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Abstract. We present a new numerical solver for free-fluid flowing over and inside a porous 
medium. It is based over a macroscopic approach and one fictitious medium is assumed inside the 
domain, according to the One Domain Approach. Preliminary results are shown and compared 
with the ones provided by the well-known DuMux solver which applies a two Domain Approach. 
Introduction 
Transport phenomena of combined free fluid (ff) and porous medium (pm) flow occur in several 
industrial, environmental and biological applications (e.g., surface and groundwater flow, 
contaminant transport from lakes by groundwater, fuel cells, oil filters, blood flow in vessels and 
tissue, transfer of therapeutic agents).  

The related mass, momentum and energy transport mechanisms at the ff–pm interface have 
been intensively investigated during the last decades applying two main approaches, the 
formulations at the micro- and macro-levels, respectively.  

At the microscopical level, the porous medium is assumed as a connected domain of pore spaces 
filled with the fluid. The flow is governed by Navier–Stokes (or Stokes) equations, and no–slip 
boundary conditions are imposed on the interfaces between fluid and solid particles of the porous 
medium. The main drawback of this approach is its application for real problems, due to the huge 
amount of CPU time and computer memory storage, as well as the lack of an exact knowledge of 
the real porous geometry.   

At the macroscopical level, the sets of the governing equations are obtained by averaging or 
upscaling the equations at the microscopic level over a Representative Elementary Volume (REV) 
[1]. The REV size is much larger than the characteristic size of the pore, but much smaller than 
the representative size of the domain. Two general different approaches have been derived at the 
macroscale, namely the Two-Domain Approach (TDA) and the One-Domain Approach (ODA) 
[1].  

In TDA, the domain is split into two regions, and, in the most general case, the Navier–Stokes 
equations describe the fluid flow in the ff domain, while the Darcy’s law is applied in the pm 
region. This is the most difficult approach from a mathematical point of view, since the two sets 
of governing equations are completely different systems of Partially Differential Equations (PDEs) 
and need interface conditions (IFCs). A sharp interface is assumed, where appropriate boundary 
conditions are imposed (typically, the conservation of mass, the balance of normal forces and the 
Beavers–Joseph condition (BJC) for the tangential velocity components [2]). 

On the contrary, in ODA, the porous layer is regarded as a pseudo-fluid and the composite 
region free fluid-porous medium is treated as a continuum. One set of PDEs is assumed, typically 
the Brinkman or the (Navier)-Stokes-Brinkman equations (e.g., [1, 3]). The transition from the 
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fluid to the porous medium is achieved through a continuous spatial variation of physical 
properties, such as permeability and porosity inside a transition layer (TL) which separates the 
homogeneous ff region from the bulk porous medium. The major drawback of the ODA is related 
to the knowledge of the size of the TL between the two homogeneous regions and how the physical 
parameters of the porous medium change inside it.  

In the recent literature, some ODA have been proposed for the Brinkman equations [4] or a 
momentum equation having a Darcy form, including inertial and slip effects [5].  

In the present paper, we present a novel numerical solver for ODA for incompressible and 
single-phase fluid over a saturated anisotropic porous medium. The governing equations, derived 
by averaging the pore scale microscopic Navier-Stokes equations, are the Incompressible Navier-
Stokes-Brinkman equations (INSBEs), discretized over general unstructured meshes.  

Preliminary model results are shown.   
The Governing Equations and spatial discretization 
The governing equations are a set of Partial Differential Equations (PDEs), the INSBEs, 

                                                                        𝛻𝛻 ⋅ 𝒖𝒖 = 0                                                          (1), 

                                                  𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 ⋅ 𝛻𝛻𝒖𝒖 + 𝛻𝛻𝛻𝛻 − 𝜐𝜐𝜐𝜐2𝒖𝒖 + 𝜐𝜐𝜐𝜐
𝑲𝑲
𝒖𝒖 = 0                                  (2), 

where t is the time, u is the fluid velocity vector (with u and v its x and y components), υ is the 
kinematic viscosity of the fluid, Ψ is the kinematic pressure of the fluid (Ψ = p/ρ with p and ρ the 
fluid pressure and fluid constant density, respectively), K the permeability matrix of the porous 
medium, symmetric and positive-definite, and ε is the porosity of the porous medium. The last 
term on the l.h.s. of Eq. (2) takes into account the drag effects due to interaction of the fluid with 
the solid particles of the porous medium. The set of the governing equations has been derived from 
the Navier-Stokes equations at the pore-scale, applying average techniques [3, 6] 

The computational domain Ω is discretized by means of unstructured triangulations of NT non-
overlapping triangles and N nodes. Inside each triangle e we assume the velocity vector be 
piecewise constant and 𝒖𝒖𝑒𝑒(𝒙𝒙) ∈ 𝐗𝐗𝑒𝑒, where Xe is the lowest-order Raviart-Thomas (RT-0) space. 
Ψ is assumed to be piecewise linear inside each triangle. The computational mesh satisfies the 
Delaunay Property. 

In the present algorithm, INSBEs are solved by sequentially applying a fractional time step 
procedure, by solving consecutively a prediction and two correction steps. The prediction step is 
solved by applying the MAST (Marching in Space and Time) procedure, recently proposed for the 
solution of shallow waters, groundwater and incompressible Navier Stokes problems ([7] and cited 
works). MAST presents some important advantages: 1) explicit handling of the non-linear 
momentum terms due to a sequential solution of a small Ordinary Differential Equations (ODEs) 
system for each computational cell, 2) a computational effort proportional to the number of 
triangular elements and 3) numerical stability with respect to Courant-Friedrichs-Lewy (CFL) 
numbers also greater than one. The correction steps are solved by a Mixed Hybrid Finite Elements 
discretization that assumes a Generalized Delaunay mesh condition. They involve the solution of 
large linear systems, whose matrices are sparse, symmetric, positive definite and diagonally 
dominant, allowing a well performing condition number and a very fast solution of the associated 
systems. Strong reduction of the computational effort, in comparison with other numerical 
schemes (e.g., Lagrangian schemes), is due to the matrix coefficients, which are constant in time 
and are calculated only once, before the beginning of the numerical iteration loop. Flux continuity 
at each triangle side is guaranteed, as well as the local and global mass balance (more details in 
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the cited works). There is no need to compute pressure at each time iteration, but only at target 
simulation times. 
Model Results 
1. Comparison with analytical solution and study of convergence order 
We assume a 1D domain (see figure 1), with an isotropic porous medium and an analytical velocity 
profile given by Eqs. (3), continuous from the ff to the pm region.  

𝑢𝑢 = 4𝑈𝑈𝑀𝑀 ��
𝑦𝑦−𝐻𝐻

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝐻𝐻
− 1� � 𝑦𝑦−𝐻𝐻

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝐻𝐻
+ 𝛿𝛿��  in ff, 𝑢𝑢 = 4𝑈𝑈𝑀𝑀 �

𝜀𝜀�2𝜀𝜀2−1�𝑒𝑒
� 𝑦𝑦−𝐻𝐻
𝜀𝜀(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝐻𝐻)−1�

1+𝜀𝜀
− 𝛿𝛿�  in pm  (3), 

with 𝑈𝑈𝑀𝑀 = ∇𝑥𝑥𝛹𝛹
8𝜈𝜈

(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐻𝐻)2 , ∇𝑥𝑥𝛹𝛹= 1d-08 m/s2, ∇𝑦𝑦𝛹𝛹= 0, , δ = δ(ε), and k0 the 

value of the permeability in the bulk porous medium. Vertical velocity component is zero. A source 
term vector is computed according to the expression of the velocity and the pressure gradient, in 
order to set to zero the momentum equation (2). We assume a hyperbolic variation of the 
permeability and porosity inside the TL, as in Eq. (4),  

𝑘𝑘(𝐱𝐱) = 1
2
�(1 − 𝑘𝑘0)𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + (1 − 𝑘𝑘0)�   𝜀𝜀(𝐱𝐱) = 1

2
�(1 − 𝜀𝜀0)𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + (1 − 𝜀𝜀0)� (4), 

where the distance dist from the midline of the TL is shown in Fig. 1 and k0 = 1d-06 m2. Two 
studies have been performed, assuming two values of the Reynolds number (Re), computed 
according to the maximum velocity in the ff region and the depth (ymax – H). The first study 
concerns the effect of the mesh refinement, without any special regard to the size and discretization 
of the TL. We set the size of the TL equal to ymax/1000. Results are summarized in tables 1,a-1,b 
of Fig. 2, in terms of L2 norm of absolute and relative errors of the numerical solution compared 
to the analytical one in Eqs. (3). As expected, the convergence order is almost 1, due to the spatial 
approximation order of the velocity inside each triangle. The second study concerns the effect of 
the size of the TL, and the L2 norms of the errors of the velocity have been reported in tables 2,a-
2,b of Fig. 2. According to the definition of the velocity profile (in Eqs. (3)), function of the bulk 
value of the permeability k0, we expect that the numerical solution converges to the exact one 
reducing the size of the TL. This is confirmed from the results in tables 2. 

 

 
Figure 1. Test 1. Definition sketch 
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Figure 2. Test 1. Errors and study of the convergence order 

2. Test 2. Free fluids over a porous obstacle. Isotropic and anisotropic cases 
The geometry for this test is reported in Fig. 3. The working fluid is air. We set a pressure drop Ψ1 
– Ψ2 = 1d-06 m2/s2.. The permeability matrix K in the (bulk) porous medium is defined as  

𝐊𝐊 = 𝐑𝐑𝐑𝐑𝐑𝐑−𝟏𝟏            𝐑𝐑 = �𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 −𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 �         𝐀𝐀 = �𝑘𝑘 𝛽𝛽⁄ 𝟎𝟎

𝟎𝟎 𝑘𝑘
�                      (5), 

with angle α defined in figure 3. The porosity in the porous medium is 0.4. We compare the results 
of the ODA solver with the DuMux TDA solver [8]. DuMux applies a monolithic approach, where 
the Navier-Stokes equations for the ff region and the Darcy equations for the pm are solved, along 
with the interface conditions (IFCs), are solved in one large system. The IFCs impose the equality 
of fluxes and momentum fluxes in the ff and pm regions along the normal direction to the interface, 
as well as the BJC for the velocity along the tangential direction to the interface.  

For the ODA simulation, the mesh sizes range from 1d-05 m inside the TL to 2.5 d-02 m in the 
ff and pm bulk regions (see in figure 3 the zoom close to the TL region). For the DuMux simulation, 
a structured mesh is used to discretize the domain, with constant size 1d-04 m. We assumed a 
hyperbolic variation of porosity and permeability parameters, as in the previous test. We performed 
simulations assuming both isotropic and anisotropic porous obstacle.  

For the isotropic case, we set α = 0 and k = 1d-08 m2 in Eq. (5) and, for the ODA simulations, 
we assume two sizes of the TL, 1d-04 m and 5d-04 m. Due to the obstacle, a “channelized” flow 
is established above the porous medium, as shown in Fig. 4,a where we plot the flow field 
computed by the ODA solver. Similar overall results are given by the TDA solver (not shown for 
brevity). In Fig. 4,b-4,c, we compare, in the region close to the TL region, the velocity components 
along the vertical lines in the middle and at the upstream (left) side of the porous obstacle. Observe 
the differences, in the ODA solutions, due to the size of the TL, and the jump of the velocity 
component parallel to the interface in the DuMux results, due to the IFCs. Along the upstream side 
of the obstacle, the two solvers compute vertical velocity component v with opposite sign.  

In the case of anisotropic obstacle, we set in Eq. (5) α = - π/4, k = 1d-06 m2 and coefficient β = 
100. The size of the TL for the ODA model is 5d-04 m. In Fig. 5,a we plot the velocity vectors 
computed by the ODA solver. Similar overall results are given by the TDA solver. In Fig. 5,b we 
show the differences of the velocity components along the vertical right boundary of the obstacle 
in the TL region. Observe the different sign of the u component. Interesting is the comparison of 
the pressure fields (in Fig. 5.c), The ODA solver computes local maxima and minima along the 
upstream and downstream sides of the obstacle, respectively, while DuMux computes almost 
constant pressure values upstream and downstream the porous medium.    

Table 2,a Re 1.5

Table 2,b  Re 150

Effect of the size of the transition layer

TL size [m] L2 ass err L2 rel err convergenconvergen
0.02 2.80E-05 8.863378

0.005 1.30E-05 4.154056 1.11E+00 1.09E+00
0.00125 6.11E-06 2.022567 1.09E+00 1.04E+00

0.0003125 2.90E-06 0.9868 1.08E+00 1.04E+00

TL size [m] L2 ass err L2 rel err convergenconvergen
0.02 2.99E-05 9.054097

0.005 1.40E-05 4.259854 1.09E+00 1.09E+00
0.00125 6.70E-06 2.129765 1.07E+00 1.00E+00

0.0003125 3.20E-06 1.030066 1.07E+00 1.05E+00

   

   

    

mesh linear size [m] L2 ass err L2 rel err convergence convergence
0.016 3.42E-05 1.57E+01
0.008 1.71E-05 7.457924 1.00E+00 1.07E+00
0.004 8.26E-06 3.5568935 1.05E+00 1.07E+00
0.002 3.99E-06 1.70490455 1.05E+00 1.06E+00

mesh linear size [m] L2 ass err L2 rel err convergence convergence
0.016 3.61E-05 1.59E+01
0.008 1.73E-05 7.90083 1.06E+00 1.01E+00
0.004 8.63E-06 3.789456 1.01E+00 1.06E+00
0.002 4.20E-06 1.833356788 1.04E+00 1.05E+00
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Figure 3. Test 2. Definition sketch. Boundary conditions, zoom of the mesh 

 
Figure 4. Test 2. Isotropic porous obstacle. a) velocity field, ODA solver. b) u component 

vertical midline of the obstacle. c) u and v components upstream side of the obstacle 

 
Figure 5. Test 2. Anisotropic porous obstacle. a) velocity field of ODA solver. b) u and v 
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Conclusions  
We have presented a new ODA numerical solver for the simulation of the interaction of free fluid 
over and inside a porous medium. This is a new research activity and we are aware that a lot of 
work have to be still done. According to the preliminary results shown in this paper, in-deep 
investigation deserves the role of the transition layer at the interface between the fluid and porous 
regions, along with its size and position. In the literature, there is a lack of studies regarding the 
comparison of the solutions provided by ODA and TDA models. Overall agreement has been 
obtained of the computed velocity fields far from the interfaces. Important differences of flow 
velocity and pressure fields have been obtained by the two approaches close to the transition layer. 
Prediction of transport phenomena of heat and species at interfaces could be strongly affected by 
the solutions of the velocity and pressure.   
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