of DL models,
particularly when dealing with large and complex datasets,
further justify the focus of this work on these models in
organoid image classification.

The performance of the DL models was then evaluated
for each class, providing detailed insights into their ability to
accurately classify images across the different four classes.

All TP and FP statistics are represented in Figure 3 with a
stacked barplot showing correct identification for each class
performed using proposed DL models. The evaluation of
model performance revealed the following insights:

Class0. DenseNet169 demonstrated the highest perfor-
mance with 93.82% true positives, followed closely by
VGG16 and ViT.

Classl. InceptionV3 showed superior performance
with 83.21% correct images identification, followed by
ResNet50v2 and ViT.

Class2. MobileNetV2 shows a better performance with
94.26% images correctly identified followed by VGG16 and
DenseNet169.

Class3. ResNet50v2 identified 82.67% of images correctly
followed by ViT and InceptionV3.

Figure 4 shows the results in a series of confusion matrices
for the six DL models by describing the performance of the
DL classification model on all classes. A detailed explanation
is given below:

Class0. DenseNet169 is the model accomplishing the best
performance to correctly identify 1.214 (93.82%) ClassO
images, followed by VGG16 with 1.202 (92.89%), ViT 1.178
(91.04%), MobileNetV2 1.161 (89.72%), InceptionV3 1.152
(89.03%) and ResNet50v2 1.106 (85.47%). All models share
a set of FP generally with Class1, with a range between 3.5%
(ResNet50v2) and 8.1% (MobileNetV2), and the other FPs
belong to Class3 with a range between 1.47% (DenseNet169)
and 10.9% (ResNet50v2).

Classl. InceptionV3 shows a 456 (83.21%) correctly
annotated, followed by ResNet50v2 434 (79.20%), ViT 430
(78.47%), DenseNet169 402 (73.36%), MobileNetV2 395
(72.08%) and VGGI16 361 (65.88%). To be noted that
all models show an over-classification for Class2 (21.1%
- 8.76%) with respect ClassO (13.14% - 6.57%), only
ResNet50v2 have an opposite trend assigned the images in
Class0 for 14.9% and the rest on Class2 2.19%.

Class2. MobileNetV2 model performed an accurate clas-
sification with 378 (94.26%) correctly images identified,
followed by VGGI16 364 (90.77%), DenseNet169 362
(90.27%), ViT 357 (89.03%), InceptionV3 340 (84.79%) and
ResNet50v2 229 (57.11%). Generally, the FPs are annotated
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FIGURE 3. Stacked barplot showing correct identification distribution for each class across the proposed DL
models. Each subplot (A, B, C, D) corresponds to a specific class (Class0, Class1, Class2, Class3). The colors
represent the different classes as identified by each DL model.

in Class1 (MobileNetV2 5.49% - ResNet50v2 40.90%), the
immediately preceding stage.

Class3. ResNet50v2 model has better accuracy, identi-
fying 186 Class3 (82.67%), followed by ViT with 181
(80.44%), InceptionV3 with 177 (78.67%), MobileNetV2
with 174 (77.33%), DenseNet169 with 156 (69.33%) and
VGGI16 151 (67.11%).

Figure 5 shows a comparative analysis of the Receiver
Operating Characteristic (ROC) curves for the four distinct
classes as modeled by six DL architectures, where each
panel—labeled from (A) to (F) represents the model’s
capability to distinguish among the classes, with the curves
for Classes O through 3 illustrated distinctly. The plots
illustrate the diagnostic ability of a classifier system as
its discrimination threshold is varied. The ROC curves
demonstrate the true positive rate against the false positive
rate for each class, providing insights into the DL models’
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classification capabilities. Notably, the area under the curve
(AUC) offers a quantifiable measure of the model’s ability to
differentiate between classes. This comprehensive evaluation
across multiple classes and models facilitated a nuanced
understanding of each model’s strengths and limitations
in a multi-class classification context. Overall, the ROC
curves suggest that all models have strong discriminative
abilities for the classes they are tested on. DenseNet169 and
ViT models show particularly high AUC values, suggesting
that these models have superior performance in classifying
the four classes. The high AUC values for the Class2
across all models indicate that this class is the easiest
to classify, whereas other classes may present more of a
challenge, as shown by the slightly lower AUC values of
Classl.

The pairwise similarity of predictions across different DL
models was assessed by calculating the Jaccard coefficient
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FIGURE 4. Confusion matrices showcasing the performance of the six DL models in the organoid multiclass classification task.
Each matrix corresponds to A) MobileNetV2, B) DenseNet169, C) ResNet50v2, D) InceptionV3, E) VGG16, and F) ViT, with organoid

counts and percentages indicating true labels versus predicted labels.

TABLE 7. Specifications and performance of the proposed DL models. The table reports the model size (in MB), model complexity in terms of millions of
parameters (M), network depth as measured by the number of layers, training time per epoch (in seconds), and inference time per image (in seconds).

DL Model Size (MB) | Complexity (M) | Network depth | Training time (sec/epoch) | Inference time (sec/image)
Tellu [48] 14.3 7.2 213 N/A™ 0.0198
ViT 343.0 86 24 1100.0 0.0437
VGG16 183.1 138.4 16 317.0 0.0111
InceptionV3 275.5 23.9 189 279.0 0.0105
ResNet50v2 295.9 25.6 103 285.0 0.0073
DenseNet169 163.5 14.3 338 340.0 0.0196
MobileNetV2 35.6 3.5 105 279.0 0.0063

*“Training time per epoch is not reported in the original source.
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FIGURE 5. ROC curves comparison for the six DL models across four classes, utilizing the area under the curve (AUC) metric
to indicate classification accuracy in the classification task. Each subplot reflects the true positive rate versus the false
positive rate for A) MobileNetV2, B DenseNet169, C) ResNet50v2, D) InceptionV3, E) VGG16, and F) ViT.

for each class and each pair of DL models (refer to
Figure 6). This analysis showed that the models generally
exhibited comparable performance. In particular, as in

Class0, the DL models have comparable performance, with
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coefficients varying between 0.80 and 0.91. Notably, for
Class1, the DenseNet169-VGG16 pair showed the lowest
similarity score of 0.52, whereas the ViT-InceptionV3 pair
achieved the highest score of 0.79. Similarly, for Class 2,
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FIGURE 6. Jaccard similarity matrices for different DL models. The matrices show the similarity coefficients between
each pair of DL models across different organoid classes, from Class0 (A) to Class3 (D). The color intensity indicates the
level of similarity, with lighter shades representing higher similarity scores.

MobileNetV2-ViT scored highest at 0.93, demonstrating
better alignment in their classification outcomes compared
to other model pairs. Finally, for Class3, InceptionV3-
MobileNetV2 achieves a score of 0.87, while the least similar
pair is VGG16-DenseNet169 with 0.58.

C. MODELS EFFICIENCY

Given that the choice of an appropriate classification model
must also consider task-specific requirements, infrastructural
constraints, and the trade-off between performance metrics,
however, it is important to consider in addition to classic
classification metrics, other factors such as computational
cost, inference time, and model complexity.
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Table 7 provides an overview of the specifications and
performance characteristics of the proposed DL models,
highlighting their efficiency in the classification of organoids.
The table includes key information such as model size
(in MB), complexity (measured in millions of parameters),
network depth (number of layers), training time per epoch
(in seconds), and inference time per image (in seconds).

Although the ViT model represents the DL model that
best generalizes the classification task, it is also the largest
model in terms of file size, at 343.0 MB, and has a
moderately high complexity, with 86 million parameters.
Despite the smaller number of layers (24), it has a longer
inference time of 0.0437 seconds, probably due to the
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computational intensity of the transform architecture. This
could make ViT less suitable for real-time applications, but
potentially more powerful in terms of learning capabilities.
On the other side, with 35.6 MB, MobileNetV2 is the
smallest model with the least complexity, housing only
3.5 million parameters. With 105 layers, it has a moderate
depth and the first-fastest inference time at 0.0063 seconds,
making it an ideal candidate for mobile or edge devices.
VGG16 is considerably large at 183.1 MB and has a high
complexity with 138.4 million parameters. It has a shallower
network depth of 16 layers and a moderate inference time
of 0.0111 seconds. In addition, the model size and the
number of parameters of VGG16 indicate a significant
memory overhead, but the inference speed is a reasonable
one. InceptionV3 is a large-sized model at 275.5 MB with a
moderate complexity level of 23.9 million parameters. This
model is notably deep with 189 layers, which is reflected
in its longer inference time of 0.0105 seconds compared to
some shallower models. ResNet50v2 model is relatively more
complex than InceptionV3, with a size of 295.9 MB and
25.6 million parameters. It has a significant network depth
of 103 layers but boasts the fastest inference time among
the models at 0.0073 seconds. ResNet50v2’s architecture
optimizes the inference efficiency, making it a compelling
choice for applications requiring rapid results. DenseNet169
is on the smaller side in terms of size at 163.5 MB and
has the lowest complexity with 14.3 million parameters.
It has a high network depth of 338 layers, yet maintains a
relatively quick inference time of 0.0196 seconds. Its low
complexity-to-depth ratio and quick inference time make it an
attractive model for environments with some computational
constraints.

When compared with Tellu, it stands out due to its smaller
size of 14.3 MB, making it lightweight and less demanding
in terms of storage. Despite its modest complexity with
7.2 million parameters and a network depth of 213 layers,
Tellu manages to maintain a reasonable inference time of
0.0198 seconds. This efficiency, combined with its compact
size, suggests that Tellu is a strong candidate for applications
in resource-limited environments.

Figure 7 helps to quickly assess the trade-offs between
speed and performance of different proposed DL models.
It shows the trade-off between inference time (run-time in
seconds) on the abscissae and model accuracy (accuracy in
percentage) on the ordinates, with the size of the bubbles
representing the complexity of the model (in terms of the
number of parameters and the weight of the model file).
Larger and more complex DL models, such as ViT, show
higher accuracy but also longer inference time. In contrast,
smaller and less complex DL models such as MobileNetV2
exhibit shorter inference times at the expense of slightly
reduced accuracy. Overall, these specifications reveal an
inherent balance between a model’s size and intricacy against
its speed of inference, underscoring the necessity of selecting
a DL model that aligns with the unique demands and
limitations of the intended application environment.
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V. DISCUSSION

This study presents a systematic comparative analysis of DL
models for the accurate classification of all organoid classes.
Specifically, five CNN-based DL models and the recent ViT
were selected to serve as a guide for researchers seeking the
most appropriate model for the automatic classification of
intestinal organoids. For this purpose, a publicly available
dataset, previously created and annotated, consisting of
840 images of intestinal organoids, was utilized. Using a
Python script, a bounding box of 224 x 224 pixels was
cropped to annotate each image. This image scaling step
ensured that all models received input data of uniform
dimensions, thereby reducing variability and maintaining
compatibility with the pre-trained DL architectures. The
final dataset, containing 23,063 annotations, was divided
into three subsets: training (70%), validation (20%), and
testing (10%), ensuring balanced class representation in
each subset. The performance of the DL models (as well
as widely used ML models for comparison) was evaluated
based on two key criteria: (i) accurate identification of
different intestinal organoid classes (Organoid0, Organoidl,
Organoid3, Spheroid) and (ii) efficiency, assessed through
runtime and execution time. Performance metrics, including
Accuracy, Precision, Recall, Specificity, F-measure, and
MCC, were employed to assess the DL and ML models. The
results clearly demonstrated the superiority of DL models
compared to traditional ML approaches, highlighting the
importance of leveraging DL methodologies in complex
image classification tasks, such as those involving organoids.

A. MODELS PERFORMANCE INSIGHTS

ViT-based model demonstrates superior general performance
across the above-cited proposed metrics. However, for read-
ers seeking a balance between accuracy and computational
efficiency, InceptionV3 emerges as an optimal compromise,
offering strong performance metrics while maintaining
reasonable inference times.

In the identification of ClassO, DenseNet169 shows the
best performance compared to other models. Most of the
remaining annotations were misclassified as Classl, with
Class3 as the second instance. Interestingly, the ResNet50v2
model assigned fewer images to Classl but incorrectly
classified these images into Class3. For Classl, the Incep-
tionV3 model reaches the best performances, with incorrectly
annotated images distributed equally between ClassO and
Class2. All other models predominantly misclassified these
images into Class2, whereas the ResNet50v2 model, notably,
labeled most of them as Class0Q. For Class2, MobileNetV2
shows better performance compared to other models, with
the remaining misclassified images predominantly labeled
as Classl. Finally, in the case of Class3, ResNet50v2
achieves the highest rate of correct annotations, with most
misclassified images assigned to Class0, followed by Classl
with a lower frequency.

In the overall results, the ViT model emerges as the
superior choice for intestinal organoid classification as
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FIGURE 7. Trade-off between DL model complexity, run-time and accuracy. The x-axis represents
inference time in seconds; The y-axis shows the accuracy of each model, measured as a percentage;
The size of the bubbles corresponds to the complexity of the model, where larger bubbles suggest

more complex models.

evidenced by the metrics reported in Table 5 and MCC score
presented in Table 6. Additionally, efficiency was evaluated
by comparing runtime and execution time, which are critical
parameters for real-time applications. As illustrated in
Figure 7, a clear trade-off exists between the size and
complexity of a model and its inference time. Larger and
more complex models, such as ViT, demonstrate greater
feature extraction capabilities and superior performance
but require higher computational resources. Conversely,
lightweight models like MobileNetV2 are optimized for
efficiency, offering significant advantages in speed and size,
making them particularly suitable for resource-constrained
environments or applications requiring rapid decision-
making. Based on these insights, InceptionV3 appears to
be a viable option for future organoid classification tasks,
balancing strong performance with computational efficiency.

B. PITFALLS OF CLASSIFICATION MODELS
This section provides an in-depth analysis of the cases
in which each model misclassifies images, aiming to
better understand the sources of error. Certain morpho-
logical features, such as the compactness of organoids
and irregularities in shape, which are less apparent in
2D images, were identified as factors contributing to mis-
classification. Additionally, variations in image properties,
including brightness and contrast, were found to exacerbate
errors, particularly in images captured under suboptimal
illumination conditions.

The misclassification between ClassO (Cyst) and Class3
(Spheroid) was particularly notable. These two classes share
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overlapping morphological features, such as similar circular
shapes and wall thickness, which challenge the models’
ability to distinguish them effectively. Also, suboptimal
lighting and inconsistent contrast amplified these challenges,
reducing the model’s overall performance in distinguishing
these classes.

Based on the experimental results, image acquisition prac-
tices are recommended to improve quality and classification.
Particularly, the proper use of contrast is essential, as images
with low contrast were found to be more challenging to
classify accurately. Additionally, excessive variability in
illumination conditions during image acquisition should be
avoided. Most importantly, the establishment of a standard-
ized imaging protocol is highly recommended to reduce
inter-sampling variability. Among the DL models, those
with more sophisticated feature extraction capabilities, such
as ViT, demonstrated a slightly better ability to handle
variations in image contrast and brightness. This observation
suggests that focusing on model architectures inherently
more sensitive to such variations could provide an avenue
for improving overall accuracy. Furthermore, it was noted
that misclassified images were often assigned to a proximal
class. This may be attributed to shared features between
certain classes, as illustrated in Figure 2. For instance, images
from Class0 and Class3 shared more morphological features,
such as border and shape, despite being temporally antipodal.
Instead, greater diversity was observed between Classl and
Class2, making them more distinguishable.

To provide further transparency, an Excel file containing
the true labels of each image and the predictions made by

62283



IEEE Access

G. Cicceri et al.: DL Approaches for Morphological Classification of Intestinal Organoids

each model has been made available in the GitHub repository.
This file highlights that the majority of misclassified images
are shared across multiple models.

Upon analyzing the results, it was found that 18 images
were consistently misclassified by all DL models. Of these,
8 belonged to Classl, 1 to Class2, and 9 to Class3. Specifi-
cally, for Class1, most models assigned the images to either
Class0 or Class2. For the single misclassified Class2 image,
all models misclassified it as Classl, while ResNet50v2
incorrectly classified it as ClassO. Similarly, for the misclas-
sified Class3 images, all DL models assigned them to Class0.

Figure 8 presents a set of representative images highlight-
ing different misclassification scenarios. The first column
(Panel A) illustrates cases where ViT correctly classified
organoid images that all other DL/ML models misclassified.
These images exhibit complex morphological features that
likely benefit from ViT’s self-attention mechanism, which
better captures long-range dependencies and structural cues
across the image. Conversely, Panel B displays images
consistently misclassified by all models, indicating that
morphological similarities between classes, such as the
overlap between ClassO (Cyst) and Class3 (Spheroid), pose
significant challenges for automated classification. These
misclassifications highlight the inherent limitations of DL
models in distinguishing classes with overlapping features,
such as circular shapes and similar wall thicknesses. Finally,
Panel C includes the few cases where proposed conventional
ML models (SVM and RF) outperformed DL-based models,
likely due to their reliance on handcrafted features rather than
learned spatial representations. The ability of ML models
to leverage these explicit descriptors contributed to their
improved performance in classifying organoids with subtle
but critical morphological variations.

C. RESEARCH LIMITATIONS

Despite its numerous advantages, this research also has
limitations: i) One of the key challenges encountered in this
study was the issue of class imbalance. The imbalance in
the dataset may still have influenced the model’s ability
to generalize effectively across all classes. However, this
could lead to a bias where the model performs better on
the majority classes at the expense of minority classes. ii)
DL models utilized in this work, although powerful, come
with significant computational costs. Training these models
required substantial computational resources, which could
limit their scalability, especially in settings with limited
access to high-performance computing infrastructure. This
complexity also raised concerns about the feasibility of
deploying these models in real-time or resource-constrained
environments. iii) Another limitation was the interpretability
of the DL models compared to traditional ML approaches.
While DL models automatically learn features during the
training process, this ‘‘black-box’’ nature makes it challeng-
ing to understand the underlying factors driving the model’s
predictions. In contrast, traditional ML models allow for
manual feature extraction, providing clearer insights into the
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FIGURE 8. Representative cases of misclassification. Examples of
organoid images correctly classified exclusively by the ViT model (A),
misclassified by all models (B), and correctly classified exclusively by
conventional ML models (C). In each panel, the first two images upward
correspond to Class3, while the last image at the bottom refers to Class1.
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decision-making process. To address this limitation, future
work will explore the adoption of Explainable AI (XAI)
techniques to enhance the interpretability of the proposed
DL models. These methods will aim to highlight the key
features contributing to each classification decision, offering
a more transparent understanding of the model’s inner
workings and fostering greater trust in its predictions. iv)
Moreover, while DenseNet169, MobileNetV2, ResNet50v2,
InceptionV3, VGG16, and ViT are commonly used for 2D
brightfield organoid images, they can be adapted or extended
to handle volumetric 3D images. As 3D analysis becomes
more common in organoid and tissue studies, there’s a
growing need to apply DL models to analyze such data.
Adapting these models for 3D volumetric images requires
careful consideration of architectural modifications, data
preprocessing steps, and computational resources due to the
increased complexity of 3D data compared to 2D images.
However, with appropriate adjustments, these models can be
valuable tools for analyzing volumetric organoid and tissue
images.

VI. CONCLUSION AND FUTURE WORKS

This study provides a comprehensive investigation into the
main principles of DL models for organoid classification
tasks. Advancements in the classification tools and models of
organoids represent a pivotal asset for researchers. To the best
of available knowledge, this work constitutes the first com-
prehensive benchmark assessing the robustness of several DL
models in the automatic classification of intestinal organoids.
A broad overview of the most popular DL models was
presented, with the aim of assisting readers in the choice of
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the best model for accurate organoid classification, while also
providing a detailed understanding of the current research
landscape in this field. A series of extensive experiments
were conducted to benchmark the robustness of organoid
image classifiers, specifically designed to standardize DL
model evaluation, enhance phenotypic profiling reliability,
and accelerate drug discovery. Unlike previous studies such
as “Tellu”, which primarily focused on object detection and
classification, this work introduces an innovative approach
by systematically benchmarking multiple DL architectures,
including CNNs and ViT, rather than relying on a single
model (YOLO-based).

Looking ahead, the integration of these DL models as
plug-ins within image analysis software could revolutionize
the field. This would not only streamline the organoid
classification process but also facilitate real-time image
identification, thereby enhancing both research efficiency
and analytical precision. Moreover, the practical impli-
cations of these findings extend beyond classification
accuracy. Embedding these models, particularly ViT, into
clinical workflows could enhance personalized medicine
by providing rapid and precise analysis of patient-derived
organoids. In a typical workflow, classified morpholog-
ical phenotypes could be linked to patient-specific drug
response profiles, supporting tailored treatment strate-
gies. Additionally, these models could be integrated into
high-throughput drug screening pipelines to automati-
cally evaluate large-scale image datasets, enabling the
identification of subtle morphological changes induced
by candidate compounds and accelerating therapeutic
development.

Based on the misclassification problems observed with
ClassO and Class3 organoids, future work will focus on
enhancing model architectures, implementing new data
augmentation and preprocessing techniques, and utilizing
advanced feature extraction methods. The latter will involve
texture analysis, shape descriptors, or edge detection to
better differentiate classes. Additionally, efforts will be
made to balance the dataset and apply interpretability
tools and XAI techniques, such as Grad-CAM and SHAP,
to enhance the interpretability and clinical applicability
of DL-based organoid classification. Specifically, attention-
based visualization methods (e.g., attention rollout maps for
ViT) will be explored to highlight relevant morphological
features across organoid classes. Moreover, future research
will focus on expanding the diversity of training datasets and
exploring the applicability of these DL models to other forms
of biological image analysis, thereby enhancing their utility
and robustness in varied research contexts.
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