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Introduction: Long non-coding RNA H19 (lncH19) is highly expressed in
colorectal cancer (CRC) and plays critical roles in tumor development,
proliferation, metastasis, and drug resistance. Indeed, the expression of
lncH19 usually affects the outcomes of chemo-, endocrine, and targeted
therapies. ITF2357 (givinostat) is a histone deacetylase inhibitor (HDACi) that
revealed a significant anti-tumor action by inducing apoptosis in different
tumor models, including leukemia, melanoma, and glioblastoma. However, no
data are present in the literature regarding the use of this compound for CRC
treatment. Here, we investigate the role of lncH19 in ITF2357-induced apoptosis in
CRC cells.

Methods: The HCT-116 CRC cell line was stably silenced for H19 to investigate the
role of this lncRNA in ITF2357-induced cell death. Cell viability assays and flow
cytometric analyses were performed to assess the anti-proliferative and pro-
apoptotic effects of ITF2357 in CRC cell lines that are silenced or not for lncH19.
RT-PCR andWestern blot were used to study the effects of ITF2357 on autophagy
and apoptosis markers. Finally, bioinformatics analyses were used to identify
miRNAs targeting pro-apoptotic factors that can be sponged by lncH19.

Results: ITF2357 increased the expression levels of H19 and reduced HCT-116 cell
viability, inducing apoptosis, as demonstrated by the increase in annexin-V
positivity, caspase 3 cleavage, and poly (ADP-ribose) polymerase (PARP-1)
degradation. Interestingly, the apoptotic effect of ITF2357 was much less
evident in lncH19-silenced cells. We showed that lncH19 plays a functional
role in the pro-apoptotic activity of the drug by stabilizing TP53 and its
transcriptional targets, NOXA and PUMA. ITF2357 also induced autophagy in
CRC cells, which was interpreted as a pro-survival response not correlated
with lncH19 expression. Furthermore, ITF2357 induced apoptosis in 5-
fluorouracil-resistant HCT-116 cells that express high levels of lncH19.

Conclusion: This study shows that lncH19 expression contributes to ITF2357-
induced apoptosis by stabilizing TP53. Overall, we suggest that lncH19 expression
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may be exploited to favor HDACi-induced cell death and overcome 5-fluorouracil
chemoresistance.
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Introduction

Accumulating evidence indicates that long non-coding RNAs
(lncRNAs) profoundly influence cancer development through
intricate networks based on their interplay with DNA, RNAs,
and proteins. LncRNA-H19 (lncH19) is one of the first lncRNAs
identified and exerts multiple functions in various diseases,
including cancers (Bao et al., 2018; Bitarafan et al., 2019; He
et al., 2020; Yang et al., 2021). LncH19 is canonically considered
to exert an oncogenic function since it is upregulated in many forms
of tumors and is associated with tumor transformation, progression,
and malignancy (Shima et al., 2018; Corrado et al., 2019;
Mahmoudian-Sani et al., 2019; Zhou et al., 2019). LncH19 may
also act through the production of intragenic microRNAs, miR-675-
5p and miR-675-3p, which also display a pro-tumor activity (Lo
Dico et al., 2016; Muller et al., 2019). LncH19 and its intragenic
miRNAs are upregulated in colon tumors and correlate with poor
prognosis in patients (Costa et al., 2017; Feng et al., 2017; Zhang
et al., 2017; Dai et al., 2019; Yang et al., 2020; O’Brien et al., 2022).

In colorectal cancer, lncH19 overexpression affects cell
proliferation (Yang et al., 2017; Saieva et al., 2020) and cell
motility (Ding et al., 2018; Yang et al., 2018), and more recently,
scientific evidence correlates the expression levels of lncH19 with the
reduced sensitivity to 5-FU, suggesting that lncH19 may function as
a marker for prediction of the chemotherapeutic response to this
drug (Wang et al., 2018; Zhang et al., 2022).

Wang and collaborators demonstrated that lncH19, functioning
as a competitive endogenous RNA, mediates 5-FU resistance in CRC
via SIRT1-mediated autophagy (Wang et al., 2018).

We have recently demonstrated that lncH19-derived miR-675-
5p enforces hypoxia-induced chemoresistance to 5-FU by targeting
pro-caspase-3 and inhibiting the pro-apoptotic effects of 5-FU
(Zichittella et al., 2022).

Numerous studies propose the therapeutic use of histone
deacetylase inhibitors (HDACis) for the treatment of several
diseases, including metabolic, inflammatory, autoimmune, and
neurodegenerative diseases, and not least for the treatment of
cancer (Eckschlager et al., 2017; Vagapova et al., 2021; Squarzoni
et al., 2022).

HDACis are well-known epigenetic drugs with widely
recognized anti-tumor activity (Zhao et al., 2020). HDACis target
the aberrant activity of histone deacetylases (HDACs), which are
often overexpressed in tumor cells, restoring or increasing histone
acetylation, thereby promoting transcriptional activation of tumor
suppressor and pro-apoptotic genes (Singh et al., 2018; Patra et al.,
2019; Ramaiah et al., 2021). Therefore, inhibition of HDACs
represents a valid basis for new anti-tumor therapies (Dasko
et al., 2022).

To date, the Food and Drug Administration has approved some
HDACis such as vorinostat (SAHA), belinostat (PXD-101),
panobinostat (LBH-589), and romidepsin (FK-228) for the

treatment of cancer (Squarzoni et al., 2022). Clinical and pre-
clinical studies have also shown that these compounds can be
used as adjuvants to traditional chemotherapeutics in different
types of cancer (Suraweera et al., 2018; Psilopatis et al., 2021;
Pramanik et al., 2022). More recently, it has been shown that
epigenetic targeting of colon cancer based on combined HDACis
with DNA methyltransferase (DNMT) inhibitors has revealed
clinical relevance (Tang et al., 2023).

ITF2357 (givinostat) is a potent HDAC inhibitor belonging to
the hydroxamic acid class. This compound is currently used in the
therapy for the treatment of Duchenne muscular dystrophy, and in
clinical trials for Becker muscular dystrophy and juvenile idiopathic
arthritis (Vojinovic and Damjanov, 2011; Vojinovic et al., 2011;
Spreafico et al., 2021; Comi et al., 2023; Sandona et al., 2023).

The compound has also revealed a significant anti-tumor action
by inducing apoptosis in different tumor models, including
leukemia, melanoma, and glioblastoma cells (Li et al., 2016;
Celesia et al., 2022; Taiarol et al., 2022).

In addition, it has been widely demonstrated that ITF2357 can
also act as an adjunct to conventional chemotherapy, increasing
sensitivity to demethylating or chemotherapeutic agents such as
pemetrexed in lung cancer, doxorubicin in sarcoma cells, and
temozolomide in glioma stem cells (Di Martile et al., 2018; Cui
et al., 2023; Nakagawa-Saito et al., 2023).

ITF2357 has recently been reported to exert a targeting effect on
oncogenic BRAF in melanoma cells (Celesia et al., 2022) and affect
oncogenic BRAF and p53 interplay, thus representing a promising
candidate for melanoma-targeted therapy (Celesia et al., 2023).

To date, the only data present in the literature on the effects of
ITF2357 in colon cancer are described in a manuscript that discusses
the use of the compound for the prevention of colitis-associated
cancer in mice (Glauben et al., 2008). Here, we describe the pro-
apoptotic effect of ITF2357 in CRC cells and show that lncH19 plays
a functional role in apoptosis execution by stabilizing TP53,
probably by exerting its action as a miRNA sponge. Moreover,
the paper provides evidence that lncH19-expressing CRC cells,
resistant to 5-FU treatment, nicely respond to ITF2357, thus
supporting a possible therapeutic application of this compound
to overcome colon drug resistance.

Materials and methods

Cell culture

HCT-116 cells (ATCC–LGC Standards S.r.L., Italy) were
cultured in McCoy’s 5A medium (Euroclone, United Kingdom)
supplemented with 10% fetal bovine serum, 1% penicillin/
streptomycin (10,000 U/mL penicillin and 10 mg/mL
streptomycin), and 200 mM L glutamine (all sourced from
Euroclone, United Kingdom).
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5-Fluorouracil (5-FU)-resistant HCT-116 cells (HCT-116-5-
FU-R) were cultured in DMEM (Euroclone, United Kingdom)
supplemented with 10% fetal bovine serum, 1% penicillin/
streptomycin (10,000 U/mL penicillin and 10 mg/mL
streptomycin), and 200 mM L glutamine (all sourced from
Euroclone, United Kingdom), and additionally, the culture
medium contained 5-fluorouracil (5-FU, cat. n°F6627, Sigma-
Aldrich, St. Louis, MO, United States) at concentrations up
to 70 µM.

Cells were maintained in a humidified atmosphere containing
5% CO2 at 37°C and used at early passages for all experiments. The
culture medium was changed every 2–3 days, and cells were split at
70%–80% confluence.

Infection with lentiviral vectors to stably
silence lncH19

HCT-116 cells were stably silenced for lncH19 by lentiviral
infection with H19 human shRNA lentiviral particles (Cat. n°

TL318197V, OriGene Technologies, Inc., Rockville, MD,
United States), while relative control cells were infected with
control shRNA lentiviral particles (Cat. n° TR30021V, OriGene
Technologies, Inc., Rockville, MD, United States). Subsequently,
infected cells were selected by cell sorting (BD FACSAria™ III
Sorter, ATeN Center) and maintained in culture under selective
pressure with 1 mg/mL of puromycin (Gibco™ puromycin
dihydrochloride, cat. n°A1113802, Thermo Fisher® Scientific,
United States). Silencing efficiency was regularly tested by qRT-
PCR and fluorescence microscopy.

Selection of HCT-116-5-FU-resistant cells

The 5-FU-resistant HCT-116 cell line (HCT-116-5-FU-R) was
established after sequential treatments with 5-FU during an 8-
month period starting from 1 μM to 70 µM concentrations.
Control parental cells were split in parallel. Viable cells treated
with 70 µM 5-FU were considered stably resistant when the
morphology resembled that of parental HCT-116.

Chemicals and reagents

ITF2357 (givinostat) was synthesized and supplied by the
pharmaceutical company Italfarmaco S.p.A. (Cinisello Balsamo,
MI, Italy). For in vitro experiments, ITF2357 was dissolved in
DMSO (20 mM stock solution) and stored at −20°C. Before use,
the stock solution was thawed and diluted in McCoy’s 5A or DMEM
culture media, not exceeding 0.01% (v/v) DMSO, to realize the
proper final concentrations.

The autophagy inhibitor bafilomycin A1 (Cat. n° B1793-2UG,
Sigma-Aldrich, United States) was solubilized in DMSO, according
to the data sheet instructions and used for the experiments at 20 nM
and 50 nM final concentrations.

MTT [3-(4,5-dimethylthiazol-2-yl)-
2,5 diphenyl tetrazolium bromide] assay

Cell viability was determined by MTT assay, following the
manufacturer’s instructions (Cat. n° M6494, Thermo Fisher®,
United States), and the absorbance was measured using a
biophotometer at 540 nm (BioTek Elisa ELx800 Absorbance
Microplate Reader, BioTek Instruments, United States).

HCT-116 cells (wild type, silenced for lncH19, or 5-FU-
resistant) were seeded in at least three technical replicates at 5 ×
104 cells/cm2; then, 24 h post-seeding, cells were treated with
different concentrations of ITF2357 (0.25–0.5–1–2 µM or 4 µM)
and maintained in a humidified atmosphere of 5% CO2 at 37°C. The
MTT assay was performed at different time points, as indicated in
the results.

For the experiments with the autophagy inhibitor bafilomycin
A1, HCT-116 cells were pretreated for 1 h with bafilomycin A1
(20 nM and 50 nM concentrations), and then, ITF2357 was added at
different concentrations (0.25–0.5 µM or 1 µM) for 48 h.

Colony formation assay

LncH19-silenced HCT-116 cells and control cells were seeded at
40 cells/cm2 in six-well plates. After 48 h, cells were treated with
different concentrations of ITF2357 (0.05–0.1–0.25 µM and 0.5 µM)
and maintained in culture for 8 days to allow clone formation.
Clones were then washed once with phosphate buffer solution
(PBS), fixed, and stained with methylene blue 1% in PBS/ethanol
50% for 1 min at room temperature. Following air-drying, clones
were observed under a light microscope (LeicaDMR, Microsystems
S.r.l, Wetzlar, Germany). Only clones containing more than 50 cells
were considered and counted. For counting, each well was divided
into four quadrants, and the media of the number of clones in each
quadrant was estimated. The total number of clones per well was
then obtained.

Annexin V/PI apoptosis detection assay

Annexin V/PI apoptosis detection assay (APC Annexin V
Apoptosis Detection Kit with PI, cat. n° 640932, BioLegend®) was
used to identify early and late apoptotic cells. LncH19-silenced
HCT-116 cells and respective control cells were seeded at 1.87 ×
104 per cm2, allowed to adhere overnight, and then treated with
1 µM ITF2357 for 48 h.

Briefly, following the manufacturer’s instructions, cells were
harvested, and after centrifugation, cell pellets were washed twice
with the cold BioLegend cell staining buffer (Cat. n° 420201),
resuspended in annexin V binding buffer, and labeled with APC
annexin V and propidium iodide.

Approximately 50,000 events were acquired for each sample on
a FACSCanto cytometer (Becton Dickinson, Franklin Lakes, NJ,
United States). Flow cytometry data were analyzed using FlowJo
software (v10; TreeStar, Ashland, OR, United States).
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Western blotting

H19-silenced HCT-116 cells and control HCT-116 cells were
lysed using a lysis buffer (15 mM Tris/HCl pH 7.5, 120 mM NaCl,
25 mM KCl, 1 mM EDTA, and 0.5% Triton X-100) supplemented
with phosphatase inhibitor cocktail (Cat. N° 37492, Active Motif,
United States) for 1.30 h on ice. Cell debris was removed by
centrifugation at 17,000 × g for 15 min at 4°C, and the
supernatant, containing the protein lysate, was quantified using
the Bradford assay method (Pierce™ Coomassie Plus Assay Kit, cat.
N° 23236, Thermo Fisher Scientific, United States) using bovine
serum albumin (BSA, cat. n° A2153, Sigma-Aldrich, United States)
as a standard. A measure of 15 µg of protein from each sample was
separated using Bolt Bis–Tris gel 4%–12% (Cat. n° NP0326BOX,
Thermo Fisher Scientific, United States) and transferred onto a
nitrocellulose blotting membrane (Amersham Protran Premium
0.45 µm NC by GE Healthcare Life Science, United Kingdom).
The membranes were stained with 0.1% red Ponceau in 5%
acetic acid to evaluate the correct loading of all samples. The
membranes were incubated for 1 h in a blocking solution (5%
milk or 5% BSA in 20 mM Tris, 140 mM NaCl, and 0.1%
Tween-20) and at 4°C overnight with the following primary
antibodies: anti-SQSTM1/p62 (1:500, cat. n° 39749S, Cell
Signaling Technology, United States), anti-LC3B (1:500, cat. n°

2775S, Cell Signaling Technology, United States), anti-poly ADP-
ribose polymerase-1 (Anti-PARP-1, 1:500, cat. n° sc-8007, Santa
Cruz Biotechnology, United States), anti-cleaved caspase-3 (1:400,
cat. n° 9664S, Cell Signaling Technology, United States), and anti-
p53 (DO-1, 1:200, cat. n° sc-126, Santa Cruz Biotechnology,
United States).

After washing with Tris-buffered saline-Tween-20 (TBS-T,
20 mM Tris, 140 mM NaCl, 0.1% Tween-20) three times, the
membrane was incubated with appropriate secondary antibodies
such as HRP-conjugated goat anti-rabbit IgG (1:10.000, cat. n°

31460, Invitrogen™, Thermo Fisher® Scientific, United States)
and anti-mouse IgG (1:10.000, cat. n° 7076, Cell Signaling
Technology, United States) at room temperature for 1 h. The
chemiluminescent signal was visualized using a
chemiluminescence solution (ECL™ Prime Western Blotting
System, Cytiva, RPN2232) and detected using the ChemiDoc
acquisition instrument (Bio-Rad, United States). The images were
analyzed using Image Lab software (Bio-Rad, United States).

Depending on the molecular weight of the protein, if required,
the membranes were subjected to a stripping protocol before
proceeding with further incubation with other antibodies. This
involved a brief incubation of 10–15°min with a stripping
solution (Restore™ PLUS Western Blot Stripping Buffer, Cat. n°

46,430, Thermo Fisher® Scientific, United States) at 37°C, followed
by subsequent washes in TBS-T.

LC3-B assay

HCT-116 cells were seeded at 5 × 104 cells/cm2 in cell culture
chamber slides (Cat. n° 94.6190.802, Sarstedt, Germany), and the
LC3B assay (Cat. n°L10382, LC3B Antibody Kit for Autophagy,
Invitrogen™ by Thermo Fisher® Scientific, United States) was
performed following the manufacturer’s instructions.

Briefly, 24 h after seeding, HCT-116 cells were treated for 24 h
with 50 µM chloroquine diphosphate (CQ, provided by the LC3B
Antibody Kit for Autophagy) alone or co-treated with 50 µM
chloroquine and 1 µM of ITF2357. Chloroquine blocks
autophagosome–lysosome fusion, thus allowing autophagosome
visualization. After treatments, cells were fixed with 4%
paraformaldehyde for 15 min, permeabilized with 0.1% Triton X-
100 for 15 min, and incubated with diluted LC3B rabbit polyclonal
primary antibody (0.5 μg/mL according to the manufacturer’s
instructions) for 1 h. DyLight™ 594 was used as a secondary
antibody (Goat anti-Rabbit IgG Secondary Antibody, DyLight™
594, 1:300, cat n°35560, Invitrogen™ by Thermo Fisher Scientific,
United States).

Finally, cells have been counterstained with Hoechst (Hoechst
33342, trihydrochloride, trihydrate, 1:1000, cat n°H3570, Molecular
Probes, Life Technologies by Thermo Fisher Scientific,
United States) and ActinGreen (ActinGreen™ 488 ReadyProbes™
Reagent, 1:125, cat n°R37110, Invitrogen™ by Thermo Fisher
Scientific, United States). All steps have been performed at room
temperature. The samples were analyzed using a Nikon A1 confocal
microscope.

RNA extraction and real-time PCR
(qRT-PCR)

Total RNA was extracted using the commercially available
Macherey–Nagel™ NucleoSpin™ miRNA Kit (Cat. n°740971.250,
Macherey–Nagel, Germany), according to the manufacturer’s
instructions. The total RNA concentration was detected with the
Nanodrop spectrophotometer (Thermo Fisher®, United States) and
reverse-transcribed to cDNA using the High-Capacity cDNA
Reverse Transcription kit (Cat. n° 4368814, Applied Biosystem™,
United States).

Quantitative real-time polymerase chain reactions (qRT-PCR)
were carried out using the SYBR™ Green PCR Master Mix (Cat. n°

4309155, Applied Biosystems™, United States), following the
manufacturer’s instructions in a Step One™ Real-time PCR
System Thermal Cycling Block (Applied Biosystems, Waltham,
MA, United States).

The primers’ sequences used for expression analysis of the
genes of interest are reported in Table 1. Gene expression levels
were normalized using β-actin as an endogenous control. Finally,
the data are presented as 2-̂ΔΔCt compared with the untreated
control.

Bioinformatic analysis

For predicting interactions between ncRNAs and their targets,
bioinformatic analyses were performed using DIANA tools
(Rincon-Riveros et al., 2021). Specifically, lncH19–miRNA
interactions were identified using DIANA-LncBase v.3, while
miRNA–TP53 interactions were identified using DIANA-
TarBase v.8.

In Homo sapiens, we identified 159 validated miRNAs that
lncH19 directly binds to and 42 validated miRNAs that directly
bind to the TP53 gene.
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By overlaying the two datasets from DIANA-LncBase v.3
(lncH19–miRNA interactions) and DIANA-TarBase v.8
(miRNA–TP53 interactions), we found that lncH19 can bind to
26 miRNAs that directly target the pro-apoptotic TP53 gene
(Table 2).

Statistical analysis

Data reported in all graphs are expressed as the mean ±
standard deviation (SD) of at least three independent biological
replicates. The following tests have been performed: Student’s
t-test to compare two groups, one-way ANOVA for comparisons
among three or more groups, and two-way ANOVA for
comparison of multiple variables among two groups. Analyses
were performed using GraphPad Prism software (GraphPad
Software, United States).

p-values were indicated in the graphs as follows: * = p < 0.05; ** =
p < 0.01; *** = p < 0.001; and **** = p < 0.0001. A p-value≤0.05 was
considered significant.

Results

ITF2357 reduces CRC cell viability and
increases the expression levels of lncH19

Initially, to evaluate the sensitivity of the HCT-116 CRC cell line to
ITF2357, cells were treated with different concentrations of ITF2357 for
16 h, 24 h, 48 h, and 72 h. Evaluation of cell morphology indicated that
the drug exerted a cytotoxic effect, which appeared after 24 h in cells
treatedwith 1 μMITF2357 andwas clearly evident after 48 h either with
1 μM or 2 μM (Figure 1A). Morphological data were confirmed by the
MTT assay (Figure 1B). As expected, ITF2357 treatment reduced the
viability of HCT-116 cells in a dose- and time-dependent manner.
Approximately 50% reduction in viability was observed after 48 h of
treatment with 1 μM ITF2357.

LncH19 is known to display the oncogenic activity in CRC,
promoting cell proliferation (Yang et al., 2017), epithelial-to-
mesenchymal transition (Ding et al., 2018), and 5-FU drug
resistance (Wang et al., 2018). To elucidate whether HDACi
modifies the expression levels of lncH19, we performed qRT-PCR
analyses. Interestingly, the results revealed that ITF2357 promoted
lncH19 expression in HCT-116, determining a two-fold increase in
the level of lncRNA after 24 h of treatment and almost three-fold
increase at 48 h (Figure 1C). Therefore, we hypothesized that
lncH19 induction could somehow be functional to ITF2357 to exert
its cytotoxic effect.

To verify this hypothesis, HCT-116 cells were stably silenced for
lncH19, and the silencing efficiency was confirmed through gene
expression analysis (Figure 2A). Cell viability assays in H19-silenced
cells revealed that ITF2357 displayed much less efficacy under
lncH19 knockdown. Indeed, the effect of ITF2357 was reduced
by approximately 15%, suggesting that lncH19 plays a role in
ITF2357-induced cytotoxicity in CRC cells (Figures 2B, C).

Moreover, colony formation assay further confirmed a direct
role of lncH19 to sustain the efficacy of HDACi in CRC cells.
Specifically, as shown in Figure 2D, treatment with ITF2357 affected
the clonogenicity of HCT-116 control cells in a dose-dependent
manner, while this effect was significantly weaker in H19-silenced

TABLE 1 Primers’ sequences of the genes analyzed.

Primer Forward Reverse

H19 TCGTGCAGACAGGGCGACATC CCAGCTGCCACGTCCTGTAACC

SQSTM1/p62 TGTGTAGCGTCTGCGAGGGAAA AGTGTCCGTGTTTCACCTTCCG

MAP1LC3A GCTACAAGGGTGAGAAGCAGCT CTGGTTCACCAGCAGGAAGAAG

ATG16L CTACGGAAGAGAACCAGGAGCT CTGGTAGAGGTTCCTTTGCTGC

LAMP1 CGTGTCACGAAGGCGTTTTCAG CTGTTCTCGTCCAGCAGACACT

LAMP2 GGCAATGATACTTGTCTGCTGGC GTAGAGCAGTGTGAGAACGGCA

TP53 CCTGGATTGGCCAGACTGC TTTTCAGGAAGTAGTTTCCATAGGT

NOXA AGCTGGAAGTCGAGTGTGCT ACGTGCACCTCCTGAGAAAA

PUMA GGAGCAGCACCTGGAGTC TACTGTGCGTTGAGGTCGTC

β-ACTIN TCCCTTGCCATCCTAAAAGCCACCC CTGGGCCATTCTCCTTAGAGAGAAG

TABLE 2 Twenty six miRNAs sponged from lncH19 that directly target the pro-
apoptotic TP53 gene.

hsa-let-7a-5p hsa-miR-17-5p hsa-miR-107

hsa-let-7b-5p hsa-miR-19a-3p hsa-miR-125b-5p

hsa-let-7c-5p hsa-miR-19b-3p hsa-miR-181a-5p

hsa-let-7d-5p hsa-miR-22-3p hsa-miR-218-5p

hsa-let-7e-5p hsa-miR-24-3p hsa-miR-522-5p

hsa-let-7f-5p hsa-miR-30a-5p hsa-miR-940

hsa-let-7g-5p hsa-miR-34a-5p —

hsa-let-7i-5p hsa-miR-93-5p —

hsa-miR-10b-5p hsa-miR-98-5p —

hsa-miR-15a-5p hsa-miR-103a-3p —
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cells, as also revealed by the quantification of the number of clones in
the two cell types (Figure 2E).

ITF2357 induces pro-survival autophagy in
CRC cells

It is well known that both HDACis and lncH19 induce
autophagy in different tumor cells (Xu et al., 2018; Mrakovcic

and Frohlich, 2019; Zhao et al., 2021). Therefore, we
hypothesized that ITF2357, enforced by H19 expression,
induces autophagy-dependent cell death. To verify this
hypothesis, the transcriptional levels of some autophagy
markers (ATG16L, SQSTM1/p62, MAP1LC3B/LC3, and
LAMP1/2) were analyzed. As shown in Figure 3A,
ITF2357 upregulated all the autophagy genes analyzed, an
effect that was already evident after 24 h. This effect was
maintained after 48 h of treatment (data not shown).

FIGURE 1
Effects of ITF2357 on HCT-116 cell viability and lncH19 expression. (A) Phase contrast images of HCT-116 cells treated with different concentrations
of ITF2357 (0.5–1 µM and 2 µM) for 16 h, 24 h, and 48 h. The cells were visualized under a light microscope at ×20 magnification, and the pictures were
acquired using NISA1 Leica software. (B) Cell viability assay (MTT assay) in HCT-116 cells treated with different concentrations of ITF2357
(0.25–0.5–1–2 µM and 4 µM) for 16 h, 24 h, 48 h, and 72 h. Data are expressed as cell viability percentages compared to untreated cells (Ctr). The
results reported in the graph are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using
ordinary two-way ANOVA with Bonferroni’s multiple comparison test; **p < 0.01 and ****p < 0.0001. (C) Analysis of the expression level (qRT-PCR) of
lncH19 in HCT-116 cells treated with 1 µM ITF2357 for 24 h and 48 h. LncH19 expression levels are reported as 2-̂ΔΔCt compared to untreated cells (Ctr),
and the threshold cycle (Ct) was normalized against β-actin. The results reported in the graph are expressed as the mean ± SD of three independent
biological replicates. Statistical analyses were performed using Student’s t-test; *p < 0.05 and **p < 0.01.
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The activation of autophagy was confirmed by an increase in the
LC3B signal in autophagosomes, as revealed by
immunofluorescence (Figure 3B). These data were confirmed by
Western blot analysis, showing a much higher level of LC3II-cleaved
form in ITF2357-treated cells. Moreover, further confirmation of the
autophagic process induced by ITF2357 was sustained by the
significant decrease in the levels of p62 protein (Figures 3C, D).
This marker is usually considered to monitor the autophagic flux,
and it is associated with completed autophagy when decreasing since
it is degraded by the autophagosome (Emanuele et al., 2020).

To investigate whether the activation of autophagy in HCT-116
cells could promote cell death, cell viability was evaluated in cells
treated with ITF2357 in the presence of the autophagy inhibitor
bafilomycin A1.

As shown in Figure 3E, the cytotoxic effect exerted by three
different doses of ITF2357 was enhanced when co-treated with
either 20 nM or 50 nM bafilomycin A1. These data suggest that

autophagy induced by the HDAC inhibitor represents a pro-survival
adaptive response to the effects of the compound. Moreover, we
provided evidence that H19 silencing did not affect ITF2357-
induced autophagy (Supplementary Figure S1).

ITF2357 induces apoptosis in HCT-116 cells,
and lncH19 is functional to this effect

To further characterize cell death activated in response to
ITF2357 and elucidate the role of lncH19, apoptosis was
investigated in H19-silenced cells in comparison with the
respective control cells. Specifically, an annexin V/PI apoptotic
assay was performed at early (16 h) and late (48 h) treatment
time points to properly detect the process over time. The results
shown in Figures 4A, B indicate that ITF2357 stimulated early and
late apoptosis to a different extent in control and H19-silenced cells.

FIGURE 2
Effects of silencing lncH19 in HCT-116-silenced cells treated with ITF2357. (A) Analysis of the expression level (qRT-PCR) of lncH19 in HCT-116-
silenced cells with respect to control cells (Ctr). LncH19 expression levels are reported as 2̂-ΔΔCt compared to control cells (Ctr); Ct was normalized against
β-actin. Data are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using Student’s t-test,
****p < 0.0001. (B, C) Cell viability assay (MTT assay) in HCT-116 cells (that are silenced or not) for lncH19 and treated with two different
concentrations of ITF2357 (0.5 and 1 µM) for 24 h (left graph) and 48 h (right graph). Data are expressed as the cell viability percentage compared to
untreated cells. Data are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using ordinary one-
way ANOVA with Bonferroni’s multiple comparison test; **p < 0.01 and ****p < 0.0001. (D, E) Clonogenic assay in HCT-116 cells with silenced or
unsilenced lncH19 cells, untreated or treated with indicated concentrations of ITF2357, and maintained in culture for 8 days to allow clone formation. In
the histogram, data are expressed as a percentage of the number of clones compared to relative untreated cells. Data are expressed as the mean ± SD.
Statistical analyses were performed using ordinary two-way ANOVA with Bonferroni’s multiple comparison test; *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001.
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FIGURE 3
HDAC inhibitor ITF2357 induces survival autophagy in CRC cells. (A) Analysis of the expression level (qRT-PCR) of autophagic genes in HCT-116 cells
treated with 1 µM concentration of ITF2357 for 24 h. The expression levels of genes are reported as 2-̂ΔΔCt compared to untreated cells (Ctr), and Ct was
normalized against β-actin. Data are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using
Student’s t-test; *p < 0.05 and **p < 0.01. (B) Immunofluorescence for LC3B on HCT-116 cells, untreated or treated with 50 µM chloroquine
diphosphate (CQ) alone or in combination with 1 µM of ITF2357 for 24 h. LC3B is represented in red, counterstained with Hoechst and ActinGreen, for
nuclei in blue and cytoskeleton in green, respectively. Nuclear focal plane; the scale bar is 10 µm. (C) Representative images and densitometric analysis of
Western blots for LC3II/LC3I in HCT-116 cells treated or not with ITF2357 1 µM for 24 h. The graph shows the ratio of the normalized optical density (OD).
Housekeeping β-actin was used as a loading control. Data are expressed as the mean ± SD of three independent biological replicates. Statistical analyses
were performed using Student’s t-test, **p < 0.01. (D) Representative images and densitometric analysis of Western blots for p62 in cells treated or not
with ITF2357 1 mMconcentration for 24 h. The graph shows the normalized OD. Housekeeping β-actin was used as a loading control. Data are expressed
as the mean ± SD of three independent biological replicates. Statistical analyses were performed using Student’s t-test, *p < 0.05. (E) Cell viability assay
(MTT assay) in HCT-116 cells co-treated with different concentrations of ITF2357 (0.25–0.5 µM and 1 µM) and two different concentrations of
bafilomycin A1 (20 nM and 50 nM) for 48 h. Data are expressed as cell viability percentages compared to untreated cells (Ctr). Data are expressed as the
mean ± SD.
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Indeed, the total percentage of annexin V positive cells after
treatment with ITF2357 was approximately 33% in control cells,
compared to 22.6% in H19-silenced cells at 16 h. Such a difference
was maintained at 48 h (68.6% in control cells vs. 52.8% in H19-
silenced cells), thus confirming that lncH19 knockdown reduces the
apoptotic efficacy of ITF2357.

Morphological analysis of ITF2357-treated cells clearly showed
the differential effect of HDACi in the two cell types (Figure 4C).

These data were confirmed byWestern blot analysis of apoptotic
markers, including cleaved caspase 3 and cleaved PARP-1, an
analysis that was performed at late time points to evidence
apoptosis execution. As shown in Figures 4D, E, although

FIGURE 4
(Continued).
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caspase 3 cleavage and PARP-1 degradation were evident in
ITF2357-treated control cells, these effects were much less
evident in H19-silenced cells. These data suggest that
H19 expression somehow reinforces the pro-apoptotic action of
ITF2357.

To investigate the molecular mechanism by which
lncH19 promotes ITF2357-induced apoptosis, we focused on
identifying putative miRNAs with a pro-apoptotic role that
could be targeted by lncH19. Similar to other lncRNAs,
H19 can also behave as an endogenous competitive sponge for

FIGURE 4
(Continued). Effects of lncH19 silencing on apoptosis markers. (A, B) Annexin V/PI apoptosis detection assay on HCT-116 cells silenced for lncH19 or
unsilenced control cells (Ctr) treated with 1 µM concentration of ITF2357 for 16 h and 48 h. Data are expressed as the apoptotic cell percentage
compared to untreated cells (silenced or unsilenced for lncH19). (C) Phase contrast images of HCT-116 cells with silenced lncH19 or unsilenced control
cells (Ctr), untreated or treated with 1 µM of ITF2357 for 48 h. Cells were visualized under a light microscope at ×20 magnification, and the pictures
were acquired using IM50 Leica software (Leica DMR Microsystems, Wetzlar, Germany). (D, E) Representative images and densitometric analysis of
Western blots for cleaved caspase 3 (D) and cleaved PARP-1/PARP-1 (E) obtained fromprotein lysates of HCT-116 silenced for lncH19 or control cells (Ctr)
were treated with 1 µM ITF2357 for 24 h or 48 h. The graphs show the OD of the indicated proteins normalized for the housekeeping’s OD (β-actin). Data
are expressed as the mean ± SD of three independent biological replicates. Statistical analyses were performed using Student’s t-test in (D, E); *p <
0.05 and **p < 0.01.

Frontiers in Pharmacology frontiersin.org10

Zichittella et al. 10.3389/fphar.2023.1275833

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1275833


miRNAs (Ye et al., 2019). By using DIANA tools (Rincon-Riveros
et al., 2021), we identified 159 validated human miRNAs sponged
by lncH19, and among these, 26 validated human miRNAs
directly target the pro-apoptotic TP53 gene (Figure 5A). Real-
time PCR in Figure 5B confirmed a positive correlation between
the expression of lncH19 and TP53. The transcriptional analyses
revealed that cells silenced for lncH19 express lower levels of
TP53 and its targets, PUMA and NOXA (Figures 5B–D). The
reduction of p53 in shH19 cells was further confirmed at the

protein level (Figure 5E). Overall, these data indicate that
ITF2357 induces TP53-mediated apoptosis in colorectal cancer
cells, and the expression of lncH19 plays a functional role in
regulating p53 expression.

Finally, to assess whether ITF2357 can overcome the resistance
to 5-FU chemotherapeutics, we used the HCT-116-5-FU-R, a 5-FU-
resistant HCT-116 cell line properly selected in our laboratory.
Interestingly, HCT-116-5-FU-R cells express high levels of
lncH19 compared to parental HCT-116 cells (Figure 6A). It is

FIGURE 5
Identification of lncH19miRNAs that target TP53. (A) Venn diagram obtained by bioinformatic analysis using DIANA tools, illustrating the intersection
(in yellow) between the dataset of validated direct miRNAs that lncH19 binds to (DIANA-LncBase v.3, in blue) and the dataset of validated miRNAs that
directly bind to TP53 (DIANA-TarBase v.8, in green). The intersection shows 26 miRNAs (listed in the panel) sponged from lncH19 that directly target the
pro-apoptotic TP53 gene. (B–D) Analysis of the expression levels (qRT-PCR) of TP53 (B), NOXA (C), and PUMA (D) in HCT-116 cells with respect to
control cells (Ctr). Gene expression levels are reported as 2-̂ΔΔCt compared to control cells (Ctr); Ct was normalized against β-actin. Data are expressed as
the mean ± SD of three independent biological replicates. Statistical analyses were performed using Student’s t-test; *p < 0.05, **p < 0.01, and ***p <
0.001. (E) Representative images and densitometric analysis of Western blots for p53 in HCT-116 with respect to control cells (Ctr). The graphs show the
OD of the indicated proteins normalized for the housekeeping’s OD(β-actin). Data are expressed as the mean ± SD of three independent biological
replicates. Statistical analyses were performed using Student’s t-test, **p < 0.01.
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noteworthy that these cells nicely respond to ITF2357, as indicated
by the cell viability evaluation reported in Figure 6B, which revealed
a dose-dependent effect of the compound.

Discussion

This paper shows, for the first time, that lncH19 supports
apoptosis induced by HDACi ITF2357 in colon cancer cells.
Although some papers sustain the potential of HDACis in colon
cancer treatment (Garmpis et al., 2022; Lee et al., 2022), to date, no
evidence has been provided about the efficacy of this pan-HDACi in
colon cancer cells. Our data indicate that ITF2357 is active in colon
cancer cells at micromolar concentrations, in line with the findings
of other authors in different tumor cell lines (Angeletti et al., 2016;
Di Martile et al., 2018; Celesia et al., 2022; Celesia et al., 2023).

We also provided evidence that ITF2357 upregulates lncH19 in
colon cancer cells. Similarly, Di Fazio et al. found increased
lncH19 levels in adrenocortical carcinoma, following treatment
with pan-HDACis such as panobinostat, trichostatin A (TSA),
and SAHA, correlated with autophagy induction (Di Fazio et al.,
2022).

To understand the role of lncH19 in ITF2357-induced
cytotoxicity in colon cancer cells, both autophagy and apoptosis
induction were examined in H19 stably silenced HCT-116 cells in
comparison with control HCT-116 cells. It is well known that
HDACis can promote autophagy in different tumor types (Bai
et al., 2019; Xiao et al., 2020; Korholz et al., 2021). However, it is
well known that autophagy can exert a dual role in tumor cells.
Indeed, the process can be activated as a pro-survival response,
which is frequently associated with tumor progression and
chemoresistance, or it can serve a death-inducing function,
thereby representing an alternative form of cell death to target
tumor cells that have developed apoptosis resistance (Patra et al.,

2019). This paper shows that ITF2357 promoted the expression of
autophagy markers, including ATG16L, SQSTM1/p62,
MAP1LC3B/LC3, and LAMP1/2. HDACi also induced the
conversion of LC3I into active LC3II and a reduction in the
levels of p62. Our data support the hypothesis that ITF2357-
induced autophagy is correlated with a pro-survival cell response
since the autophagy inhibitor bafilomycin A1 markedly potentiated
the cytotoxic effect of the compound and the p62 protein marker
decreased, indicating autophagy completion (Emanuele et al., 2020).
Our findings are in accordance with the observation of Angeletti
et al., who found that inhibition of autophagy potentiates the effect
of ITF2357 in glioblastoma cells (Angeletti et al., 2016). However,
our Supplementary Material indicates that lncH19 silencing does
not significantly modify the levels of autophagy markers.

Therefore, we concluded that the cytotoxic effect of
ITF2357 does not depend on autophagy-induced cell death, and
subsequently, caspase-dependent apoptosis was considered.

Evaluation of apoptosis by annexin V/PI double staining and
analysis of apoptotic markers revealed that lncH19 plays a role in
this event. Indeed, ITF2357-induced apoptosis was reduced in H19-
silenced cells compared to the respective control cells. We consider
these results relevant since they imply that lncH19 can be exploited
to favor apoptosis induction and that HDACi may promote a H19-
dependent targeted effect in colon cancer cells. In accordance with
our results, other authors have previously found a correlation
between lncH19 and apoptosis.

In particular, Hou et al. have shown that overexpressed
lncH19 alleviates induced lung injury in mice, as well as
lipopolysaccharide (LPS)-induced apoptosis, oxidative stress, and
inflammation (Hou et al., 2022). Similarly, Yang provided evidence
that H19 silencing alleviates LPS-induced apoptosis and
inflammation by regulating the miR-140-5p/TLR4 axis in cell
models of pneumonia (Yang, 2023). In a more specific tumoral
context, lncH19 has been shown to participate in triptolide/TNF-α-

FIGURE 6
HCT-116 cells resistant to 5-fluorouracil (5-FU) express high levels of lncH19 and respond to treatment with ITF2357. (A) Analysis of the expression
level (qRT-PCR) of lncH19 in HCT-116-5-FU-R cells compared to untreated cells (HCT-116 Ctr). LncH19 expression levels are reported as 2-̂ΔΔCt

compared to HCT-116 Ctr cells, and Ct was normalized against β-actin. The results reported in the graph are expressed as the mean ± SD of three
independent biological replicates. Statistical analyses were performed using Student’s t-test, **p < 0.01. (B) Cell viability assay (MTT assay) in HCT-
116-5-FU-R cells treated with different concentrations of ITF2357 (0.25–0.5–1–2 µM and 4 µM) for 48 h. Data are expressed as cell viability percentages
compared to untreated cells (Ctr). The results reported in the graph are expressed as the mean ± SD of three independent biological replicates. Statistical
analyses were performed using ordinary one-way ANOVA with Bonferroni’s multiple comparison test; **p < 0.01 and ****p < 0.0001.
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induced apoptosis via binding miR-204-5p in gastric cancer models
(Yuan et al., 2022). In addition, Liu et al. demonstrated that
lncH19 inhibits proliferation and enhances apoptosis of
nephroblastoma cells by regulating the miR-675/TGFBI axis (Liu
et al., 2022). Accordingly, lncH19 has also been implicated in
sensitization to X-ray and carbon ion irradiation of non-small
cell lung cancer (Zhao et al., 2021), and positively modulates the
sensitivity of glioma cells to radiation-favoring apoptosis (Kuang
et al., 2021). However, some controversial data are present in the
literature regarding the pro-apoptotic role of lncH19. For instance,
the knockdown of H19 in resveratrol-treated cancer cells has been
shown to enhance the effects of resveratrol on apoptosis (Li et al.,
2022). Other evidence of an antiapoptotic role of lncH19 was
provided by Wang et al., who showed that it promotes
proliferation, migration, and invasion, and inhibits apoptosis of
breast cancer cells by targeting the miR-491-5p/ZNF703 axis (Wang
et al., 2020). It is clear that lncRNA H19 and many other cellular
factors may exert a dual role in regulating cell fate (Shermane Lim
et al., 2021).

Our data strongly suggest a pro-apoptotic role of lncH19 in CRC
cells treated with HDACi ITF2357 since lncH19 silencing
profoundly reduced the effects of the compound on cell viability
and apoptosis. To explain the pro-apoptotic role of lncH19 in
HDACi-treated cells, we hypothesized that it may act as an
endogenous competitive sponge for miRNAs (Zhang et al., 2022),
antagonizing miRNAs targeting pro-apoptotic genes. Bioinformatic
analysis revealed that lncH19 sponged 26 validated human miRNAs
directly targeting the pro-apoptotic gene TP53 (Figure 7).

Our data provide evidence that lncH19 knockdown reduces the
expression of TP53 and its pro-apoptotic targets, PUMA and
NOXA. The relationship between lncH19 and TP53 is
controversial in the literature since some papers sustain a
negative control of TP53 by H19 (Yang et al., 2012; Li et al.,

2020; Gan et al., 2022), while others support that lncH19 may
activate the tumor suppressor. Specifically, in accordance with our
findings, we have shown that overexpression of lncH19 enhanced
TP53 expression, whereas H19 silencing exerted the opposite effect
(Zhuang et al., 2021). In addition, Du et al. have found that
lncH19 promotes p53 phosphorylation by a direct interaction, an
effect that results in increased NOTCH-mediated angiogenesis in
mesenchymal stem cells (Du et al., 2023).

Interestingly, our paper also provided evidence that lncH19 is
overexpressed in HCT-116-5-FU-R cells, and we consider it relevant
that the HDACi ITF2357 was capable of overcoming 5-FU
resistance in these cells. Other authors have associated 5-FU
resistance with lncH19 expression (Wang et al., 2018; Yokoyama
et al., 2019; Zhang et al., 2022); here, we suggest that this condition
may be exploited to promote TP53-dependent apoptosis using
HDACi. To date, several lines of evidence indicate that HDACi
can sensitize different tumor types to the effects of diverse
chemotherapeutic agents (Perego et al., 2012; Almeida et al.,
2017; Minegaki et al., 2018; Rodrigues Moita et al., 2020; Roca
et al., 2022).

It has to be considered that the present study refers to CRC cell
lines, with all the limitations to an in vitro study; however, it
represents a molecular basis to proceed with translational studies.
In particular, we provided evidence for the first time that HDACi
ITF2357 is efficacious in a colon cancer model by upregulating
lncH19 and is capable of overcoming 5-FU resistance in highly H19-
expressing CRC cells. These findings need to be validated in vivo for
a possible clinical application in CRC patients displaying 5-FU drug
resistance. In our opinion, the relevant finding was that lncH19,
which canonically acts as an oncogene, may be exploited to favor
apoptosis induced by ITF2357. This implies that high expression of
lncH19 in CRC, especially in conditions of 5-FU resistance, may
facilitate apoptosis induction.

FIGURE 7
Schematic representation of the proposedmodel. The levels of lncH19 increase in CRC cells treated with HDACi ITF2357. This increases the sponge
effect by lncH19 on miRNAs targeting pro-apoptotic genes, including TP53. Overall, treatment with ITF2357 increases lncH19 levels and promotes
activation of apoptosis, thus leading to increased expression of TP53.
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Overall, our data suggest that lncH19 levels may be a useful
parameter to promote epigenetic targeting of colon cancer and
propose ITF2357 as a promising epi-drug in colon cancer treatment.
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