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Manipulation by magnetic frustration in ferrotoroidal spin chains via curvature and torsion
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Geometric effects in curvilinear nanomagnets can enable chiral, anisotropic, and even magnetoelectric re-
sponses. Here, we study the effects of magnetic frustration in curvilinear (quasi-)one-dimensional magnets
represented by spin chains arranged along closed space curves of constant torsion. Considering the cases of
easy- and hard-axis anisotropy in ferro- and antiferromagnetic samples, we determine their ground states and
analyze the related magnetoelectric multipoles. A constant torsion along the chain results in alternating regions
of high and low curvature, facilitating the spin spiral state perturbed by the (anti)periodic boundary conditions
on the magnetic order parameter. While easy-axis ferromagnetic chains develop a purely toroidal configuration
with the magnetic toroidal moment oriented along the geometry symmetry axis, hard-axis antiferromagnetic
chains support multiple magnetic toroidal domains. Our findings suggest that tailoring curvature and torsion
of a spin chain enables a different physical mechanism for magnetic frustration, which can be observed in the
inhomogeneity of the magnetic order parameter and in the local ferrotoroidal responses.

DOI: 10.1103/PhysRevResearch.7.013088

I. INTRODUCTION

Nontrivial geometry of low-dimensional objects such as
wires, ribbons, and shells emerged as an effective way to
modify their responses to external stimuli [1]. These phenom-
ena are intensively explored for a broad range of condensed
matter systems, including two-dimensional materials [2] and
topological insulators and semimetals [3], in addition to
more established curvilinear semiconductors [1], supercon-
ductors [4,5], and magnetic materials [6–8]. Very recently,
the geometry of curvilinear magnetic wires with intrinsic
Dzyaloshinskii-Moriya interaction (DMI) was explored to
realize artificial systems characterized by magnetoelectric
multipoles [9]. Indeed, geometric effects can result in a
magnetically induced breaking of inversion symmetry and
consequently to the appearance of magnetoelectic monopoles,
as well as toroidal and quadrupole moments. Materials with
finite magnetoelectric multipole moments are of major fun-
damental interest in the study of magnetoelectric coupling
phenomena [10]. Typically, magnetoelectric monopoles, as
well as toroidal and quadrupolar moments, in materials
are realized at the level of crystal structure. The use of
geometry-induced breaking of inversion symmetry can extend
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the number of magnetoelectric materials since it can virtu-
ally equip any appropriately curved magnetic material with
higher-order magnetoelectric multipoles.

Here, we study magnetic states in spin chains following
space curves of constant torsion. For completeness, we ad-
dress the cases of ferro- and antiferromagnetic coupling in the
spin chain. The geometries studied here belong to the family
of spherical epicycles, which are characterized by the three-
and fourfold symmetry axis only with three and four num-
ber of knots without self-intersections, respectively. These
systems highlight the role of a finite torsion on the physical
properties of three-dimensional (3D) nanoarchitectures. We
describe the ground states in samples with easy- and hard-axis
magnetic anisotropy including the case of odd number of spins
in the chain, which leads to magnetic frustration. The equi-
librium magnetic textures are determined by the competition
between the strength of anisotropy, geometry-driven DMI, and
(anti)periodic boundary conditions. The latter depends on the
number of knots and spins in the case of the antiferromagnetic
(AFM) exchange coupling. We show that in this case, the
magnetic frustration of the ground state (the total winding
phase of the order parameter is an odd or even multiple of π )
is dependent not only on the number of spins, but also on
the number of knots in the geometry. The magnetic tex-
ture in epicycles breaks the space-inversion symmetry and
allows for higher-order magnetoelectric multipoles. In par-
ticular, while spin chains with ferromagnetic coupling and
easy-axis anisotropy are characterized by a macrotoroidal mo-
ment, hard-axis systems can be split into multiple toroidal
domains.

The paper is organized as follows. In Sec. II, we intro-
duce curvature effects in magnetic systems. In Sec. III, the

2643-1564/2025/7(1)/013088(14) 013088-1 Published by the American Physical Society

https://orcid.org/0000-0002-5947-9760
https://orcid.org/0009-0003-3613-5257
https://orcid.org/0000-0002-6334-0569
https://orcid.org/0000-0002-7177-4308
https://ror.org/01zy2cs03
https://ror.org/02vrpj575
https://ror.org/044k9ta02
https://ror.org/0192m2k53
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.7.013088&domain=pdf&date_stamp=2025-01-23
https://doi.org/10.1103/PhysRevResearch.7.013088
https://creativecommons.org/licenses/by/4.0/


OLEKSANDR V. PYLYPOVSKYI et al. PHYSICAL REVIEW RESEARCH 7, 013088 (2025)

geometry, spin-lattice model, and the respective nonlinear σ

model are introduced. In Sec. IV, we describe ground states
of closed ferromagnetic and antiferromagnetic spin chains
analyzing cases of the easy- and hard-axis anisotropy, mag-
netically soft chains with dominating dipolar interaction, and
chains with antiferromagnetic exchange and odd number of
spins. In Sec. V, the static ferrotoroidal ordering in these
systems is described. In Sec. VI, we summarize the identified
magnetic states and describe the interplay between magnetic
frustration originating either purely from the sample geome-
try (distribution of curvature and torsion) or due to the odd
number of spins, and provide the summary in Sec. VII. In
Appendix A, details of the construction of the epicycle geom-
etry are provided. Appendix B describes boundary conditions
in the σ model for chains with antiferromagnetic exchange
and odd number of spins. In Appendixes C and D, we provide
the equations of state and describe spin-lattice simulations,
respectively.

II. CURVATURE EFFECTS IN MAGNETISM

In magnetism, the static effects of geometry are usually re-
lated to the presence of geometry-tracking interactions such as
magnetostatics, interfacial phenomena, or DMI. Then, break-
ing of space-inversion symmetry due to the curved shape of
the sample is mapped onto the behavior of the magnetic vector
order parameter.

Strong attention has been paid to high-symmetry sam-
ples, with a particular focus on (quasi)-1D systems [8]. Thin
bent nanowires or spin chains with ferro- or antiferromag-
netic exchange are convenient objects of study that capture
the hallmarks of more complex geometries. Such chains are
characterized by curvature κ and torsion τ , two geometric
quantities describing in-plane bends and screw deformation
of the given space curve, respectively. Prototypical examples
of such systems are represented by helices, characterized by
constant κ and τ , which can be readily realized in experi-
ments [11–16]. On one hand, thin helical ferromagnetic (FM)
nanowires have the ground state tilted from the tangential di-
rection due to the geometry-driven anisotropy stemming from
exchange interaction [17–19] and support chiral domain walls
[18]. The selection of κ and τ can be used for modulating
the magnetic states in intrinsically chiral materials [20] or
tailoring the properties of heterostructures with piezoelectric
[21] or superconducting [22] matrices. On the other hand, an-
tiferromagnetic (AFM) helical systems show a broad range of
transport phenomena, which can be tailored by geometric pa-
rameters [23–25]. At present, the analysis of geometric effects
is mainly limited to planar geometries (τ = 0) with a ringlike
shape (κ = const) [26,27] or where curvature gradients act as
pinning potentials for the noncollinear FM and AFM magnetic
textures [28–31]. In geometries following space curves, the
gradients of κ and τ in 3D nanostructures result in the self-
propelling of domain walls [32–35].

Inversion symmetry breaking in curvilinear magnetic sys-
tems can lead to a broader range of phenomena, such as
geometry-induced magnetoelectricity due to the possibility
to support nonvanishing magnetoelectric multipoles [9]. This
fundamental knowledge is of relevance for the analysis of the

response of a broad class of single-molecule magnets in a
toroidal ground state [36–38].

In addition to extensively discussed open-end systems such
as helices, it is insightful to focus on closed-space curves, as
they allow one to discuss the effects in terms of the topolog-
ical properties of the sample geometry. In this respect, the
correlation between the topology of the geometry and the
topology of the magnetic texture in effectively 1D systems
can be established [39].

Furthermore, much attention is usually dedicated to the
effects of curvature, while torsion is usually considered as a
secondary parameter. In strictly 1D systems, torsion reveals
itself only in the presence of a finite curvature [40]. Hence,
the impact of torsion on the behavior of curvilinear magnetic
systems is not yet well studied. This seems to be a severe lim-
itation, especially considering that the case of nonzero torsion
distinguishes a planar curved wire from a truly 3D curved
wire. To facilitate this understanding, in this manuscript we
focus on closed-space curves with constant torsion.

III. THE MODEL

A. Geometry

We consider spin chains arranged along a space curve
γ (s) ∈ C3(R) characterized by a constant torsion τ = [(∂sγ ×
∂2

s γ ) · ∂3
s γ]/|∂2

s γ|2, where s is the arc length [Fig. 1(a)]. Ex-
emplary mathematical approaches to design such geometries
include Bäcklund transformation [41], building curves dual to
the curves of constant curvature κ = |∂sγ × ∂2

s γ|/|∂sγ|3 [42],
and transformation of spherical curves β [43],

γ (s) = 1

τ

∫ s

0

(
β × dβ

ds̃

)
ds̃. (1)

Here, β plays a role of the binormal vector eB for γ . It has pos-
itive geodesic curvature and possesses zero Peano direction
[44]. The latter implies the presence of an inversion center
for certain projections of the curve. In this work, we use
the approach (1) and generate spherical curves following the
method by Bates and Melko [45]. We chose two-parametric
epicycles βr

p, where r counts the number of traces of a unit
sphere following the epicycle, and p is a winding number
equal by absolute value to the number of knots on the curve;
see Appendix A for details. The associated curve γ r

p inher-
its the number of knots |p|. The transformation (1) lifts the
presence of self-intersections (see example of γ1

−3), which is
superimposed with an AFM texture in Fig. 1(a). The resulting
symmetry of the curve is the |p|-fold rotation axis C|p|. In
the following, we introduce the laboratory Cartesian reference
frame in such a way as to have the ẑ axis along the symmetry
axis of the epicycle.

As an example, we consider the case of γ1
−3. According

to its C3 symmetry, the curvature of γ1
−3 exhibits three peaks

corresponding to the number of knots of the generating curve
[Fig. 1(b)]. The shape of κ (s) in the vicinity of extrema
can be well approximated by a Cauchy-Lorentz function
(Appendix A). This is valid for any γ1

p.
Following the Frenet-Serret approach, the local reference

frame on γ is determined by the tangential (T) eT = ∂sγ ,
normal (N) eN = (∂2

s γ )/κ , and binormal (B) eB = eT × eN
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(c) (d) (e) (f)

FIG. 1. (a) An antiferromagnetic (AFM) spin chain whose shape follows the epicycle γ1
−3. The direction of the Néel vector n for each

dimer is shown in blue, whereas the envelope surface resulting from the continuous variation of the n vector along the curve is drawn in light
yellow. In the inset, schematics of the two magnetic sublattices μa and μb are shown. (b) Reduced curvature κ for torsion σ = 0.1. Each peak
of the dimensionless curvature κ can be well fitted with a Lorentzian profile, shown for comparison with an orange dashed line. (c)–(e) TNB
frame in real space for the geometry shown in panel (a). The red arrow indicates the radius of the circumscribed ring R. (f) The direction of
the Dzyaloshinskii vector d in some representative points along the epicycle. Arrows are not to scale.

directions, respectively Figs. 1(c)–1(e). The direction of eB

shown in Fig. 1(e) has clear evidence of the broken symmetry
at each knot. A curve generated by Eq. (1) can be circum-
scribed in a circle of radius R = C/τ , with a constant C being
dependent on β [Figs. 1(e) and 1(f)]. In contrast to plane rings
whose characteristic size is determined by κ , the characteristic
size R of γ grows with smaller torsion. In the following, we
focus on the curves γ1

−3 and γ1
−4.

B. Spin-lattice Hamiltonian

In the magnetic Hamiltonian of the spin chain, we take
into account the nearest-neighbor exchange, the single-ion
anisotropy, and the dipolar interaction, writing

H = − JS2

2

∑
i

μi · μi+1 − gμBS

2

∑
i

μi · Hd

− KS2

2

∑
i

(
μi · ei

T

)2
, (2)

where J is the exchange integral, S is the length of the spin,
μi is the unit vector of the ith magnetic moment, g = 2 is the
Landé factor, and μB is the Bohr magneton. The dipolar field
reads Hd = −gμBS

∑
j �=i[μ j/r3

i j − 3ri j (μ j · ri j )/r5
i j], with ri j

being the distance between the ith and jth magnetic moments.
The last term in (2) represents the single-ion anisotropy with
the coefficient K and anisotropy axis ei

T ≡ eT(si), where si

is the arc length for the ith spin. Here, the sums run over all N
spins of the chain and the (N + 1)-th spin corresponds to the

first one. The distance between neighboring spins is a, which
gives the curve length L = (N + 1)a.

As the static σ models for ferro- and antiferromagnetic sys-
tems are presented by the same expressions, it is convenient
to describe static macroscopic states of both systems, with
ferromagnetic (FM) and antiferromagnetic (AFM) exchange
coupling (J > 0 or J < 0, respectively), in terms of the vector
order parameter n. For FM systems, the physical meaning of
n is the unit vector of magnetization, while for AFM systems,
n represents the unit Néel vector. For the case of J > 0,
the magnetic state of the chain is characterized by the unit
vector of the order parameter ni ≡ μi, which is associated
with the direction of the local magnetic moment of the chain.
We refer to these samples as FM epicycles. We note that the
temperature-dependent aspects of magnetism are beyond the
focus of this study.

For the case of J < 0, we consider cases of even and odd
values of N . For both of them, the primary order parameter n
is the Néel vector (staggered magnetization), supplemented by
the vector of ferromagnetism m. In spin chains, these vectors
can be introduced as ni = (μ2i−1 − μ2i )/2 and mi = (μ2i−1 +
μ2i )/2, with i = 1, N/2. They obey the relations ni · mi = 0
and n2

i + m2
i = 1 for each i. With this definition, ni and −ni

represent the same physical state of the lattice, indicated by
the double arrows in Fig. 1(a), where the magnetic sublattices
are labeled by indices a, b. These samples are referred to as
AFM epicycles. The same procedure can be carried out for
the chains with odd N if the last magnetic moment, labeled
as μ0, is excluded from this dimerization procedure. These
chains satisfy the criterion of a frustrated magnet by Toulouse
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[46,47], having the negative total product of the exchange in-
tegrals. These samples are referred to as frustrated epicycles.

C. Representation of energy in the continuous limit

It is convenient to replace summation over the spin chain
by integration over the continuous counterparts of the mag-
netic vectors, ni → n(r), and, in the case of J < 0, also
mi → m(r). The anisotropy energy with the axis along eT

reads Ea[n] = −K
∫

n2
Tds. The anisotropy coefficient K =

Ka + Kdip consists of the contribution from the single-ion
anisotropy Ka = KS2/(2a) [48] and dipolar interaction Kdip.
The latter constant is characterized by the shape anisotropy
and depends on the sign of the exchange integral, K fm

dip ≈
3.6(gμBS)2/a4 for J > 0 (effective easy axis) and Kafm

dip ≈
−2.7(gμBS)2/a4 for J < 0 (effective hard axis) [49].

The exchange energy for an AFM spin chain with even
number of spins N reads [48]

Ex[m, n] =
∫

[�m2 + A0(∂sn)2 + λm · (∂sn)] ds, (3)

with � = 2|J|S2/a being the constant of the uniform ex-
change which is responsible for the amplitude of magnetiza-
tion m, A0 = |J|S2a the exchange stiffness, and λ = 2|J|S2

the parity-breaking coefficient. If the magnetization is small,
it can be excluded from the energy functional as a driv-
ing variable with the respective rescaling of the expression
(3) as Ex[n] = A

∫
n′2ds with the exchange stiffness A =

A0/2= |J|S2a/2. In this case, m = −0.5a∂sn. We note that
for spin chains, the exchange stiffness is different in units by
a2 in comparison with the 3D simple cubic lattice in ferro-
and antiferromagnets [50,51]. The same expression Ex[n] is
valid for FM chains. The closure of γ here can be taken into
account via the periodic boundary conditions on the primary
order parameter, n(0) ≡ n(L) [48,52].

For the case of frustrated chains, the derivation procedure
of the expression for exchange energy in the form (3) brings
about two terms corresponding to the energy of a virtual defect
associated with the unpaired moment μ0; see Appendix B.
In this case, the invariance of the expression (3) with respect
to the freedom of choice of μ0 in the chain introduces an-
tiperiodic boundary conditions on the Néel vector, n(0) ≡
−n(L). This is also in agreement with the theoretical [53]
and experimental [54,55] investigation of AFM rings with
odd number of spins, where the Möbius magnetic structure
appears as a special case of the AFM spin spiral in a geomet-
rically periodic system. In this way, an equilibrium magnetic
texture of n for chains with both signs of J is determined by
the variation of the total energy E = Ex[n] + Ea[n], where
the type of exchange bonds comes into the definition of the
anisotropy only.

An interplay between the exchange and anisotropy ener-
gies allows one to introduce the effective magnetic length
	 = √

A/|K|, which is a measure of spatial scales. In the
following, the reduced coordinate ξ = s/	, chain length X =
L/	, curvature κ = κ	, and torsion σ = τ	 are used. The
aforementioned derivation of the continuum expressions for
the magnetic energies is valid if 	 	 a.

The exchange energy density in a curvilinear reference
frame can be split into three terms, Ex[n] = |K|	 ∫

(w0
x +

wD
x + wan

x )dξ , where w0
x = (n′

α )(n′
α ) is the locally homoge-

neous part of exchange and prime means the derivative with
respect to ξ , wD

x = εαβγ dαnβn′
γ is the curvature-induced DMI,

and wan
x = FαγFβγ nαnβ is the curvature-induced anisotropy

[49]. Here, the Einstein summation rule is used, Greek in-
dices run over the local reference frame, α, β, γ = T, N, B,
εαβγ is the totally antisymmetric Levi-Civita symbol, d =
2σeT + 2κeB is the Dzyaloshinskii vector, and Fαβ is the
Frenet tensor with nonzero components FTN = −FTN = κ

and FNB = −FBN = σ . The latter allows one to define wan
x =

k11n2
T + k22n2

N + k33n2
B − k13nTnB with k11(ξ ) = κ

2, k33 = σ 2,
k22 = k11 + k33, and k13(ξ ) = 2κσ . The anisotropy wan

x is the
source of the easy-axis anisotropy lying in the rectifying (TB)
plane, in addition to the hard-axis anisotropy Ea stemming
from the dipolar interaction. A nonzero d can result in spin
spiral states [49]. The distribution of d along the epicycle γ1

−3
is shown in Fig. 1(f). Because of the selection of the geometry,
only the binormal component of d is coordinate dependent.
The strongest curvature-induced DMI appears at the knots,
where d is almost aligned with the binormal direction, while
in the remaining part of the closed curved, it follows the
tangential direction.

IV. MAGNETIC STATES

A static state within the nonlinear σ model described in
Sec. III C is not sensitive to the sign of J . Still, it strongly
depends on the (anti)periodicity of the boundary conditions.
Therefore, first we consider the two cases of the easy- and
hard-axis anisotropy in FM and AFM epicycles and then ana-
lyze the frustrated epicycles with both cases of the anisotropy
coefficient K . In this section, we focus on the case of small tor-
sion, |σ | 
 1, which corresponds to values of R large enough
for anisotropic effects to dominate over exchange ones. For
large torsions, spin chains can experience the helimagnetic
phase transition [17,49], which is discussed in Appendix D.

A. FM and AFM epicycles with the easy-axis anisotropy

In this section, we focus on the FM and AFM epicycles
γ 1

p with the easy-axis anisotropy (K > 0). We start from the
case of a magnetically hard system, with the contribution of
anisotropy being much stronger than the dipolar interaction,
i.e., Ka 	 Kdip. It is convenient to introduce the local spherical
parametrization of the order parameter as

n = sin �ea(cos �eaeT + sin �eaeN) + cos �eaeB, (4)

with �ea(ξ ) and �ea(ξ ) being magnetic polar and azimuthal
angles following the periodic boundary conditions. Here and
in the following, the magnetic polar angles are defined within
the [0, π ] range and the magnetic azimuthal angles can
take arbitrary values. For |σ | 
 1, the ground state reads
�ea = π/2 + ϑea(ξ ) and �ea = 0.5(1 ∓ 1)π + ϕea(ξ ), where
ϑea, ϕea 
 1 satisfy equations of the nonlinear pendulum with
an external drive and parametric pumping,

ϑ ′′
ea − [1 + k11(ξ )]ϑea = ±k13(ξ ) ≡ ±σκ(ξ ), (5a)

ϕ′′
ea − ϕea = −d ′

B(ξ )

2
≡ −κ

′(ξ ). (5b)
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FIG. 2. Ground states of FM and AFM epicycles with the easy-axis anisotropy and σ = 0.1 (quasitangential state). (a) Polar and
(b) azimuthal angles of the order parameter n in a magnetically hard (Kdip 
 Ka) FM epicycle γ 1

−4. Symbols and solid lines correspond
to simulations and Eq. (6), respectively. [(c),(d)] The same for a magnetically soft FM epicycle γ 1

−4 (Ka = 0). Only simulation results are
shown. The magnetic state is perturbed by the long-range part of the dipolar interaction. [(e),(f)] The same for an AFM epicycle γ 1

−3 with the
dominating single-ion anisotropy. In panels (a), (b), (e), and (f), each 10th symbol in the simulations is shown. In all panels, the black dashed
lines show positions, where the curvature is maximal.

These angles also satisfy the periodic boundary conditions
ϑea(0) = ϑea(X ) and ϕea(0) = ϕea(X ). By neglecting para-
metric pumping determined by k11(ξ ) in Eq. (5a), which also
implies that κ(ξ ) 
 1, the system (5) can be solved asymptot-
ically. The respective polar and azimuthal angles of the order
parameter read

�ea(ξ ) = π

2
∓ σκ(ξ ) + O(κ2),

�ea(ξ ) = 1 ∓ 1

2
π + κ

′(ξ ) + O
( |κ′′′|

|κ′|
)

. (6)

We refer to this state as the quasitangential state. Naturally,
the main deviation from the purely tangential state occurs in
the vicinity of the knots of the epicycle, corresponding to the
maximum of curvature. The comparison of the solution (6)
with simulations is shown in Fig. 2. As it follows from numer-
ical analysis, the solution (6) matches the simulation data with
a good accuracy, even for κ(ξ ) � 1. For both FM and AFM
epicycles with σ = 0.1 [Figs. 2(a), 2(b), 2(e), and 2(f)], there
is a small difference between the analytics and simulations
near the maxima of the curvature, where κmax ≈ 0.48 for the
FM epicycle γ 1

−4 and κmax ≈ 1 for the AFM epicycle γ 1
−3.

While the net magnetization of the AFM epicycle is zero, the
FM epicycles develop a small moment along the symmetry
axis of the geometry. For the γ 1

−4 sample with σ = 0.1, the
net moment is about 1% of the saturation value.

The ground state of the magnetically soft epicycle (Ka = 0)
is also close to the tangential state, although the magnetic
state cannot be described by Eqs. (6); see Figs. 2(c) and 2(d).
Unlike the aforementioned case of hard magnetic material,
both spherical angles deviate from the tangential direction
in a spread region around the maxima of curvature. In par-
ticular, the spatial distribution of the azimuthal angle has
wave vectors corresponding to the wavelengths X/|p| and
2X/|p|. This behavior originates from the long-range part
of the dipolar interaction, which leads to the self-interaction
of the neighboring parts of the epicycle similarly to the

experimental observations in planar [56] and 3D ferromag-
netic geometries [57]. We note that the quasitangential ground
state is an analogy of the vortex state in planar rings with
easy-axis anisotropy [58].

B. FM and AFM epicycles with the hard-axis anisotropy

In this section, we focus on the FM and AFM epicycles
γ 1

p with the hard-axis anisotropy (K < 0). In comparison with
the easy-axis magnets (Sec. IV A), a possibility to pin an inho-
mogeneous magnetic texture at the epicycle knots supports a
variety of metastable states and complicates the determination
of the ground state. Therefore, in the following, we describe
the lowest-energy states that are numerically found. The dis-
cussion of a possibility to have these states as the ground state
is given in Sec. VI.

A convenient angular parametrization for the order pa-
rameter in the system with the hard tangential axis of
anisotropy is

n = cos �haeT + sin �ha(cos �haeN + sin �haeB), (7)

with the polar and azimuthal angles �ha and �ha, respec-
tively, which follow the periodic boundary conditions. As it
is known for AFM rings with the even number of spins and
AFM helices [49], their ground state is close to the binormal
one with �ha = �ha = π/2. This happens due to the appear-
ance of a weak easy-axis anisotropy of the exchange origin
with the coefficient k11(ξ ). The corresponding static state on
the background of the binormal state, �ha = π/2 + ϑha(ξ )
and �ha = ±π/2 + ϕha(ξ ), where ϑha, ϕha 
 1, satisfies the
equations

ϑ ′′
ha − [1 + k11(ξ )]ϑha = ±

(
k13(ξ ) − d ′

B(ξ )

2
+ dB(ξ )ϕ′

ha

2

)
,

(8a)

ϕ′′
ha − k11(ξ )ϕha = ∓ [ϑhadB(ξ )]′

2
, (8b)
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FIG. 3. Magnetic states of FM and AFM epicycles with the hard-axis anisotropy and σ = 0.1. (a) Polar and (b) azimuthal angles of the
order parameter n in the FM epicycle γ 1

−3. Symbols (each 10th simulated data point is shown) and solid lines correspond to simulations and
Eq. (9), respectively. The black dashed lines show positions, where the curvature is maximal. (c) The quasibinormal magnetic state of the FM
epicycle γ 1

−4 in simulations; cf. Fig. 1(f). The blue arrows correspond to the direction of each third local magnetic moment. (d)–(f) and (g)–(i)
show the same for the 2π -twist and 4π -twist states (lowest-energy states) of the AFM epicycles γ 1

−3 [cf. Fig. 1(a)] and γ 1
−4. The blue symbols

and red crosses correspond to the cases of the hard-axis anisotropy and dipolar interaction, respectively. In (f) and (i), the blue arrows show
equidistant magnetic moments from the opposite sublattices (each third site is shown). A semitransparent yellow surface indicates the direction
of eB, which coincides with the magnetic moment’s axes only within certain segments of the epicycle indicated in (f).

with the periodic boundary conditions ϑha(0) = ϑha(X ) and
ϕha(0) = ϕha(X ). Similarly to the case of FM epicycles, the
polar angle in the binormal state can be found asymptotically.
The azimuthal angle is a solution of the equation with strongly
nonlinear coefficients and can be approximated by a linear
function. Together they read

�ha(ξ ) = π

2
∓ σκ(ξ ) + O(κ2),

�ha(ξ ) ≈ ±π

2
+ σ

2

[
π

2
−

(
pπ

ξ

X
− π

2

)
mod π

]
. (9)

This expression fits the spatial distribution of the order param-
eter for FM and AFM epicycles; see Figs. 3(a)–3(c). We refer
to the state (9) as the quasibinormal state.

Surprisingly, the state (9) is not the ground state for these
epicycles. The lowest-energy state of the epicycle γ 1

−3 consists
of two spatial regions with different behavior of the order
parameter [Figs. 3(e) and 3(f)]. There is a segment of the
epicycle in which the order parameter follows the binormal di-
rection, which looks as a twist drawn by n in space [Figs. 1(a)
and 3(f)]. In the remaining part of the geometry, the order
parameter slowly rotates by π radians around eT on each of the
segments, which looks like the almost uniform distribution of
n in the laboratory reference frame (2π -twist state).

The AFM epicycle γ 1
−4 [Figs. 3(g)–3(i)] in the lowest-

energy state has a π twist of the order parameter n within
each of its segments. The respective 4π -twist state is shown
in Figs. 3(g)–3(i). This geometry also supports 2π -twist states

with two segments following the quasibinormal state. Among
2π -twist states, the most symmetric case with quasibinormal
distribution at the oppositely placed segments has the lowest
energy. If the quasibinormal distribution is obtained in two
sequential states, the energy is slightly larger because of the
modification of the magnetic texture at the knots.

We stress that the discussed states of the epicycles with
easy and hard axis of anisotropy are the same in terms of the
order parameter n for both FM and AFM cases considered
in these sections. For all of them, the excited states include
domain walls pinned at the epicycle knots. While the hard-axis
AFM epicycles are magnetically compensated as the easy-axis
ones, the FM epicycles develop a strong magnetic moment
in plane perpendicular to the symmetry axis of the order of
the saturation value. It is supplemented by a small magnetic
moment along the symmetry axis.

In the case of the absence of the single-ion anisotropy
in spin chains with the AFM exchange bonds, the dipolar
interaction leads to an effective hard-axis anisotropy. We
found that in this case, the azimuthal angle � agrees
well with the results of the simulations with the hard-axis
anisotropy only [Figs. 3(d), 3(e), 3(g), and 3(h), red crosses].
The difference is in the amplitude of the change of the polar
angle �, which is smaller for the case of dipolar interaction.
The simulations are done for the nominally same magnetic
lengths in both cases. Thus, we expect that the origin of the
difference between �(ξ ) in these simulations arises due to the
partial uncompensation of the antiferromagnetically ordered
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FIG. 4. Ground states of frustrated epicycles with the easy-axis anisotropy and σ = 0.1. (a) Polar and (b) azimuthal angles of the order
parameter n in a frustrated epicycle γ 1

−3 with the easy-axis anisotropy. Symbols and solid lines (drawn outside the domain-wall region)
correspond to simulations and Eq. (6), respectively. Outside the domain wall, each 10th simulated data port is shown. (c) Zoom of the knot
hosting the domain wall in simulations. Blue arrows show individual magnetic moments. Yellow cylinders indicate the normal direction eN.
(d)–(f) and (g)–(i) are the same for the frustrated epicycles γ 1

−3 and γ 1
−4 with the hard-axis anisotropy (blue symbols) and dipolar interaction

(red crosses), respectively (3π -twist state). In (f) and (g), a semitransparent yellow surface indicates the direction of eN and eB, respectively.
Each third magnetic moment is shown.

spins near the epicycle knots, similarly to FM epicycles
[cf. Fig. 2(d)].

C. Magnetic states in frustrated epicycles

In this section, we consider epicycles with the AFM
nearest-neighbor exchange and odd number of spins. Their
magnetic states follow the same equations for the angular
variables introduced in (4) and (7) for the easy- and hard-
axis anisotropies, respectively. The difference is that here
the antiperiodic boundary conditions are applied for n, i.e.,
�ea,ha(0) = π − �ea,ha(X ) and �ea,ha(0) = �ea,ha(X ) + π +
2πw with w ∈ Z. For the case of planar rings, the ground
state corresponds to the so-called Möbius state with the order
parameter making one twist around the circle [53].

For frustrated epicycles with the easy-axis anisotropy, the
antiperiodic boundary conditions impose the appearance of a
domain wall in the ground state. The domain wall is located
at one of the knots because of the strong curvature-induced
DMI at this location. Far from the domain wall, the mag-
netic state can be approximately described by Eqs. (6); see
Figs. 4(a)–4(c).

Hard-axis frustrated epicycles with even and odd number
of knots have different lowest-energy states. In the lowest-
energy state, the magnetic texture of each of three segments
of the γ 1

−3 epicycle is almost uniform in the laboratory ref-
erence frame, which corresponds to the rotation of n by π

radians around the tangential direction (3π -twist state) [Figs.
4(d)–4(f)]. The epicycle with four knots in the lowest-energy

state has 3π twist over three segments, and one segment in the
quasibinormal state [Figs. 4(g)–4(i)]. We note that in case of
the change of the hard-axis anisotropy to the dipolar interac-
tion in simulations, the observed changes in the magnetic state
are the same as for AFM epicycles; cf. Figs. 3(d), 3(e), 3(g),
and 3(h), and Figs. 4(d), 4(e), 4(g), and 4(h). The frustrated
epicycles develop zero net magnetization in the ground state.

V. FERROTOROIDAL ORDERING

The closed-loop spin chains that are studied here lack both
space-inversion and time-reversal symmetries. This makes
them a potential host for magnetoelectric multipoles defined
by [9] Mi j = ∫

riμ j (r)d3r that can be decomposed into three
irreducible tensors: the pseudoscalar A = trMi j/3 defining
the magnetoelectric monopole [59], the toroidal moment
related to the antisymmetric part T = εi jkM jk/2, and the
traceless symmetric tensor describing the quadrupole mag-
netic moment. These three components of the Mi j tensor
are of paramount importance to the linear magnetoelectric
response ‖αi j‖, i, j = x, y, z. Before computing the magne-
toelectric multipoles in our closed-loop spin chains, we recall
that one of the main complications in their definition is their
origin dependence for uncompensated magnetic textures. In
the following, we will take into account only the contribution
from the compensated part of the spin texture that is instead
origin independent.

First, we use a Landau field theory that incorporates fer-
roelectric polarization P and magnetization M. Since the
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FIG. 5. Ferrotoroidal ordering in magnetic epicycles. (a) The total toroidal moment of a ferromagnetic spin chain deformed from a ring
(D = 0) to the epicycle γ 1

−4 [D ≈ 11 × 103, the same as the one shown in Figs. 2(a) and 2(b)]. Insets show the axial views of the respective
geometries. The coordinate system (x, y, z) is shown as well. (b) Local toroidal moment in the AFM epicycle γ 1

−3 with the hard-axis anisotropy
and (c) its 3D view with the blue and orange arrows showing the magnetic and toroidal moments, respectively (each third site is shown). The
corresponding state is shown in Figs. 3(d)–3(f); note the shift by X/3 in the coordinate. (d) The same for a frustrated epicycle γ 1

−3 with the
easy-axis anisotropy. The corresponding state is shown in Figs. 4(a)–4(c). [(e),(f)] The same for a frustrated epicycle γ 1

−3 with the hard-axis
anisotropy. The corresponding state is shown in Figs. 4(d)–4(f).

epicycles γ 1
−3 and γ 1

−4 are characterized by the presence of 3z

or 4z axes of rotation, respectively, the free-energy terms for
the variable O with O = M or P are the same. In particular,
the free energy allows terms O2 and O2

z of the second order,
and terms M4, P4, M2P2, (M · P)2 of the fourth order. The
magnetoelectric coupling term reads

FME = αxx(MxPx + MyPy) + αzzMzPz

+ αxy(MxPy − MyPx ), (10)

with the ẑ axis along the symmetry axis of the structure. The
first two terms in Eq. (10), as the diagonal part of the magne-
toelectric coupling, can be decomposed in the magnetoelectric
monopolization a and the qx2 , qy2 , and qz2 components of the
quadrupolar moment with the additional constraint qx2 ≡ qy2

and the traceless condition qx2 + qy2 + qz2 ≡ 0. The last term
instead indicates the magnetoelectric coupling correspond-
ing to the toroidal moment T directed along ẑ. The other
components of the toroidal moment as well as the quadrupo-
lar moment components qi j with i �= j are not allowed
by symmetry.

We proceed with the calculation of the change in the total
toroidal moment in a FM system for the smooth change of the
geometry of the epicycle into a ring; see Fig. 5(a). The geome-
try transformation is calculated by mimicking the mechanical
forces acting in the plane perpendicular to the epicycle’s axis.
To describe these changes, we characterize each geometry

by the deformation parameter D = ∑N−1
i=0 |ri − rcirc

i |, where
rcirc

i is the radius vector of the ith spin at the ring. In this
way, the quasitangential state (6) is smoothly translated into
a vortex state on the ring [58]. Selecting the origin for the
radius vector of the ith moment ri in the center of mass of
the sample, we obtain the origin-independent value of the
toroidal moment by accounting for the compensated part of
the magnetization only. Figure 5(a) shows that Tz(D) smoothly
changes with the geometry transformation, in agreement with
the symmetry of the free energy (10). The numerical values of
the in-plane components of the toroidal moment, as well as of
the monopole moment and components of the quadrupole mo-
ments, are of the same order and about 200 times smaller than
Tz. We correlate their finite values with the discrete structure
of the spin chain.

The fact that only the z component of the toroidal moment
is nonvanishing implies that the spin texture realizes a purely
toroidal configuration, similarly to Bloch skyrmions [60]. We
note that for a vortex state on a ring, this purely toroidal state
is symmetry enforced. The vertical mirror symmetries imply
that the magnetoelectric monopole, as well as the quadrupole
moment components qx2,y2,z2 , must vanish. In addition, the
Tx,y components are zero due to the planar spin configuration.
In the epicycles, instead, these symmetries are not present.
Therefore, the purely toroidal configuration is spontaneously
chosen by the spin texture. We note that the case of a hard-axis
FM epicycle is more complex and the corresponding magnetic
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state can support finite monopole or quadrupolar contributions
in addition to the toroidal moment.

In the following, we discuss magnetoelectric monopoles in
AFM and frustrated epicycles. As magnetic monopoles of the
two magnetic “sublattices” are equal and opposite, the total
value of the magnetoelectric monopoles is negligibly small.
Still, the local values of the magnetoelectric monopoles from
each pair of magnetic moments can be different from zero.
For instance, the local value of T (ξ ) can be calculated for
each pair μ2i−1,2i on which ni is introduced with respect to its
center,

t i = 1

2	

[(
r2i−1 − rc

i

) × μ2i−1 + (
r2i − rc

i

) × μ2i

]

− 1

2	
rc

i × (μ2i−1 + μ2i ), (11)

with rc
i = 0.5(r2i−1 + r2i ). AFM epicycles with the odd num-

ber of knots show the presence of well-defined toroidal
domains in the laboratory reference frame oriented along the
axis of symmetry located between the epicycle’s knots; see
the blue line in Figs. 5(b) and 5(c) for the epicycle γ 1

−3.
Here, the opposite toroidal domains correspond to the almost
linearly changing � in Fig. 3(e). The same picture with three
sequential toroidal domains is observed for the frustrated
epicycle γ 1

−4.
An easy-axis frustrated epicycle shows a pronounced

change of T only at knots with the maximum value reached
at the domain wall [Fig. 5(d)]. This finding is in agreement
with the expectation of the finite magnetization at the inho-
mogeneous distribution of the Néel vector in spin chains [48].
The symmetry of T (ξ ) in a hard-axis frustrated epicycle γ 1

−3
[Figs. 5(e) and 5(f)] is different from the AFM epicycle with
three knots [Fig. 5(b)] due to antiperiodic boundary condi-
tions. These distinct features are expected to affect the local
ferroelectric polarization that can be induced by externally
applying a magnetic field via the trilinear coupling T × P · M.
For instance, for AFM epicycles with three knots, we expect
ferroelectric domains with equal and opposite polarization
along the x̂ direction if a constant magnetic field along the
ŷ direction is applied. We note that a finite net toroidal mo-
ment Tx for the frustrated epicycle with hard-axis anisotropy
[Fig. 5(e)] can lead to a finite magnetic moment along the ẑ
(ŷ) direction in the presence of a finite electric field along the
ŷ (ẑ) direction.

VI. COMPARISON OF MAGNETIC
TEXTURES IN EPICYCLES

Here, we described static magnetic states in curvilinear
closed spin chains with constant torsion σ . We focused on
cases of the easy- and hard-axis anisotropies in spin chains
with FM nearest-neighbor exchange as well as chains with
AFM exchange containing odd or even number of spins. The
particular case of space curves with constant torsion discussed
in this work complements the results known for planar rings
and helices, both with κ = const and σ = const. The case
of closed curves allows us to focus on the geometries topo-
logically related to planar rings and track the change of their
magnetic textures with the change of geometry. Nevertheless,
unlike planar rings, the Dzyaloshinskii vector d in curves of

constant torsion always has a nonvanishing tangential compo-
nent, which may compete with other curvature-induced and
intrinsic interactions.

For easy-axis FM and AFM epicycles, the ground state is
the quasitangential state with the order parameter n directed
almost along the tangential direction with a small deviation
near the knots; see Fig. 2. The effects of a finite torsion are
pronounced in hard-axis samples, where the geometry-driven
Dzyaloshinskii vector d is almost perpendicular to the order
parameter n on a major part of the spin chain. Hence, it can
lead to spin spiral and topologically nontrivial states when
taking into account the boundary conditions for n in closed
chains. The lowest-energy state for hard-axis AFM epicycles
with even number of spins and FM epicycles is more complex
(Fig. 3) and can be understood by comparing with frustrated
epicycles which have AFM exchange and odd number of
spins (Fig. 4). The local state in each geometric segment of
the epicycle is determined by the following aspects: (i) The
condition of a constant torsion σ implies a constant tangential
component of the curvature-induced Dzyaloshinskii vector d.
(ii) The curvature changes in a wide range of values from
κ 
 σ at the center of the segment to κ � σ at its ends;
see Fig. 1(b). Thus, unlike the geometry-driven anisotropy, the
geometry-driven DMI is never vanishing and can lead to a spin
spiral state.

The local ground state for the case of constant or very
slowly varying σ and κ is determined by their balance: for
σ � κ, the state in the local reference frame is uniform
(twisted in the laboratory reference frame). Otherwise, the
spin chain is in a helicoidal state, which is almost uniform in
the laboratory reference frame [49]. Thus, in the central part of
the epicycle’s segment, the curvature-induced DMI dominates
over the curvature-induced anisotropy, thus favoring rotations
of n around d ≈ eT. At the segment’s ends, the physical pic-
ture is opposite: the curvature-induced anisotropy wan

x deter-
mined by κ cannot be considered to be small and induces an
easy axis along eB. Together with a strong curvature-induced
DMI d ≈ 2κeB, the curvature-induced anisotropy produces a
pinning potential for inhomogeneous magnetic textures.

Therefore, the segments can support the following mag-
netic states: (i) binormal state if the energy contribution from
knots dominates, (ii) helicoidal state if the energy contribution
from the central part dominates, and (iii) mixed state resem-
bling features of the binomial and helicoidal states. Although
the size of the epicycle’s segment and the helicoid period is
∼1/σ , the only possible rotation of n corresponding to the
minimal energy corresponds to the twist by π radians. The
total change of the magnetic azimuthal angle � over the whole
geometry in AFM and FM epicycles should be a multiple of
2π to match the periodic boundary conditions. The segments
accommodating the change of � by π are almost magneti-
cally uniform in the laboratory reference frame [top and left
segments of the γ 1

−3 epicycle in Fig. 3(f), and all segments of
the γ 1

−4 epicycle in Fig. 3(i)]. The energy contribution from
knots is important for small-size epicycles (large σ , which
leads to a much larger κmax); see Appendix D. In this case, the
lowest-energy state corresponds to an almost uniform texture
in the laboratory reference frame with n directed along the
axis of symmetry. We note that this state corresponds to a
helicoidal state in the local reference frame.
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Frustrated epicycles maintain the total phase equal
(2w + 1)π with w ∈ N, which allows the texture to fit the an-
tiperiodic boundary conditions. Since the π -twist state (with
two segments being in a quasibinormal state) of a frustrated
epicycle γ 1

−3 has higher energy than the 3π -twist state for the
geometries under consideration, the helicoidal texture within
the segment is energetically more preferable than the binormal
state. This is an indication that the influence of the curvature-
driven DMI dominates over the anisotropy in the magnetic
energy. Based on the symmetry considerations, the described
lowest-energy states for FM and AFM epicycles can be con-
sidered as the ground states for the geometries γ 1

−3 and γ 1
−4.

This conclusion can be extrapolated to epicycles with |p| > 4
if their segment length is much larger than 	.

For easy-axis systems, only the case of magnetically soft
FM epicycles is special because of the self-interaction be-
tween the epicycle’s segments via the dipolar interaction. The
hard-axis systems reveal more specific geometry-dependent
behavior. Here, there are two origins of the geometric frus-
tration. The first one is the odd number of spins relevant for
AFM-coupled spin chains [Figs. 4(d)–4(i)], which enforces
the antiperiodic boundary condition for n. The second origin
of frustration is introduced by the epicycle knots separating
regions, which may have different magnetic textures. In this
case, it is possible to track how the specific magnetic states
can emerge either due to the even (odd) number of spins
or due to the odd (even) number of knots in the epicycle.
In particular, the 2π state, which contains a segment in a
quasibinormal state, in an AFM epicycle with the odd number
of knots γ 1

−3 [Figs. 3(d)–3(f)] resembles a frustrated epicycle
with the even number of knots γ 1

−4 [Figs. 4(g)–4(i)], and vice
versa [cf. Figs. 3(g)–3(i) and 4(d)–4(f)]. As a rule of thumb,
the state of a hard-axis spin chain is magnetically frustrated
if the sum of the knots and spins Q = (|p| + N ) mod 2
is nonzero.

A specific feature of the geometries with (anti)periodic
boundary conditions is the possibility to develop a finite
toroidal moment T , which provides a bridge between the
magnetic and electric degrees of freedom [38]. In this respect,
easy-axis ferromagnetic spin chains can be characterized by a
macrotoroidal moment depending on their shape [Fig. 5(a)].
Hard-axis epicycles split into a multidomain state by T with
a sizable axial component Tz. The aforementioned interplay
between the frustration of the magnetic state produced either
by the odd number of spins or the odd number of knots is
also reflected in the formation of toroidal domains: a series of
oppositely oriented domains appears for Q = 1.

VII. CONCLUSIONS AND OUTLOOK

To summarize, the presented analysis shows that the
geometric frustration in magnetic systems can appear due to
specific distributions of the curvature and torsion in a spin
chain because of spatial distribution of the geometry-driven
Dzyaloshinskii-Moriya interaction and interplay with the
(anti)periodic boundary conditions on the magnetic order
parameter. This is a different route towards magnetic
frustration, which is complementary to the established
possibilities due to the local environment of each spin with the
negative Toulouse frustration function [46,47] or antiperiodic

boundary conditions for the magnetic order parameter [53].
A fingerprint of the competition between different origins
of frustrations can be observed in the inhomogeneity of the
magnetic order parameter n and local ferrotoroidal response.

We anticipate that our findings can be used to interpret
magnetic responses in molecular magnets and complex 3D
magnetic architectures fabricated, e.g., by means of glancing
angle deposition (GLAD) [11,35,61] or focused electron-
beam-induced deposition (FEBID) [15,57]. Furthermore, this
theory analysis can be extended to other geometries with spe-
cific symmetry properties such as Salkowski curves [42,62]
and guide experimental efforts on the design of the sample
shapes to realize ferrotoroidal behavior. From the fundamental
point of view, we expect that complementary effects may be
observed in 3D magnetic nanostructures with constant curva-
ture, where the Dzyaloshinskii vector d is characterized by a
nonvanishing binormal component.

In our study, we limit our analysis to the zero-temperature
limit. Previous studies indicate that planar ring geometries
with the nearest-neighbor exchange support a variety of
long-living metastable states at finite temperatures [53]. Fur-
thermore, we note that the intrinsic DMI can contribute to the
frustration in quasi-1D systems with interacting spin chains
[63]. Epicycles show a similar picture due to a spatially dis-
tributed geometry-driven DMI, suggesting the presence of a
complex diagram of magnetic states at finite temperatures.
This study can be further extended by the analysis of the
next-neighbor exchange contributing to the equilibrium states
in real systems [64]. These activities can start a new chapter
on the thermodynamics of curvilinear magnets, which is yet to
be addressed. The effective geometric potential for electrons
following curvilinear geometries [65,66] may contribute to
the local value of spin-orbit coupling and modify the material
parameters, giving rise to more complex spiral states in the
vicinity of knots [20,67]. We expect that further modifications
of the frustration in curvilinear geometries can be accessed via
cross coupling between neighboring parts of the spin chain,
such as in the vicinity of knots of the epicycles discussed
in this work. Such effect can appear due to the dipolar in-
teraction or randomness of the material parameters enabling
next-neighbor coupling at certain distances. Furthermore, the
cross coupling could change the topology of the system,
leading to the modification of the thermodynamic functions
[68–70]. Lattice defects give another degree of freedom to
provide noncollinear ground states [54].
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TABLE I. Parameters used to build epicycles γ r
p from a spherical

curve β covering the unit sphere r times and having |p| knots.

Symmetry r p α1 α2

C3 1 −3 π

4
1
2 arccos

(
67−24

√
2

71

)
C4 1 −4 1 0.59973787219

APPENDIX A: GEOMETRY OF EPICYCLES

Here, we follow the procedure described in Bates and
Melko [45] to construct spherical epicycles with the given
number of knots. The procedure can be briefly summarized as
follows. For a given spherical curve β = {h, k, l} with trigono-
metric polynomials h, k, and l satisfying h2 + k2 + l2 = 1
(i.e., the curve β lies on a unit sphere), the epicycle (1) reads

x = 1

τ

∫ s

0

ldk − kdl

h2 + k2 + l2
,

y = 1

τ

∫ s

0

hdl − ldh

h2 + k2 + l2
,

z = 1

τ

∫ s

0

kdh − hdk

h2 + k2 + l2
. (A1)

A closed curve of constant torsion can be obtained if
these polynomials vanish simultaneously being integrated
over [0, 2π ]. We can choose a spherical epicycle β of the sym-
metry C|p|, which traces the sphere r times and has |p| knots
characterized by two geodesic radii α1,2. The selection of the
geodesic radii should be done in such a way that integrals (A1)
vanish. This determines the shape of the respective curve of
the constant torsion. The parameters that are used to construct
epicycles in our work are shown in Table I. Finally, we rotate
the laboratory reference frame to have the ẑ axis parallel to the
epicycle’s axis.

The shape of the curvature κ for the given σ near the
maximum can be analytically approximated by a Lorentzian
as

f (s) = A
�2

�2 + (s − s0)2
+ ε, (A2)

with A being the amplitude, � the half width at half maximum,
s0 the maximum position, and ε the offset; see Fig. 1(b).
In general, A ∝ σ and � ∝ 1/|σ |. The epicycle γ r

p can be
inscribed in a circle of radius R ∝ 1/|σ |.

APPENDIX B: EXCHANGE ENERGY
OF A FRUSTRATED SPIN CHAIN

To derive the σ model for curvilinear spin chains with
odd number of spins, we follow the procedure for AFM spin
chains [48], taking into account the periodic boundary condi-
tions for this geometry. In this case, the exchange part of the
Hamiltonian (2) reads

Hx

JS2
= 1

2

N−1∑
i=1

[
8m2

i + (�ni )
2 − (�mi )

2

+ 2(mi�ni+1 − ni�mi+1)
] − 2

(
m2

N + 2m2
1

)
+ μ0 · (mN + m1) + μ0 · (n1 − nN )︸ ︷︷ ︸

=δHx/(JS2 )

. (B1)

Here, the sum over i is a source of the expression (3)
by the replacement of derivatives � fi → 2a f ′(s) and sums∑

i fi → 1/(2a)
∫

f (s)ds for a certain energy term f [48].
The last terms outside the summation sign appear due to sym-
metrization. The last two terms, which are proportional to μ0,
represent the energy of the magnetic defect associated with
the unpaired moment. In fact, this defect is virtual because
it cannot be associated with a specific lattice site due to the
freedom of choice of the spin with i = 1 and the respective
shift of the origin of the reference frame. In Eq. (B1), the
terms outside the sum, which are dependent on m1 and mN ,
are small for the case of small magnetization and under the
assumption that it behaves as a driving variable.

The last term in Eq. (B1) is driven by the primary order
parameter. Therefore, it should approach its minimal value
in equilibrium. Since the transition to the continuous energy
functional is possible for small gradients of n and a → 0, we
assume that any small amount of neighboring spins will form
a checkerboard order along the certain axis and an inhomo-
geneity of the magnetic texture can be neglected. Then, n1

and nN should be either parallel or antiparallel. The require-
ment that the local spin ordering should be antiferromagnetic
everywhere imposes that μ0 is necessarily antiparallel to both
n1 and nN , and thus n1 is co-aligned with nN . Therefore, the
continuum Néel vector possesses the antiperiodic boundary
conditions n(0) = −n(L).

APPENDIX C: EQUATIONS OF STATE

To describe FM and AFM epicycles with the easy axis of anisotropy (K > 0), we use the parametrization (4). The polar and
azimuthal angles �ea(ξ ) and �ea(ξ ), respectively, are determined by the equations

�′′ − sin � cos �

[
k11(ξ ) + �′2 − (1 + k33) cos2 � + dB(ξ )

2
�′ − d ′

B(ξ )

4
sin 2�

]
− k13(ξ ) cos �

+ 4k13(ξ ) − d ′
B(ξ )

2
cos2 � cos � + 1

2
[dB(ξ ) sin � − 2dT cos �] sin2 ��′ = 0,

× sin2 ��′′ + 1

2
sin � cos �{[dB(ξ ) + 4�′]�′ + [d ′

B(ξ ) − 2k13(ξ )] sin �}

− sin2 �

2
{[dB(ξ ) sin � − 2dT cos �]�′ − d ′

B(ξ ) cos2 � + (1 + k33) sin 2�} = 0, (C1)
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where the subscript “ea” is omitted for simplicity.
To describe FM and AFM epicycles with the hard axis of anisotropy (K < 0), we use the parametrization (7). The polar and

azimuthal angles �ha(ξ ) and �ha(ξ ), respectively, are determined by the equations

�′′ + sin � cos �[1 − k33 + k11(ξ ) sin2 � − dT�
′ − �′2] + k13(ξ ) sin �

+ {dB(ξ ) cos ��′ + [d ′
B(ξ ) − 4k13(ξ ) − dB�

′] sin �} sin2 �

2
= 0,

× sin2 ��′′ + sin � cos �

[
k13(ξ ) cos � + dT�

′ + 2�′�′ − d ′
B(ξ )

2
sin �

]

+ sin2 �

2
[dB(ξ )(sin � − cos �)�′ + k11(ξ ) sin 2�] = 0, (C2)

where the subscript “ha” is omitted for simplicity.

APPENDIX D: SPIN-LATTICE SIMULATIONS

To analyze magnetic spin chains numerically, we solve the
Landau-Lifshitz-Gilbert equation

dμi

dt
= 1

h̄S
μi × ∂H

∂μi
+ αGμi × dμi

dt
, i = 1, N, (D1)

using the in-house-developed spin-lattice simulation suite
SLASI [72] with the midpoint integration scheme. Here, t is
time, h̄ is the reduced Planck constant, and αG is the Gilbert
damping parameter. By choosing a certain initial state, we
solve Eq. (D1) until the energy reaches a constant level. Then,
we compare the energies of states obtained from different
initial configurations and select the one which has the lowest
energy. For all simulations, we choose scales between J , K,
and μB in such a way as to have 	/a = 10. The value of mag-
netic length 	 is calculated based on the effective anisotropy
stemming from the dipolar interaction for the given sign of J;
see Sec. III C for details.

For simulations of magnetically soft systems, we set K= 0.
For simulations of magnetically hard systems, Hd ≡ 0 is
imposed. The numerical procedure to determine the ground
states is as follows. By choosing one of the predefined
initial magnetic textures, the system is relaxed by solving
Eq. (D1). The total time of relaxation for the majority of

simulations is tmax ≈ 174h̄S/K with the integration step �t ≈
0.000 174h̄S/K. In some cases, the simulation time is ex-
tended up to 870h̄S/K. The sets of initial states for all studied
systems include the orientation of n along ±x̂, ±ŷ, ±ẑ, ±eT,
±eN, ±eB and several runs from different random states. To
get the lowest-energy states for hard-axis AFM and frustrated
epicycles, additional initial states with �ini = π/2 and piece-
wise profiles of �ini close to the final state are used.

The discrete Frenet-Serret basis {eT, eN, eB} is calculated
based on the shape of γ [73], which is numerically determined
with a step much finer than the intersite distance a. We note
that for the chosen 	/a ratio, the same procedure can be ap-
plied to the set of magnetic lattice sites, while the discreteness
effects are still negligibly small.

To check the critical torsion at which the ground state is
changed, we performed a series of simulations of the easy-axis
FM epicycles γ 1

−3 for different σ , where the initial states are
selected to be along eT and along the axis of symmetry of
the epicycle. While all states remain similar visually, at σcr =
0.377 ± 0.016 there is a change of the spatial distribution of
�ea. For σ < σcr, the azimuthal angle behaves qualitatively
similar to the picture shown in Fig. 2(b) with max |�ea| ∼
0.1π . For σ > σcr, there is a continuous change of � by
6π at 0 � ξ < X , which is an indication of the difference
in topology of magnetic states because of the helimagnetic
transition due to a strong curvature-induced DMI [17].
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