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ABSTRACT The evaluation of time and frequency domain measures of coupling and causality relies on
the parametric representation of linear multivariate processes. The study of temporal dependencies among
time series is based on the identification of a Vector Autoregressive model. This procedure is pursued
through the definition of a regression problem solved by means of Ordinary Least Squares (OLS) estimator.
However, its accuracy is strongly influenced by the lack of data points and a stable solution is not always
guaranteed. To overcome this issue, it is possible to use penalized regression techniques. The aim of this
work is to compare the behavior of OLS with different penalized regression methods used for a connectivity
analysis in different experimental conditions. Bias, accuracy in the reconstruction of network structure
and computational time were used for this purpose. Different penalized regressions were tested by means
of simulated data implementing different ground-truth networks under different amounts of data samples
available. Then, the approaches were applied to real electroencephalographic signals (EEG) recorded from
a healthy volunteer performing a motor imagery task. Penalized regressions outperform OLS in simulation
settings when few data samples are available. The application on real EEG data showed how it is possible
to use features extracted from brain networks for discriminating between two tasks even in conditions of
data paucity. Penalized regression techniques can be used for brain connectivity estimation and can be
exploited for the computation of all the connectivity estimators based on linearity assumption overcoming
the limitations imposed by the classical OLS.

INDEX TERMS Brain connectivity, linear regression, penalized regression analysis, multivariate
autoregressive models, motor imagery.

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

I. INTRODUCTION
In the framework of linear signal processing, Vector Autore-
gressive model (VAR) has been proved to be a robust and
reliable tool for analyzing temporal dependencies among
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time series in several research fields, ranging from economics
to biomedical sciences. In neuroscience, these models are
extensively used for evaluating brain connectivity in order
to understand how different brain areas communicate [1].
With the term brain connectivity, we refer both to the
concept of ‘‘functional connectivity’’, that is the evaluation
of statistical dependencies between different neuronal units,
and ‘‘effective connectivity’’ that describes networks with
directional effects, thereby requiring the generation of a
mechanistic model of the cause-effect relationships [2].
Granger causality (GC) is a versatile tool for the analysis of
the cause-effect relationships between different time series
and was firstly formulated in the framework of bivariate
autoregressivemodeling, stating that a time seriesX G-causes
another time series Y if the past of X contains information
that helps to predict the future of Y above and beyond
the information already contained in the past of Y [3].
To account for the influence of other time series, the bivariate
formulation has been extended to the multivariate case by
using multivariate autoregressive (MVAR)models, leading to
the well-known conditional form of the GC [4]. The MVAR
analysis allows the time and frequency domain representation
of physiological time series to be derived directly frommodel
coefficients and their frequency-domain representation [5].
Accordingly, several measures of connectivity have been
introduced and applied in recent years, many of which are
based on the concept of GC and rely on the identification
of the MVAR model. The most used measures, able to
quantify causality in the frequency domain, are the directed
transfer function (DTF) [6], the directed coherence (DC)
[7] and the partial directed coherence (PDC) with all its
formulations [8], [9]. These measures are widely used
for the analysis of the interactions between physiological
time series and, more generally to characterize brain
connectivity [10].

The computation of all these connectivity estimators is
based on the identification procedure of an MVAR model
which in turn includes the solution of a linear regression
problem to estimate the matrix of autoregressive (AR)
coefficients and the innovation variance. The Ordinary Least
Squares (OLS) method finds the optimal solution, starting
from the hypothesis of independence between regressors
and residuals of the regression problem [1]. However, its
accuracy is strongly influenced by the number of available
data samples. In particular, the mean squared error (MSE) in
theMVAR parameters estimation decreases when the amount
of available data increases [11]. As a rule of thumb, it is
necessary that the ratio between the number of data samples
available and the number of parameters to be estimated
(k-ratio) should be at least equal to 10 to ensure the accuracy
of the OLS estimator [12], [13]. Otherwise, particularly
when the k-ratio is close to one, the estimation problem
becomes ill-posed and under-determined [12], [13]. In such
a situation, the OLS does not guarantee the uniqueness
of the solution, leading to an ambiguity in the MVAR

representation of the data. One possible solution to overcome
this methodological limitation, is to use penalized regression
techniques. The idea is to add a constraint (based on
l1-norm and/or l2-norm) to regularize the OLS problem.
The effect of l2-norm is to shrink the MVAR parameters
towards zero, while the effect of l1-norm is to select only
specific coefficients, setting the others to zero. Both l2- and
l1-norm methods can improve the OLS accuracy when the
k-ratio is lower than 10, with the effect of also reducing
the mean squared error [13], [14]. Penalized regressions
can be convex or non-convex depending on whether the
constrained optimization problem they solve guarantees or
not the existence of a global minimum [15]. In the literature
they have been used for GC estimation [13], [16], [17], [18],
[19], neuro-imaging data analysis [20] and brain connectivity
analysis between EEG time series in a single trial or in
real-time settings [21], [22]. Nevertheless, these applications
show some limitations: the comparison between different
penalized regressions has been done only for a single value
of k-ratio; for a real-time application, only one method based
on l1-norm was used; convex and non-convex methods were
directly compared even if it is well known that the latter do
not achieve a stable solution. Although penalized regression
techniques have been proposed in different studies, they are
not commonly used to study brain connectivity from EEG
signals. Therefore, this work ismotivated by the fact that there
are no available extensive studies that analyze the behavior
of penalized regressions in both simulated and real EEG
time series by also providing guidelines for their exploitation.
Specifically, we have selected five penalized regression
techniques that solve a linear convex optimization problem
guaranteeing the existence of a solution: Ridge Regression
(RR) [23], Least Absolute Shrinkage and Selecting Operator
regression (LASSO) [24], Elastic-Net regression (E-NET)
[25], fused LASSO regression (F-LASSO) [26] and Sparse
group LASSO regression (SG-LASSO) [27]. We will aim
to demonstrate by using both simulated and real EEG data,
that it is possible, also in conditions of data paucity, to accu-
rately reconstruct connectivity patterns describing networks
of several coupled Gaussian systems exhibiting complex
interactions, and to discriminate between two different exper-
imental conditions by using features extracted from a brain
connectivity analysis starting from short windows of EEG
signals [21].
The remainder of this paper is organized as follows. The

penalized regression techniques are presented in Sec. II.
Sec. III presents a simulation study on EEG-like surrogate
data, generated by reproducing ground-truth networks, for
different values of the k-ratio. Sec. IV, presents an application
of penalized regression techniques to real EEG data, recorded
from a healthy subject performing an motor imagery (MI)
task. In Sec. V the main features of the different regression
techniques are discussed. In Sec. VI and VII the limitations
of this study are outlined and the conclusions of the work are
drawn.
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II. METHODS
In this section, we first introduce the MVAR model identifi-
cation procedure. Then, we describe the different penalized
regressions by highlighting their distinctive features and the
underlying principles of each presented technique.

A. MVAR MODEL IDENTIFICATION
Let us consider a dynamical system Y , whose activity
is mapped by a discrete-time stationary vector stochastic
process composed of M real-valued zero-mean stationary
scalar processes, Y = [Y1 · · · YM ] ∈ ℜ

1×M . Considering
the time step n as the current time, the present and the
past of the process are denoted as Yn = [Y1,n · · · YM ,n] ∈

ℜ
1×M and Y−

n = [Yn−1Yn−2 · · · ], respectively. Moreover,
assuming that Y is a Markov process of order p, its whole
past history can be truncated using p time steps, i.e. using the
Mp-dimensional vector Y pn so that Y−

n ≈ Y pn =

[Yn−1 · · · Yn−p] ∈ ℜ
1×Mp. Then, in the linear signal

processing framework, the dynamics of Y can be completely
described by the VAR model:

Yn =

p∑
k=1

Yn−kAk + Un, (1)

where Ak ∈ ℜ
M×M is the matrix containing the autore-

gressive (AR) coefficients, and U = [U1 · · ·UM ] ∈ ℜ
1×M

is a zero-mean white process, denoted as innovations, with
covariance matrix 6 ≡ E[UT

n Un] ∈ ℜ
M×M (E is the

expectation value).
Let us now consider a realization of the process Y involving

Ns consecutive time steps, collected in the data matrix
[y1; · · · ; yNs ] ∈ ℜ

Ns×M , where the operator ‘‘;’’ stands
for row separation, so that the ith row is a realization of
Yi, i.e. yi = [y1,i . . . yM ,i], i = 1, . . . ,Ns, and the jth

column is the time series collecting all realizations of Yj, i.e.
[yj,1 . . . yj,Ns ]

T , j = 1, . . . ,M . OLS finds an optimal solution
for the problem (1) by solving the following linear quadratic
problem [1]:

Â = argminA||y − ypA||
2
2, (2)

where y = [yp+1; · · · ; yNs ] ∈ ℜ
(Ns−p)× M is the matrix of the

responses values, yp = [ypp+1; · · · ; ypNs ] ∈ ℜ
(Ns−p)× Mp is the

matrix of the regressors and A = [A1; · · · ;Ap] ∈ ℜ
Mp×M is

the matrix of coefficients. The problem has a solution in a
closed form Â = ([yp]T yp)−1[yp]T y for which the residual
sum of squares is minimized. When Ns − p ≤ Mp the OLS
does not guarantee the uniqueness of the solution since the
matrix ([yp]T yp) becomes singular [15].

B. PENALIZED LINEAR REGRESSION TECHNIQUES
From a mathematical point of view, regularizing the OLS
problem means adding a constraint to the problem (2). In the
Lagrangian form, the constraints are written in the cost
function as additional weighted costs. In this scenario, it is
possible to carry out separate regression analyses for each
process composing the dynamical system Y . In other words,

TABLE 1. Penalty terms associated with problem 3.

it is possible to estimate separately each column Aj of A. The
multi-objective optimization problems reads as:

Âj = argminAj (||yj − ypAj||22 + Fp(Aj), (3)

where yj = [yj,p+1 · · · yj,Ns ]
T

∈ ℜ
(NS−p)×1 denotes

the j-th column of y containing the response vector for
the specific response variable (j = 1, . . . ,M ), Aj =

[aj,1(1), . . . , aj,M (1), . . . , aj,1(p), . . . , aj,M (p)]T ∈ ℜ
Mp×1 is

the vector coefficient corresponding to the response variable
j and Fp is a penalty function applied to Aj. As anticipated in
Section I, in this work we analyze the linear penalty functions
reported in Table 1.

RR is characterized by a l2-norm based term that shrinks
the estimated AR parameters towards zero, reducing the
MSE [23]. The regularization parameter λ controls the
amount of penalization to be applied, if λ = 0, RR reduces
to OLS. The minimization of the RR functional leads to the
closed form solution Â = [(yp)T yp + λI]−1(yp)T y, where
I ∈ ℜ

Mp×Mp is the identity matrix. Besides the reduction
of the MSE, it would be of interest to reduce the number of
selected parameters (i.e., parameters where non-null values
are imposed) especially when Ns < Mp. This result could
be achieved by using a penalty term based on the l0-norm,
which in turn is equal to the number of non-zero elements
in a vector [14]. Unfortunately, such a penalization function
would render the optimization problem non-convex [28]. The
effect of the l0-norm can be approximated by using penalty
terms based on the l1-norm, such as the LASSO: the penalty
term acts so as to shrink some coefficients and set others
to 0 [24]. In the LASSO, the parameter λ sets the trade-off
between the number of non-null coefficients selected in the
matrix A and residuals sum of squares (RSS).
Similarly, the E-NET simultaneously performs the auto-

matic variable selection and the coefficient shrinkage [25].
The variable selection is regulated by the parameter λ1,
weighting the term based on the l1-norm. The shrinkage
of coefficients, instead, is regulated by the parameter
λ2 weighting the term based on the l2-norm. The E-NET
coincides with RR if λ1 = 0 and with LASSO if λ2 = 0.
F-LASSO includes in its penalty function a further term with
respect to LASSO, which computes the l1-norm of the vector
of the differences between the coefficients of successive
predictors. This term is used to enforce smoothness along
the predictors, i.e. along each column of the matrix A of
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the AR parameters. When λ2=0 F-LASSO coincides with
LASSO [26].
Finally, SG-LASSO is a convex combination of the

LASSO and the group LASSO penalties [27]. This procedure
imposes a structural constraint on the AR coefficients matrix,
in addition to the basic sparsity one (l1 term), to model the
assumption that the predictors can be aggregated in groups
of a given size. In the penalty term of SG-LASSO, g is the
number of groups, pre-determined, andwgi denotes the weight
for the i − th group (in this study, as specified in [29], the
weight of each group was set to 1). As [16] pointed out,
in a multivariate regression analysis,M groups of p elements
for each column of A can be used. The p elements of each
group, [aij(1), · · · , aij(p)] ∈ ℜ

p×1 with (i, j) ∈ (1, · · · ,M ),
can be represented by one AR parameter from the time lag
1 to time lag p. In other words, the second penalty term of
the SG-LASSO selects a subset of groups by setting to zero
all the coefficients in some groups (sparsity between groups),
whereas the first term encourages sparsity within each group.

Since the different rows of the matrices yp and yj can
be considered as independent from each other, it is possible
to estimate the optimal value of lambda (λopt ) by dividing
them into training and test sets. In the present work, 50%
of the rows were used for the training set and 50% for the
testing set. Training and test sets are standardized and the
optimal values for λ are selected by using a Generalized
Cross Validation (GCV) criterion [13], [18], [20], [30]. This
criterion comprises the computation of RSS defined as: ||y−

ypÂ||
2, and an estimate of the degrees of freedom, which

in turn, for LASSO based regressions, is represented by the
number of non-zero coefficient in the matrix Â [31].

III. COMPARING DIFFERENT PENALIZED LINEAR
REGRESSION TECHNIQUES
This section reports the theoretical design and the practical
implementation of a simulation of multiple interacting
stochastic processes, which is used as a benchmark to
illustrate the properties of the penalized regression techniques
analyzed in this work. Using this simulation we show how
the different techniques behave in different conditions of
data paucity. Their performances are then compared by using
different performance parameters.

A. SIMULATION STUDY
Problem (3) was solved for the different penalty terms listed
in Table 1. We used the SLEP package (MatLab®) [29]
with themultivariate linear regression solvedwith accelerated
gradient methods [32], [33] by exploiting the parallel
computing toolbox of MatLab. The code used in this paper,
for the model identification through penalized regression
techniques, is collected in the S-MVAR MatLab tool-
box available at https://github.com/YuriAntonacci/S-MVAR.
Included in the toolbox, we provide a comprehensive script
(Test_Simulation.m) designed to test all penalized
regressions, along with a detailed pipeline, providing a

practical means to assess their effectiveness collectively.
All the MatLab functions are described in a dedicated
documentation (Readme.pdf).

The simulation study included the following steps:

1) Generation of simulated datasets, fitting predefined
ground-truth networks under different values of the k-
ratio (0.5, 0.8, 1, 1.5, 2, 3). The k-ratio is computed as
the number of available data samples Ns divided by the
number of parameters to be estimatedMp.

2) Selection of the regularization parameters for each
regression method by means of GCV criterion. The
process was iterated 10 times for each λ randomly
changing the training and testing sets.

3) Estimation of the AR parameters by using the six
regression methods of interest, OLS, RR, LASSO, E-
NET, F-LASSO and SG-LASSO.

4) Evaluation of the performances by comparing the
estimated AR parameters with those imposed in the
corresponding ground-truth network.

To increase the robustness of the statistical analysis, the
entire procedure was repeated 50 times randomizing the data
generation.

B. SIGNAL GENERATION
The simulated data-sets were generated according to different
ground-truth networks by means of an MVAR model used
as a generator filter [34]. The simulated multivariate time
series (M = 10) were generated as realizations of a VAR(10)
process fed by Gaussian noise with variance equal to 1.
Furthermore, an autoregressive component extracted from
a real EEG signal was imposed in the model to reproduce
its spectral properties [35]. The EEG signals used for this
purpose were acquired from the Cz location of a healthy
subject with sampling frequency equal to 200 Hz during
the resting state. The simulated networks were randomly
generated with a connection density of 15% (14 out of
90 possible connections). The matrix of AR parameters were
automatically generated by the SEED-G software [35] by
assigning randomly the lag in the range [1,10] and the
coefficient value in the interval [-0.9, 0.9]. This value is
imposed only at one lag among the possible p lags, randomly
selected. The null connections are instead characterized
by null coefficients at each lag. Under these constraints,
50 realizations of the VAR(10) process were generated
for different values of the k-ratio parameter in the set
{0.5, 0.8, 1, 1.5, 2, 3}, so that the length of the simulated time
series was Ns = 50 when k = 0.5 and Ns = 300 when k = 3.

C. PERFORMANCES EVALUATION
The performances of the investigated regression approaches
were assessed in terms of accuracy in estimating the strength
of the network link (i.e., values of MVAR coefficients) and
in terms of ability to reconstruct the network structure. The
error in the connection strength was evaluated separately
for non-null and null links. Specifically, the values of the
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theoretical AR matrix A were compared with the estimated
values stored in Â using the Mean Absolute Percentage Error
(MAPE) [36] if the theoretical value is different from zero,
and the Root Mean Squared Error (RMSE), otherwise:

MAPE =
100
D

∑
d∈D

∣∣∣∣Ad − Âd

Ad

∣∣∣∣, (4)

RMSE =

√∑
n∈N (An − Ân)2

N
, (5)

where D and N represent the set of non-null and null
elements, respectively. The distributions of MAPE and
RMSE across the 50 iterations were then presented separately
for each method.

The ability in reconstructing the network structure was
tested only for the subset of regression methods that
yield a sparse matrix as output (i.e., LASSO, E-NET, F-
LASSO and SG-LASSO). In particular, the problem of
comparing the two AR parameter matrices, representative
of the estimated and theoretical network structure, can be
seen as a binary classification task. The existence (class 1)
or absence (class 0) of each estimated connection is assessed
and compared to the underlying ground-truth structure.
Performances were assessed computing the false positive rate
(FPR) that measures the fraction of null links for which an
AR coefficient different from zero was detected, the false
negative rate (FNR) that measures the fraction of non-null
links for which an AR coefficient equal to zero was detected,
and the Area Under Curve (AUC) that summarized the
information provided by FNR and FPR [37], [38]. These
performance parameters were evaluated for each individual
network and their distribution across the 50 simulated
connectivity structures was then presented separately for each
regression method.

The last considered performance parameter is the compu-
tational time (in seconds), required for the computation of
the AR matrix Â. In particular, for penalized regressions,
the estimation process is divided into two different steps:
1) selection of the regularization parameters, taking Tsel
seconds; 2) computation of Â taking Tcomp seconds. The
process for the selection of the regularization parameters
was performed by means of the GCV criterion within a
range of 350 values for λ1 and 100 values for λ2 for each
method and for each value of k-ratio (where applicable,
see Table 1). To speed-up the entire process, the parallel
computing toolbox implemented in MatLab® 2016a was
used.

D. STATISTICAL ANALYSIS
In the present work, a repeated measures two-way ANOVA
test was performed for each performance parameter (MAPE,
RMSE, FNR, FPR and AUC) in order to evaluate the effect
of the factors: k-ratio with the levels {0.5, 0.8, 1, 1.5, 2, 3}
(factor K); type of regression method with the levels
OLS, RR, LASSO, E-NET, F-LASSO, SG-LASSO (factor
TYPE). FNR, FPR and AUC were not considered in the

TABLE 2. F-values of the two-way repeated measures ANOVA.

ANOVA for the methods OLS and RR because they do
not produce sparse AR matrices. The Greenhouse-Geisser
correction for the violation of the spherical hypothesis was
used in all the analyses. Tukey’s post-hoc test was used
for testing the differences between sub-levels of ANOVA
factors. Bonferroni-Holm correction was applied for multiple
ANOVAs computed on different performance parameters.

E. RESULTS OF THE SIMULATION STUDY
The results of the two-way repeated measures ANOVAs
computed separately for all the performance parameters are
expressed in terms of F-values considering K and TYPE as
within factors and reported in Table 2 (∗∗ is associated with
p < 10−5). The two-way ANOVA performed on MAPE
and RMSE reveals a strong statistical influence of the main
factors K, TYPE, and their interaction K × TYPE on the
two performance parameters. Fig. 1 reports the distribution
of the parameters MAPE and RMSE as a function of the
interaction factor K × TYPE . The comparison of the six
procedures shows remarkable differences between penalized
regression techniques and the classical OLS. Specifically,
MAPE decreases as the number of data samples available for
the estimation procedure increases (Fig. 1.a). In particular,
when K=3, there are no statistically significant differences
between all methods, with aMAPE of approximately∼ 20%.
On the contrary, when K ≤ 1, OLS shows significantly
higher values of MAPE (with a sharp increase between
100% and 280%) compared to penalized regression methods
where MAPE values remain below 80%. Tukey’s post-
hoc test reveals statistically significant differences between
regression methods only for K = 0.5. In particular, MAPE
computed using LASSO, was significantly lower than RR
and F-LASSO.

The analysis of RMSE (Fig. 1.b) reveals overlapping
trends that are very close to zero, obtained for the penalized
regressions LASSO, F-LASSO, SG-LASSO, and E-NET.
Only RR exhibits a higher mean value of RMSE when
compared with the other penalized regressions. However,
it performs better than OLS. Similarly to the results obtained
for the MAPE parameter, OLS shows a sharp increase in
RMSE as the data samples (factor K) decrease. In this case as
well, there is a noticeable discontinuity in the RMSE trend,
between K=1.5 and K=1, as also highlighted in the analysis
of MAPE.

The two-way ANOVA performed on FNR, FPR and AUC
reveals a strong statistical effect of the main factors K
and TYPE and of their interaction K x TYPE (Table 2).
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FIGURE 1. Performance parameters computed for non-null (MAPE, a) and
null (RMSE, b) connections as a function of the factors K (k-ratio) and
TYPE (regression methods). Both parameters are reported as mean value
and 95% confidence interval computed across 50 realizations for each
experimental condition (6 regression methods and 6 values of K).

Fig.2 reports the distributions of the parameters FNR, FPR,
and AUC as a function of the factor K for each regression
approach performing a variable selection procedure (i.e.,
LASSO, E-NET, F-LASSO, SG-LASSO). All regression
methods exhibit a decreasing number of false negatives as
the number of available data samples increases (Fig. 2.a).
However, under the most challenging condition of K = 0.5,
F-LASSO, and SG-LASSO (azure line and green line,
respectively) demonstrate the highest values of FNR, clas-
sifying roughly half of the theoretically non-zero links as
null. LASSO and E-NET demonstrate better performance
compared to all the other methods. No statistically significant
differences are noticed between LASSO and E-NET, regard-
less of factor K, as highlighted by Tukey’s post-hoc tests.
Also, LASSO and E-NET show false negative values ranging
between zero (K = 3 ) and 30% (K = 0.5).

The analysis of false positives (Fig. 2.b) reveals that the
number of links incorrectly classified as non-null remains
stable and almost negligible for all methods. The only
exception is represented by F-LASSO which on average
exhibits higher values of FPR compared to the other
methods.

The overall network reconstruction performance, summa-
rized by the AUC parameter (Fig. 2.c), demonstrates that
LASSO and E-NET yield the most effective results. Specifi-
cally, when compared with F-LASSO and SG-LASSO, both
LASSO and E-NET exhibit a higher rate of correctly detected
links in all analyzed conditions. SG-LASSO performs better
than F-LASSO, which shows the worst performance. For
K = 3, LASSO and E-NET achieve an average AUC value
close to 1, indicating a nearly perfect reconstruction of the
network structure. Tukey’s post-hoc test indicates that there
are no statistically significant differences between LASSO
and E-NET. However, both LASSO and E-NET perform
significantly better (higher AUC) compared to SG-LASSO
and F-LASSO, irrespective of factor K. Additionally, AUC
computed for SG-LASSO is significantly higher than F-
LASSO. These regression methods demonstrate the ability to
reconstruct the network structure with a very high accuracy
of approximately 0.75 even in the worst-case scenario where
the number of data samples is half the number of coefficients
to be estimated.

Table 3 reports the computational time (in seconds)
required for the selection of the optimal value of lambda/s
(Tsel) and the following computation of the MVAR parame-
ters (Tcomp). The two values are computed for each regression
method and for each value of K. In the case of OLS, it was
not possible to evaluate the Tsel parameter since it is not
included in the set of penalized regression methods. Times
were recorded on a PC with an IntelCore i7-6700 processor,
clock speed 3.40 GHz, 8 Gb RAM DDR4 (1.33 MHz),
Intel (R) HD Graphics 530, 1024 Mb dedicated VRAM.
Both, Tsel and Tcomp increase with K. For all the values of
K analyzed, the methods based on one single regularization
parameter (i.e., LASSO and RR) need a shorter time for
the selection step if compared with those based on two
regularization parameters (i.e., F-LASSO, E-NET, and SG-
LASSO). Furthermore, among themethods based on l1-norm,
LASSO shows the lowest computational time required for the
estimation process. The most time-consuming method is the
SG-LASSO.

To summarize, all performance parameters are directly
influenced by the amount of data samples available for the
estimation process, exhibiting a direct proportionality. This
means that the accuracy of the estimation process improves as
the value of K increases. Even in cases where data is scarce,
all the analyzed penalized regression methods demonstrate
the ability to achieve good performance in both estimating
the values of AR coefficients and reconstructing the network
structure. Among the l1-norm-based regression methods,
LASSO and EL-NET show the best performances, with no
statistically significant differences between them. Notably,
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TABLE 3. Computational time required for each regression method.

LASSO also exhibits a significantly shorter computational
time when compared to EL-NET.

IV. TESTING OF LINEAR REGRESSION TECHNIQUES ON
REAL EEG DATA
The study of human brain activity during motor imagery
(MI) plays an important role in clinical neurology and
neuroscience and for this reason the neuronal representation
of MI and motor execution has been studied intensively
for years using brain imaging techniques such as functional
magnetic resonance [39], EEG [40], [41], [42] and positron
emission tomography [43]. It is well established that
adults present 8-12 Hz (i.e. µ) and 16-26 Hz (i.e. β)
rhythms in the EEG recorded from the scalp over the
primary sensorimotor cortex. These rhythms show amplitude
fluctuations that are synchronized tomovement imagery [44].
These fluctuations are more prominent in the contralateral
primary motor cortex and contralateral somatosensory
regions as demonstrated in [45]. Given their clearly defined
occurrence, the information derived from these oscillations
and their localization on the scalp has also been used for
developing brain computer interfaces [46]. Since MI involves
a dynamic interplay between separate brain regions, it is
reasonable to assume that brain connectivity can provide
useful information for understating this phenomenon. For
instance, in the context of brain computer interfaces, the
feasibility of using brain connectivity as an additional
feature for the discrimination between different mental
tasks has been explored [21], [47]. However, the authors
pointed out how the accuracy during the entire process
of connectivity estimation drops dramatically when few
data samples are available and it would be necessary to
use penalized regressions. In such a way, the estimate
of connectivity becomes more reliable with the resulting
increase in classification accuracy. In this section, by using
the EEG dataset previously used in [21], we demonstrate that
it is possible: (i) to estimate brain connectivity using aMVAR
model identified through penalized regressions, especially
when a limited number of data samples are available for
the estimation process; (ii) to demonstrate the discriminative
power of features extracted directly from brain connectivity
analysis in the context of a binary classification problem.
All data were drawn from a publicly-available dataset
(https://github.com/scot-dev/scot-data/tree/main/scotdata) and
no new experiments were performed as a part of this work.

A. DATA DESCRIPTION AND PRE-PROCESSING
The EEG dataset made available by the authors of [21]
consists of 45 EEG channels located over the scalp according
to the international 10-20 system. The signals were recorded
at a sampling rate of 300 Hz with three synchronized
g.USBamp amplifiers (g.tec, Guger Technologies OEG,
Graz, Austria) and pre-processed following the pipeline
described in [21]. To test the regression methods on real EEG
signals, a healthy subject (male, right handed), with no prior
experience in brain computer interface (BCI) control based on
motor imagery, was selected to record one session, consisting
of 90 trials of right handmotor imagery (HAND) and 90 trials
of foot motor imagery (FOOT). Further details about the
experimental paradigm and the pre-processing process are
available in [21].

B. SINGLE-TRIAL CONNECTIVITY ESTIMATION
To reproduce the condition of the simulation study, 11 out
of the 45 available channels were selected (C5, C3, C1, C2,
C4, C6, CP3, CP4, Cz, CPz, FPz) and, as suggested in [21],
100 samples between the third and the fourth second were
selected to obtain a proper time window in which the task
was correctly performed. Each of the eleven time series
obtained from each trial and condition (HAND - FOOT) were
interpreted as a realization of a VAR process whose matrix of
parameters Â was estimated with the six different regression
methods (i.e. OLS, RR, LASSO, EL-NET, F-LASSO, SG-
LASSO). The order of the model, denoted as p, was estimated
for every experimental condition and trial. This estimation
was done using the Final Prediction Error (FPE) criterion [1].
Afterwards, the average value of the model order across trials
and conditions was calculated, resulting in a value of 10. All
the analyses were performed by identifyingMVARmodels of
dimension Mp, where M=11 and with the model order fixed
to p = 10, which together with a time series of 100 points
guarantees a connectivity estimation with a value of K close
to 1 for each regression method.

To retrieve information about the connectivity between
EEG signals in the frequency domain, the estimated AR
parameters were then Fourier transformed [10].

C. CLASSIFICATION TASK
To verify (i) if penalized regressions can be used for
estimating connectivity between EEG time series and, (ii)
if the features derived from a connectivity analysis can
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FIGURE 2. Distribution of FNR (a), FPR (b) and AUC (c) parameters
considering the interaction K × TYPE , expressed as mean value and 95%
confidence interval of the parameter computed across 50 realizations for
the four regression methods, performing variable selection, and for
different values of K.

provide useful information even in data paucity conditions,
a classification task was performed.

The classification HAND vs. FOOT was repeated by using
as features the frequency version of estimated AR parameters
(real part of the Fourier transform of the AR parameters)
in two different frequency bands, typically related to the
MI tasks [46]: α (8-12 Hz) and β (13-30 Hz). By considering
fi as the frequency interval under investigation and M = 11,
it was possible to extract M2fi = 605 features in α band
(fi ∈ [8, 12]) and 2178 in β band (fi ∈ [13, 30]).
In order to ensure a ratio of at least 5 between the number

of training cases and the number of classifier parameters to
be estimated, i.e., to avoid overfitting during the training
phase, a sub-selection of the features was performed [48].
In particular, we selected the top 25 highest -ranked ones
according to the associated t-value (independent samples
t-test, HAND vs FOOT) for each feature in each frequency
band [49]. Note that all the diagonal elements of the AR
matrices were removed to maintain only information related
to causal effects.

The data were divided into 70% for the training process
(126 cases out of 180), 15% for validation (27 cases
out of 180) and 15% for testing (27 cases out of 180).
Each of the three data sets contained the same number of
observations for each class (HAND-FOOT) to avoid class
imbalance problem [50]. By using a holdout approach at
each iteration, one different feed-forward neural network
(FFNN) was trained, validated, and tested [48]. The structure
chosen for the FFNN is one of the most widely used for
classification purposes [51], [52] that includes one hidden
layer with one neuron (sigmoid activation function) and an
output layer with a softmax activation function [53]. The
initial weights of the network were randomly generated and
the training was performed with a gradient descent algorithm
(with learning rate set to 10−3), with cross-entropy used
as the cost function [54]. The training process was stopped
by means of the early stopping criterion [55]. The process
was repeated 100 times for each considered frequency band.
As a performance parameter, we computed the classification
accuracy (ACC) on the test set [56].

For this study, a two-way repeated measures ANOVA
test on the classification accuracy (ACC) was performed in
order to evaluate the performance of classification accuracy
depending on the regression method (factor TYPE: OLS, RR,
E-NET, LASSO, F-LASSO, SG-LASSO) and the frequency
band (factor BAND: α,β). Moreover, to assess statistical dif-
ferences between pairs of distributions independent samples
t-tests were performed.

D. RESULTS ON REAL EEG DATA
Fig. 3 reports the distributions of the classification accuracy
evaluated on the test set according to the interaction BAND×

TYPE for each regression method and for α and β frequency
band.

For all the regression methods, except RR and E-NET,
ACC is significantly greater in β band (blue boxes) with
respect to α band (orange boxes). The analysis of α band
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FIGURE 3. Classification accuracy evaluated on the testing set for each
regression method obtained for each frequency band (α and β). Box plots
report the distribution of the classification accuracy across the
100 iterations by considering the interaction TYPE × BAND (F=18.57,
p < 10−5). On each box, the central line indicated the median, the edges
of the box indicate 25th and 75th percentiles, and outliers are marked
with a circle. Statistically significant differences between pairs of
distributions are marked with ∗ (α vs β), with # (· vs OLS for α band), with
§ (· vs OLS for β band), and with ◦ (LASSO vs E-NET in α band).

TABLE 4. Computational time required for each regression method
(K ∼ 1).

reveals a statistically significant increment of the ACC if
penalized regressions are used when compared with OLS
(distributions marked with #); this is not the case for the β

band in which RR is not significantly different from OLS.
All the other regression methods (i.e. LASSO, E-NET,
F-LASSO, and SG-LASSO) show a statistically significant
increment of ACC with respect to that obtained with OLS
(distribution marked with §). LASSO and E-NET show the
highest values of ACC (∼ 0.8) but only using LASSO it
is possible to highlight a significant difference between α

and β frequency bands. On the other hand, OLS shows the
worst performance in discriminating between HAND and
FOOT with an average value of ACC ∼ 0.55 in α band and
∼ 0.65 for β band.

Table 4 reports the time required for estimating the AR
coefficients matrix Â for each regression method. Also
in this case the process of cross-validation described in
Section III-C was used for the selection of different optimal
values of lambda/s with the same PC used for the simulation
experiment. As a first observation, the computational times

required are comparable to those obtained in the simulation
study (see Table 3) performed on M = 10 EEG-like data
for the case K = 1. Table 4 shows that OLS, which
does not require the selection of a regularization parameter,
is the fastest method. Among penalized regression methods,
RR and LASSO show a difference of a few seconds for
the selection of λopt (∼ 7s, ∼ 8s respectively). E-NET,
F-LASSO, and SG-LASSO represent the slowest regression
methods with several minutes needed for the selection of
λ1 and λ2 (∼ 12 min for E-NET and ∼ 32 min SG-LASSO).

V. DISCUSSION
The present work compares the performances of different
regression techniques for the study of connectivity estimates
in the framework of linear signal processing. The behavior
of the different regression techniques was validated both in a
simulation setting and in a real-world scenario relevant to the
study of brain connectivity from EEG signals.

A. SIMULATION EXPERIMENT
The simulation study was designed to assess the performance
of the classic OLS when compared with five different penal-
ized regression techniques (RR, LASSO, E-NET, F-LASSO,
and SG-LASSO) used in the identification procedure of
the MVAR model. Performance parameters were evaluated
in terms of the strength of the network links (values of
the MVAR coefficients) as well as network structure (false
positives and false negatives). Lastly, the computational time
needed to solve all the linear problems was analyzed.

The accuracy in estimating the value of the MVAR coef-
ficients was investigated across different k-ratio values by
means of MAPE and RMSE used as performance parameters
(Fig. 1). As expected, both performance parameters for all the
regression methods show a tendency to increase as the k-ratio
decreases. This tendency is more evident for OLS, as already
documented testing different VAR identification approaches
(e.g., the Levinson recursion for the solution of Yule-Walker
equations) in the context of signal processing [12]. For K=1
the uniqueness of the solution is not guaranteed for OLS
as the matrix ([yp]T yp), necessary for the solution of the
problem (2), approaches singularity. As a consequence, OLS
exhibits a strong bias, as reported in previous studies [13],
[24], [57]. On the other hand, we document very low values
of MAPE and RMSE for penalized regressions, even when
K≤ 1, confirming their high tolerance to collinearity between
regressors caused by the drastic reduction of data samples
available [13], [58]. The trends obtained for MAPE highlight
the best performances of LASSO and E-NET without any
statistically significant differences between them.

The ability in the reconstruction of the network structure
was investigated in terms of false negatives, false positives
and AUC. The latter appears to be the best-suited indicator
in terms of its capability to synthesize the similarity of two
networks also in the condition of class imbalance, a typical
condition in sparse networks, as those simulated in this
work [37]. The regression methods tested here are those
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based on l1-norm which in turn induces sparsity within the
matrix of estimated MVAR coefficients [14]. Focusing on
Fig. 2, all the penalized regressions are characterized by a
low percentage of false positives (FPR∼ 0.05). Additionally,
both false negatives and AUC values increase as K decreases.
In particular, the maximum value of AUC (∼ 0.95) is
obtained by LASSO and E-NET regardless of the value of
K. Even in the worst condition (K = 0.5), these two methods
reach high values of AUC (above 0.85). On the other hand, F-
LASSO showed the worst performance for all the values of K,
with AUC∼ 0.75 when K is equal to 0.5. The results obtained
in this study align with those reported in a previous work
that utilized Ridge and LASSO regression to investigate brain
connectivity estimated from fMRI data [20]. Specifically, the
authors demonstrated how penalized regression techniques
can effectively identify causal relationships, even when the
number of nodes in the network exceeds the available data
samples. The obtained AUC values ranged from 0.6 to 0.9.
Moreover, these findings are consistent with our previous
work, which compared only OLS and LASSO in the context
of information dynamics analysis [13].

The observed differences between LASSO and E-NET
when compared to other penalized regressions can potentially
be explained through a methodological consideration. In their
work, Zou and Hastie [25] highlighted that LASSO and
EL-NET may not be the ideal approaches when dealing
with structurally grouped regressors (referred to as yp in this
study). Specifically, only SG-LASSO introduces a structural
constraint to account for grouped variables, for instance
when the predictors are represented by genes. In the study
of connectivity, where prior information about potential
connections between different brain areas is lacking, it is
reasonable to assume that LASSO and EL-NET may exhibit
superior performance in retrieving the theoretical network
structure compared to SG-LASSO and F-LASSO.

Finally, the computational time required from each method
to provide an estimate of the coefficient matrix Â was
computed for each regression method. Two different com-
putational times were reported, one for the GCV procedure
used for the selection of the penalization terms (depending
on whether the methods present one or two parameters for
regularization) and the other one for the MVAR parameters
computation (Table 2). The total time required for the
entire estimation procedure increases as the value of K
increases. As expected, regression methods that incorporate
two regularization parameters (E-NET, F-LASSO, and SG-
LASSO) require more time because all combinations of
the two parameters need to be tested through GCV. The
less time-consuming regression methods are LASSO (among
those based on l1 norm) and the E-NET regressions (among
those based on a linear combination of l1 and l2-norm).
To limit the computational time, a smaller number of values
could be tested for the different regularization parameters
(i.e. λ1, λ2). However, this could have an impact on the
performance of the selected regression method since the
optimal solution may not be in the range selected by the

operator. It is therefore recommended to use at least a range
of 100 values for each regularization parameter.

A note should be made concerning the potential impact
of cross-validation approach used to identify regularization
parameters on the results of the simulation study. Cross-
validation procedures are widely employed for selecting
regularization parameters in penalized regressions, with their
popularity attributed to intuitive appeal, ease of implemen-
tation, and the ability to provide a reliable estimate of
expected prediction error [15]. In this study, we employed
a generalized form of cross-validation, namely GCV, which
not only considers prediction error but also incorporates
considerations for the interpretability of the estimated model.
This approach has demonstrated its reliability in prior
studies [13], [18], [20], [59]. However, high variability in
the results has been found according to the cross-validation
method used for the analysis and the randomly assigned
folds used in the training phase [60]. This model selection
instability can lead to a lack of interpretability in the
results of LASSO and LASSO-based regression analyses.
Although various solutions have been introduced in the
literature to address this issue, most of them are designed
for LASSO regression [61]. Hence, additional research
endeavors are essential to generalize these principles across
all penalized regression techniques, underlining the absence
of a unanimous consensus in the existing literature on the
optimal procedures for selecting regularization parameters.

B. APPLICATION OF LINEAR REGRESSION TECHNIQUES
ON REAL EEG DATA
A well-established body of literature demonstrates an
intrinsic balance between excitatory and inhibitory coupling
among brain regions and between hemispheres occurring in
the execution of a motor imagery task [62]. Based on this
evidence, we selected the EEG time series recorded from a
total of 11 channels including the left hemisphere (contralat-
eral to the hand motor imagination), the right hemisphere
(ipsilateral), and the midline. As a consequence, our EEG
results are discussed in terms of primary motor cortex activity
of the contralateral and ipsilateral hemispheres [63].

The simulation study showed that penalized regressions are
reliable tools for estimating brain connectivity in conditions
of data paucity where the classical OLS fails. Previous
studies highlighted the possibility of discriminating different
experimental conditions by using features related to brain
connectivity, such as the estimated AR parameters and
their frequency version [64], [65]. However, it was pointed
out that, with the current methodology based on the OLS
estimator, it is impossible to reach an appropriate accuracy
and it is necessary to move towards penalized regression
techniques [21]. The combined use of features derived from
brain connectivity with neural network classifiers showed
an increase in classification accuracy [66] with most of
the results found in α and β frequency bands [40], [65].
Interestingly, the results reported here show comparable
classification accuracy even for different tasks and for a
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different number of data samples available for the estimation
procedure. In fact, as reported in Fig. 3, LASSO and E-NET
attain the highest values of ACC in the α and β frequency
bands (∼ 0.8). Furthermore, as proof of the unsuitability of
OLS in a condition of strong data paucity (K ∼ 1), Fig. 3
showed the lowest values of ACC in both frequency bands.

VI. FURTHER REMARKS AND LIMITATIONS
Despite the potentialities of the penalized regression tech-
niques, there are some limitations in the performed anal-
yses that should be take into account. In the literature,
it is well-known that conventional EEG-based computer-
aided methods involve three basic steps: preprocessing of
signals, feature extraction from preprocessed signals, and
feature classification. The EEG data recording procedure
is highly susceptible to different noise artifacts and several
methodologies can be used to counteract this issue. Among
these, multiscale principal component analysis (MSPCA)
has proven to be a reliable tool for noise elimination
from EEG signals through the combined use of wavelets
and principal component analysis (PCA) [67], [68], [69].
In particular, the MSPCA works in two folds: first, it applies
wavelet transforms to obtain deterministic attributes from
EEG signals; second, it performs PCA on each wavelet
coefficient [70]. Additionally, a novel empirical Fourier
decomposition (EFD) framework was recently proposed
for decomposing EEG signals into different modes after
the denoising step achieved through MSPCA [68], [71].
As the main challenge in BCI applications is to achieve
accurate classification results, preprocessing of EEG signals
has a significant impact on classification performance, often
yielding accuracy values close to 100% [67], [68], [69], [70],
[72]. In the present study, we did not perform denoising of
EEG signals using MSPCA and EFD, which likely affected
the classification performance, resulting in an accuracy of
approximately 80%. This is notably lower when compared
to results obtained in recent studies that classified different
motor imagery tasks [67], [68], [69], [70], [72]. However,
it is well-documented in the literature how a simple filter
with a non-zero phase response can impair brain connectivity
analysis [73], highlighting the need for further research to
evaluate the effects of these new signal processing techniques
on brain connectivity analysis.

As for the feature selection procedure, this study utilized
features directly derived from brain connectivity analysis.
While previous studies have employed these features in
EEG signal analysis [47], [64], exploring alternative feature
sets has the potential to enhance classification accuracy.
Recently, a novel category of features, known as geometrical
features, has emerged to bolster the classification of various
physiological and pathological states directly from EEG
signals. Geometrical features pertain to a collection of
quantitative measurements or characteristics extracted from
the geometric representation of data in two- or three-
dimensional space. In the literature, these features have
found utility in the analysis of various biosignals, including

heart rate variability [74], electrocardiography [75], and
EEG for the detection of different conditions such as
depression [76] and seizures [77]. Previous studies have
demonstrated that the incorporation of geometrical features
can significantly boost classification accuracy, often by as
much as 20%, when compared to features extracted from
the time, frequency, or time-frequency domains. In summary,
the use of geometrical features in motor imagery EEG
data holds promise, particularly when motor imagery tasks
involve spatial representations. However, the extent of this
improvement hinges on several factors, including feature
selection, data quality, classifier choice, and the nature of
the motor imagery tasks. Therefore, careful feature selection
and systematic experimentation are crucial for optimizing
classification accuracy in this context.

Another important issue in the EEG-based brain-computer
interfaces is the classification procedure. Our decision to
use a NN as a classifier is motivated by the advancement
in Artificial Intelligence. Indeed, various techniques have
emerged and in this context NNs have received considerable
attention. To analyze EEG signals, deep learningmodels have
emerged to be more proficient in comparison to traditional
techniques and other models [78] and, among the deep
learning algorithms available in the literature, convolutional
neural networks (CNNs) have proved to be the most
suitable for EEG analysis [79]. Notably, CNNs have proved
their ability to automate the classification, recognition, and
identification processes for various conditions using EEG
signals, extending beyond motor imagery to encompass
areas such as sleep disorders [80], Alzheimer’s disease [81],
seizures [82], depression [83], and alcoholism [71], [84].
One final limitation of the present study is the relatively

small sample size of subjects analyzed. While penalized
regression techniques have shown promising results, further
investigation on larger and more diverse datasets is required.
Expanding the scope of our research to include a broader
range of subjects will not only enhance the robustness
of our findings but also provide a more comprehensive
understanding of their practical applicability.

VII. CONCLUSION AND IMPLICATION
The aim of this work was to evaluate the usefulness
of penalized regression methods for brain connectivity
estimation. The simulation study showed how LASSO and
E-NET can estimate, with high accuracy, not only the value
of AR coefficients but also the related connectivity structure
even in conditions of data paucity in which OLS fails (e.g.
when collinearity between regressors arises for the lack of
data points).

The results consider the possibility of discriminating
between two tasks through a classifier trained with features
extracted from a brain connectivity analysis. LASSO and
E-NET showed the best performances in terms of accuracy of
classification. Notably, these results were obtained forK = 1,
a condition in which OLS fails whereas E-NET and LASSO
showed comparable performances when simulated EEG
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signals were used. These findings suggest that, when OLS
cannot be used, LASSO might represent the most suitable
alternative, even when a limited amount of computational
power is available.

If confirmed on a larger sample, the overall results
pave the way for using sparse identification procedures for
connectivity estimation in all those conditions in which few
data points are available, such as in the estimation of brain
networks at the single trial level as well as during real-
time applications. Since all the linear connectivity estimators
are based on the identification of an MVAR model, it is
reasonable to assume that penalized regressions could be used
and integrated for the computation of all the connectivity
estimators in both time and frequency domains as already
partially demonstrated [85], [86].

Several aspects deserve further investigation with a direct
impact on brain connectivity estimation. First and foremost,
an important research activity will be a systematic com-
parison of various brain connectivity estimators, through
penalized regressions. This in-depth analysis will unravel
the strengths and weaknesses inherent in each approach,
significantly advancing our understanding of the modalities
used for connectivity estimation. Equally important is the
exploration of the feasibility of comparing these estimators
with their non-linear counterparts, grounded in deep learning
approaches. This exploration is key to effectively model
the intricate relationships among brain signals as stated
in previous works on this topic [18], [87], [88]. The
findings from these comparative analyses will foster a
deeper comprehension of the nuances associated with each
approach. Given that the majority of the tools currently
used to perform brain connectivity analysis rely on MatLab
code, the development of Python-based code can enhance
the accessibility and applicability of penalized regression
techniques even in different research fields.

From an applicative point of view, it will be interesting to
test the effects of EEG signal denoising on the estimation of
brain connectivity. Finally, to validate our findings, penalized
regression techniques will be tested on a larger experimental
group, potentially providing the basis for further research in
the direction of connectivity-based BCIs
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