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Abstract

Many problems from real life deal with the generation of enormous, var-

ied, dynamic, and interconnected datasets coming from different and

heterogeneous sources. Analysing large volumes of data makes it pos-

sible to generate new knowledge useful for making more informed de-

cisions, in business and beyond. From personalising customer commu-

nication to streamlining production processes, via flow and emergency

management, Big Data Analytics has an impact on all processes.

The potential uses of Big Data go much further: two of the largest

sources of data are including individual traders’ purchasing history, the

use of Biological Networks for disease prediction or the reduction and

study of Biological Networks. From a computer science point of view,

the networks are graphs with various characteristics specific to the ap-

plication domain. This PhD Thesis focuses on the proposal of novel

knowledge extraction techniques from large graphs, mainly based on

Big Data methodologies.

Two application contexts are considered and three specific problems have

been solved: Social data, for the optimization of advertising campaigns,

the comparison of user profiles, and neighborhood analysis. Biological

and Medical data, with the final aim of identifying biomarkers for diag-

nosis, treatment, prognosis, and prevention of diseases.
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Preface

The contents of this Thesis are conveniently divided in three parts, pro-

posed approaches and results respectively in 8 Chapter. The first part

(Chapter 1) introduces the problem of knowledge extraction on Graphs

in two different application contexts: Social Networks and Biological

Networks. After the introductory Chapter 1 preliminary biological no-

tions on Graphs are reported in Chapter 2, such as definitions, data

structures, examples on different types of Graphs.

The second part describes the step-by-step methods, the algorithms used

in two different contexts. Chapter 3 presents the state of the art of three

problems considered in this Thesis: Chapter 4 the novel method based on

the optimization of Advertising Campaign. Chapter 5 the method based

on extracting knowledge encoded in the Biological Networks topology.

Chapter 6 analyses the method based on prediction of lncRNA-disease

Associations.

In third part the results of problems on the two contexts dealt with are

shown in Chapter 7. The Thesis ends with (Chapter 8), conclusion com-

mon to both the two contexts, where the possible future developments

of the presented work are addressed.



8



Acknowledgments

Arriving at this point, defending my doctoral thesis, was not obvious.

Life has presented me with many obstacles and dark periods that have

served as experience, which I managed to overcome on my own and

with hindsight. Firstly I’d like to thank myself for the strength and the

courage of a lion that never gives up even at the first obstacle. I do

not deny that it was hard and there were difficult moments along these

years full of disappointment, regret but also joy and satisfaction.

This project would not have been possible without the support of many

people: many thanks to my advisor, Simona E. Rombo, who read my

several revisions and helped me to make sense of the confusion. She

has been an ideal teacher, mentor, and thesis supervisor, offering me

advice and encouragement with a perfect blend of insights and humor.

If I became the person I am today, I owe it to her who saw potential in

me by always pushing and advising me. Not in chronological order, and

definitely not in terms of importance, I’d like to thank to my parents and

my sister Teresa, whom I think I made them proud of me during my uni-

versity career, they were my pillars, even in the difficult moments they

always support me not only financially, and I’ll never stop to thanking

them. A special thanks goes to my grandparents, because they never

leave me alone, I dedicate this moment to them.

Other thanks go to those people who have been a source of inspiration

for me during my PhD: Salvatore Morfea and Simona Panni, members

of my Kazaam Lab team, I enjoyed with their wealth of knowledge and

valuable tips. Another thanks goes to Professor Susana Vinga,



10

Monica and Roberta for the support that gave me during my experience

in Lisbon as visiting scholar, and for the beautiful friendship established.

Thanks to two brilliant professors: Raffaele Giancarlo and Giovanni Pi-

lato, who were great and essential mentors during the course of my

studies. They deserve my admiration.

Last but not least, I’d like to thank my colleagues and friends: An-

tonella, the precious friend that everyone would like to have. I shared

many beautiful moments. Chiara, my guide and true friend, who I met

in Lisbon. Giusy, the friend of social network: we met for the first time

online, and she is a sweet person.

Gabriella, Margherita, Antonella and Flaviana are friends of lifetime,

who have always been there.

Mariella Bonomo



Funding

The research presented in this PhD Thesis has been supported by dif-

ferent research projects. In particular, the PhD scholarship has been

funded in part by the PRIN research project “Multicriteria Data Struc-

tures and Algorithms: from compressed to learned indexes, and be-

yond”, grant n. 2017WR7SHH (MIUR). Moreover, participation to

international conferences for the presentation of some of the obtained

results has been possible also thanks to the funds by the GNCS research

projects “Algorithms, methods and software tools for knowledge discov-

ery in the context of Precision Medicine” (2020) and “Big knowledge

graphs modelling and analysis for problem solving in the web and bio-

logical contexts” (2022, CUP E55F22000270001), provided by INDAM

GNCS. All mentioned projects have also allowed to join very stimulat-

ing research meetings and events which have pushed toward interaction

with other researchers working on related topics.



12



Contents

I Introduction 23

1 Introduction 25

1.1 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Biological Networks . . . . . . . . . . . . . . . . . . . . . 27

1.3 Summary of the main results . . . . . . . . . . . . . . . . 28

2 Background 31

2.1 Basics on Graphs . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Types of Graphs . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Biological Networks . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 Protein-Protein interaction Networks . . . . . . . . 40

2.5.2 Interactome Networks . . . . . . . . . . . . . . . . 42

2.5.3 Co-expression Networks . . . . . . . . . . . . . . . 43

2.5.4 Diseasome . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.5 lncRNA-miRNA-disease Networks . . . . . . . . . 45

2.5.6 Network clustering . . . . . . . . . . . . . . . . . . 47

2.6 The adopted Big Data technologies . . . . . . . . . . . . . 47

2.6.1 The Map Reduce paradigm . . . . . . . . . . . . . 48

2.6.2 Apache Spark . . . . . . . . . . . . . . . . . . . . . 48

3 Problems and state of the art 53

3.1 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Optimization of Advertising Campaigns . . . . . . 53

3.1.2 Semantic approaches . . . . . . . . . . . . . . . . . 54



14 Contents

3.1.3 Action-based approaches . . . . . . . . . . . . . . . 55

3.2 Biological Networks . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Topological measures . . . . . . . . . . . . . . . . . 56

3.2.2 Prediction of lncRNAs-diseases Associations . . . . 62

II Proposed Approaches 67

4 Optimization of Advertising Campaign 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 A novel approach for the optimization of an Advertising

Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Extracting knowledge encoded in the Biological

Networks topology 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 A novel approach to infer hidden knowledge via topolog-

ical rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Prediction of lncRNA-disease Associations 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 A novel approach to predict new lncRNA-disease associ-

ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

III Results 91

7 Results 93

7.1 Optimization of Advertising Campaigns . . . . . . . . . . 93

7.2 Inferring the biological relevance of network components . 96

7.3 Prediction of lncRNA-disease Associations . . . . . . . . . 113

8 Concluding Remarks 117

8.1 Problem 1: Optimization of Advertising

Campaigns . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2 Problem 2: Extracting functional

knowledge from network topology . . . . . . . . . . . . . . 118



Contents 15

8.3 Problem 3: Prediction of lncRNA-disease Associations . . 119

Bibliography 121



16 Contents



List of Figures

2.1 The representation of a graph with V as the set of vertices

and E as the set of edges. . . . . . . . . . . . . . . . . . . 32

2.2 The difference between directed graph (graph on the left)

and undirected graph (graph on the right). . . . . . . . . 32

2.3 In this example, we have a graph G with six vertices and

seven edges. Example of a path of a graph is defined as the

finite sequence of edges which joins a sequence of vertices

(1,2,4,6) which by most definitions, are all distinct in a

graph G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 The adjacency matrix for the subgraph in Figure 2.3. . . . 36

2.5 Example of a Social Network. . . . . . . . . . . . . . . . . 38

2.6 Example of Social Network. . . . . . . . . . . . . . . . . . 39

2.7 Example of a Biological Network. . . . . . . . . . . . . . . 40

2.8 Schematic illustration of the Human Diseasome. Adapted

from [46]. Copyright (2007) National Academy of Sci-

ences, USA. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9 Distribution of miRNA and lncRNA in the Human Genome. 45

2.10 Tripartite graph which nodes are represented from

lncRNAs, miRNAs and diseases. . . . . . . . . . . . . . . 46

2.11 RDD (Resilient Distributed Dataset). Adapted from

spark.apache.org. . . . . . . . . . . . . . . . . . . . . . . . 51

2.12 Apache Spark Architecture. Adapted from

spark.apache.org. . . . . . . . . . . . . . . . . . . . . . . . 52



18 List of Figures

3.1 Representation of Matrix Factorization: the goal of a rec-

ommendation system is to predict the blanks in the utility

matrix. Copyright (Recommendation System series part

4: the 7 variants of matrix factorization for Collaborative

Filtering) (https://towardsdatascience.com). . . . . . . . . 65

4.1 A small OSN. For each node, the corresponding affinity

value is also shown. . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Links among the first 10 target nodes for Alfa Romeo

Brand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Links among the first 10 target nodes for Amarelli Brand. 76

6.1 Large amounts of lncRNA-miRNA interactions and

miRNA-disease associations have been collected in public

databases. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Performance and statistical significance for the rankings

returned by topological measures for GDN w.r.t. the gold

standard G1. . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Performance and statistical significance for the rankings

returned by topological measures for WGN. . . . . . . . . 102

7.3 Performance and statistical significance for the rankings

returned by topological measures for the PPI network D1. 104

7.4 Representation of Roc Curve for Collaborative Filtering

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Representation of Roc Curve for Centrality method,

Pvalue method and ncPred method (using first dataset

HMDD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.6 Representation of Roc Curve for 3 methods (using second

dataset HMDD). . . . . . . . . . . . . . . . . . . . . . . . 116



List of Tables

5.1 Edge topological measures. . . . . . . . . . . . . . . . . . 79

5.2 Node topological measures. . . . . . . . . . . . . . . . . . 80

6.1 Example of the representation of a sub-matrix factoriza-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 The considered brands and their associated web-pages. . . 94

7.2 Total number of nodes (second column) with affinity

values larger than the chosen threshold identified by each

method (first column), fraction of target nodes directly

reached (third column) or instead detected from the

neighborhoods (fourth column). . . . . . . . . . . . . . . . 95

7.3 Basic structural features of the considered Biological Net-

works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Application to PPI networks clustering. The first column

shows the considered network; the second one specifies if

edge ranking (ER) or edge equivalent rank (EER) is con-

sidered; in the third column if incremental (I) or decre-

mental (D) views are considered is reported; the topolog-

ical measure for which the results are reported on that

row is specified in the fourth column; the values of Pre-

cision (P), Recall (R) and Fmeasure (Fm) are shown in

following three columns, while in the last one the view

percentage at which the best performance is reached is

reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



20 List of Tables

7.5 Global Comparison for the Gene Disease Network

(GDN) using Edge Ranks and with Golden Standard G1:

eij exists if genes i, j share at least one common disease,

and wij is equal to the number of common diseases ac-

cording to [46]. . . . . . . . . . . . . . . . . . . . . . . . . 101

7.6 Global Comparison for the Gene Disease Network

(GDN) using Edge Equivalent Ranks and with Golden

Standard G1: eij exists if genes i, j share at least one

common disease, and wij is equal to the number of com-

mon diseases according to [46]. . . . . . . . . . . . . . . . 102

7.7 Global Comparison for the Gene Disease Network

(GDN) using Edge Equivalent Ranks and with Golden

Standard G2: eij exists if genes i, j share at least one

common disease, and wij is equal to the total number of

shared GO terms. . . . . . . . . . . . . . . . . . . . . . . . 103

7.8 Global Comparison for the Human Disease Net-

work (HDN) using Edge Ranks: eij exists if diseases

i, j share at least one common gene mutated, and wij is

equal to the number of common genes according to [46]. . 105

7.9 Global Comparison for the Human Disease Net-

work (HDN) using Edge Equivalent Ranks: eij exists if

diseases i, j share at least one common mutated, and wij

is equal to the number of common genes according to [46]. 106

7.10 Global Comparison for the Worm Gene Network

(WGN) using Edge Ranks: eij exists if genes i, j share

at least one common observed phenotype following gene

knockout, and wij is equal to the number of common phe-

notypes according to [50]. . . . . . . . . . . . . . . . . . . 107

7.11 Global Comparison for the Worm Gene Network

(WGN) using Equivalent Edge Ranks: eij exists if genes

i, j share at least one common observed phenotype fol-

lowing gene knockout, and wij is equal to the number of

common phenotypes according to [50]. . . . . . . . . . . 108



List of Tables 21

7.12 Global Comparison for the PPIN D1 using Edge

Ranks. Edge eij exists if proteins i, j interacts physically

according to (cite ref for network D1), and edge weight

wij is equal to the number of protein complexes i, j have

in common. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.13 Global Comparison for the PPIN D1 using Equiva-

lent Edge Ranks. Edge eij exists if proteins i, j interacts

physically according to (cite ref for network D1), and edge

weight wij is equal to the number of protein complexes i,

j have in common. . . . . . . . . . . . . . . . . . . . . . . 110

7.14 Global Comparison for the PPIN Y2H using Edge

Ranks. Edge eij exists if proteins i, j interacts physically

according to (cite ref for network Y2H), and edge weight

wij is equal to the number of protein complexes i, j have

in common. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.15 Best performing measures for edge rank. This table shows

the best performing measures for the three considered or-

ganisms (human, worm and yeast), distinguished by those

based on clustering coefficient (CC), neighborhoods (N),

modularity (M) and dispersion (D) (see details in [16]).

Results show that a distinct handful of best performing

measures can be identified for each of the considered or-

ganisms, independently from the reference gold standard.

Moreover, it seems that the proposed paradigm works

better on denser networks, possibly due to the fact that

the encoded information is larger than for sparse networks.112

7.16 Table shows the value of AUC for three different methods

and two different datasets: Centrality method, Pvalue

method and ncPred Method. . . . . . . . . . . . . . . . . 114



22 List of Tables



Part I

Introduction





Chapter 1

Introduction

Abstract

This Chapter introduces the motivations which have

pushed for the study of problems and the proposal of solutions de-

scribed in this PhD Thesis. The main focus of this Thesis is on

knowledge extraction from graphs, specialized in two different ap-

plication contexts: Social Networks and Biological Networks.

Many problems of real life can be modeled as graphs, able to take

into account important relationships between interacting “actors”. On

the other hand, we are daily drowned in a very large amount of data,

coming from different sources, that are complex in contents, heteroge-

neous in formats and order of terabytes in size.

These “Big Data” provide unprecedented opportunities to work on ex-

citing problems, but also raise many new challenges for data mining and

analysis. Indeed, most of the current analytical tools become obsolete

as they fail to scale with data, especially when graphs seem to be the

most suitable models to be adopted. Moreover, data are usually ob-

tained from different information sources, and they need to be suitably

integrated on the cloud. Therefore, performant technologies are required

for data integration and data-intensive analysis, and algorithms need to

be designed in order to be efficient and effective in this scenario. As

sketched in [14], approaches proposed in this PhD Thesis are focused

on the proposal of novel methodologies based on knowledge extraction

in the context of “Big Data” modeled as graphs. Graphs are powerful
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models to represent Networks of real world entities such as: events, ob-

jects, situation, concepts, by illustrating the relationship between them.

These graphs usually involve nodes associated with the main players

of the process under analysis, and edges represent the relationships be-

tween these players. As an example, nodes may represent users in the

case of Social Networks, or proteins and/or other cellular components

in the case of Biological Networks. What is important to analyse, in ad-

dition to the topology of the network, is the semantic encoded in nodes

and edges, as well as the algorithmic techniques in the networks context.

Here we analise two main different application contexts:

• Social Networks, where users’ data are often analyzed in order to

learn more about their interests and connect them with contents

and advertising relevant to their preferences. Many individuals,

teams and organizations are part of a number of Networks that give

access to knowledge, markets, technology, reputation or influence;

• Biological Networks, where an important source of Big Data is

given by the biological high-throughput techniques, and the rep-

resentation of interacting elements, such as cellular components,

genotypic-phenotypic associations, etc., is particularly relevant in

order to take into account important information which would be

missed by looking at each element singularly.

It is worth pointing out that, although the proposed methodologies are

often general enough to be applied also in other application contexts,

part of the contribution of this PhD project consists on providing satis-

fying solutions which may be used in practice in the social and medical

scenarios.

1.1 Social Networks

Automatic systems able to suggest a set of target users for advertising

campaigns provide three main benefits:

1. Minimization of costs for the dissemination of the advertising cam-

paign through social media, which is often very expensive;
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2. Improvement of the user experience in Online Social Networks

(OSNs), since only the possibly interested customers are contacted

with advertisements which could be useful for them;

3. Avoid the spread useless information through OSNs.

The presented research consists of the proposal of novel recommendation

approaches based on the comparison between the OSNs profiles associ-

ated with users (possible customers) and advertisers (brands), according

to the considered campaign. Profile matching is then applied relying on

such a graph representation, and suitable similarity measures are con-

sidered for each category. When categories involve textual documents

containing information on interests and preferences (e.g., posts and com-

ments), the document is represented as a bag of words and the Term

Frequency-Inverse Document Frequency (TF-IDF) is used to weight the

importance of the words inside the text.

Social advertising allows for quick and efficient social engagement on

Social Networks.

1.2 Biological Networks

One of the most important challenges of this century is the proposal of

precision therapies, that is, medical therapies adaptive with respect to

specific categories of individuals, presenting well targeted features (e.g.,

genomic signatures, phenotypes, etc.). The recent advances in sequenc-

ing technologies have led to an exponential growth of biological data,

allowing for high throughput profiling of biological systems in a cost-

efficient manner. Molecules such as genes, proteins and RNA together

contribute to cellular life, and it is commonly accepted that they have

to be analyzed as interacting elements when they take part in common

biological processes [70].

More recently, great attention is turning towards the possible associa-

tions between cellular components and macroscopic disorders or complex

diseases. In this context, we have studied two main problems: (i) the im-

portance of centrality measures in extracting functional knowledge from

Biological Networks, and (ii) the prediction of long non coding RNA
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(lncRNA)-diseases associations (LDA).

The first problem includes comparative analysis of nine outstanding

topological measures, based on compact views obtained from the rank

they induce on a given input biological network. The goal is to un-

derstand their ability in correctly positioning nodes/edges in the rank,

according to the functional knowledge implicitly encoded in biological

networks. To this aim, both internal and external (gold standard) vali-

dation criteria are taken into account, and six networks involving three

different organisms (yeast, worm and human) are included in the com-

parison.

The second problem is based on an approach for the prediction of

lncRNA-disease associations based on neighborhood analysis performed

on a tripartite graph. The idea is to discover hidden relationships be-

tween lncRNAs and diseases through the exploration of their interactions

with intermediate molecules (e.g., miRNAs).

1.3 Summary of the main results

In the two analysed contexts, the research behind this PhD project has

led to the following main results.

The technique focused on Social Networks is applied to brand-affinity

matching has been presented in [15]. In particular, the profile-matching

technique (presented in Chapter 4) is based on tree-representation of

user profiles and applied it on Facebook ego-Networks. The approach

presented extends those results, showing that a suitable combination of

profile-matching and neighborhood analysis is more successful in identi-

fying the best k users for advertisements distribution.

Neighborhood analysis performs better than other techniques presented

in the literature and it is not based on known lncRNA-disease asso-

ciations (as described in Chapter 3). Approaches based on integrative

networks, typically combining networks from different studies that inves-

tigate the same or similar research questions have indeed shown to reach

better performance. The techniques in the biological context based on

extracting knowledge encoded in the Biological Networks topology shows

that a distinct handful of best performing measures can be identified for
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each of the considered organisms, independently from the reference gold

standard. Moreover, it seems that the proposed paradigm works better

on denser networks, possibly due to the fact that the encoded infor-

mation is larger than for sparse networks. The techniques based on

prediction of lncRNA-disease associations identify novel LDA by ana-

lyzing the behaviour of neighbor lncRNAs, showing that the consider-

ation of indirect relationships between lncRNAs and diseases through

neighborhood analysis is more effective, and performs better than other

techniques and not based on known lncRNA-disease associations. Cen-

trality method and collaborative filtering are based better than other

techniques in the literature in terms of accuracy.
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Chapter 2

Background

Abstract

This Chapter introduces basic definitions and examples on dif-

ferent types of graphs, which are important for the full understand-

ing of the main topics accounted for in this Thesis. In particular,

we focus on two different contexts: Social Networks and Biological

Networks. The approaches proposed in this Thesis have been im-

plemented relying on Big Data technologies, using Apache Spark,

therefore the chapter recalls some fundamentals on these technolo-

gies.

2.1 Basics on Graphs

Definition 1 (Graph) A Graph is defined as a pair G = (V,E) on two

sets V and E, such that the elements in V = {v1, v2, ..., vn} are the

vertices (or nodes), and the elements in E = {e1, e2, ...em} are the edges,

that is, the connections between the vertices.

Each edge e ∈ E is said to join two vertices, which are its endpoints. If

e join u, v ∈ V, we write e =
〈
u, v

〉
. In addition a self-loop is an edge

that joins a single endpoint to itself. In Figure 2.1 an example of the

representation of a graph is shown.

Definition 2 (Same edge) In an undirected graph G, if (u, v) is an
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Figure 2.1: The representation of a graph with V as the set of vertices

and E as the set of edges.

edge in E we assume: (u, v) = (v, u), whose (v, u) is the same edge of

(u, v).

Definition 3 (Directed Graph) G is a directed graph or digraph or

oriented if the edges are ordered pairs (u, v) of vertices; while G is an

undirected Graph if the edges are unordered pairs of distinct vertices.

In Figure 2.2 an example of the representation of a graph directed and

undirected is shown. The following definitions refer to analogous ones

as introduced in the literature [12, 31].

Figure 2.2: The difference between directed graph (graph on the left)

and undirected graph (graph on the right).

Definition 4 (Adjacency) For a given graph G, the vertices u and v



Basics on Graphs 33

are adjacent if e1 = uv ∈ G. Two edges e1 = uv and e2 = uw having a

common end, are adjacent with each other.

Definition 5 (Neighbor) For any graph G and vertex v ∈ V(G), the
neighbor set N(v) of v is the set of vertices (other than v adjacent to v

that is

N(v) = {w ∈ V(G)|v ̸= w,∃e ∈ E(G) : e = (u, v)} (2.1)

Definition 6 (Degree) The number of edges incident with a vertex v

in a graph G is the degree of v, denoted as deg(v). Loops are counted

twice. A vertex v of degree 0 is an isolated vertex while a vertex v of

degree 1 is denoted end-vertex.

Nodes with “high” degree are hubs, since they are connected to many

neighbors (different criteria may be used in order to define the minimum

degree characterizing a hub, often depending on the application context

under analysis).

Definition 7 (Subgraph) A graph H is a subgraph of G if V (H) ⊆
V (G) and E(H) ⊆ E(G) such that for all e ∈ E(H) with e = (u.v), we

have that u, v ∈ V (H). When H is a subgraph of G, we write H ⊆ G.

Definition 8 (Induced Subgraph) For a given graph G, the subgraph
induced on a vertex subset U of VG, denoted by G(U), is the subgraph

of G whose vertex-set is U and whose edge-set consists of all edges in G
that have both endpoints in U . If v is a vertex of a graph G, then the

vertex deletion subgraph G − v is the subgraph induced by the vertex set

VG − v.

Suppose a closed walk in the connected graph that visits every vertex

of the graph exactly once (except starting vertex) without repeating the

edges. A trail is a walk in which all edges are distinct; a path [4] is

an alternating sequence of vertices and edges (see Figure 2.3). This is

represented by the sequence {v1, v2, ..., vn} of vertices on the path, and

there are no repeated edges or vertices (except possibly the initial and

final vertices). A path is simple if all edges and all vertices on the path

are distinct. The length of a path is the number of edges of which it is
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Figure 2.3: In this example, we have a graph G with six vertices and

seven edges. Example of a path of a graph is defined as the finite se-

quence of edges which joins a sequence of vertices (1,2,4,6) which by

most definitions, are all distinct in a graph G.

made up. A Weighted Graph G is a graph for which each edge e has an

associated real-valued number w(e) that is weight. The weight wij of the

edge between nodes i and j represents the relevance of the connection

(e.g., sequence similarity network) in most cases. A shortest path in

a graph G between two vertices u and v is a path with the minimum

number of edges. If the graph is weighted, the shortest path is a path

such that the sum of edge weights has the minimum value.

Definition 9 (Cyclic Graph) A graph G = (V,E) is cyclic if it has at

least one cycle.

Definition 10 (Acyclic Graph) A graph G = (V,E) is acyclic if zero

cycles are present, and an acyclic graph is the complete opposite of a

cyclic graph.

Definition 11 (Connected Graph) A graph G = (V,E) is connected

if for every pair of vertices u and v in V, there is a path from u to v.

A digraph is strongly connected if there exists a directed path between

every pair of distinct vertices from D. A digraph is weakly connected if

its underlying graph is connected.

Definition 12 (Disconnected Graph) A graph G = (V,E) is discon-
nected if there are at least two vertices separated from one another.
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Definition 13 (Isomorphic Graphs) Two graphs G1 = (V, E) and

G2 = (V∗, E∗) are isomorphic if there is a one-to-one mapping

ϕ : V → V∗ such that for every such that for every edge e ∈ E with

e =
〈
u, v

〉
, there is a unique edge e∗ ∈ E∗ with e∗ =

〈
ϕ(u), ϕ(v)

〉
.

Stated differently, two graphs G1 and G2 are isomorphic [94] if we can

uniquely map the vertices and edges of G1 to those of G2 such that if two

vertices were joined in G1 by a number of edges, their counterparts in

G2 will be joined by the same number of edges. The difference between

labelled and unlabelled graphs becomes more apparent when we try to

count them.

2.2 Data Structures

There are different ways to represent graphs. A graph can be represented

using a adjacency matrix. An adjacency matrix is a binary square

matrixM of order n = |V| defined by:

Mi,j = 1, if (vi, vj) ⊆ E(G)
Mi,j = 0 otherwise.

It is immediately evident from the representation by the adjacency

matrix that:

• An adjacency matrix is symmetric, that is for all i, j, A[i, j] =

A[j, i]. This property reflects the fat that an edge is represented

as an unordered pair of vertices e = (vi, vj) = (vj , vi);

• A graph G is simple if and only if for all i, j, A[i, j]≤1 and A[i,j]=0;

• The sum of values in row i is equal to the degree of vertex vi, that

is, deg(vi)=
∑

A[i,j].

An alternative representation is an incidence matrix. An incidence ma-

trixM of graph G consists of n rows and m columns such thatM[i, j]

counts the number of times that edge ej is incident with vertex vi. The

following properties are easy to verify:

• A graph G has no loops if and only if for all i, j,M[i, j] leq1;
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• The sum of all values in row i is equal to the degree of vertex vi. In

mathematical terms, this is expressed as ∀i : deg(vi) =
∑
M[i, j;

• Because each edge has exactly two, not necessarily distinct end

points, we know that for all j,ΣM[i, j=2.

Figure 2.4: The adjacency matrix for the subgraph in Figure 2.3.

2.3 Types of Graphs

Let G = (V,E) be a graph. The following definitions hold.

Definition 14 (Null Graph) If E =∅, then G is a null graph.

A null graph G is a graph with no edges. It may have one or more

vertices.

Definition 15 (Trivial Graph) If the size of V is equal to one, then

G is trivial graph.

The trivial graph is the smallest possible graph that can be created with

the minimum value of vertices that is one vertex only.

Definition 16 (Complete Graph) A graph G is complete if E con-

tains an edge between all possible pairs of vertices in V

Definition 17 (Multigraph) A multigraph G is a graph without loops,

multiple edges having the same end vertices.

Definition 18 (Regular Graph) If each vertex in V has the same de-

gree then G is a regular graph. If each vertex in V has degree r, then G
is regular of degree r or r-regular.
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Definition 19 (Finite Graph) If the number of vertices in V and the

number of edges E are finite in number, then G is a finite graph.

Definition 20 (Bipartite Graph) If V can be partitioned into two

disjoint subsets V1 and V2 such that (u, v) ∈ E implies either u ∈ V1

and v ∈ V2 OR v ∈ V1 and u ∈ V2, then (V1, V 2) is a bipartition of G,
and G is a bipartite graph.

The following definitions refer to analogous ones as introduced in the

literature [92].

Definition 21 (Complete Bipartite Graph) A bipartite graph G is

complete (m,k)-bipartite, if |X| = m, |Y | = k, and uv ∈ G for all u ∈ X

and v ∈ Y .

Definition 22 (Complete Multipartite Graph) A set of graph ver-

tices V decomposed into k disjoint sets: v1, v2..., vk is a complete k-

partite graph. A graph G that is complete k-partite for some k is a

complete multipartite graph [30].

Definition 23 (Euler Graph) A connected graph G is eulerian, if it

has a closed trail containing every edge of G. Such a trail is an Euler

tour.

Definition 24 (Hamiltonian Graph) A path P of a graph G is a

Hamilton path, if P visits every vertex of G once. A cycle C is a Hamil-

ton cycle if it visists each vertex once. A graph G is hamiltonian if it

has a Hamilton cycle.

2.4 Social Networks

A Social Networks (Figure 2.5) is constructed from relational data [90]

and it is defined as a set of social entities, such as people, groups, and

organizations, with some pattern of relationships or interactions be-

tween them. From a technological point of view, in large giants such

as Facebook or Twitter Online Social Networks (OSN), the key task

has increasingly involved the association of possible customers to brands
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Figure 2.5: Example of a Social Network.

[11, 56, 84, 99] based on the comparison of profiles [47] in the same OSN.

Social Network profiles represent relationships between categories and

subcategories and the objective is to associate the appropriate categories

and subcategories to both user and brand profiles.

Definition 25 (Social Network) A Social Network is represented by

an undirected graph G = (V,E), where nodes in V are associated to the

users, and two nodes are linked in G if a social relationship (e.g., friend-

ship, common interests, etc.) occurs between the users.

A network G (Figure 2.6) consists of a non empty set V (vertices) that

are associated to users (e.g. customers, brands, users) and a set of edges

E, represent relationships between them (e.g friendship). Social infor-

mation contents published by OSNs users are usually associated with

textual data (e.g posts and comments). Each profile includes descrip-

tors such as age, location, interests, multimedia content; the visibility of

a profile varies by site and according to the privacy of the user.

2.5 Biological Networks

Networks are widely used in many branches of biology [52, 85] as a con-

venient representation of patterns of interaction between appropriate
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Figure 2.6: Example of Social Network.

biological elements. These Biological Networks include molecular net-

works, biochemical networks, neural networks, and ecological networks.

Definition 26 (Biological Network) A Biological Network is an

undirected graph G in which the nodes (V) represent the cellular compo-

nents, such as genes and proteins, and the edges (E) between two nodes

are the physical interactions between such components or other types of

association.

G = (V, E)

In Figure 2.7 an example of a Biological Network. Different types of

components can exist in the same network: cellular components such

as genes and proteins, which contribute to cellular life and take part

in biological processes [21, 35, 39, 73]; the associations may be related

to physical, functional or phenotypic interactions [42, 57]. Networks

composed of functional links, although different, may have different links

depending on what the edge represents; for example, two genes may

share an edge if there is at least one disease involving mutations in both

of them. The identification of biological pathways [76] will lead us to

distinguish whether the removal of a node interrupts communication
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between pairs of nodes in the network. Underlying the interactions of

networks are various types of biological graphs that we will analyse in

the next paragraphs: Protein-Protein interaction Networks, Interactome

Networks, Co-expression Networks, Diseasoma, lncRNA-miRNA-disease

Networks.

Figure 2.7: Example of a Biological Network.

2.5.1 Protein-Protein interaction Networks

Proteins are long-chain molecules formed by the concatenation of a se-

ries of basic units defined amino-acids [36]. Once created, a protein

does not stay in a loose chain-like form, but folds on itself, whose shape

depends on the amino acid sequence. The folded form dictates the phys-

ical interaction it can have with other molecules. Hence, the primary

mode of protein-protein interaction is physical rather than chemical,

their complicated folded shapes interlocking to create so-called protein

complexes but without the exchange of particles that defines chemical

reactions. The protein-protein interactions (PPI) [60, 83] of a given

organism are modelled by a network which highlights the reciprocal in-
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teractions between proteins; they play a large role in every biological

functions [35, 76]. In a protein-protein interaction network [37, 61, 82]

the vertices are proteins and two vertices are connected by an undi-

rected edge if the corresponding protein physically interacts. However,

this representation omits useful information. Interactions that involve

three or more proteins are represented by multiple edges, and there is no

way to understand from the network itself that such edges represent as-

pects of the same interaction. The development of new technologies has

improved experimental techniques [95] or the detection of PPIs. This

problem could be addressed by adopting a bipartite representation, with

proteins and interactions as different types of vertices, and undirected

edges connecting proteins to the interactions participated by them.

Many computational approaches [86] use information from different

sources:

• Primary sources store annotations, both produced manually and

by computational prediction;

• Secondary sources involve the integration of PPI from different

primary sources that provide the weights between the edges and

different organisms.

The graph represented by protein-protein interaction is generated by

two different approaches with different global properties such as the re-

lationships between the number of interacting proteins and the essential

gene.

Since the interacting proteins are usually in the same subcellular com-

partment one uses functional similarity to predict the interacting pro-

teins. In the past, experimental methods and computational approaches

have been useful on various organisms. The methods used in the pre-

diction of PPI requires reliable data on positive and negative samples,

the sets of negative samples have been randomly created from paired

proteins or by selecting pairs of proteins that do not share the same cell

compartment, but nevertheless these samples were created on the basis

of cell position, by means of semantic similarity. There are four param-

eters that must be estimated to provide an accurate map of network

interaction, allowing comparison with other maps:
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• Completeness: a measure guaranteeing the physical number of pro-

tein pairs actually tested in a given search space;

• The sensitivity assay: measures which interactions can be detected

with a sensitive tool;

• The sensitivity sample: the fraction of all detectable interactions

found by a single implementation;

• The precision: the proportion of biophysical interactors.

However, with careful comparison with other network maps, network

interactions have become more complex, due to the organisation of the

cell, which has changed from a simple baggage of enzymes to a complex

of macromolecular interactions.

2.5.2 Interactome Networks

The range of macromolecular interactions constitutes the Interactome

Networks. Interactome Networks serve as an information bridge to ex-

tract properties of the local or global graph. Several approaches are used

to capture these types of networks that differ in the possible interpreta-

tions of the network map, some of which occur:

• Through the compilation of existing data available in the litera-

ture, obtaining physical or biochemical interactions;

• Through computational predictions based irrespective of physical

or biochemical such as sequence similarity, and through the pres-

ence or absence of genes in sequences.

In general, the functioning of macromolecular structures known as pro-

teomes and transcriptomes in Interactome networks is represented

through arrays comprising all the genes of an organism. These types

of networks have been applied to detect genes potentially involved in

cancer.
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2.5.3 Co-expression Networks

In Co-expression Networks, the graph representing the network is char-

acterised by nodes representing genes and edges associated with gene

links, which show a co-expression above a set threshold [22]. This thresh-

old value is calculated by the topology of the network, usually a high

value is chosen above which gene interactions are considered relevant.

There is An overlap between the edges of interaction in Co-expression

Networks and the edges of Interactome Networks, which give useful in-

formation for the global estimation of the biological significance. At the

same time, many correlations can be significant on sets of data sets such

as protein protein interactions that correspond to pairs of genes whose

expression can be correlated.

2.5.4 Diseasome

The Human Diseasome is represented by a bipartite graph consisting of

two disjoint sets of nodes. Nodes in the first set represent diseases while

nodes in the second sets represent genes. A disorder and a gene are then

connected by a link if mutations in that gene are implicated in that

disorder. From the bipartite diseasome (Figure 2.8, middle), one can

construct the human disease network, the network of human diseases

connected by sharing common genetic components (Figure 2.8, left).

One can also construct the human disease gene network, the network

of human genes, connected by implicating common human disorders

(Figure 2.8, right). The first version of the diseasome was created based

on the list of human disorders, disease genes and associations between

them obtained from the OMIM database as of December 2005 [46].
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Figure 2.8: Schematic illustration of the Human Diseasome. Adapted

from [46]. Copyright (2007) National Academy of Sciences, USA.
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2.5.5 lncRNA-miRNA-disease Networks

Most of the genome in Figure 2.9 is not encoded; that is, the informa-

tion it contains is not used for protein synthesis. For a long while, such

non-coding regions of the genome have been considered “junk DNA”.

However, it is now well recognized that DNA sequences that do not

give rise to proteins, also known as non-coding RNA, may be impor-

tant for specific cell functions. Non-coding RNAs differ in the length of

nucleotides. There are two types of ncRNAs:

• Long-non-coding RNAs (lncRNAs) are molecules emerging as key

regulators of various critical biological processes, and their alter-

ations and dysregulations have been associated with many impor-

tant complex diseases [24, 63];

• MicroRNA (miRNA) small molecules characterized by approx-

imately 20 to 22 nucleotides that are particularly active in the

regulation of gene expression at transcriptional and post - tran-

scriptional levels.

Figure 2.9: Distribution of miRNA and lncRNA in the Human Genome.
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Let L = {l1, l2, . . . , lh} be a set of lncRNAs and D = {d1, d2, . . . , dk}
be a set of diseases, and M = {m1,m2, . . . ,mk} be a set of miRNA.

Let TLMD be a tripartite graph defined on the three sets of disjoint

vertexes L, M and D, (in Figure 2.10) which can also be represented as

TLMD = ⟨(l,m), (m, d)⟩, where (l,m) are edges between vertexes in L

and M , (m, d) are edges between vertexes in M and D, respectively. In

such a context, edges of the type (l,m) represent molecular interactions

between lncRNAs and miRNAs, edges of the type (m, d) correspond to

known associations between miRNAs and diseases.

Figure 2.10: Tripartite graph which nodes are represented from

lncRNAs, miRNAs and diseases.
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2.5.6 Network clustering

A number of approaches rely on traditional hierarchical clustering meth-

ods [55], other ones are based on graph partitioning algorithms. Most

methods require the number of clusters to be known in advance. How-

ever, this information is not always available, thus some algorithms are

executed with different cluster numbers and results satisfying a quality

criteria are considered to be the most reliable. Obviously, the necessity

of running an algorithm different times may cause losses in efficiency.

The principal problem that arises (for example in PPI networks) [80] is

the choice of the metric adopted to measure the distance between two

proteins. In this kind of graphs, due to the structure of the interactions,

it has been found that the distances among many nodes are often iden-

tical. In such a case the adopted clustering method fails in finding good

solutions, due to the presence of ties that have to be solved arbitrarily.

For this reason many approaches prefer the analysis of the topological

measures.

2.6 The adopted Big Data technologies

Big Data is a combination of structured, semistructured and unstruc-

tured data collected [32, 78] by organizations that can be mined for

information and used in machine learning projects, predictive model-

ing and other advanced analytics applications. Systems that process

and store big data have become a common component of data manage-

ment architectures in organizations, combined with tools that support

big data analytics. Big data is often characterized by the three V’s:

• the large volume of data in many environments;

• the wide variety of data types frequently stored in big data sys-

tems;

• the velocity at which much of the data is generated, collected and

processed.

These characteristics were first identified in 2001 by Doug Laney.
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2.6.1 The Map Reduce paradigm

One of the best-known frameworks for turning raw data into useful in-

formation is known as MapReduce. MapReduce [27, 29] is a method

for taking a large data set and performing computations on it across

multiple computers, in parallel. It is a programming paradigm proposed

by Google researchers in 2004, and the term MapReduce is often used

to refer to the implementation of the corresponding model. Basically,

MapReduce [59] consists of two primitives:

• The Map function performs the tasks of sorting and filtering, tak-

ing data and placing it inside of categories, so that it can be ana-

lyzed. This function takes data structured in ⟨key, value⟩ pairs;

• The Reduce function analyzes data returned by the Map in order

to produce the results of the MapReduce program.

Perhaps the most influential and established tool for analyzing big data

is known as Apache Hadoop. Apache Hadoop [101] is a framework for

storing and processing data at a large scale, and it is completely open

source. Hadoop can run on commodity hardware, making it easy to use

with an existing data center, or even to conduct analysis in the cloud.

Another tool is Apache Spark, which we find in more detail in section

2.6.2, used for the development of the methods in this thesis, it is a

unified analysis engine for large-scale data processing with integrated

modules for SQL, data flows, machine learning and graph processing.

2.6.2 Apache Spark

Apache Spark has emerged as a unified engine for large-scale data anal-

ysis across a variety of workloads. It has introduced a new approach for

data science and engineering where a wide range of data problems can be

solved using a single processing engine with general-purpose languages.

Apache Spark [91, 1, 48, 67, 109] has been adopted as a fast and scal-

able framework, it provides an interface for programming entirely using

clusters, using parallelism and implementing fault tolerance. The Spark

ecosystem comprises five components:
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• Spark Core [109] is the foundation of Apache Spark and is the

base of the whole project. It provides distributed task dispatching,

scheduling, and basic I/O functionalities as Resilient Distributed

Datasets (RDD);

• Spark SQL [7] is a Spark module for structured data processing;

• Spark Streaming [111] is an extension of the core Spark API that

enables scalable, high-throughput, fault-tolerant stream processing

of live data streams;

• MLlib [67] is Spark’s machine learning library. Its goal is to make

practical machine learning scalable;

• GraphX [48, 104] is a component for graphs and graph-parallel

computation.

At a high level, every Spark application consists of a driver program that

runs the user’s main function and executes various parallel operations

on a cluster. The core abstraction of Spark is called Resilient Distributed

Datasets (RDD) [110] (Figure 2.11), which is a distributed collection of

elements partitioned across the nodes of the cluster that can be oper-

ated on in parallel. The key performance driver of Spark is that an RDD

can be cached in memory of the Spark cluster compute nodes and thus

can be reused by many iterative tasks. The basic unit of parallelism

in an RDD is called partition. Each partition is one logical division of

data which is immutable and created through some transformation on

existing partitions. Immutability helps to achieve consistency in com-

putations. RDDs achieve fault tolerance through a notion of lineage: if

the partition of an RDD is lost, the RDD has enough information about

how it was derived from other RDDs to be able to rebuild just that par-

tition. Physically an RDD is a Scala object and it is created by starting

with a file in the Hadoop file system (or any other Hadoop-supported

file system), or an existing Scala collection in the driver program, and

transforming it. RDDs can be created through deterministic operations:

• Transformations are deterministic, but lazy, operations which de-

fine a new RDD without immediately computing it; transforma-

tions return pointers to new RDDs. Example of transformations:
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– map(func) that passes each dataset element through a func-

tion and returns a new RDD representing the results;

– filter(func) return a new dataset formed by selecting those

elements of the source on which func returns true;

– distinct[numPartition] return a new dataset that contains

the distinct elements of the source dataset.

• Actions return values or results to the driver program. Example

of actions:

– reduce(func) that aggregates all the elements of the RDD

using some function and returns the final result to the driver

program;

– collect() return all the elements of the dataset as an array

at the driver program. This is usually useful after a filter or

other operation that returns a sufficiently small subset of the

data.

– foreach(func) passes each element through a user provided

function.

An application on Apache Spark is usually split into a driver and sev-

eral executors. The driver takes care of the execution of the spark ap-

plication, managing the resources to be allocated and the tasks to be

performed by each executor running in the cluster, while the driver may

be running on the client. The instance of the SparkContext object in

the Spark (driver) program is responsible for requesting the resources

needed to execute the executors. A Spark application is formed by jobs,

one for each action, each job is composed of a set of stages that depend

on each other executed sequentially, each of them is executed by many

tasks, performed parallel by the executors, an example is shown in Fig-

ure 2.12. Executors perform the tasks assigned by the driver, they have

an assigned amount of memory allocated and cannot communicate with

each other unless they first save the data to disk. The executors have a

lifetime equal to the lifetime of the application.

Apache Spark has introduced several improvements for its data abstrac-

tion which yield a better computation model as well. One of these
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Figure 2.11: RDD (Resilient Distributed Dataset). Adapted from

spark.apache.org.

improvements is the DataFrame API which is part of Spark SQL [7]. A

DataFrame is conceptually equivalent to a table in a relational database.

It is a distributed collection of data, like RDD, but organized into named

columns. Another improvement is the Dataset API which is a new exper-

imental interface added in Spark 1.6. It is an extension of the DataFrame

API that provides a type-safe, object-oriented programming interface.

A Dataset is a strongly typed, immutable collection of objects that are

mapped to a relational schema [7].
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Figure 2.12: Apache Spark Architecture. Adapted from

spark.apache.org.



Chapter 3

Problems and state of the

art

Abstract

This Chapter presents the detailed analysis and study of the

literature focusing on knowledge extraction from two different con-

texts: Social and Biological Networks. The section 3.1 is concerned

with the presentation of literature in the context of semantic and

action-based approaches for the optimization of Advertising Cam-

paigns. The section 3.2 is concerned with the literature for the

identification of significant descriptors of a Biological Network and

the prediction of new association on methods based on two different

categories already known/unknown associations and matrix factor-

ization.

3.1 Social Networks

This paragraph shows the study of the literature and the detailed anal-

ysis of the Social Networks context, for the optimization of Advertising

Campaigns.

3.1.1 Optimization of Advertising Campaigns

Modeling the user profiles from social media raw data is usually a chal-

lenging task. The extensive spread of the Internet around the world
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has created an effective medium for instant communication at low or

no cost, and online communication has become an important platform

for consumers to express their opinions about experiences concerning

products [28]. Consumers are motivated to use social networking sites

for a variety of reasons. Chenyan Xu in [105] discussed several different

theoretical reasons and concluded that gratification, utilitarian motiva-

tion and social presence provided explanations for the user’s motivations

to use social networking sites. Spreading product relation information

through Facebook can be evaluated from the diffusion of innovation per-

spective where the motivations can be studied. Facebook [51] is by far

one of the largest social networking sites with over 800 million users

who frequently log-on to the site every day. Facebook creates a plat-

form for users to talk about their favorite interests and hobbies with

friends. Therefore, suggestions and recommendations from friends may

be considered to be a more influential source of product information.

Consumers might be more receptive to such information and, perhaps,

are more likely to try a product because of the recommendation by their

friends. The approaches proposed in the literature to this aim may be

roughly classified in two main categories:

• The first category includes approaches based on the analysis of

user generated contents (here referred to as semantic approaches);

• The second category of approaches characterize individuals by “ac-

tions”, e.g., visited web pages (action-based approaches).

3.1.2 Semantic approaches

The authors of [93] use Differential Language Analysis (DLA) in order to

find language features across millions of Facebook messages that distin-

guish demographic and psychological attributes. They show that their

approach can yield additional insights (correlations between personality

and behavior as manifest through language) and more information (as

measured through predictive accuracy) than traditional apriori word-

category approaches. The framework proposed in [64] relies on a semi-

supervised topic model to construct a representation of an app’s version

as a set of latent topics from version metadata and textual descriptions.
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The authors discriminate the topics based on genre information and

weight them on a per-user basis, in order to generate a version-sensitive

ranked list of apps for a target user. In [62] the authors propose a

dynamic user and word embedding algorithm that can jointly and dy-

namically model user and word representations in the same semantic

space. They consider the context of streams of documents in Twitter,

and propose a scalable black-box variational inference algorithm to infer

the dynamic embeddings of both users and words in streams. They also

propose a streaming keyword diversification model to diversify top-K

keywords for characterizing users’ profiles over time.

The first technique applied to brand-affinity matching that is not an

action-based approach has been presented in [15]. In this work [19] the

author proposes a general framework for the recommendation of possible

customers (users) to advertisers (e.g., brands) based on the comparison

between OSN profiles. This approach belongs to the first category, dis-

cussed above, to the best of our knowledge the only techniques applied

to brand-affinity matching are action-based approaches. In particular,

the method associates suitable categories and subcategories to both user

and brand profiles in the considered OSN. When categories involve posts

and comments, the comparison is based on word embedding, and this

allows to take into account the similarity between the topics of partic-

ular interest for a brand and the user preferences. Furthermore, user

personal information, such as age, job or genre, are used for targeting

specific advertising campaigns.

3.1.3 Action-based approaches

In [84] individuals are associated with each other due to some actions

they share (e.g., they have visited the same web pages). The prox-

imity between individuals on networks built upon such relationships is

informative about their profile matching. In particular, brand-affinity

audiences are built by selecting the social-network neighbors of existing

brand actors, identified via co-visitation of social-networking pages. This

is achieved without saving any information about the identities of the

browsers or content of the Social Network pages, thus allowing for user

anonymization. In [2] compact and effective user profiles are generated
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from the history of user actions, i.e., a mixture of user interests over a

period of time. The authors propose a streaming, distributed inference

algorithm which is able to handle tens of millions of users. They show

that their model contributes towards improved behavioral targeting of

display advertising relative to baseline models that do not incorporate

topical and/or temporal dependencies. In [53] a computer user behav-

ior is represented as the sequence of the commands she/he types during

her/his work. This sequence is transformed into a distribution of relevant

subsequences of commands in order to find out a profile that defines its

behavior. Also, because a user profile is not necessarily fixed but rather

it evolves/changes, the authors propose an evolving method to keep up

to date the created profiles using an Evolving Systems approach. The

observation that behavior of users is highly influenced by the behavior

of their neighbors or community members is used in [103] to enrich user

profiles, based on latent user communities in collaborative tagging.

3.2 Biological Networks

In this paragraph there is the study of the literature of two problems in

the Biological Network context. First, the paradigm for the identifica-

tion of significant “global” descriptors of a Biological Network, relying on

the characterization of the relevance of nodes and edges across the net-

work structure; second, the prediction of new associations of lncRNAs-

diseases.

3.2.1 Topological measures

Biological Networks topology yields important insights into biological

function, occurrence of diseases and drug design. In the last few years,

different types of topological measures have been introduced and applied

to infer the biological relevance of network components-interactions, ac-

cording to their position within the network structure.

Two Biological Networks N = ⟨V,E⟩ and N ′ = ⟨V ′, E′⟩ are isomorphic

(N ≃ N ′) if there exists a bijection ϕ : V → V ′ such that (u, v) ∈ E

if and only if (ϕ(u), ϕ(v)) ∈ E′. Similarly to the definition in [20], we

provide the following.
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Definition 27 (Topological measure) Let N = ⟨V,E⟩ and N ′ =

⟨V ′, E′⟩ be two isomorphic biological networks. Let X be V or E. A

real-valued function w : X → R is a topological measure if and only if:

∀x ∈ X, N ≃ N ′ =⇒ wN (x) = wN ′(ϕ(x)), where wN (x) denotes the

value w(x) in N .

Definition 28 (Topological Overlap Measures (TOM)) Given

an edge (i, j), the Topological Overlap Measure (TOM) and its General-

ized version (GTOMm) score the degree of overlap among the neighbors

of those two nodes. The larger the overlap, the higher the weight as-

signed to (i, j). TOM considers only the immediate neighbors, whereas

GTOMm includes all the neighbors at distance ≤ m, as follows:

wij =


|Nm(i) ∩Nm(j)|+ aij

min{|Nm(i)|, |Nm(j)|}+ 1− aij
if i ̸= j

1 otherwise

(3.1)

In Equation 3.1, Nm(i) denotes the set of i’s neighbors reachable with

a shortest path of length at most m from i, and aij = 1 if and only if

there exists an edge connecting vertices i and j, otherwise aij = 0. The

following definition refers to analogous ones as introduced in literature

[88, 106].

Definition 29 (Edge Clustering Value) Similarly to TOM, Edge

Clustering Value (ECV) quantifies how much the i’s and j’s neighbor-

hood overlap:

wij =
|N1(i) ∩N1(j)|2

|N1(i)| · |N1(j)|
. (3.2)

Unlike TOM, which normalizes the size of common neighborhood over

the smallest between i and j neighborhoods (see Equation 3.1), ECV is

equal to 1 if and only if i and j have the same exact neighbors. It is

worth noting that both TOM and ECV can be interpreted as a biological,

neighborhood-normalized version of Granovetter’s embeddeness measure

[66], historically used to characterize tie-strength in social networks.

The following definition refers to analogous ones as introduced in the

literature[97].

For a given edge (i, j), the Dispersion measure [9] extends Granovetter’s
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tie-strength measure [66], taking into account both the size and the

connectivity of i,j’s common neighborhood. Intuitively, it quantifies

how ”not well”-connected is the i,j’s common neighborhood within Gi,

the subgraph induced by i and its neighbors. More formally, let Gi be

the subgraph induced in G by {i} ∪ N1(i). In Gi, let j be a neighbor

of i (i.e. j ∈ N1(i)), and denote with C
(i)
ij = N1(i) ∩ N1(j) the set of

common neighbors of i and j within the induced subgraph Gi.

Definition 30 (Dispersion) The absolute dispersion is defined as fol-

lows:

disp(i, j) =
∑

s,t∈C(i)
ij

dv(s, t) (3.3)

where dv is a boolean function such that dv = 1 if and only if s and t are

not connected by a path of length ≤ 2 in Gi. The following definition

refers to analogous ones as introduced in the literature [9].

The authors define two enhanced versions of dispersion: parametric dis-

persion (Equation 3.4) and recursive dispersion (Equation 3.5):

param(i, j, α, β, γ) =
(disp(i, j) + β)α

emb(i, j) + γ
(3.4)

rec(i, j)←

∑
w∈C(i)

ij

x2w + 2
∑

s,t∈Cij
dv(s, t)xsxt

emb(i, j)
(3.5)

where emb(i, j) is equal |C(i)
ij | (see details in [9]). It is easy to show

that none of these measures are symmetric. Since in our context we are

considering undirected graphs, we unambiguously assign a weight to the

edge (i, j) by defining and applying the following three variants:

1. rec max (KB1). Assigns a dispersion weight to edge (i, j) as

wij = rec max(i, j) = MAX{rec(i, j), rec(j, i)}.

2. rec min (KB2). Assigns a dispersion weight to edge (i, j) as wij =

rec min(i, j) = MIN{rec(i, j), rec(j, i)}.
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3. param sym (KB3). Computes a symmetric parametric variant of

wij = param(i, j, α, β, γ) with parameters α = 0.61, β = 0, γ = 5.0

(i.e., parameters used by authors, see details in [9]), considering the

common neighborhood Cij in G (and not in the induced subgraphs

Gi, Gj , as in the original – non-symmetric– definition).

Definition 31 (Edge Betweenness) Given an edge eij, the Edge

Betweenness (EB) is the fraction of shortest paths in the network N
containing it:

wij =
∑
s,t∈V

σst(eij)

σst
(3.6)

In Equation 3.6, σst represents the total number of shortest paths con-

necting nodes s, t (s ̸= t) in the network, whereas σst(eij) counts only

the shortest paths between the same nodes containing the edge eij . The

higher wij is, the more likely the edge eij acts as a bridge connect-

ing separate communities, i.e., it represents an inter -community edge.

The following definition refers to analogous ones as introduced in the

literature[45].

Definition 32 (Edge Clustering Coefficient) Given the edge eij,

the Edge Clustering Coefficient (ECC3) is the number of triangles the

edge eij belongs to, divided by the number of triangles that might poten-

tially include it:

wij = −
z3i,j + 1

s
(3)
i,j

= − |N1(i) ∩N1(j)|+ 1

min[(|N1(i)| − 1)(|N1(j)| − 1)]
(3.7)

In Equation 3.7, z3i,j is the number of triangles built on the edge eij and

s
(3)
i,j is the maximal possible number of them. The minus sign is explained

as follows. Many triangles exist within dense communities. Therefore,

the higher |wij | the more likely eij lies within a dense community, being

an intra-community edge. Nevertheless, in order to identify communities

[87] use |wij | in a Girvan-Newman fashion [45]: at each step of the

divisive algorithm, edges with the lowest |wij | are removed, eventually

splitting the original network into separate connected components.
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Definition 33 (Edge Centrality Proximity Distance) Edge

Centrality Proximity Distance (ECPd) is based on the notion of Edge

Centrality:

Lκ(e) =
∑
s∈V

σκ
s (e)

σκ
s

(3.8)

Lκ(eik) represents the fraction of times a random walker traverses the

edge eik running through a random sample path of length at most κ.

The following definition refers to analogous ones as introduced in the

literature [68, 69].

Definition 34 (Edge Centrality Proximity Distance) (ECPd) is

defined as:

wij = 1−

√√√√ n∑
k=1

(Lκ(eik)− Lκ(ekj))2

d(k)
(3.9)

Equation 3.9 represents a distance between nodes i and j: the higher wij

the more likely the nodes i and j belong to different communities, and

eij being an inter-community edge. In particular, (Lκ(eik) − Lκ(ekj))
2

expresses a proximity between nodes i and j: the probability that a

message propagated to node i reaches also node j, with node k being a

common neighbor of those the two.

Definition 35 (Node Clustering Coefficient) Given a node i,

Node Clustering Coefficient (NCC) expresses how densely connected is

the i’s neighborhood. Let ki be the number of neighbors of i, and let ni

be the number of edges connecting such neighbors:

xi =
2ni

ki(ki − 1)
. (3.10)

In Equation 3.10, the denominator is equal to the maximum value for ki
(recallN is an undirected graph). As a result, the greater the value of xi,

the closer the i’s neighborhood to be a clique. The following definition

refers to analogous ones as introduced in the literature [100].

Definition 36 (Eigenvector Centrality) Given a node i, the Eigen-

vector centrality (EGC) is a measure of topological “importance” for the
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node i in the network N . Specifically, node i can acquire high centrality

either by having a high degree or by being connected to other highly-

important.

xi =
1

λ

∑
j∈G

Aij xj (3.11)

The following definitions refer to analogous ones as introduced in the

literature [13, 20]. In Equation 3.11, λ is the largest positive eigenvalue

of the adjacency matrix A, satisfying the equation A xxx = λ xxx, with xxx =

(x1, x2, ..., xn) being the vector of node centralities. Notably, Google’s

PageRank [75] is a variant of Eigenvector Centrality.

Definition 37 (Betweenness Centrality) Given a node i, Node

Betweenness (BC) quantifies the extent to which node i lies on geodesic

(shortest) paths between other pairs of vertices:

xi =
∑
s ̸=t̸=i

σst(i)

σst
(3.12)

The following definition refers to analogous ones as introduced in the

literature [38]. In Equation 3.12, σst(v) represents the number of shortest

paths from node s to node t that pass through i, whereas σst is the

total number of shortest paths between the same nodes. Intuitively, the

higher xi the more likely i lies on a path between nodes in different

communities.

Definition 38 (Subgraph Centrality) Given a node i, Subgraph

Centrality (SGC) quantifies the centrality of node i based on the number

of subgraphs it belongs to:

xi =

∞∑
k=0

(Ak)ii
k!

(3.13)

In Equation 3.13, (Ak)ii is the number of closed paths of length k, start-

ing and ending on node i. Closed walks are weighted such that smaller

walks are given higher weights (see [33]). Therefore, smaller subgraphs

are given higher weights than larger ones, which makes SGC able to
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quantify the extent to which node i participates in network motifs within

real-world networks [33, 73, 74].

Definition 39 (κ-Path Centrality) Given a node i, the κ-Path Cen-

trality (KPC) is defined as the sum, over all possible source nodes s, of

the probability that a message originating in s goes through i, assuming

the message runs along random simple paths of length at most κ:

xi =
∑
s ̸=i

σκ
s (i)

σκ
s

(3.14)

The following definition refers to analogous ones as introduced in the

literature [5]. In Equation 3.14, σκ
s (i) is the number of messages origi-

nating at node s passing through node i, whereas σκ
s is the total number

of messages originated from node s. Despite a similar formulation, KPC

differs substantially from NB. In particular, KPC does not assume in-

formation flows necessarily across shortest paths, as NB does.

This type of measures, which originated initially in the context of Social

Networks Analysis, find practical application in numerous other types

of networks such as that of the internet, urban networks, networks rep-

resenting the spread and contagion of a disease and, of course, also in

Biological Networks.

3.2.2 Prediction of lncRNAs-diseases Associations

The approaches may be divided in two different categories:

• those that do not use already known lncRNAs-diseases associa-

tions;

• those that do use known lncRNAs-diseases associations, which usu-

ally rely on matrix factorization.

Methods based on already known/unknown associations The

method presented in [24] (HGLDA) is not based on already known

lncRNA-disease associations. The use of an HyperGeometric distri-

bution for LDAs inference is proposed in order to predict LDAs by
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integrating miRNA-disease associations and lncRNA-miRNA interac-

tions. HGLDA has been successfully applied to predict Breast Cancer,

Lung Cancer and Colorectal Cancer-related lncRNAs. To quantify the

functional similarity of lncRNAs on a large scale, the model LncRNA

Functional Similarity Calculation based on the information of miRNAs

(LFSCM) used, which integrates semantic similarities, miRNA-disease

associations and lncRNA-miRNA interactions.

The ncPred method uses interactions experimentally verified. This

approach provides a recommendation technique to find novel lncRNA-

disease associations proposed in [6]. ncPred is based on a resource

propagation methodology, which uses a tripartite network to guide the

inference process of novel ncRNA–disease associations. The tripartite

network permits exploiting the interactions between ncRNA–target and

target–disease. The method uses two datasets containing experimen-

tally verified interactions between ncRNAs, targets, and diseases. In-

teractions in the considered network associate each ncRNA with a dis-

ease through its targets. The algorithm is based on a multilevel re-

source transfer technique, which computes the weights between each

ncRNA–disease pair and, at each step, considers the resource trans-

ferred from the previous step.

An integrative framework, IntNetLncSim, is presented in [26] to infer

lncRNA functional similarity by modeling the information flow in an

integrated network that comprises both lncRNA related transcriptional

and posttranscriptional information. An approach that relies on the

analysis of lncRNAs related information stored in public databases, as

well as their interactions with other types of molecules is described in

[17, 18]. In particular, large amounts of lncRNA–miRNA interactions

(LMIs) have been collected in public databases, and plenty of experimen-

tally confirmed MDAs are available as well. Therefore, the prediction

of LDAs may be based on known LMIs, and MDAs. In the considered

approach, the problem of LDA prediction is modeled as a neighbor-

hood analysis performed on tripartite graphs (described in Chapter 2),

in which the three sets of vertices represent lncRNAs, miRNAs, and

diseases, and the vertices are linked according to LMIs and MDAs.
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Methods based on matrix factorization Methods in the litera-

ture based on recommendation systems and the matrix of preferences

are described in this section. Collaborative filtering is a principal prob-

lem in recommendation research. In the more abstract sense, collabo-

rative filtering is the problem of weighting missing edges in a bipartite

graph. Typically, this bipartite graph is represented by its adjacency

matrix, which is called the preference matrix. In the literature on rec-

ommender systems in general and collaborative filtering specifically, two

dominant perspectives have emerged: the model based perspective and

the memory-based perspective [89].

The method MFLDA [96] is based on a different technique: the ma-

trix of recommendation. In general these matrix factorization-based

models (see Figure 3.1) show great potential in recovering latent asso-

ciations between various biological molecules. They implicitly assume

that each data source has equal relevance towards the target prediction

task, and do not differentiate among the quality of different data sources.

Therefore, their performance might be seriously compromised by noisy

(irrelevant or low quality) data sources. MFLDA first encoded directly

(or indirectly) relevant data sources related to lncRNAs or diseases in

individual relational data matrices and presets weights for these matri-

ces. Next, it simultaneously optimizes the weights and low-rank matrix

tri-factorization of each relational data matrix.

Another method [108] based on Collaborative Filtering model called

CFNBC for inferring potential lncRNA-disease associations is proposed

based on Näıve Bayesian Classifier. In CFNBC, an original lncRNA-

miRNA-disease tripartite network is constructed first by integrating

known miRNA-lncRNA associations, miRNA-disease associations and

lncRNA-disease associations, and then, an updated lncRNA-miRNA-

disease tripartite network is further constructed through applying the

item-based collaborative filtering algorithm on the original tripartite

network. These case studies of glioma, colorectal cancer and gastric

cancer demonstrate the excellent prediction performance of CFNBC as

well. A computational approach using graph regularized non-negative

matrix factorization (LDGRNMF) [98], which considers disease asso-

ciated lncRNAs identification as recommendation system problem. This

method calculates the disease similarity matrix based on known lncR-
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Figure 3.1: Representation of Matrix Factorization: the goal of

a recommendation system is to predict the blanks in the util-

ity matrix. Copyright (Recommendation System series part 4:

the 7 variants of matrix factorization for Collaborative Filtering)

(https://towardsdatascience.com).

NAs -diseases associations, disease semantic information and the similar-

ity matrix of lncRNAs based on known lncRNAs -diseases associations.

In this study, the semantic similarities between different diseases can

be computed using directed acyclic graphs (DAGs) based on the Mesh

database, where nodes represent diseases and edges represent the asso-

ciation between diseases.
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Part II

Proposed Approaches





Chapter 4

Optimization of

Advertising Campaign

Abstract

This Chapter presents an approach based on the use of auto-

mated system that founds the k best customers for Advertisement

Campaigns via OSN. The proposed approach is based on two main

aspects: the comparison between Online Social Network profiles

and neighborhoods analysis on the Online Social Network. Pro-

file matching between users and brands is considered based on bag

of words representation of textual contents coming from the social

media, and measures such as the Term Frequency-Inverse Docu-

ment Frequency are used in order to characterize the importance

of words in the comparison.

4.1 Introduction

In the last few years, with the exponential growth in the use of so-

cial media (reviews, forums, discussions, blogs and Social Networks),

people and companies are increasingly using information (opinions and

preferences) published in these media for their decision-making process.

However, monitoring and searching for opinions on the Web by one or

more companies is a very difficult problem due to the proliferation of

thousands of sites; in addition, each site contains a huge volume of text
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that cannot always be optimally decipherable (e.g., the long messages of

forums and blogs). The use of automated systems is therefore necessary.

4.2 A novel approach for the optimization of an

Advertising Campaign

The main goal of the proposed approach [15, 19] is to identify the most

suitable k possible buyers to whom distributing a given advertisement

campaign. To this aim, two important aspects have to be taken into

account:

• Ideally, users to whom distributing the campaign should have in-

terests compatible with the specific features of the advertiser (i.e.,

the brand);

• It would be better if the chosen possible buyers would know other

users whose interests are close to those expected for the campaign

success as well.

User profiles complement network topology information. In particular,

each node in the network points to data associated with a user and re-

trieved from the considered social media. An important aspect for this

research is the textual information available about user general interests

and activities, coming for example from private communications, posts,

comments, short text messages [15]. Therefore, the user profile of u is

represented here by a text Tu, characterizing u with references to the

considered OSN.

Also a brand profile is represented by a text, that can be for example

easily extracted from the web-page describing brand activities or from

other textual documents containing information on the advertisement

campaign. In the following, we refer indistinctly to brand profile and

advertisement campaign, since both may be described by textual docu-

ments and then handled in the same way in the context of the proposed

approach.
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Profile matching. Profile matching between users and brands is con-

sidered, based on bag-of-words representation of textual contents coming

from the social media. Let u be a node in an input OSN N and Tu be its

user profile. Moreover, let Tb, the text associated with the brand profile.

The first step of our approach is to understand how much Tu and Tb are

“similar”, i.e., to which extent they match each other. To this aim, we

consider Term Frequency Inverse Document Frequency (TF-IDF) and

cosine similarity measures in order to understand if and how much tex-

tual contents associated to u and to the brand are semantically related.

This is sketched in the following, for the specific case under considera-

tion (i.e., only two textual documents, Tu and Tb). Let wij be a word

occurring in the text Tj (j = 1, . . . ,m).

Definition 40 (Term Frequency Inverse Document

Frequency) We introduce the measure of Term Frequency Inverse Doc-

ument Frequency. Let {D1, ...Dm} be a set of textual documents and wij

be a word occuring in the document Dj(j = 1, ...m). This function for

wij is defined as:

TF -IDF (wij) = TF (wij) ∗ IDF (wij) (4.1)

such that:

TF (wij) =
|wij |
|Tj |

(4.2)

where |wij | is the frequency of the term wij in the text Tj and |Tj | is
the number of words in Tj , and: IDF (wij) = log m

h , where h ≤ m is the

number of texts where wij occurs.

The following definition used in [15, 19] is needed in order to provide

the notion of match between the social profiles considered here. The

TF-IDF is used to weigh the importance of the words inside the text.

Definition 41 (Cosine Similarity) Let Vu and Vb be two arrays of k

real values. The cosine similarity between Vu and Vb is defined as:

CS(Vu, Vb) =

∑k
i=1 Vu[i] ∗ Vb[i]√∑k

i=1 Vu[i]2 ∗
√∑k

i=1 Vb[i]2
(4.3)
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The numerator is the inner product of the two arrays and the denomi-

nator is the product of the norms of the two arrays.

The cosine similarity is computed in order to measure the match between

customer and brand profiles.

Three measures were calculated for each node: affinity, centrality and

utility.

Definition 42 (Affinity) The value of affinity between the profiles as-

sociated to an user and a brand is then computed as the cosine similarity

between arrays containing the TF-IDF values of the words occurring in

Tu and Tb:

A(Tu, Tb) = CS(Vu, Vb) (4.4)

In order to make more effective the advertisement campaign, for each

node u in V , it is important not only to measure to what extent its

profile matches with the brand profile, but also how many nodes in the

neighborhood of u could be possibly interested in that campaign as well.

That is, the best targets are those nodes whose profile matches with the

brand, and that are surrounded by other nodes with this same feature.

Let u be a node in the set of vertices V and Tu and Tb be the user and

brand profiles, respectively. Moreover, let Nu be the set of nodes linked

to u by at least one edge in the set of edges E of N . In Figure 4.1 an

example of a small OSN, with the measure is shown.

Definition 43 (Centrality) The centrality of u for the given

considered brand (or advertisement campaign) is defined as:

C(u, b) =
∑

v∈Nu
A(Tv, Tb)

|Nu|
(4.5)

It is worth pointing out that, in order to focus the advertising campaign

on those interested users only, a threshold value can be chosen on the

affinity values according to which filtering only nodes in the network

scoring affinity values larger than that threshold. As already explained,

the final aim of our approach is to identify the best k nodes to which

distribute advertisements according to their profile matching with the
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brand (or campaign, respectively). On the other hand, in order to maxi-

mize the gain, we are also interested in detecting nodes whose neighbors

in the OSN may be interested in the same advertisements.

Definition 44 (Utility) The utility of a node for a specific brand/cam-

paign is defined as follows:

U(u, b) = α · A(Tu, Tb) + (1− α) · C(u, b) (4.6)

where α is a real value in [0, 1] used to balance two different contribu-

tions, i.e., the match between user and brand, and the match between

user neighbors and brand.

Example 1 Figure 4.1 depicts a small OSN and, for each node, the cor-

responding affinity value that is supposed to be computed with respect

to a given brand is also shown. Suppose that the brand is interested to

send its advertising campaign to 5 nodes on this network (i.e., k = 5).

Figure 4.1: A small OSN. For each node, the corresponding affinity value

is also shown.

As an example, for Node 1:

C(1, b) = 0.7 + 0.8 + 0.8 + 0.5 + 0.8

5
= 0.72



74 Optimization of Advertising Campaign

and, for α = 0.4:

U(1, b) = 0.4 · 0.7 + (1− 0.4) · 0.72 = 0.71

while for α = 0.6:

U(1, b) = 0.6 · 0.7 + (1− 0.6) · 0.72 = 0.7

Usually, to the best of our knowledge, the available data on OSNs con-

sist only on the graph topology, no information about user interests and

profiles are publicly available. Web scraping has been used here in order

to collect and extract useful contents for user profiles characterization.

In particular, we have avoided to associate randomly the information

obtained by web scraping to nodes in the considered OSN graph, due

to the fact that a random association would have altered the natural

mechanism according to which users in the same neighbors have similar

interests.

We have considered the web-pages associated with four brands. We

consider TF-IDF and cosine similarity measures in order to understand

if and how much textual contents associated with the user and to the

brand are semantically related. The networks are built upon the fol-

lowing information: each node corresponds to a web page that could be

associated with a brand (see Figure 4.2). This technique is based on

measures which aim at detecting neighbor nodes with similar interests.

Firstly this approach selects some nodes from the twitter-2010 OSN

and some web-pages focused on different topics (cooking, fashion, cars,

etc.), but the method avoids to associate randomly the information ob-

tained by web scraping. User profile may be obtained by scraping the

contents of a web-page on a specific topic for example for Amarelli Brand

(as shown in Figure 4.3). Then, a visit in depth of the OSN has been

performed starting from each of the seeds and stopping when the entire

network was visited. For each new node to be visited, a new web-page

has been visited as well, following the cross-page links on the considered

web-pages. Secondly, the values of affinity, centrality and affinity are
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Figure 4.2: Links among the first 10 target nodes for Alfa Romeo Brand.

computed for each brand (node of the network). Then these values are

ranked in descending order, according to each of these measures. The

results have been compared with a random choice of the k nodes to

which distribute the advertisement (as shown in Chapter 7).
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Figure 4.3: Links among the first 10 target nodes for Amarelli Brand.



Chapter 5

Extracting knowledge

encoded in the Biological

Networks topology

Abstract

Here a paradigm is described for the identification of significant

global descriptors of a biological network, relying on the charac-

terization of the relevance of nodes and edges across the network

structure. To this aim, the main building boxes of our methodolog-

ical framework are topological measures, which assign a real weight

to nodes or edges based not only on the network topology, but also

of novel, hidden, functional information.

5.1 Introduction

The main goal of the approach described here is to provide an overview

for the identification of significant “global” descriptors of a Biological

Network, based on the characterization of the relevance of (nodes) edges

across the network structure. The paradigm for the identification of

significant “global” descriptors of a Biological Network relies on the

characterization of the relevance of nodes and edges across the network

structure. To this aim, the main building boxes of our methodological
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framework are topological measures [45], which assign a real weight to

nodes or edges based only on the network topology. In particular, it has

emerged recently that systematic explorations of different topological

measures, with a comprehensive understanding of their dependence on

the specific network type and application context, may contribute to

accelerate the solution of difficult problems (e.g., drug repositioning) and

their clinical translation [10]. It is worth pointing out that the proposed

methodology is general enough to apply also in contexts different from

biological systems.

5.2 A novel approach to infer hidden knowledge

via topological rank

This approach builds the compact hierarchical views from the topologi-

cal ranks of nodes and edges induced by such measures, in two different

assets, static and dynamic. While in the former case the network is

considered in its entirety, in the latter one weights and rankings are as-

signed dynamically during the relevance discovery process. We propose

a methodology for the evaluation of topological ranks obtained from

different measures, that relies on two different criteria:

• statistical significance, via Montecarlo Hypothesis Test;

• biological relevance, quantified by comparing topological ranks

against those obtained from external knowledge (e.g., gold stan-

dards).

The former is a sort of internal criteria, which allows us to discriminate

the most significant ranks independently from the specific application

context. The latter criteria aims to measure to what extent hidden in-

formation may be retrieved from a Biological Network taken as a whole,

and intuitively this depends also on the specific type of information one

is looking for.

Biological Networks. The Biological Networks considered in this

study may be roughly distinguished in two main categories:
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• genotype-phenotype associations networks;

• physical-interaction networks.

Six Biological Networks involving three organisms (C.elegans, S. cerevi-

siae, H. sapiens) and seven different gold standards have been included

in the experimental analysis.

Methodology. For the purpose of this study, among the measures

defined in the Chapter 2, two classes are of interest: incremental and

decremental (see in Table 5.1 and 5.2). We consider a incremental view

to display the subgraphs induced by incrementally considering sets in

the edge rank, according to the priority, i.e. ‘relevance’, of the edges

given by the rank. And a decremental view to remove edges according

to the edge rank, such that the priority of the rank indicates irrelevance.

We propose to build compact hierarchical views from the topological

Incremental

TOM Topological Overlap Measure [88, 106]

GTOMm Generalized Topological Overlap Measure [88, 106]

ECV Edge Clustering Value [97]

KB1 Variant of Dispersion [9]

KB2 Variant of Dispersion [9]

KB3 Variant of Dispersion [9]

Decremental

EB Edge Betweenness [45]

ECC3 Edge Clustering Coefficient [87]

ECP Edge Centrality Proximity Distance [68]

Table 5.1: Edge topological measures.

ranks of nodes and edges induced by such measures, in two different

assets, static and dynamic, shown in Tables 5.2 and 5.1. In the first

asset the value of the input topological measure is computed for each of

the edges of the input graph. In the second asset, at each step, edges

with the highest score are appended to the partial solution and deleted

from the graph. This allows to intercept edges with an important role in
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Incremental

NCC Node Clustering Coefficient [100]

EGC Eigenvector centrality [13]

Decremental

BC Node Betweenness [38]

SGC Subgraph Centrality [33]

KPC κ-Path Centrality [5]

Table 5.2: Node topological measures.

their topological context, yet hidden by other edges scoring much higher

values. We provide explicit definitions for edge (node, resp.) ranks and

their associated views, together with procedures for generating them

with the use of topological measures.

Definition 45 (Edge rank) An edge rank of N is an ordered list E =

(E1, E2, · · · , Ek) of subsets of E such that they are a partition of E.

Intuitively, by displaying the subgraphs induced by incrementally con-

sidering, in the order given, the sets in E , one can get incremental views

of N , according to the priority, i.e, “relevance”, of the edges given by the

ranking. A decremental view can be obtained analogously by removing

edges according to E . In this latter case, the priority of the ranking

indicates irrelevance. Formally, one can define a sequence of views of N ,

based on E , as follows.

Definition 46 (i-th incremental (decremental) view) Given an

integer 1 ≤ i ≤ k, the i-th incremental view of N w.r.t. E is the subgraph

Ni of N induced by the set Si =
⋃i

j=1Ej. The i-th decremental view is

defined analogously, except that Si = E \ (
⋃i

j=1Ej).

Definition 47 i% percentage incremental (decremental) view

Let p be the largest integer such that the cardinality of Si% = ∪pj=1Ej is

at most i% of the edges in E. The i% incremental view of N is defined

as the subgraph Ni% of N induced by the set Si%. The i% percentage

decremental view is defined analogously, except that Si% = E\(
⋃p

j=1E).
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The difference between views in Definitions 46 and 47, is that the former

is focused on the partitions built on the rank (e.g., they may be asso-

ciated to fixed value intervals of the considered measure), whereas the

latter uses at most a specified number of edges (nodes) in N , therefore

it is focused on the “size” of the view one wants to generate.

As for nodes, the definitions of rank and views are analogous to the ones

given above for edges and therefore omitted. It is worth noting that, in

terms of views, the one corresponding to a node rank V reduces to an

edge rank E∗, that we refer to as equivalent edge rank. Indeed, infor-

mally, given V, one can construct E∗ by progressively growing the sets

of edges in E∗ as they are inserted/removed in the view corresponding

to V. Formal details are omitted for brevity.

Suppose that a rank view induced by a specific topological measure is

given. The study presented here aims to understand how much it is

representative not only of the biological knowledge directly encoded by

the network topology, but also of novel, hidden, functional information.

As usual in both supervised and unsupervised classification contexts

[19, 25, 36, 37, 44, 77, 80, 82], the “performance” of the rank view in

discovering hidden functional knowledge may be evaluated by using ex-

ternal criteria. Here, an external criterion relies on the existence of a

ranking associated to some gold standard, obtained via information not

dependent on the topology of the input network. The rank induced by

a topological function can thus be compared against the gold standard

rank. Once that quantification is available, it is also important to as-

sess how statistically significant it is. To this end, one can resort to a

Montecarlo Hypothesis Test (see [43] for analogous applications of this

test in the biological domain), where the Null Hypothesis H0 is that the

mentioned quantification is due to chance. That is, its value is no better

than the one obtained by a random ranking.

Global comparison. Assume that each edge is numbered with an in-

teger in [1, |E|]. Let Ew = (E1,w, E2,w · · · , Ek,w) and

Eg = (E1,g, E2,g · · · , Ep,g) be the rankings coming out of w and g, re-

spectively. If the sequence of those ranks were a permutation of the edge

numbers, then we could easily compare them via standard methods such

as Kendall rank index [34]. Unfortunately, since there may be ties, i.e.,
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more than one edge may be associated to the same integer representing

its ranking, we cannot use the mentioned index directly, as well as many

others (see discussion in [34]). A rank with ties is referred to usually as

partial. Among the many possibilities, we have chosen to use Khaus, a

distance function on partial ranks defined by [34] and that belongs to a

class of distances specifically designed for partial ranks. Given two par-

tial ranks, Khaus counts the number of inversions in the ranks, excluding

ties. It is normalized so that it has value in [0, 1], where zero indicated

identity. In order to assess how close Ew is to Eg, we useKhaus. The lower

its value, the better the performance of w with respect to the gold stan-

dard g. Consider Ew = (E1,w, E2,w · · · , Ek,w), Eg = (E1,g, E2,g · · · , Ep,g)

and Khaus. We use two Null models. The first is referred to as total ran-

dom and denoted by TR, in which a random permutation of the edges

of the network is generated. The second, referred to as equal classes and

denoted by EC, in which each class of Ew is assigned the same number of

edges it has, but this time chosen randomly, without replacement, from

the set of edges of the network. We perform a MonteCarlo simulation

consisting of 100 iterations for both models. In each iteration and for

each model, we compute Khaus between Eg and the randomly generated

permutation. Then we set the significance level at 1% as a measure of

relevance.



Chapter 6

Prediction of

lncRNA-disease

Associations

Abstract

This Chapter presents a novel approach for the prediction of

lncRNA-disease Associations. The main idea here is to discover

hidden relationships between lncRNAs and diseases through the ex-

ploration of their interactions with intermediate molecules (e.g.,

miRNAs) in the tripartite graph, based on the consideration that

while a few of lncRNA-disease Associations are still known, plenty

of interactions between lncRNAs and other molecules, as well as

associations of the latters with diseases, are available.

6.1 Introduction

The main goal here is to provide a computational method able to pre-

dict novel LDA candidate for experimental validation in laboratory,

given further external information on both molecular interactions and

genotype-phenotype associations, but without relying on the knowledge

of existing validated LDA. The main idea presented in [17] is to dis-

cover hidden relationships between lncRNAs and diseases through the
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exploration of their interactions with intermediate molecules (e.g., miR-

NAs) in a tripartite graph in Figure 6.1, where the three sets of vertices

represent lncRNAs, miRNAs, and diseases, respectively, and vertices

are linked according to lncRNA-miRNA interactions (LMI) and miRNA

disease associations (MDA).

Figure 6.1: Large amounts of lncRNA-miRNA interactions and

miRNA-disease associations have been collected in public databases.

6.2 A novel approach to predict new lncRNA-

disease associations

The idea of not including any information on existing LDAs in the ap-

proach is based on the consideration that only a restricted number of

validated LDAs is yet available, therefore a not exhaustive variability

of real associations would be possible, affecting this way the correct-

ness of the produced predictions. On the other hand, larger amounts
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of interactions between lncRNAs and other molecules (e.g., miRNAs,

genes, proteins), as well as associations between those molecules and

diseases are known, and we have focused our approach on the use of

such datasets. In particular, we have considered only miRNAs as inter-

mediate molecules, however the approach is general enough to allow the

inclusion of other molecules in the future.

Problem Statement. Let L = {l1, l2, . . . , lh} be a set of lncRNAs

and D = {d1, d2, . . . , dk} be a set of diseases. The goal is to return a

set P = {(lx, dy)} of predicted LDAs. Let TLMD be a tripartite graph

defined on the three sets of disjoint vertices L, M and D, which can

also be represented as TLMD = ⟨(l,m), (m, d)⟩, where (l,m) are edges

between vertices in L and M , (m, d) are edges between vertices in M

and D, respectively. In the proposed approach, L is a set of lncRNAs,

M is a set of miRNAs and D is a set of diseases. In such a context,

edges of the type (l,m) represent molecular interactions between lncR-

NAs and miRNAs, experimentally validated in laboratory; edges of the

type (m, d) correspond to known associations between miRNAs and dis-

eases, according to the existing literature. In both cases, we refer to

interactions and associations suitably annotated and stored in public

databases. A commonly recognized assumption is that lncRNAs with

similar behaviour in terms of their molecular interactions with other

molecules, may also reflect this similarity in their involvement in the oc-

currence and progress of disorders and diseases [65]. This is even more

effective if the correlation with diseases is ”mediated” exactly by the

molecules they interact with, i.e., miRNAs.

Based on the assumption that similar lncRNAs interact with similar

diseases [65], we aim to identify novel LDA by analyzing the behaviour

of neighbor lncRNAs, in terms of their intermediate relationships with

miRNAs. A score is assigned to each LDA (l, d) by considering both their

respective interactions with common miRNAs, and the interactions with

miRNAs shared by the considered disease d and other lncRNAs in the

neighborhood of l. We define the prediction-score S(li, dj) for the LDA
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(li, dj) as:

S(li, dj) = α ·
|Mli

⋂
Mdj |

|Mli

⋃
Mdj |

+ (1− α) ·
|
⋃

x(Mlx

⋂
Mdj )|

|
⋃

xMlx

⋃
Mdj |

(6.1)

where Mli is the set of miRNA associated to li, Mdj is the set of miRNA

associated to dj , α is a real value in [0,1] used to balance the two terms

of the formula, Mlx are all miRNA of those lncRNAs sharing at least

one miRNA with li.

Example 2

S(li, dj) = 0.5 · 1
2
+ (1− 0.5) · (1× 2) + (1× 2)

(2× 3)(3× 3)
= 0.25 + 0.13 = 0.38

Prediction score with Hypothesis Test. Given a set A of LDAs

scored according to the prediction-score computed as described above, it

is necessary to select the only associations which are statistically signif-

icant, for producing the output predictions. To establish the statistical

significance of the considered LDAs, we perform a Hypothesis Test via

a Montecarlo simulation [43, 49]. The Null Hypothesis is that lncRNAs

and diseases have been associated by chance. It is important to focus on

the importance that the intermediate miRNAs have in the prediction-

score computation and, more in general, in the measure of how similar

is the behaviour of different lncRNAs with respect to the occurrence of

diseases. In particular, in the adopted model interactions with miR-

NAs are the key factors determining the association between a lncRNA

and a disease. Let then (l̂, m̂) be the pairs in A and shuffle them for

100 times by producing 100 new sets of pairs Ai. The meaning is to

interchange the associations between lncRNAs and miRNAs, still main-

taining the same number of interactions. The test to reject the Null

Hypothesis consists on comparing the prediction-score S(l, d) of an as-

sociation (l, d) in A with the maximum value of prediction-score Ŝ(l, d)

obtained by the same pair in the 100 Ai. The Null Hypothesis is rejected

if S(l, d) > Ŝ(l, d).

Neighborhood based approach. The method consists of the follow-

ing steps: let TLMD a tripartite graph, we define a prediction score LDA,
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based on neighborhood analysis with Apache Spark. The first step of the

system consists of parsing the input data from the considered databases,

extracting all the different miRNAs, lncRNAs, and diseases. In the sec-

ond step, following the graph generation, there is the score computation

step over all the associations generated in the previous step. We per-

formed a statistical test to establish significant predictions and then we

tested several methods and chose an appropriate test based on recent

experimental literature : False Discovery Rate (FDR). The predicted

LDAs are ranked according to their corrected score. Each verified LDA

is left out in turn as a test sample; when the rank of this test sample ex-

ceeds a given threshold, the model provides a successful prediction. At

the varying of the threshold, we compute: true positive rate (TPR) that

it represents the sensitivity: the test samples whose ranking is higher

than the given threshold and false positive rate (FPR), that it repre-

sents the specificity: the test samples that are below the threshold. The

last step is the result analysis, performed through ROC analysis, which

will be analysed in chapter (7). Apache Spark includes MLLib, a library

with a set of functionalities to calculate the ROC metrics. In order to

calculate the AUC, it is necessary to convert the data into a format

(score, prediction), in which the score represents the value calculated

and the prediction is 1 or 0, depending on the results (respectively True

or False).

Matrix factorization. We introduce another method based on rec-

ommendation systems and matrix of preferences (see Table 6.1). There

are three classes of entities: lncRNAs, miRNAs and diseases respectively.

We used this method in two different modes:

• using prediction score of the association of previous method;

• without using a prediction score.

The idea of not including any information on existing LDAs is based

on the consideration that only a restricted number of validated LDAs is

yet available, therefore a not exhaustive variability of real associations

would be possible, affecting this way the correctness of the produced

predictions. On the other hand, larger amounts of interactions between
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lncRNAs and other molecules (e.g., miRNAs, genes, proteins), as well

as associations between those molecules and diseases are known.

The standard approach to matrix factorization based collaborative

filtering treats the entries in the lncRNA-disease matrix as explicit com-

mon association with miRNA calculated in the first moment with the

measure of centrality score. Collaborative filtering is commonly used

for recommender systems. These techniques aim to fill in the missing

entries of a lncRNA-disease association matrix. spark.ml currently sup-

ports model-based collaborative filtering, in which lncRNA and disease

are described by a small set of latent factors that can be used to predict

missing entries. spark.ml uses the alternating least squares (ALS) algo-

rithm to learn these latent factors.

This approach generalized by the algorithm summarized in the following

steps:

1 Assign a score to all lncRNA-disease associations with respect to

miRNA in common between lncRNA and disease;

2 Select α association that have the highest similarity commonly

called the neighborhood;

3 Compute a prediction from a weighted combination of the selected

neighbors’ ratings.

In step (1) we calculate the score between lncRNA and disease using the

measure described in the Formula 6.1, in the paragraph 6.2.

Example 3 We assume that the matrix is represented by 0 and 1, de-

pending on whether lncRNA have miRNA in common with the disease.

The sub-matrix factorization (see Table 6.1) includes lncRNAs and dis-

eases respectively in the rows and in the columns. The cells (i, j) iden-

tified with an boolean value: 0 or 1. If a lncRNA interacts with a given

miRNA and the same miRNA interacts with a given disease there will

be 1, otherwise 0. The task is to predict the missing rating between

lncRNA e disease.
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Abortion Immuno

Deficiency

Syndrome

Adenoma Acute

Coronary

Syndrome

HSA-MIR-

155

0 0 0 1

HSA-MIR-

15A

0 0 1 0

HSA-MIR-

15B

0 0 0 0

HSA-MIR-

16

0 0 1 0

Table 6.1: Example of the representation of a sub-matrix factorization.



90 Prediction of lncRNA-disease Associations



Part III

Results





Chapter 7

Results

Abstract

This Chapter shows the results of the research presented in

Chapters 4, 5 and 6 for the Social Networks and Biological Net-

works contexts. The chapter is divided into three sections, each

corresponding to three proposed approaches in previous chapters.

In particular, most results of this PhD Thesis have been already

pubblished in conferences proceedings [14, 15, 17, 19], book chap-

ters [18] and international journals [16].

The approaches described in the previous chapters have been im-

plemented in Apache Spark (see Chapter 2.6.2).

The considered Apache Spark libraries are libraries are: spark-core

and spark-graphX.

7.1 Optimization of Advertising Campaigns

Our experimental analysis has been devoted to understanding to what

extent our approach is effective, in order to identify the k most con-

venient nodes in the input OSN to which distribute the advertisement.

The main aim is to optimize two different aspects when identifying the

best targets, that is, the fact that interests of considered users are re-

lated to the campaign contents, and the fact that they have “friends” on

the OSN potentially interested in the distributed advertisements. The

proposed approach has been implemented in Java under Apache Spark
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1.6. To this respect, the use of Big Data Technologies allows the ex-

ploitation of the software tool also on very large OSNs.

We have considered the web-pages associated with four brands, listed in

Table 7.1.

Brand Web-page

AlfaRomeo www.alfaromeo.it

Amarelli www.amarelli.it

Carpisa www.carpisa.it

KikoCosmetic www.kikocosmetics.com

Table 7.1: The considered brands and their associated web-pages.

OSN graphs are available for example from Stanford website

(https://snap.stanford.edu/data/).

We have considered the twitter-2010 OSN from that repository, having

90, 908 vertices and 443, 399 edges. Unfortunately, the available OSNs

consist only of the Graph topology, no information about user interests

and profiles are publicly available.

As already introduced in Chapter 4 Web scraping has been used here

in order to collect and extract useful contents for user profiles char-

acterization. In particular, we have avoided associating randomly the

information obtained by web scraping to nodes in the considered OSN

Graph, due to the fact that a random association would have altered the

natural mechanism according to which users in the same neighbors have

similar interests. In order to mimic such a mechanism, which is impor-

tant for our approach (indeed the introduced measures aim at detecting

neighbor nodes with similar interests), we have proceeded as follows.

We have first randomly selected 20 seed nodes from the twitter-2010

OSN and 20 web-pages focused on different topics (cooking, fashion,

cars, etc.). Indeed, with a certain margin of simplification, we have

assumed that a user profile may be obtained by scraping the contents

of a web-page on a specific topic. Then, a visit in depth of the OSN

has been performed starting from each of the seeds and stopping when

the entire network was visited. For each new node to be visited, a new

web-page has been visited as well, following the cross-page links on the
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considered web-pages. We have considered the OSN constructed, and we

have computed, for each of the four brands (see Table 7.1), the different

values of affinity and utility (with α = 0, 25; 0, 5; 0, 75) for all nodes in

the network. Then, we have ranked them in descending order, accord-

ing to each of these measures. We have supposed that the number of

target nodes is k = 100 and we have fixed to 0.6 the minimum value of

affinity between user and brand profiles in order for a user to be consid-

ered a possible target. The obtained results have been compared with

a random choice of the k nodes to which distribute the advertisement.

For 100 different times, 100 nodes have been extracted from the set of

vertices V and the affinity between their and brand profiles have been

computed at each time. The obtained results for the different brands

do not present significant differences, therefore we illustrate only those

regarding the brand AlfaRomeo in Table 7.2.

Method # of Target

Nodes

Directly

Reached

From Neigh-

borhoods

Affinity 184 100 84

Utility (α = 0.25) 152 64 88

Utility (α = 0.5) 192 99 93

Utility (α = 0.75) 181 100 81

Random 99 13 86

Table 7.2: Total number of nodes (second column) with affinity

values larger than the chosen threshold identified by each method (first

column), fraction of target nodes directly reached (third column) or

instead detected from the

neighborhoods (fourth column).

In particular, the considered method is specified in the first column of

the table, and for the Random generation we have considered the aver-

age of obtained results.

For each method, the number of nodes presenting an affinity value larger

than the chosen threshold when the first k nodes in the corresponding

ranking is chosen is shown in the third column. It is interesting to ob-

serve that, with respect to the random choice, both Affinity and Utility
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with a high value of α (0.75) improves by one order of magnitude. In-

deed, in these two latter cases, all the considered nodes have affinity

values above the threshold. This shows that the profile matching at the

basis of our approach is effective in the selection of target users for an

advertising campaign. However, the second aspect to take into consid-

eration is related to the number of possible further interested users that

can be reached by the advertisement, starting from those k. To this

respect, the last column of Table 7.2 shows how many distinct nodes

are in the neighborhoods of the first k ones (according to the ranking

obtained for each method). The second column of the table shows the

total number of nodes with affinity values larger than the threshold that

can be reached starting from the first k, for each ranking. It is evident

that, again, the worst performance is obtained by the Random method,

whereas the best one by Utility with α = 0.5 in this case. This confirms

what is expected, that is, neighborhood analysis associated with profile

matching is the most promising choice.

7.2 Inferring the biological relevance of network

components

The approach described in Chapter 5 requires three ingredients: (a)

gold standards (b) a measure of agreement between ranks and (c) the

specification of H0 for the statistical significance test. Those points are

presented next, focusing only on the edge rank and incremental case,

since the equivalent edge rank and decremental cases are analogous.

Networks analysed. Three types of networks are analysed as already

described in Chapter 2 (see in Table 7.3): in the first category the Gene

Disease Network (GDN) is a one-mode projection of the Diseasome bi-

partite network [46]. Another possible one-mode projection of the Disea-

some is the Human Disease Network (HDN). In analogy with GDN, the

Worm Gene Network (WGN) is obtained as a one-mode projection of

a bipartite graph obtained for C. elegans in [50], by placing in one class

554 essential genes and on the other 94 phenotypic defects. We consider

the second category: three different yeast PPI datasets are accounted
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for. The first two PPI networks, namely YD1 and YD2, have been

built by [112] by filtering two networks, one used by [40] and another

containing yeast protein interactions generated by six individual exper-

iments, to delete unreliable interactions. The third PPI network, Y2H,

is built upon interactions obtained by high-throughput yeast two-hybrid

screening [107], where self-edges have been eliminated according to [3].

Network Type of nodes No. Nodes No. Edges Link density

GDN Gene 903 6,760 0.017

HDN Disease 516 1,118 0.009

WGN Gene 554 137,918 0.897

Y D1 Protein 990 4,687 0.010

Y D2 Protein 1,443 6,993 0.007

Y 2H Protein 1,966 2,705 0.001

Table 7.3: Basic structural features of the considered Biological Net-

works.

For each of the considered Biological Networks, at least one gold stan-

dard has been defined, as follows.

Gold Standards G1 and G2. In exploring GDN, it seems natural

to expect that one would like first to see edges corresponding to the

most strongly correlated gene pairs. Among the many possible weight

assignments, we use very simple and intuitive ones which are meant to

encode a biological tie-strength proportional of the number of common

(1) diseases implied by SNPs (G1) [46], and (2) GO terms (G2) [41]

between two genes (with references to the biological process vocabulary

only).

Gold Standard G3. For the HDN gold standard ranking, how many

SNPs are common to a pair of diseases is considered, according to [46].

Gold Standard G4. For WGN, in analogy with GDN, a gold stan-

dard is considered such that the weight of each edge is the number of

defects of phenotype that two genes have in common.
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Gold Standards G5, G6 and G7. For PPI networks, gold standard

rankings have been associated with the number of biological complexes

two proteins participate together. To this aim, three reference sets of

yeast complexes have been considered here, each specifically selected for

the networks in analysis [112]: G5 for D1, G6 D2 and G7 for Y2H, respec-

tively. G5 includes 81 complexes of sizes at least 5, created from MIPS

[71]. G6 is made of 162 hand-curated complexes (size no less than 4 pro-

teins) from MIPS [72]. Finally, G7 includes 975 known and curated com-

plexes from ftp://ftpmips.gsf.de/yeast/catalogues/complexcat.

Network Case Type F Rank Type P R Fm View

D1 ER I ECV static 0.55 0.69 0.61 50%

D1 ER D EB dynamic 0.89 0.77 0.82 10%

D1 ER D ECC3 dynamic 0.56 0.72 0.63 40%

D1 EER D NB static 0.68 0.33 0.44 10%

D1 EER D NB dynamic 0.61 0.27 0.37 30%

D2 ER I ECV static 0.62 0.59 0.60 40%

D2 ER D EB dynamic 0.89 0.77 0.82 10%

D2 ER D ECC3 dynamic 0.56 0.72 0.63 40%

D2 EER D NB static 0.68 0.33 0.44 10%

D2 EER D NB dynamic 0.61 0.27 0.37 30%

Y2H ER I ECV static 0.37 0.18 0.24 30%

Y2H ER D EB dynamic 0.31 0.33 0.32 30%

Y2H EER D NB dynamic 0.36 0.18 0.24 10%

Table 7.4: Application to PPI networks clustering. The first column

shows the considered network; the second one specifies if edge ranking

(ER) or edge equivalent rank (EER) is considered; in the third column

if incremental (I) or decremental (D) views are considered is reported;

the topological measure for which the results are reported on that row

is specified in the fourth column; the values of Precision (P), Recall (R)

and Fmeasure (Fm) are shown in following three columns, while in the

last one the view percentage at which the best performance is reached

is reported.

Table 7.4 shows the results obtained by comparing the connected
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subgraphs at a given view percentage (between 10% and 50%) against

known biological processes, as explained in Chapter 5. The validation

is performed through the Precision, Recall and F-measure indices, com-

puted as in [82]. Each row in the table corresponds to the best per-

formance obtained by the only topological measures which pass both

the EC and the TR significance tests. Results marked in red indicate a

higher value of the corresponding index, with respect to the best results

performed by methods in [82]. In bold the best value performed for

network and index is highlighted.

Gene Disease Network: gold standard G1. The histogram in

Figure 7.1 graphically illustrates the most representative example of the

results obtained for this network. In particular, the value of 1−Khaus is

shown on the vertical axis for the considered topological measures, when

the gold standard G1 is considered. The histogram shows that the best

compromise between biological relevance and statistical significance is

represented by GTOM2 and TOM, in both the static and the dynamic

settings (with a slight improvement in the latter case). Also KB3, closely

followed by KB2, has good performance, although both the associated

rankings do not pass the EC test.

From Table 5.2 (in Chapters 5) it is evident that only NCC (static/dyna-

mic) passes both EC and TR tests, however its performance is not high.

NB dynamic reaches the best performance, although it passes only the

TR test.

Gene Disease Network: gold standard G2. However, the perfor-

mance of all considered measures is worse, on average, than in the case

of G1. Therefore, it seems that the involvement of gene pairs in com-

mon biological processes is more difficult to be inferred from GDN, than

their influence on common diseases. This is possibly due to the com-

plexity of cell processes, and to the fact that genes whose mutations are

involved in the occurrence or progress of the same diseases, may act on

different (e.g., complementary) biological processes. The measure NCC

(static/dynamic) is the only measure passing both significance tests, also

for G2. However, in contrast with the case of the gold standard G2, this

time the best performance is reached by NCC dynamic.
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Figure 7.1: Performance and statistical significance for the rankings

returned by topological measures for GDN w.r.t. the gold standard G1.

Human Disease Network: gold standard G3. Results (Tables

7.5 and 7.6) are similar to those obtained for GDN on G1, although

here GTOM2 dynamic reaches more markedly the best performance,

among those measures passing the significance tests for edge rank. NCC

dynamic is the only one passing both EC and TR tests, and it also out-

performs all other measures, as in the case of GDN with G2. However,

the performance of measures is on average slightly worse for HDN than

for GDN, possibly due to the fact that the former is sparser than the

latter (link density equal to 0.009 and 0.017, respectively).

Worm Gene Network: gold standard G4. The histogram for

WGN (see Figure 7.2) shows that decremental measures remarkably out-

perform incremental ones, in terms of both performance and statistical

significance. The best performing measure is EB, immediately followed

by ECC3 in the static case. This can be in part explained by the fact

that the WGN is a very dense graph (link density equal to 0.897), as

opposed to the GDN and HDN variants that are very sparse (0.017 and
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View Type F Rank Type K haus EC test TR test

I ECV static 0.9616 ✓
I GTOM2 static 0.1267 ✓ ✓
I TOM static 0.2118 ✓ ✓
I KB1 static 0.3983 ✓
I KB2 static 0.0590 ✓
I KB3 static 0.0380 ✓
I ECV dynamic 0.7836 ✓
I GTOM2 dynamic 0.1260 ✓ ✓
I TOM dynamic 0.2108 ✓ ✓
D EB static 0.7841 ✓
D ECC3 static 0.9376 ✓
D ECP static 0.7787 ✓
D EB dynamic 0.4266 ✓
D ECC3 dynamic 0.9378 ✓ ✓

Table 7.5: Global Comparison for the Gene Disease Network

(GDN) using Edge Ranks and with Golden Standard G1: eij exists if

genes i, j share at least one common disease, and wij is equal to the

number of common diseases according to [46].

0.009 respectively).

Table 7.7 shows that only NCC (static) pass both EC and TR tests,

although the performance of all measures is worse than in edge rank, in

analogy with results obtained for GDN and HDN.

Protein-Protein Interaction Networks: gold standards G5, G6,

G7. For the PPI networks the best performance of topological mea-

sures is reached on the less sparse network, that is, D1 (see Figure 7.3),

having link density equal to 0.01 against the 0.007 and 0.001 of D2 and

Y 2H, respectively. However, results on the three considered PPI net-

works are comparable (see Tables 7.8, 7.9, 7.10, 7.11, 7.12 and 7.13), in

particular those of D1 and D2, where both incremental and decremental

measures pass the statistical significance tests and the best performing

measure is KB3 for edge rank. As for Y 2H, the best performance is
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View Type F Rank Type K haus EC test TR test

I NCC static 0.7739 ✓ ✓
I EGC static 0.4577 ✓
I NCC dynamic 0.7463 ✓ ✓
I EGC dynamic 0.9329 ✓
D NB static 0.2431 ✓
D SGC static 0.9541 ✓
D KPC static 0.9842

D NB dynamic 0.2238 ✓
D SGC dynamic 0.9298 ✓
D KPC dynamic 0.9890

Table 7.6: Global Comparison for the Gene Disease Network

(GDN) using Edge Equivalent Ranks and with Golden Standard G1:

eij exists if genes i, j share at least one common disease, and wij is equal

to the number of common diseases according to [46].

Figure 7.2: Performance and statistical significance for the rankings

returned by topological measures for WGN.
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View Type F Rank Type K haus EC test TR test

I NCC static 0.5296 ✓ ✓
I EGC static 0.4587 ✓
I NCC dynamic 0.5084 ✓ ✓
I EGC dynamic 0.6357 ✓
D NB static 0.5997 ✓
D SGC static 0.6440 ✓
D KPC static 0.6630

D NB dynamic 0.6110 ✓
D SGC dynamic 0.6240 ✓
D KPC dynamic 0.6680

Table 7.7: Global Comparison for the Gene Disease Network

(GDN) using Edge Equivalent Ranks and with Golden Standard G2:

eij exists if genes i, j share at least one common disease, and wij is equal

to the total number of shared GO terms.

reached by ECV, although only the decremental measures passes both

EC and TR tests. In analogy with all other analyzed networks, edge

equivalent rank performs worse than edge rank. EGC is the only incre-

mental measure returning statistically significant results, together with

NB and other decremental measures. However, NCC dynamic reaches

very good performance on Y 2H, although it passes only the TR test.

Topological views application. The measures best performing in

the case of D1 and gold standard G5 have been considered, and the in-

tersection between the complexes intercepted by edges involved in the

topological and G5 ranks is computed at different view percentages (see

Table 7.14). It is evident from these results that, even if the agreement

between edges involved at the same percentage view is not always large,

the agreement in terms of captured external knowledge (i.e., complexes)

is in some cases highly pronounced. To this respect, KB3 confirms its

best performance, being able to capture the 71% of complexes involved

in the gold standard already at the 15% view, and although only the

9% of edges are in common between the two ranks at that view. At
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Figure 7.3: Performance and statistical significance for the rankings

returned by topological measures for the PPI network D1.

the same view also KB2 reaches good performance (the 50% of common

complexes with the 5% of common edges), and all three measures based

on dispersion perform very well at the 30% and 60% views. Table 7.15

shows the best performing measures for the three considered organisms

(human, worm and yeast), distinguished by those based on clustering co-

efficient (CC), neighborhoods (N), modularity (M) and dispersion (D).

Results show that a distinct handful of best performing measures can be

identified for each of the considered organisms, independently from the

reference gold standard. Moreover, it seems that the proposed paradigm

works better on denser networks, possibly due to the fact that the en-

coded information is larger than for sparse networks.
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View Type F Rank Type K haus EC test TR test

I ECV static 0.9213 ✓
I GTOM2 static 0.2631 ✓ ✓
I TOM static 0.3944 ✓ ✓
I KB1 static 0.5126 ✓
I KB2 static 0.1579 ✓
I KB3 static 0.1091 ✓
I ECV dynamic 0.5876 ✓
I GTOM2 dynamic 0.2586 ✓ ✓
I TOM dynamic 0.3878 ✓ ✓
D EB static 0.9043 ✓
D ECC3 static 0.8793 ✓
D ECP static 0.9023 ✓
D EB dynamic 0.7337 ✓
D ECC3 dynamic 0.8880 ✓

Table 7.8: Global Comparison for the Human Disease Network

(HDN) using Edge Ranks: eij exists if diseases i, j share at least one

common gene mutated, and wij is equal to the number of common genes

according to [46].
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View Type F Rank Type K haus EC test TR test

I NCC static 0.5584 ✓ ✓
I EGC static 0.5730 ✓
I NCC dynamic 0.4324 ✓ ✓
I EGC dynamic 0.6738 ✓
D NB static 0.5537 ✓
D SGC static 0.7423

D KPC static 0.7741

D NB dynamic 0.5570 ✓
D SGC dynamic 0.6646 ✓
D KPC dynamic 0.8388

Table 7.9: Global Comparison for the Human Disease Network

(HDN) using Edge Equivalent Ranks: eij exists if diseases i, j share at

least one common mutated, and wij is equal to the number of common

genes according to [46].
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View Type F Rank Type K haus EC test TR test

I ECV static 0.7998

I GTOM2 static 0.8721

I TOM static 0.6864

I KB1 static 0.8721

I KB2 static 0.8721

I KB3 static 0.8721

I ECV dynamic 0.5657

I GTOM2 dynamic 0.8721

I TOM dynamic 0.5379 ✓
D EB static 0.3301 ✓ ✓
D ECC3 static 0.3990 ✓ ✓
D ECP static 0.8721

D EB dynamic 0.5363 ✓ ✓
D ECC3 dynamic 0.4771 ✓ ✓

Table 7.10: Global Comparison for the Worm Gene Network

(WGN) using Edge Ranks: eij exists if genes i, j share at least one

common observed phenotype following gene knockout, and wij is equal

to the number of common phenotypes according to [50].
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View Type F Rank Type K haus EC test TR test

I NCC static 0.4862 ✓ ✓
I EGC static 0.7540

I NCC dynamic 0.5383 ✓
I EGC dynamic 0.7508

D NB static 0.6746

D SGC static 0.7600

D KPC static 0.7459

D NB dynamic 0.6118

D SGC dynamic 0.7524

D KPC dynamic 0.7184

Table 7.11: Global Comparison for the Worm Gene Network

(WGN) using Equivalent Edge Ranks: eij exists if genes i, j share at

least one common observed phenotype following gene knockout, and wij

is equal to the number of common phenotypes according to [50].
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View Type F Rank Type K haus EC test TR test

I ECV static 0.9181

I GTOM2 static 0.6778 ✓
I TOM static 0.8230

I KB1 static 0.6139 ✓ ✓
I KB2 static 0.4396 ✓ ✓
I KB3 static 0.3800 ✓ ✓
I ECV dynamic 0.4583 ✓
I GTOM2 dynamic 0.6760 ✓
I TOM dynamic 0.7600

D EB static 0.6329 ✓ ✓
D ECC3 static 0.5894 ✓ ✓
D ECP static 0.6780

D EB dynamic 0.5814 ✓ ✓
D ECC3 dynamic 0.6283 ✓ ✓

Table 7.12: Global Comparison for the PPIN D1 using Edge

Ranks. Edge eij exists if proteins i, j interacts physically according

to (cite ref for network D1), and edge weight wij is equal to the number

of protein complexes i, j have in common.
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View Type F Rank Type K haus EC test TR test

I NCC static 0.8950

I EGC static 0.5640 ✓ ✓
I NCC dynamic 0.8369

I EGC dynamic 0.6406 ✓
D NB static 0.6167 ✓ ✓
D SGC static 0.6860 ✓ ✓
D KPC static 0.7041 ✓ ✓
D NB dynamic 0.5160 ✓ ✓
D SGC dynamic 0.6420 ✓
D KPC dynamic 0.7173 ✓ ✓

Table 7.13: Global Comparison for the PPIN D1 using Equivalent

Edge Ranks. Edge eij exists if proteins i, j interacts physically according

to (cite ref for network D1), and edge weight wij is equal to the number

of protein complexes i, j have in common.
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View Type F Rank Type K haus EC test TR test

I ECV static 0.2707 ✓
I GTOM2 static 0.7537 ✓
I TOM static 0.7500 ✓
I KB1 static 0.1980 ✓
I KB2 static 0.2003 ✓
I KB3 static 0.2002 ✓
I ECV dynamic 0.1972 ✓
I GTOM2 dynamic 0.7557 ✓
I TOM dynamic 0.7606 ✓
D EB static 0.8090 ✓ ✓
D ECC3 static 0.7079 ✓ ✓
D ECP static 0.6780

D EB dynamic 0.8151 ✓ ✓
D ECC3 dynamic 0.6950 ✓ ✓

Table 7.14: Global Comparison for the PPIN Y2H using Edge

Ranks. Edge eij exists if proteins i, j interacts physically according to

(cite ref for network Y2H), and edge weight wij is equal to the number

of protein complexes i, j have in common.
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Organism CC N M D

H. sapiens ECC3 GTOM2 – –

TOM – –

C. elegans ECC3 – EB –

S. cerevisiae ECC3 – EB KB1,KB2,KB3

Table 7.15: Best performing measures for edge rank. This table shows

the best performing measures for the three considered organisms (hu-

man, worm and yeast), distinguished by those based on clustering coeffi-

cient (CC), neighborhoods (N), modularity (M) and dispersion (D) (see

details in [16]). Results show that a distinct handful of best performing

measures can be identified for each of the considered organisms, inde-

pendently from the reference gold standard. Moreover, it seems that the

proposed paradigm works better on denser networks, possibly due to the

fact that the encoded information is larger than for sparse networks.
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7.3 Prediction of lncRNA-disease Associations

The approach described in Chapter 6 has been applied to the known ex-

perimentally verified lncRNA disease associations in the lncRNADisease

database [23] according to Leave-One-Out Cross-Validation (LOOCV).

In particular, each known disease lncRNA association is left out in turn

as a test sample. How well this test sample was ranked relative to the

candidate samples (all the disease lncRNA pairs without the evidence to

confirm their association) with respect to the considered score is eval-

uated. When the rank of this test sample exceeds the given thresh-

old, this model is considered in order to provide a successful prediction.

When the thresholds are varied, true positive rate (TPR, sensitivity)

and false positive rate (FPR, specificity) are obtained. Here, sensitiv-

ity refers to the percentage of the test samples whose ranking is higher

than the given threshold. Specificity refers to the percentage of sam-

ples that are below the threshold. Receiver Operating Characteristics

(ROC) curve can be drawn by plotting TPR versus FPR at different

thresholds. Area under ROC curve (AUC) is further calculated to eval-

uate the performance of the tested methods. AUC = 1 indicates perfect

performance and AUC = 0.5 indicates random performance. We have

validated the proposed approach on experimental verified data down-

loaded from starBase and from HMDD, resulting in 114 lncRNAs, 762

miRNAs, 392 diseases. We have implemented the p-value based on a

hypergeometric distribution for LDAs inference proposed by [24] and

ncPred based on recommendation system proposed by [6] and compared

our approach against it, with two different dataset HMDD. Table 7.16

shows the results with the first dataset HMDD 2.0 (as shown in Fig-

ure 7.5: the proposed neighborhoods-based approach achieved an AUC

equal to 0.82, whereas the p-value based approach scored AUC = 0.74,

and the ncPred based approach scored AUC = 0.81, showing that the

consideration of indirect relationships between lncRNAs and diseases

through neighborhood analysis is more effective. As for data extracted

from StarBase and HMDD, our approach has produced 7,941 statisti-

cally significant LDAs predictions. The results for the second dataset

HMDD 3.0 (as shown in Figure 7.6) presents the centrality method as

the best. Results marked in red indicate a higher value of AUC. In
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Method HMDD v.2 HMDD v.3

Centrality 0.82 0.91

PValue 0.74 0.87

ncPred 0.81 0.88

C. Filtering (a) 0.95 0.96

C. Filtering (b) 0.91 0.95

Table 7.16: Table shows the value of AUC for three different meth-

ods and two different datasets: Centrality method, Pvalue method and

ncPred Method.

the results of the recommendation-system application (see Table 7.16),

we calculate the method named Collaborative filtering (a) that uses the

matrix without the information on miRNA, this method achieved an

AUC equal to 0.95 (with the first dataset), and 0.96 (with the second

dataset). In the result of the method named Collaborative filtering (b)

we use the information of miRNA and it achieves an AUC of 0.91 (with

the first dataset), and 0.95 (with the second dataset). According to sim-

ulation results, collaborative filtering models (as shown in Figure 7.4)

for lncRNA disease association prediction may be an excellent addition

to biomedical research in the future.

Figure 7.4: Representation of Roc Curve for Collaborative Filtering

method.
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(a) Centrality method

(b) ncPred method

(c) Pvalue method

Figure 7.5: Representation of Roc Curve for Centrality method,

Pvalue method and ncPred method (using first dataset HMDD).
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(a) Centrality method

(b) ncPred method

(c) Pvalue method

Figure 7.6: Representation of Roc Curve for 3 methods (using second

dataset HMDD).



Chapter 8

Concluding Remarks

Abstract

This Chapter draws the conclusions of the research presented

in the previous Chapters and summarizes the method of optimiza-

tion of advertising campaign, the approach based on the node/edge

centrality measures in the biological context and the prediction of

lncRNA-disease Associations.

Here the main contributions presented in this thesis are summarized.

In this PhD project, knowledge extraction from large graphs was investi-

gated, with reference to two main application contexts: Social Networks

and Biological Networks. Three specific problems have been solved, and

for each of them the main preliminary results that have been achieved

are succinctly described below, as well as the possible future develop-

ments.

8.1 Problem 1: Optimization of Advertising

Campaigns

The method in Chapter 4 discusses how the combination of information

retrieval measures for profile matching and neighborhood exploration in

OSNs may be successful in order to identify a set of target users for the

distribution of advertisements. In particular, such users not only have
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interests related to the contents of the advertisement, but may also po-

tentially spread the received advertisements to other interested users in

the OSN. This allows it to minimize costs for advertising campaigns, im-

prove user experience in OSNs and avoid spreading useless information

through OSNs. Results obtained by the measures introduced here on real

datasets are promising. However, we are conscious that the proposed ap-

proach relies on a naive, although effective, technique for neighborhood

exploration. An important problem in the context of OSNs analysis is

the absence of publicly available datasets including not only network

topology, but also structured information related to the network users,

such as interests, general data, actions, etc.. It is worth to point out that

the construction of such datasets via web-scraping starting from personal

access points on the OSN presents several problems, among which data

privacy constraints, the fact that the obtained networks would be mostly

ego-networks [8, 58], and the difficulty in building networks that reflect

the sizes of real OSNs, often very large [79, 102]. Therefore, providing

suitable OSN public datasets which contain both topological and seman-

tic data would be a valuable contribution for the scientific community.

We plan to extend in this direction the procedure described here for the

construction of big OSNs, and to provide a public repository containing

such datasets.

8.2 Problem 2: Extracting functional

knowledge from network topology

The method in Chapter 5 is based on a comparative analysis of a set of

outstanding topological measures, finalized to show which are the best

performing ones in ranking nodes/edges of biological networks, accord-

ing to their corresponding functional relevance. Although only some

of the existing biological network types have been accounted for, the

methodology presented here for the comparison of topological measures

applies also to other types of biological networks which have not been

included in this analysis (e.g., molecular regulatory networks). The pro-

vided overview confirms and systematically summarizes previous results

of the literature, still leading to novel conclusions. Moreover, it opens
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the avenue to further investigations, such as the study of lossy compres-

sion in biological networks, based on the succinct global representations

induced by the choice of the most relevant topological views, rather than

the entire network. Also, the introduced paradigm seems to be success-

ful in boosting important tasks in the context of network analysis, such

as network clustering. This could be further explored also for other ap-

plications. Another interesting open issue is to study if there are specific

network classes for which static and dynamic ranks induce always the

same partitions, and other ones for which partitions are always differ-

ent in the two cases. Moreover, it has been shown that ranks based

on edge topological measures outperform those based on node ones, in

the proposed comparative analysis. This could be further investigated to

understand if there are other problems for which this behaviour changes,

e.g., studying which proteins are more relevant in the occurrence and

progress of human diseases.

8.3 Problem 3: Prediction of lncRNA-disease

Associations

The approach in Chapter 6 for LDAs prediction is based on neighbor-

hood analysis through a tripartite graph built upon lncRNA-miRNA

interactions and miRNA-disease associations. An important fact is that

the presented approach predicts potential LDAs without relying on the

information of known disease-lncRNA associations. Although many pre-

vious studies for LDAs prediction use known available LDAs, the latter

are still comparatively rare relative to the known lncRNA-miRNA in-

teractions and miRNA-disease associations. Moreover, in the presented

research we show that neighborhood analysis performs better than other

techniques previously presented in the literature and not based on known

LDAs, such as p-value based on HyperGeometric distribution. This is

promising and results presented here are to be intended as a first step to-

wards a more complex pipeline, where different types of molecular inter-

actions and associations other than only lncRNA-miRNA will be taken

into account (e.g., gene-lncRNA co-expression relationship, lncRNA-

protein interactions, etc.). Approaches based on integrative networks
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have indeed shown to reach better performance, therefore we plan to

combine this strategy with the one proposed here on neighborhood anal-

ysis. Moreover, taking inspiration from previous studies on social media

[54], we plan also to design suitable co-clustering [80, 81] and network

clustering [82] based methods in order to improve the tripartite graph

analysis.



Bibliography

[1] S. Agarwal et al. Blinkdb: queries with bounded errors and

bounded response times on very large data. In Z. Hanzálek,
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