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Abstract. In this paper, convergence theorems involving convex inequal-
ities of Copson’s type (less restrictive than monotonicity assumptions)
are given for varying measures, when imposing convexity conditions on
the integrable functions or on the measures. Consequently, a continuous
dependence result for a wide class of differential equations with many in-
teresting applications, namely measure differential equations (including
Stieltjes differential equations, generalized differential problems, impul-
sive differential equations with finitely or countably many impulses and
also dynamic equations on time scales) is provided.
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1. Introduction

Convergence results for varying measures have significant applications to var-
ious fields of pure and applied sciences including stochastic processes, statis-
tics, control and game theories, transportation problems, neural networks,
signal and image processing (see, for example, [2,5–8,15,20,24,28,34]).

E.T. Copson in [4], weakening the monotonicity of a sequence of real
numbers by changing it in a convex inequality involving k consecutive terms
of the sequence, gave a sufficient condition to guarantee the convergence of
bounded sequences of real numbers.
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Recently, following this idea, in [23] the classical Monotone Convergence
Theorem has been generalized by changing the monotonicity with a convexity
condition on the involved functions.

In the present paper, we go further and continue the investigation s-
tarted in [11,14–17,21,22,25,32], providing conditions to ensure convergence
results for a sequence of functions (fn)n integrable with respect to the mea-
sures of a sequence (mn)n, when the functions satisfy a convexity condition. If
the sequence of measures (mn)n satisfies a convexity condition, convergence
theorems for the integrals are obtained as well.

The paper is organized as follows.
In Sect. 2, after the Introduction, convergence theorems for varying

measures are given when the sequence of functions (fn)n satisfies inequalities
of Copson’s type (in both increasing or decreasing manners) and the sequence
of measures is setwisely or weakly convergent.

In Sect. 3, the convergence of the sequence
(∫

Ω
fdmn

)
n

under a con-
vexity condition on the sequence of measures (mn)n is obtained, when again
(mn)n converges in setwise sense.

Finally, Sect. 4 provides a continuous dependence result for measure dif-
ferential equations under Copson’s type assumptions on the measures driving
the equations. Such outcomes are important in applications since they allow
one to approximate the solutions of a differential problem driven by a general
finite Borel measure by solutions of differential problems driven by measures
with nicer behavior (e.g. [13], [33] or [9], [10], [31] for the more general, set-
valued setting).

Measure differential equations (which can be equivalently written as
Stieltjes differential equations, see [19], [27]) proved themselves very useful in
studying real life processes with dead times or abrupt changes occurring in
their dynamics, e.g. [1], [19] or [29].

We remark that the main theorem of this section, proved for measure
differential equations, could be used to get new continuous dependence re-
sults for generalized differential problems ( [33]), for impulsive differential
equations with finitely or countably many impulses ( [19], [33]) and also for
dynamic equations on time scales ( [13]).

2. Convergence Results Under Convexity Conditions on the
Functions

Let (Ω,A) be a measurable space and we denote by M+(Ω) the family of
finite nonnegative measures on (Ω,A). Let m, mn ∈ M+(Ω) for n ∈ N and
let f, fn : Ω → R, for n ∈ N, be measurable functions. The symbol L1(m)
stands for the family of Lebesgue integrable functions with respect to (briefly
w.r.t. ) the measure m while

∫
A

fdm is the Lebesgue integral of f over a set
A ∈ A.

We recall the following result.
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Lemma 2.1. ([4], [23, Lemmas 1, 2]) Let (xn)n be a sequence of real numbers
which satisfies the inequalities

xn+k ≥
k∑

j=1

αjxn+k−j , for all n ≥ 1 (1)

(xn+k ≤ ∑k
j=1 αjxn+k−j , for all n ≥ 1, respectively), where k is a fixed

positive integer, the coefficients αj are strictly positive and
∑k

j=1 αj = 1.
Then the sequence yn = min{xn−1, . . . , xn−k}, n ≥ k + 1, is increasing

(yn = max{xn−1, . . . , xn−k}, n ≥ k+1 is decreasing, respectively). Moreover,
if the sequence (xn)n satisfies (1) and if λ = limn→∞ xn then xn ≤ kλ for
all n ≥ 1.

In the whole Section we will consider a sequence of functions (fn)n

satisfying

fn+k(x) ≥
k∑

J=1

αjfn+k−j(x), for all n ≥ 1, x ∈ Ω, (2)

or, respectively, the reverse inequalities

fn+k(x) ≤
k∑

j=1

αjfn+k−j(x), for all n ≥ 1, x ∈ Ω, (3)

where k is a fixed positive integer, the coefficients αj are strictly positive and∑k
j=1 αj = 1.

2.1. Setwisely Convergent Measures

We are now giving convergence theorems with convexity conditions on the
functions and setwise converging measures.

We recall that a sequence (mn)n converges setwisely to m (mn
s−→ m) if

for every A ∈ A
lim

n→∞mn(A) = m(A)

([21, Sect. 2.1], [17, Definition 2.3])

Definition 2.2. Let (mn)n ⊆ M(+Ω). We say that a sequence (fn)n : Ω → R

is uniformly (mn)-integrable on Ω if

lim
α→+∞ sup

n∈N

∫
{|fn|>α}

|fn|dmn = 0. (4)

If fn = f for all n ∈ N, then we say that f is uniformly (mn)-integrable on
Ω.

In the proof of our convergence results, we will use the following propo-
sition:
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Proposition 2.3. ( [11, Proposition 2.10 and Corollary 2.8]) Let (mn)n ⊆
M+(Ω) converge setwisely to m ∈ M+(Ω). Moreover, let f : Ω → R be
uniformly (mn)-integrable on Ω. Then f ∈ L1(m) and for all A ∈ A

lim
n→∞

∫
A

f dmn =
∫

A

f dm. (5)

We show that if (fn)n satisfies a convexity condition of Copson’s type
the convergence holds for the sequence (fn)n, not only for the function f (see
(6) below).

Theorem 2.4. Letfn : Ω → [0, +∞], n ∈ N, be a sequence of measurable
functions satisfying (2) and let m and mn, n ∈ N, belong to M+(Ω). Then
there exists a measurable function f : Ω → [0,+∞] such that limn→∞ fn(x) =
f(x) for all x ∈ Ω. Suppose that

(2.4.i) f is uniformly (mn)-integrable on Ω;
(2.4.ii) (mn)n is setwisely convergent to m.
Then, for all A ∈ A,

lim
n→∞

∫
A

fndmn =
∫

A

fdm. (6)

Proof. According to Copson’s theorem applied to each x ∈ Ω, we can find a
function f : Ω → [0,+∞] such that

lim
n→+∞ fn(x) = f(x) for all x ∈ Ω.

Since each function fn is measurable, the function f is also measurable.
To prove the assertion, it is sufficient to prove the equality (6) for A = Ω.

Fix x ∈ Ω and define for each n ≥ k + 1

gn(x) = min{fn−1(x), . . . , fn−k(x)}.

Now by (2) and Lemma 2.1 it follows that

gn(x) ≤ gn+1(x) ≤ fn(x)

and limn→+∞ gn(x) = f(x).
Therefore, applying the monotone convergence theorem for setwise con-

verging measures ( [17, Corollary 6.2]) to the increasing sequence (gn)n we
get

lim
n→+∞

∫
Ω

gndmn =
∫

Ω

fdm.

Observe that
∫
Ω

fdm ∈ [0,+∞]. If
∫
Ω

fdm = +∞, then since for all n ∈ N

gn(x) ≤ fn(x), passing to the limit we obtain

∫
Ω

fdm = +∞ = lim
n→+∞

∫
Ω

gndmn = lim
n→+∞

∫
Ω

fndmn.

Assume that
∫
Ω

fdm < +∞ and consider hn(x) = min{ln−1(x), . . . , ln−k(x)}
for n > k, where ln(x) =

∑k
j=1 fn−j(x). The sequence (ln)n satisfies the

inequality
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ln+k(x) ≥
k∑

j=1

αj ln+k−j(x), for all n ≥ 1, x ∈ Ω;

therefore, by Lemma 2.1 it follows that (hn)n is an increasing sequence with

lim
n→+∞hn(x) = k · f(x)

for all x ∈ Ω. Moreover, for every n > k

fn−k(x) ≤ hn(x) ≤ k · f(x);

therefore, applying the Dominated Convergence Theorem for varying mea-
sures [30, Proposition 18, p.232] we conclude that

lim
n→∞

∫
Ω

fndmn =
∫

Ω

fdm.

�

If we consider now the decreasing case (3), we have the following

Theorem 2.5. Letfn : Ω → [0, +∞] beasequenceofmeasurable functions
such that (3) holds and let m and mn, n ∈ N, belong to M+(Ω). Then there
exists a measurable function f : Ω → [0,+∞] such that limn→∞ fn(x) = f(x)
for all x ∈ Ω.

Suppose that
(2.5.i) f1, f2, . . . , fk are uniformly (mn)-integrable on Ω and f1, f2, . . . ,

∈ L1(m);fk

(2.5.ii) (mn)n is setwisely convergent to m.
Then, for all A ∈ A,

lim
n→∞

∫
A

fndmn =
∫

A

fdm. (7)

Proof. The existence of f : Ω → [0,+∞] such that limn→+∞ fn(x) = f(x)
for all x ∈ Ω can be proved as in Theorem 2.4. It is sufficient now to show
the equality (7) for A = Ω. Fix x ∈ Ω and define for n ≥ k + 1,

gn(x) = max{fn−1(x), . . . , fn−k(x)}.

By Lemma 2.1, (gn(x))n is a decreasing sequence satisfying

fn−1(x) ≤ gn(x) ≤ gn−1(x) for all n > k;

moreover, by the definition of gn(x) we get

lim
n→+∞ gn(x) = lim

n→+∞ fn(x) = f(x).

Now observe that if f1 and f2 are in L1(m) and are uniformly (mn)-integrable
on Ω, then the same is true for max{f1, f2} = |f1+f2|+|f1−f2|

2 . Therefore, the
function gk+1(x) = max{fk(x), . . . , f1(x)} ∈ L1(m) and it is uniformly (mn)-
integrable.

By Proposition 2.3 it follows that

lim
n→∞

∫
Ω

gk+1dmn =
∫

Ω

gk+1dm.
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Besides, fn(x) ≤ gn+1(x) ≤ gk+1(x) for n > k, so applying the Lebesgue
convergence theorem for setwise convergent measures ( [30, Proposition 18,
p.232]) we get

lim
n→∞

∫
Ω

fndmn =
∫

Ω

fdm.

�

2.2. Weakly Convergent Measures

We are now considering convergence theorems with convexity conditions on
the functions and weakly converging measures.

For the following two results we suppose that Ω is a locally compact
Hausdorff space and A will be its Borel σ-algebra. We denote by Cb(Ω) the
family of all bounded continuous functions on Ω.

We recall that a sequence (mn)n converges weakly to m (mn
w−→ m, [21,

Sect. 2.1]) if ∫
Ω

gdmn →
∫

Ω

gdm, for all g ∈ Cb(Ω).

We have the following

Theorem 2.6. Letfn : Ω → [0, +∞], n ∈ N be a sequence of lower semi-
continuous functions satisfying (2) and let m and mn, n ∈ N, belong to
M+(Ω).Then there exists a measurable function f : Ω → [0,+∞] such that
limn→∞ fn(x) = f(x) for all x ∈ Ω. Suppose that

(2.6.i) f is uniformly (mn)-integrable on Ω;
(2.6.ii) f is continuous;
(2.6.iii) (mn)n is weakly convergent to m.
Then, for all A ∈ A,

lim
n→∞

∫
A

fndmn =
∫

A

fdm. (8)

Proof. The proof follows as in Theorem 2.4, but in this case we have to
apply the monotone convergence theorem for weakly convergent measures (
[17, Theorem 6.1]) when

∫
Ω

fdm = ∞.
If

∫
Ω

fdm < +∞ then, as in the previous result, we have that

fn−k(x) ≤ k · f(x) for all n > k and x ∈ Ω,

and since by (2.6.i) the function f is uniformly (mn)-integrable it follows
that the sequence (fn)n is uniformly (mn)-integrable on Ω. Consequently,
by the Lebesgue convergence theorem for weakly convergent measures ([17,
Corollary 5.1]), we get

lim
n→∞

∫
Ω

fndmn =
∫

Ω

fdm.

�

If condition (3) holds instead, then the following can be proved.
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Theorem 2.7. Let fn : Ω → [0,+∞], n ∈ N, be a sequence of lower semicon-
tinuous functions such that (3) holds and let m and mn, n ∈ N, belong to
M+(Ω).Then there exists a measurable function f : Ω → [0,+∞] such that
limn→∞ fn(x) = f(x) for all x ∈ Ω.

Suppose that
(2.7.i) f1, f2, . . . , fk are uniformly (mn)-integrable on Ω and f1, f2, . . . ,

∈ L1(m);fk

(2.7.ii) f is continuous;
(2.7.iii) (mn)n is weakly convergent to m.
Then, for all A ∈ A,

lim
n→∞

∫
A

fndmn =
∫

A

fdm. (9)

Proof. The proof follows as that of Theorem 2.5. Since

fn(x) ≤ gn(x) ≤ gk+1(x) for all n > k

and since by (2.7i) the function gk+1 is uniformly (mn)-integrable on Ω, it fol-
lows that the sequence (fn)n is uniformly (mn)-integrable as well. Therefore,
applying the Lebesgue convergence theorem for weakly converging measures
( [17, Corollary 5.1]) we deduce that

lim
n→∞

∫
Ω

fndmn =
∫

Ω

fdm.

�

3. Convergence Results for Measures Satisfying Convexity
Conditions

In this section we will consider limit theorems of the following type:∫
Ω

f dmn →
∫

Ω

f dm

where the sequence of measures (mn)n satisfies a convexity condition.
It is known (see [12], p 30) that if (mn)n is a sequence of measures

converging setwise to a set function m, then m is a measure if one of the
following holds:

1) (mn)n is an increasing sequence;
2) (Vitali–Hahn–Saks) m is finite-valued.

We want first to prove that if we substitute the monotonicity condition
by one of the following inequalities of Copson type,

mn+k(A) ≥
k∑

j=1

αjmn+k−j(A), for all n ≥ 1, A ∈ A, (10)

or

mn+k(A) ≤
k∑

j=1

αjmn+k−j(A), for all n ≥ 1, A ∈ A, (11)
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where k is a fixed positive integer, the coefficients αj are strictly positive and∑k
j=1 αj = 1, we still obtain that m is a measure.

Proposition 3.1. Let (mn)n beasequence inM+(Ω) converging setwisely to
a set function m : A → R. If (10) holds then m is a measure.

Proof. Fix A ∈ A and for n ≥ k + 1 let

νn(A) = min{mn−1(A), . . . , mn−k(A)}.

Then νn(A) ≤ mn(A) for each n > k; indeed,

mn(A) ≥
k∑

j=1

αjmn−j(A) ≥
k∑

j=1

αjνn(A) = νn(A).

Moreover, νn(A) ≤ νn+1(A) for all n ∈ N, since

νn+1(A) = min{mn(A), . . . , mn−k+1(A)}
≥ min{mn−k(A), min{mn(A), . . . , mn−k+1(A)}}
= min{mn(A), νn(A)} = νn(A).

Therefore, (νn)n is an increasing sequence of measures, thus it converges to
a measure ν. We want to prove that the sequence (mn)n converges to ν as
well. Fix A ∈ A. If ν(A) → +∞ then as

νn(A) ≤ mn(A) for all n > k,

also mn(A) → +∞. Assume that limn→+∞ νn(A) = ν(A) < +∞. Then for
every ε > 0 there exists nε ∈ N such that whenever n > nε

ν(A) − ε < νn(A) < ν(A).

If 1 ≤ s ≤ k,

mn+s(A) ≥ αsmn(A) +
∑
t�=s

αtmn+s−t(A)

≥ αsmn(A) +
∑
t�=s

αtνn+s(A)

= αsmn(A) + (1 − αs)νn+s(A)
≥ αsmn(A) + (1 − αs)(ν(A) − ε).

For each n > nε there is 1 ≤ s̄ ≤ k for which mn+s̄(A) = νn+k+1(A). Then

ν(A) ≥ νn+k+1(A) = mn+s̄(A) ≥ (1 − αs̄)(ν(A) − ε) + αs̄mn(A)
= mn(A) + (1 − αs̄)(ν(A) − ε − mn(A)).

Also ν(A) − ε < νn(A) ≤ mn(A), so if α is the least of the coefficients αs̄

satisfying

ν(A) ≥ mn(A) + (1 − α)(ν(A) − ε − mn(A)) = αmn(A) + (1 − α)(ν(A) − ε)

we get

αmn(A) ≤ ν(A) − (1 − α)(ν(A) − ε).
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Therefore

mn(A) ≤ ν(A) +
1 − α

α
ε

whence

ν(A) − ε < νn(A) ≤ mn(A) ≤ ν(A) +
1 − α

α
ε.

This implies that the sequence (mn)n setwise converges to ν which is a mea-
sure, and since by hypothesis (mn)n converges to m, it follows that m = ν is
a measure. �

An analogous result holds in the case of the reverse inequality in the
convex combination, assuming that the measures m1, m2, . . . , mk are finite-
valued.

Proposition 3.2. Let (mn)n beasequence inM+(Ω) converging setwise to a
set function m : A → R. If (11) holds and m1, m2, . . . , mk are finite-valued,
m is a measure.

Proof. The proof is similar to that of Proposition 3.1. In this case considering
for n > k νn(A) = max{mn−1(A), . . . , mn−k(A)},

νn(A) ≥ mn(A) and νn(A) ≥ νn+1(A).

Since νk+1(A) = max{mk(A), . . . , m1(A)} is finite-valued, reasoning as be-
fore we obtain that there is a coefficient 0 < α < 1 such that

ν(A) − 1 − α

α
ε ≤ mn(A) ≤ ν(A) + ε

and the thesis follows. �

Besides, a sequence (mn)n for which (10) holds can be shown to satisfy
a domination condition.

Proposition 3.3. Let (mn)n beasequence inM+(Ω) converging setwise to a
set function m : A → R and satisfying (10). Then for all A ∈ A and n ≥ 1,
mn(A) ≤ km(A).

Proof. Fix A ∈ A. For n ≥ k + 1 consider the sequence of measures (νn)n

defined by

νn(A) = mn−1(A) + · · · + mn−k(A).

Then

νn(A) ≥
k∑

j=1

αjmn−1−j(A) + · · · +
k∑

j=1

αjmn−k−j(A)

= α1(mn−2(A) + . . . mn−k−1(A)) + α2(mn−3(A) + . . . mn−k−2(A))
+ · · · + αk(mn−1−k(A) + · · · + mn−2k(A))

=
k∑

j=1

αjνn−j(A)
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so also the sequence (νn(A))n verifies the Copson’s inequality and if for n ≥ k
+ 1

ηn(A) = min{νn−1(A), . . . , νn−k(A)}
then ηn(A) ≤ ηn+1(A) for all n > k, and it follows by Lemma 2.1 that the
sequence ηn(A) is divergent or it converges to some λ(A). If it is divergent
there is nothing to prove, otherwise assume that it is convergent to λ(A) and
so by the previous Proposition 3.1 it follows that λ is a measure and the
sequence (νn)n is also setwise convergent to λ.

On the other hand by Proposition 3.1 the sequence (mn(A))n converges
to m(A), and from the definition of the sequence of measures (νn)n it follows
that λ(A) = km(A).

To prove that mn(A) ≤ km(A), we observe that

ηn(A) = min{νn−1(A), . . . νn−k(A)}
= min{(mn−2(A) + · · · + mn−k−1(A)), . . . , (mn−k−1(A)

+ · · · + mn−2k(A))}
and since the term mn−k−1(A) is an addend in every term we get

mn−k−1(A) ≤ ηn(A) ≤ km(A).

Therefore

mn(A) ≤ ηn+k+1(A) ≤ km(A) for all n ∈ N and A ∈ A
and the thesis follows. �

Now we are able to prove the convergence results of this section.

Theorem 3.4. Letf : Ω → R be a nonnegative measurable function and let
(mn)n be a sequence in M+(Ω) convergent setwisely to a set function m :
A → R and satisfying (10). Then for all E ∈ A

lim
n→+∞

∫
E

fdmn =
∫

E

fdm. (12)

Proof. It is sufficient to prove the equality (12) for E = Ω. For every A ∈ A
and for all n ≥ k + 1 let

νn(A) = min{mn−1(A), . . . , mn−k(A)}.

Then as in Proposition 3.1 we get that the sequence (νn(A))n is increasing
and νn(A) ≤ mn(A) for all n > k. Moreover, the sequence (νn)n converges
to m. So it follows by the convergence theorem for monotone measures ( [21,
Theorem 2.1 (c)]) that

lim
n→+∞

∫
Ω

fdνn =
∫

Ω

fdm.

If
∫
Ω

fdm = +∞, then one can see that

+∞ =
∫

Ω

fdm = lim
n→+∞

∫
Ω

fdνn ≤ lim
n→+∞

∫
Ω

fdmn

and the assertion is proved.
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Assume now that
∫
Ω

fdm < +∞, i.e. f ∈ L1(m). It follows by Proposi-
tion 3.3 that mn(A) ≤ km(A) for all n ∈ N and A ∈ A, also∫

Ω

fd(km) = k

∫
Ω

fdm < +∞;

therefore, the statement follows from [21, Theorem 2.1 (b)] �

For the opposite inequality we have the next result.

Theorem 3.5. Letf : Ω → R be a nonnegative measurable function and let
(mn)n be a sequence in M+(Ω) converging setwise to a set function m : A →
R. Assume that (11) holds and

∫
Ω

fdmj < ∞, for j = 1, . . . , k. Then for all
E ∈ A

lim
n→+∞

∫
E

fdmn =
∫

E

fdm. (13)

Proof. It is sufficient to prove the equality (13) for E = Ω. For every A ∈ A
and for all n ≥ k + 1 let

νn(A) = max{mn−1(A), . . . , mn−k(A)}.

Then as in Proposition 3.2 we get that the sequence (νn(A))n is decreasing
and for all n > k νn(A) ≥ mn(A). Moreover, the sequence (νn)n converges
to the measure m. Also for all n > k∫

Ω

fdνk+1 ≥
∫

Ω

fdνn ≥
∫

Ω

fdmn,

so it follows by [21, Theorem 2.1 (b)] that

lim
n→+∞

∫
Ω

fdmn =
∫

Ω

fdm.

�

4. Application to Measure Differential Equations

We apply in this last section a previously obtained convergence result in order
to get a continuous dependence feature of a measure differential equation

dx(t) = f(t, x(t))dm, x(0) = x0, (14)

where Ω = [0, 1] and A is its Borel σ-algebra, m ∈ M+([0, 1]) and f :
[0, 1] × R

d → R
d.

A function x : [0, 1] → R
d is a solution of this problem if

x(t) = x0 +
∫

[0,t)

f(s, x(s))dm(s) for every t ∈ [0, 1],

where the integral is understood in Lebesgue sense.
We recall that every finite Borel measure on the real line coincides

with the Lebesgue–Stieltjes measure induced by some non-decreasing left-
continuous function (see [3, Theorem 3.21]), consequently looking for solu-
tions in the described sense for such an equation is equivalent to looking for
solutions of a Stieltjes differential equation (we refer to [19] or [27]).
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A global existence and uniqueness result for measure differential equa-
tions under Lipschitz assumptions on the right-hand side, stated for the e-
quivalent formulation with Stieltjes derivative, was given in [19, Theorem 7.3]
(see also [13, Theorem 5.3], [19, Theorem 7.4] for local results). We can also
refer to [33, Theorem 5.4].

Theorem 4.1. Letf : [0, 1] × R
d → R

d satisfy:
i) for every x ∈ R

d, f(·, x) is measurable;
ii) f(·, x0) is Lebesgue-integrable w.r.t. m;
iii) there exists a map L : [0, 1] → [0,+∞) Lebesgue-integrable with respect

to m such that

‖f(t, x) − f(t, y)‖ ≤ L(t)‖x − y‖, for m − a.e. t ∈ [0, 1], x, y ∈ R
d.

Then (14) has a unique solution on [0, 1].

We remind the reader that a function h : [0, 1] → R is called regulated
(we refer to [18] for a detailed discussion on this notion) if there exist

h(t+) = lim
t′→t+

h(t′), for all t ∈ [0, 1), g(s−) = lim
s′→s−

h(s′), for all s ∈ (0, 1].

The following related concept ( [18]) is very useful for getting compactness
for regulated functions; a set F of R

d-valued regulated functions on [0, 1] is
said to be equi-regulated if for every ε > 0 and every t0 ∈ [0, 1] there exists
δ > 0 such that, for all f ∈ F ,

i) ‖f(t) − f(t0−)‖ < ε whenever t0 − δ < t < t0;
ii) ‖f(s) − f(t0+)‖ < ε whenever t0 < s < t0 + δ.

We also recall, for completeness, a recent Gronwall inequality for mea-
sure differential equations.

Theorem 4.2. ([26, Corollary 4.5]) Letu, K, L : [0, 1) → [0, +∞) be such that
L, K · L, u · L are Lebesgue-integrable w.r.t. the measure m ∈ M+([0, 1]). If

u(t) ≤ K(t) +
∫

[0,t)

L(s)u(s)dm(s), for every t ∈ [0, 1),

then

u(t) ≤ K(t) +
∫

[0,t)

K(s)L(s)e
∫
[s,t) L(τ)dm(τ)dm(s), for every t ∈ [0, 1).

We present now the main result of this section on the behavior of the
solution of (14) when the measure m is varying.

Theorem 4.3. Let f : [0, 1] × R
d → R

d satisfy:

i) for every x ∈ R
d, f(·, x) is measurable;

ii) f(·, x0) ∈ L1(m);
iii) there exists a map L : [0, 1] → [0,+∞) Lebesgue-integrable with respect

to m such that

‖f(t, x) − f(t, y)‖ ≤ L(t)‖x − y‖, for all t ∈ [0, 1], x, y ∈ R
d;
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iv) there exists a map M : [0, 1] → [0,+∞) Lebesgue-integrable with respect
to m such that

‖f(t, x)‖ ≤ M(t), for all t ∈ [0, 1], x ∈ R
d.

Let (mn)n be a sequence in M+([0, 1]) setwise convergent to m ∈ M+

([0, 1]) and satisfying (10).

Then the sequence (xn)n of solutions of the measure differential problems

dx(t) = f(t, x(t))dmn, x(0) = x0 (15)

converges uniformly on [0, 1] to the solution x of (14).

Proof. Let us first note that by Proposition 3.3, f(·, x0), L and M are also
Lebesgue-integrable w.r.t. every mn since mn ≤ km for all n ∈ N.

Besides, the assumptions on f ensure that for any function y : [0, 1] →
R

d, the map f(·, y(·)) is measurable (therefore, by hypothesis iv) and the
previous observation, Lebesgue-integrable w.r.t. m and also w.r.t. mn, for
every n ∈ N).

Then let us see that (‖xn − x‖)n is bounded on [0, 1]. Indeed, for any
n ∈ N and t ∈ [0, 1],

‖xn(t) − x(t)‖ =

∥∥∥∥∥
∫

[0,t)

f(s, xn(s))dmn(s) −
∫

[0,t)

f(s, x(s))dm(s)

∥∥∥∥∥
≤

∫
[0,t)

‖f(s, xn(s))‖ dmn(s) +
∫

[0,t)

‖f(s, x(s))‖ dm(s)

and using Proposition 3.3 brings us to

‖xn(t) − x(t)‖ ≤
∫

[0,t)

‖f(s, xn(s))‖ d(km)(s) +
∫

[0,t)

‖f(s, x(s))‖ dm(s)

≤ (k + 1)
∫

[0,t)

M(s)dm(s) ≤ (k + 1)
∫

[0,1)

M(s)dm(s).

We can write, for each t ∈ [0, 1],

‖xn(t) − x(t)‖ =

∥∥∥∥∥
∫

[0,t)

f(s, xn(s))dmn(s) −
∫

[0,t)

f(s, x(s))dm(s)

∥∥∥∥∥
≤

∫
[0,t)

‖f(s, xn(s)) − f(s, x(s))‖ dmn(s)

+

∥∥∥∥∥
∫

[0,t)

f(s, x(s))dmn(s) −
∫

[0,t)

f(s, x(s))dm(s)

∥∥∥∥∥ .

Applying Theorem 3.4,
∫

[0,·)
f(s, x(s))dmn(s) →

∫
[0,·)

f(s, x(s))dm(s) pointwisely.
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But the sequence
(∫

[0,·) f(s, x(s))dmn(s)
)

n
is equi-regulated by [18, Theo-

rem 3.10], as there is a nondecreasing function given on [0, 1] by

h(t) =
∫

[0,t)

‖f(s, x(s))‖d(km)(s)

satisfying, for every 0 ≤ t < t′ ≤ 1 and every n ∈ N,∥∥∥∥∥
∫

[0,t)

f(s, x(s))dmn(s) −
∫

[0,t′)
f(s, x(s))dmn(s)

∥∥∥∥∥
=

∥∥∥∥∥
∫

[t,t′)
f(s, x(s))dmn(s)

∥∥∥∥∥
≤

∫
[t,t′)

‖f(s, x(s))‖ dmn(s)

≤
∫

[t,t′)
‖f(s, x(s))‖ d(km)(s)

= h(t′) − h(t).

As it is well-known ( [18, Theorem 3.3]), any equi-regulated, pointwisely
convergent sequence of regulated functions converges uniformly, therefore∫

[0,·)
f(s, x(s))dmn(s) →

∫
[0,·)

f(s, x(s))dm(s) uniformly,

i.e. for every ε > 0 one can find nε ∈ N such that∥∥∥∥∥
∫

[0,t)

f(s, x(s))dmn(s) −
∫

[0,t)

f(s, x(s))dm(s)

∥∥∥∥∥ < ε, for all n ≥ nε, t ∈ [0, 1].

Using now the Lipschitz assumption on f , for every such n we get

‖xn(t) − x(t)‖ ≤
∫

[0,t)

L(s)‖xn(s) − x(s)‖dmn(s) + ε, for every t ∈ [0, 1].

As (‖xn − x‖)n is bounded on [0, 1], we can apply, for each n ≥ nε, the
Gronwall type result ( [26, Corollary 4.5]), in order to deduce that

‖xn(t) − x(t)‖ ≤
∫

[0,t)

L(s)εe
∫
[s,t) L(τ)dmn(τ)dmn(s) + ε, for every t ∈ [0, 1).

Again by Theorem 3.4, the sequence (
∫
[0,1)

L(τ)dmn(τ))n is convergent, there-
fore bounded, say by M1 > 0, whence∫

[s,t)

L(τ)dmn(τ) ≤ M1, for all s < t ∈ [0, 1], n ∈ N.

Consequently, for all t ∈ [0, 1],∫
[0,t)

L(s)e
∫
[s,t) L(τ)dmn(τ)dmn(s) ≤

∫
[0,t)

L(s)eM1dmn(s) ≤ M1e
M1 , ∀ n ∈ N

and so

‖xn(t) − x(t)‖ ≤ ε
(
1 + M1e

M1
)
, for every t ∈ [0, 1) and n ≥ nε.
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Due to the left-continuity of xn and x we get

‖xn(1) − x(1)‖ ≤ ε
(
1 + M1e

M1
)
, for every n ≥ nε

and the proof is over. �
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