
ar
X

iv
:2

31
0.

19
68

9v
1 

 [
m

at
h-

ph
] 

 3
0 

O
ct

 2
02

3

An operational point of view to the theory of

multi-variable/multi-index Hermite polynomials

Giuseppe Dattoli1, Silvia Licciardi2, and Elio Sabia∗1

1ENEA—Frascati Research Center, Via Enrico Fermi 45, 00044

Rome, Italy; pinodattoli@libero.it; elio.sabia@gmail.com
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Abstract

The use of algebraic tools of operational and umbral nature is exploited
to develop a new point of view and to extend the theory of Hermite
polynomials, with more than one variable also of complex nature. The
techniques we adopt includes multivariable/many index Hermite- Kampè-
dè-Fèrièt polynomials of order two and higher. It will be shown that the
treatment, foreseen here, simplifies the study of the relevant properties
and the associated computational technicalities.

1 Introduction

Two variable Hermite – Kampè –dè Fèrièt (HKdF) polynomials of order
2 [1]

Hn(x, y) = n!

⌊n
2
⌋

∑

r=0

xn−2ryr

(n− 2r)!r!
(1)

with generating function

∞
∑

n=0

tn

n!
Hn(x, y) = ext+yt2 (2)

have been shown to be characterized by a wealth of properties [1], [2],
which have provided a significantly simplifying tool to study their prop-
erties, get a more thorough understanding of the underlying theory and
enter deeply into the their link with other families of special polynomials
and functions [3]. The ordinary counterparts are just a particular case of
the HKdF and indeed we have [4]

Hn(x,−
1

2
) = Hen(x)

Hn(2x,−1) = Hn(x)
(3)

∗corresponding author
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From eq. (1) we find that, by keeping y = 0, the polynomials reduce the
corresponding monomial in x, namely

Hn(x, 0) = xn (4)

More in general it has also been shown that they are quasi-monomials [5]
according to the relationships

P̂Hn(x, y) = nHn−1(x, y)

M̂Hn(x, y) = Hn+1(x, y)
(5)

Where P̂ , M̂ are derivative and multiplicative operators defined as

P̂ = ∂x

M̂ = x+ 2y∂x

(6)

and eventually yields the relevant differential equations satisfied by this
family of polynomials

M̂P̂Hn(x, y) = nHn(x, y) (7)

which, in differential form, reads

x∂xHn(x, y) + 2y∂2
xHn(x, y) = nHn(x, y) (8)

If y is treated as an ordinary constant (keeping e. g. y = −1/2) eq. (8)
reduces to the second order ODE

z′′ − xz′ + nz = 0

z(x) = Hen(x)
(9)

The HKdF polynomials have also appeared in the mathematical literature
under the name of Heat polynomials [6], since they are a “natural” solution
of the Heat equation

∂yHn(x, y) = ∂2
xHn(x, y)

Hn(x, 0) = xn (10)

The previous equation is a straightforward Cauchy problem, which yields,
as corollary, the following operational definition [2]

Hn(x, y) = ey∂
2

xxn (11)

The higher order Hermite [2]

H(m)
n (x, y) = n!

⌊ n
m

⌋
∑

r=0

xn−mryr

(n−mr)!r!
(12)

with generating function

∞
∑

n=0

tn

n!
H(m)

n (x, y) = ext+ytm (13)

satisfy the generalized heat equation [2],[6]
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∂yH
(m)
n (x, y) = ∂m

x H(m)
n (x, y)

H(m)
n (x, 0) = xn

(14)

and the operational definition

H(m)
n (x, y) = ey∂

m
x xn (15)

In this article, we discuss the extension of the previous properties to the
case of Hermite polynomials with complex variables. We start by consid-
ering polynomials of the type

Hn(z, y) → z = x1 + ix2 ∈ C, y ∈ R

Hn(z,w) → z = x1 + ix2 ∈ C,w = y1 + iy2 ∈ C
(16)

namely, order 2 HKdF with one complex and one real and with to complex
variables. The first family (with y a negative constant) has been used to
present a deeper formulations of the theory of coherent states[7][8][9]. It is
evident that, a natural extension of the operational definition in eq. (11),
yields

Hn(z, y) = eix2∂x1Hn(x1, y) = eix2∂x1
+y∂2

x1xn
1 (17)

which can be exploited to derive the relevant generating function (namely
the same in eq.(1) with z instead of x) and the alternative definition in
terms of series 1

Hn(z, y) = n!

n
∑

r=0

Hr(ix2, y)

r!(n− r)!
xn−r
1 (18)

Before going further into specific details, we provide an idea of the for-
malism we are going to apply, by studying examples of how the previous
notions are helpful in computations. We consider therefore the following
one dimensional improper integral

In(x, b) =

∫ +∞

−∞
Hn(x, y)e

−by2

dy

Re(b) > 0

(19)

and use the operational definition in eq.(11) to rewrite the previous inte-
gral as

In(x, b) = Ê(y, b)xn

Ê(y, b) =

∫ +∞

−∞
ey∂

2

xe−by2

dy
(20)

The operator Ê(y, b) when acting on the monomial xn , defines a fur-
ther family of Hermite and can be worked out in a non-integral form, by
treating it as a conventional Gaussian integration, namely by keeping the
second derivative in the exponential as an ordinary constant and obtaining

1Note that e
ix2∂x1

+y∂2

x1 =
∑∞

r=0
Hr(ix2,y)

r!
∂r
x1
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Ê(y, b) =

√

π

b
e

1

4b
∂4

x (21)

Therefore, on account of the previous (15), we eventually find

In(x, b) =

√

π

b
e

1

4b
∂4

xxn =

√

π

b
H(4)

n

(

x,
1

4b

)

(22)

The conclusion we have just obtained can be stated with other means,
but the procedure, we have followed is remarkable, in its simplicity.
The second example involves the evaluation of integrals of a complex two
variable Hermite, namely

In(δ1, δ2, a, b, y) =

∫ +∞

−∞
Hn(x1+δ1+i(x2+δ2), y)e

−ax2

1
−bx2

2dx1dx2 (23)

(note that we have indicated the double integral with
∫ +∞
−∞ F (x1, x2)e

−ax2

1
−bx2

2dx1dx2

instead of using
∫

R2 F (x1, x2)e
−ax2

1
−bx2

2dx1dx2)
which can be worked out by the use of the generating function method,
developed in [2]. Multiplying indeed both sides of (23) by tn and summing
up over the index n, we find

∞
∑

n=0

tn

n!
In(δ1, δ2, a, b, y) = e(δ1+iδ2)t+yt2

∫ +∞

−∞
e(x1+ix2)te−ax2

1
−bx2

2dx1dx2 =

=
π√
ab

e(δ1+iδ2)t+(y+ 1

4a
− 1

4b )t
2

(24)

The exponential function on the rhs of the previous identity can be ex-
panded in HKdF of order 2, namely

e(δ1+iδ2)t+(y+ 1

4a
− 1

4b )t
2

=
∞
∑

n=0

tn

n!
Hn

(

δ1 + iδ2, y +
1

4a
− 1

4b

)

(25)

and after equating the t-like powers in eq. (25) we can conclude that

In(δ1, δ2, a, b, y) =
π√
ab

Hn

(

δ1 + iδ2, y +
1

4a
− 1

4b

)

(26)

In order to underscore the implications offered by the formalism, we dis-
cuss the extension of the previous example to the case (same notation as
before for the integral in R3 )

In(δ1, δ2, a, b, c) =

∫ +∞

−∞
Hn(x1+δ1+i(x2+δ2), y)e

−ax2

1
−bx2

2
−cy2

dx1dx2dy

(27)

(note that
∫

R3 F (x1, x2, x3)e
−ax2

1
−bx2

2
−cx2

3dx1dx2dx3 →
→
∫ +∞
−∞ F (x1, x2, x3)e

−ax2

1
−bx2

2
−cx2

3dx1dx2dx3 )
can be evaluated by the use of the same procedure, which eventually yields

4



∞
∑

n=0

tn

n!
In(δ1, δ2, a, b, c) = e(δ1+iδ2)t

∫ +∞

−∞
e(x1+ix2)t+yt2e−ax2

1
−bx2

2
−cy2

dx1dx2dy =

=
π3/2

√
abc

e(δ1+iδ2)t+
1

4
( 1

a
− 1

b )t
2+ 1

4c
t4

(28)

The integral can be written in a closed form, using a slightly more general
form of the previously introduced higher order Hermite. The exponential
function on the rhs of eq. (28) is the generating function of HKdF polyno-
mials of order 4. They are multivariable HKdF, defined by the generating
function [10]

∞
∑

n=0

tn

n!
H(4)

n (x1, x2, x3, x4) = e
∑

4

s=1
xst

s

(29)

where

H(4)
n (x1, x2, x3, x4) = n!

⌊n
4
⌋

∑

r=0

H
(3)
n−4r(x1, x2, x3)x

r
4

(n− 4r)!r!

H(3)
n (x1, x2, x3) = n!

⌊n
3
⌋

∑

r=0

Hn−3r(x1, x2)x
r
3

(n− 3r)!r!

(30)

They satisfy the obvious (but important property)2

H(4)
n (x1, x2, x3, 0) = H(3)

n (x1, x2, x3)

H(4)
n (x1, x2, 0, 0) = Hn(x1, x2)

(31)

According to eqs. (29) and (28), the integral (27) can eventually be written
as

In(δ1, δ2, a, b, y) =
π3/2

√
abc

H(4)
n

(

δ1 + iδ2,
1

4a
− 1

4b
, 0,

1

4c

)

(32)

Let us consider the case of two complex variables and note that

∞
∑

n=0

tn

n!
Hn(z, w) = ezt+wt2 = ex1t+y1t

2

eix2t+iy2t
2

=
n
∑

s=0

Hn(x1, y1|ix2, iy2)

Hn(x1, y1|ix2, iy2) =

n
∑

s=0

(

n

s

)

Hn−s(x1, y1)Hs(ix2, iy2) =

= e−iy2∂
2

x2
+y1∂

2

x1 (x1 + ix2)
n

(33)

and the use of the integration procedure, developed before, leads to

In(δ1, δ2, a, b, c, d) =
π2

√
abcd

H(4)
n

(

δ1 + iδ2,
1

4

b− a

ab
, 0,

1

4

d− c

cd

)

(34)

In this introductory section we have fixed the main lines of the formalism,
we will develop in the forthcoming sections, where it will be exploited
to treat , among the other things, integrals involving products of two
complex variables Hermite polynomials.

2The superscript (2) is not explicitly mentioned, unless specifically needed.
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2 Two-index Complex Hermite

Before entering into the specific details of this section, we introduce the
two index/two variable Hermite, originally proposed by Hermite himself
[11][1] and reformulated, in a different context, in [12][2] where they have
been defined as

Hm,n(x, y; z, w|τ ) = m!n!

min[m,n]
∑

r=0

τ rHm−r(x, y)Hn−r(z, w)

r!(m− r)!(n− r)!

x, y, z, w, τ ∈ C

(35)

The relevant generating function is provided by the following extension of
the single index counterpart

∞
∑

m,n=0

um

m!

vn

n!
Hm,n(x, y; z, w|τ ) = exu+yu2+zv+wv2+τuv (36)

where “tau” has the role of entanglement between the couple of variables
(x, y) and (z,w). In operational form the polynomials in eq. (35) can be
written as

Hm,n(x, y; z, w|τ ) = ey∂
2

x+w∂2

yhm,n(x, z|τ )

hm,n(x, z|τ ) = m!n!

min[m,n]
∑

r=0

τ rxm−rzn−r

r!(m− r)!(n− r)!

hm,n(x, z|τ ) = eτ∂x,y(xmyn)

(37)

where hm,n(x, z|τ ) are the incomplete Hermite polynomials discussed in
[13][14].
These elementary properties are useful for practical purposes. Let us now
consider the integral

Im,n(δ, η, y,w, a) =

∫ +∞]

−∞
Hm(x+ δ, y)Hn(x+ η,w)e−ax2

dx

Re(a) > 0, δ, η, y,w ∈ C

(38)

and note that it can be explicitly worked out by the use of the previously
foreseen procedure, employing the generating function method. We find
indeed

∞
∑

m,n=0

um

m!

vn

n!
Im,n(δ, η, y,w, a) = eyu

2+wv2+δu+ηv

∫ +∞

−∞
e−ax2+x(u+v)dx =

√

π

a
eδu+ηv+(y+ 1

4a )u
2+(w+ 1

4a )v
2+uv

2a

(39)

And eventually

Im,n(δ, η, y, w, a) =

√

π

a
Hm,n

(

δ, y +
1

4a
; η,w +

1

4a
| 1
2a

)

(40)
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The extension of the previous result to the complex Hermite case is simply
given by

Im,n(δ1, δ2, y1, y2, a, b) =

=

∫ +∞

−∞
Hm(x1 + δ1 + i(x2 + δ2), y1)Hn(x1 + δ1 + i(x2 + δ2), y2)e

−ax2

1
−bx2

2dx1dx2

Re(a), Re(b) > 0

(41)

Which in terms of multi-index Hermite reads

Im,n(δ1, δ2, y1, y2, a, b) =

=
π√
ab

Hm.n

(

δ1 + iδ2, y1 +
1

4

b− a

ab
, δ1 + iδ2, y2 +

1

4

b− a

ab
|1
2

b− a

ab

)

(42)

This is a general result, which follows from the request of convergence of
the integral, ensured by the conditions on the constants a, b.
In the case in which the Hermite’s appearing in the definition of the inte-
gral in eq.(34) are the ordinary family we have the correspondence

Hn(2x,−1) = 2nHn

(

x,−1

4

)

(43)

And, if the following conditions are satisfied

Re(a), Re(b) > 0, 0 < a < b;
1

a
= 1 +

1

b
, δ1,2 = 0 (44)

we find, on account of eqs. (39)(41) the “orthogonality” identity

Im,n

(

0, 0,−1

4
,−1

4
, a, a

)

= π
2−nn!

a
√

1
1−a

δm,n

δm,n ≡ Kronecker delta

(45)

a result already well-established in the literature (see [9] and references
therein).
We can now play with the operational rules, we established before, to
work out Gaussian integrals involving two index Hermite. Regarding e.
g. the two index case, the use of operational rule (37), allows to transform
the integral

Im,n(x, z; a, b|τ ) =
∫ +∞

−∞
Hm,n(x, y; z, w|τ )e−ay2−bw2

dydw (46)

into

Im,n(x, z; a, b|τ ) =
∫ +∞

−∞
ey∂

2

x+w∂2

z e−ay2−bw2

dydw hm,n(x, z|τ ) (47)

The use of the previously outlined integration procedure, yields

7



Im,n(x, z; a, b|τ ) = π√
ab

e
1

4
( 1

a
∂4

x+
1

b
∂4

z)hm,n(x, z|τ ) = π√
ab

H(4,4,1)
m,n

(

x,
1

4a
; z,

1

4b
|τ
)

(48)
The explicit form of the (4,4,1) polynomials of order m,n is obtained quite
straightforwardly by the use of the operational identity (15), namely

H(4,4,1)
m,n (x1, x2;x3, x4|τ ) = m!n!

min[m,n]
∑

r=0

τ rH
(4)
m−r(x1, x2)H

(4)
n−r(x3, x4)

r!(m− r)!(n− r)!

(49)
A further use of the previous formalism allows the derivation of the inte-
gral reported below including Gaussian integration on complex variables.
Namely

∫ +∞

−∞
Hm(x1, y1 + iy2)Hn(x2, y1 − iy2)e

−ay2

1
−by2

2dy1dy2 =

=

∫ +∞

−∞
e(y1+iy2)∂

2

x1
+(y1−iy2)∂

2

x1
−ay2

1
−by2

2dy1dy2(x
m
1 xn

2 )

(50)

By applying the same procedure as before, namely performing the Gaus-
sian integrals by treating second derivatives as ordinary algebraic quanti-
ties, we end up with

∫ +∞

−∞
Hm(x1, y1 + iy2)Hn(x2, y1 − iy2)e

−ay2

1
−by2

2dy1dy2 =

=
π√
ab

H(4,4,2)
m,n

(

x1,
1

2
σ−;x2,

1

2
σ−|σ+

)

σ± =
1

2

(

1

a
± 1

b

)

H(4,4,2)
m,n (x1, x2;x3, x4|τ ) = m!n!

min[⌊m
2
⌋,⌊n

2
⌋]

∑

r=0

τ rH
(4)
m−2r(x1, x2)H

(4)
n−2r(x3, x4)

r!(m− 2r)!(n− 2r)!

(51)

In this section we have accomplished some steps towards the integration of
Gaussian integrals containing different forms of Hermite like polynomials,
with real and complex variable. In the forthcoming sections we move to
more advanced computations.

3 Umbral formalism for complex Hermite

Before entering the main topic of this section we prefer to use the argu-
ment we have discussed so far to introduce the Hermite-umbral formalism.
In the previous sections we defined multi-variable (> 2)/one index Her-
mite, they satisfy the evolutionary PDE

∂x1
H(m)

n (x1, x2, ..., xm) =
m
∑

s=2

∂s
xs
H(m)

n (x1, x2, ..., xm)

H(m)
n (x1, 0, ..., 0) = xn

(52)
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and thus they can be expressed in terms of the operational identity

H(m)
n (x1, x2, ..., xm) = e

∑m
s=2

∂s
xsxn (53)

It is evident that this property too can be exploited to treat families of
Gaussian integrals involving HKdF and more advanced forms.
As starting example of this section, we consider the integral

In(δ, a, b) =

∫ +∞

−∞
Hn(x+ δ, y)e−ax2−by2

dxdy (54)

and use the operational notation to write it as

In(δ, a, b) =

∫ +∞

−∞
e−ax2

Φn(x, δ)dx

Φn(x, δ) =

∫ +∞

−∞
e−by2−y∂2

xdy(x+ δ)n
(55)

The function Φn(x, δ) is easily derived as indicated below

Φn(x, δ) =

√

π

b
e

1

4b
∂4

x(x+ δ)n = H(4)
n

(

x+ δ,
1

4b

)

=

√

π

b
ex

∂
∂δ H(4)

n

(

δ,
1

4b

)

=

=

√

π

b
e
x ∂

∂δ
+ 1

4b
∂4

∂δ4 δn

(56)

Therefore, in conclusion, we obtain

In(δ, a, b) =

√

π

b

∫ +∞

−∞
e−ax2

e
x ∂

∂δ
+ 1

4b
∂4

∂δ4 dxδn =

=
π√
ab

e
1

4a
∂2

∂δ2
+ 1

4b
∂4

∂δ4 δn =
π√
ab

H(4)
n

(

δ,
1

4a
, 0,

1

4b

)
(57)

A more advanced example is just given by

In(δ, a1, a2, a3) =

∫ +∞

−∞
H(3)

n (x1 + δ, x2, x3)e
−a1x

2

1
−a2x

2

2
−a3x

2

3dx1dx2dx3 =

=

√

π3

a1a2a3
H(6)

n

(

δ,
1

4a1
, 0,

1

4a2
, 0,

1

4a3

)

(58)

amenable for a straightforward generalization to the n− th variable case.

In ref. [15] it has been shown that the umbral formalism (for an intro-
duction to the umbral indicial technicalities see [16]) allows to cast the
Hermite polynomials in the form of a Newton binomial, namely

Hn(x, y)) = (x+y ĥ)nϕ0

yĥ
rϕ0 =

r!

Γ
(

r
2
+ 1
)y

r
2

∣

∣

∣
cos
(rπ

2

)∣

∣

∣

(59)

An analogous treatment has been exploited in a recent interesting paper
(see ref. [17]) where the third order HKdF have been written in umbral

9



form by the use of an extension of the operator yĥ
r written in terms of

circular functions.
In this article we introduce the umbral operator defined as

H(m)
n (x, y)) = (x+ ĥm

m
√
y)nϕ0

ĥr
mϕ0 =

r!

Γ
(

r
m

+ 1
)δm⌊ r

m
⌋,r

(60)

and write the m− th order Hermite according to

H(m)
n (x, y)) = (x+ m

√
yĥm)nϕ0 =

n
∑

r=0

(

n

r

)

xn−ry
r
m ĥr

mϕ0 =

=
n
∑

r=0

(

n

r

)

xn−r r!

Γ
(

r
m

+ 1
)y

r
m δm⌊ r

m
⌋,r =

n
∑

r=0

(

n

mr

)

xn−mr (mr)!

Γ(r + 1)
yr

(61)

which, clearly, coincides with the definition we have already given in the
previous section.
It is furthermore worth noting that ĥr

2ϕ0 are the well-known Hermite num-
bers [18] (OEIS -A067994), ĥr

3ϕ0 (the third order Hermite numbers) are
listed in OEIS as sequence A101109, the higher order sequences ĥr

m>3ϕ0

are (apparently) not yet listed in OEIS.
It is furthermore evident that the operational definition in terms of expo-
nential operators now reduces to a straightforward variable shift identity

H(m)
n (x, y) = e

m√yĥm∂xxnϕ0 (62)

If we accept the umbral definition, the complex Hermite can be written
as

H(m)
n (x1+ix2, y) = (x1+ix2+ m

√
yĥm)nϕ0 = e

m√yĥm∂z (x1+ix2)
nϕ0 (63)

which can simplify the study of the relevant formal properties.
Regarding e. g. the derivative of the polynomials (63) with respect to the
variable y, we find

∂yH
(m)
n (z, y) =

n

m
y

1−m
m ĥm(z + m

√
yĥm)n−1ϕ0 (64)

On the other side it is evident that, by the use of the definition (59), we
end up with

e
m√yĥm∂zznϕ0 = e

m√yĥm∂zϕ0z
n = ey∂

m
z zn (65)

Before closing this article we consider worth to go back to the incom-
plete Hermite (34) (37), which have been exploited to deal with complex
variable, defined

hm,n(z, z̄|τ ) = m!n!

min[m,n]
∑

r=0

τ rzm−r z̄n−r

r!(m− r)!(n− r)!

z = x1 + ix2, z̄ = x1 − ix2

(66)

The quantity τ is usually assumed to be 1, here we consider it to be
a variable, possibly complex. Albeit a particular case of the two index

10



Hermite, they were studied, in more recently times, by Ito [13] and later
by other authors [19]. If note that

zz̄ = x2
1 + x2

2

∂z,z̄ =
1

4
(∂2

x1
+ ∂2

x2
)

(67)

we argue from the second of eqs. (37) that they are solutions of the
diffusive equations

∂τhm,n =
1

4
(∂2

x1
+ ∂2

x2
)hm,n (68)

According to the use of the operational methods discussed so far it is
straightforward to conclude that

∫ ∞

−∞
e−ax2

1
−bx2

2hm,n(x1 + ix2, x1 − ix2|τ )dx1dx2 =

=
π√
ab

Hm,n

(

0,
1

4

a− b

ab
, 0,

1

4

a− b

ab
|τ +

1

2

a+ b

ab

) (69)

A further element of discussion we like to underscore is that of integrals in-
cluding products of Hermite polynomials, Gaussian and Bessel functions.
We start therefore by considering the example

JIn(x, a) =

∫ +∞

−∞
e−ay2

Jn(x, y)dy (70)

where Jn(x, y) is a two variable Bessel function [3] specified by the follow-
ing series expansion and generating function

Jn(x, y) =
+∞
∑

l=−∞
Jn−2l(x)Jl(y)

+∞
∑

n=−∞
tnJn(x, y) = e

x
2
(t− 1

t )+
y
2

(

t2− 1

t2

)

Jn(z) =

∞
∑

r=0

(−1)r
(

x
2

)n+2r

r!(n+ r)!
≡ n-th cylindrical Bessel function

(71)

The use of the previously outlined methods, yields

+∞
∑

n=−∞
tn JIn(x, y) = e

x
2
(t− 1

t )
∫ +∞

−∞
e−ay2

e
y
2

(

t2− 1

t2

)

dy =

=

√

π

a
e

x
2
(t− 1

t )+
1

16a

(

t2− 1

t2

)

2

(72)

In order to get a definitive result, further comments are needed. We
remind therefore that the generating function given below

11



e
x
2
(t− 1

t )+
y
2

(

t4+ 1

t4

)

=

+∞
∑

n=−∞
tnJI(4)n (x, y)

JI(4)n (x, y) =

+∞
∑

l=−∞
Jn−4l(x)Il(y)

In(y) =
∞
∑

r=0

(

y
2

)n+2r

r!(n+ r)!
≡ modified Bessel of first kind

(73)

Thus finding from eq. (72)

JIn(x, a) =

√

π

a
e−

1

8a JI(4)n

(

x,
1

8a

)

(74)

Within the context of generalized multivariable Bessel an important role
is played by the so called Hermite Bessel functions [3] defined by the
operational identity

HJn(x, y) = ey∂
2

xJn(x) =

=

∞
∑

r=0

(−1)r

2n+2r

Hn+2r(x, y)

r!(n+ r)!

(75)

The last example, we consider worth to discuss in order to stress the
flexibility of the method, is

JGHIn,m(x, z, a) =

∫ +∞

−∞
e−ay2

Hn(x, y)HJm(z, y)dy (76)

and can be explicitly worked out as

JGHIn,m(x, z, a) =

∫ +∞

−∞
e−ay2

ey(∂
2

x+∂2

z)dy xnJm(z) =

=

√

π

a
e

1

4a
(∂2

x+∂2

z)
2

(xnJm(z))

(77)

The final result is provided by the action of the exponential operators on
a monomial and on a Bessel function. We note first that

e
1

4a
(∂2

x+∂2

z)
2

(xnzm) = H(4,4,2)
n,m

(

x,
1

4a
; z,

1

4a
| 1
2a

)

=

= m!n!

min(⌊m
2

⌋,⌊n
2
⌋)

∑

r=0

(

1

2a

)r H
(4)
n−2r

(

x, 1
4a

)

H
(4)
m−2r

(

z, 1
4a

)

r!(n− 2r)!(m− 2r)!

(78)

therefore, in conclusion, we end up with

JGHIn,m(x, z, a) =

√

π

a

∞
∑

s=0

(−1)s

2m+2ss!(n+ s)!
H

(4,4,2)
n,m+2s

(

x,
1

4a
; z,

1

4a
| 1
2a

)

(79)
The last points we have touched on yields an idea of how wide are the
implication offered by the methods, we have foreseen so far.
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In this article we have shown that much progress can be done on the
study of different families of Hermite polynomials, by the use of methods
developed in the course of the last years. These techniques have benefit-
ted from the contributions grown in different math field of researches and
have also been shown to be a powerful tool in applications [2][20][21] are
within the framework of a reformulation of special functions and polyno-
mials in terms of different types of operational methods, including those
of umbral nature.
In a forthcoming paper we will apply the methods, we have outlined here,
to problems associated with the non-paraxial evolution of elliptical Gaus-
sian beams. An example in this direction is the recently published article

in [22], where it has been shown that operators of the type eα∂2

x , with α
being a complex variable, play a central role in the study of the solution
of the Helmholtz equation (see also [21]).
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