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Abstract. This paper considers the Navier–Stokes equations in the half plane with Euler-type initial conditions, i.e., initial
conditions with a non-zero tangential component at the boundary. Under analyticity assumptions for the data, we prove
that the solution exists for a short time independent of the viscosity. We construct the Navier–Stokes solution through a
composite asymptotic expansion involving solutions of the Euler and Prandtl equations plus an error term. The norm of
the error goes to zero with the square root of the viscosity. The Prandtl solution contains a singular term, which influences
the regularity of the error. The error term is the sum of a first-order Euler correction, a first-order Prandtl correction, and
a further error term. The use of an analytic setting is mainly due to the Prandtl equation.
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1. Introduction

In this paper, we shall study the solutions of the 3D Navier–Stokes(NS) equations in the half-space when
the initial and boundary data are incompatible. At the boundary, we shall impose the no-slip boundary
condition and, therefore, the incompatibility means that we shall consider initial data having non-zero
tangential component at the boundary; we shall call these data Euler type or not well prepared initial
data. We shall establish the existence and uniqueness of the NS solutions for a short time but independent
of the viscosity. The central hypothesis we shall impose is the analyticity of the initial datum.

The study of the NS equations in the half-space (or half-plane in 2D) is a central subject in the
mathematical theory of fluid dynamics because it is a prototypical case where one can study the interaction
between a fluid and a wall; explaining such interactions and the resulting phenomena (like boundary layer
formation, vorticity generation, and transitions) motivates a significant part of the interest in fluids. The
introduction by S. Ukai of an exact formula for solutions to the Stokes equations in the half-space [1] had
a significant impact on the mathematical theory of the NS equations; since Ukai’s result, several papers
appeared concerning the existence and uniqueness of solutions for the Navier–Stokes equations in the
half-space with general initial data, see for example [2,3] and references therein. However, these results,
on one side, do not allow Euler-type initial data, i.e., data with a non-zero tangential component at the
boundary; on the other hand, they rely on estimates that would degrade in the zero viscosity limit.

Euler-type initial data are important classical configurations; among them, we mention the impulsively
started disk or plate [4], and the flow generated by the interaction between a wall and a point vortex or a
core vortex [5]. Incompatible data are an interesting subject also from a numerical point of view; in [6–10],
one can find in-depth studies of how the lack of compatibility between initial and boundary data can
lead to loss of numerical accuracy; and on the appropriate compatibility conditions, one should impose to
ensure the required accuracy. Incompressible fluid dynamics Euler-type data typically arise when, to the
Navier–Stokes equations, one imposes initial data that are stationary solutions of the Euler equations and
are, therefore, of great interest for the numerical and theoretical study of the boundary layer theory. These
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data, for example, have been used to show, numerically, that Prandtl’s equations develop singularity, see
the seminal papers [11] and [12], or even to test the Prandtl equations’ effectiveness in reproducing the
separation phenomena occurring at the boundary, see [13–15].

The study of the zero viscosity limit of the incompressible Navier–Stokes solutions is one of the
most important and challenging subjects in the mathematical theory of fluid dynamics. Formally, one
should have the convergence of the NS solutions to the Euler solutions. However, NS equations are a
singular perturbation of the Euler equations, and, from the physical point of view, the interaction of
the flow with the boundary creates sharp gradients in the normal directions; This situation requires
the introduction of a boundary layer corrector to correct the discrepancy between the no-slip boundary
condition and the Euler solution: classically, such a corrector is the Prandtl equation’s solution. The lack
of a completely satisfactory theory of the Prandtl boundary layer equations has been a significant obstacle
in the characterization of the zero viscosity solutions of the NS equations. The monotonic setting [16]
(through the use of the Crocco transformation as in the original Oleinik’s work or through the use of
energy estimates, as in [17–19]), and the analytic setting [20–25], are two instances where one can control
the ill-posedness and instability phenomena recently discovered [26–31]; so that it is possible to prove
the well-posedness of Prandtl’s equations. More recently, in [32,33], they have achieved similar results in
the Gevrey class (rather than analytic), assuming some structural hypothesis on the initial data (like the
nondegeneracy of the singular point) or without such assumptions in [34].

The construction, see [25], of the analytic Prandtl solution allowed showing the convergence of the NS
solution in the half-plane as well as in the half-space. In [35], the authors constructed the NS solution
through an asymptotic matching between the Prandtl and the Euler solutions, plus a correction which
was shown to be O(

√
ν). The convergence to Euler and Prandtl solutions in their respective domain of

validity immediately followed. See also [36] for a different geometry (the outside of a disk) and, more
recently, the paper [37], where the authors obtained the above results by the use of energy methods and
[38], where the inviscid limit was derived without using a boundary-layer corrector.

Recently, in the 2D half-plane, all the above has been improved, showing that analyticity is necessary
only close to the boundary; this important result has been achieved first by Maekawa in [39], where zero
vorticity close to the boundary was assumed; this result has been generalized to the half-space in [40].
Kukavica, Vicol, and Wang [41,42], in the half-plane, proved that the analyticity of the data only near
the boundary and Sobolev regularity elsewhere is enough to obtain the validity of the inviscid limit.
These results have been obtained through energy methods applied to the vorticity formulation of the
Navier–Stokes equations without using the matched asymptotic expansion of the solution. This result
has been extended to a 3D setting in [43].

In 1994, Kato initiated a different line of research. In [44], he showed that the convergence of the NS
solutions to the Euler solution is equivalent to the vanishing of the dissipation in a sublayer of thickness
O(ν), therefore smaller than the Prandtl layer. Temam and Wang, in [45], see also [46,47], obtained a
condition leading to convergence based on the pressure gradient at the boundary, which is interesting
because the appearance of high stress at the boundary is the first indicator of the deviation of the
Navier–Stokes solutions from the Prandtl solution and the precursor of vortices formation and subsequent
separation, see [13–15]. During the last 15 years, the Kato criterion has been improved, interpreted in
terms of different quantities of physical interest, e.g., vorticity [48–50] or tangential velocity and velocity
gradient at the boundary [51], combined with Oleinik’s monotonicity setting [52]. Recently, in [53–55],
the authors have derived interesting criteria based on the vorticity in the interior of the domain; it is
impossible to report all the implications of this line of research here, and we refer the interested reader
to [49] or to the recent review paper [56].

Further cases where it has been possible to establish the inviscid limit are flows with symmetries
[57–61], flows with anisotropic viscosity [62] and, recently, in the Gevrey class [63,64].

As mentioned, we want to construct the Navier–Stokes equation solution starting from an initial
datum with a non-zero tangential slip. Moreover, we want the solution’s time of existence not to shrink
to zero when the viscosity goes to zero; this is not trivial because, in 3D, the time of existence of the
NS solutions is short, and in the presence of boundaries, the existence time, in general, would go to zero
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with the viscosity. Therefore, we shall have to handle both the initial layer, due to the presence of the
initial discontinuity, and the boundary layer, due to the mismatch between the no-slip boundary condition
and the Euler solution. Following the paper [35], we shall decompose the solution to the Navier–Stokes
equations as the sum of the solution to the Euler equations, the solution to the Prandtl equations with
non-compatible data, and a remainder; due to the presence of the initial layer, we shall see that further
decomposition of the remainder is necessary. In our procedure, we shall rely on the well-posedness result
for Prandtl’s equations with non-compatible data [21].

We also mention the recent work [65,66] that has tackled similar problems, although considering a
linearized version of the NS equations.

1.1. Asymptotic Decomposition of the NS Solution

Consider the Navier–Stokes equations in the half-plane or in the half-space Π+ = {(x, y) : y ≥ 0} where,
in 3D, x = (x1, x2):

∂tu − νΔu + u · ∇u + ∇p = 0,

∇ · u = 0,

u
∣
∣
t=0

= u0,

γu = 0.

(1.1)

In the above equation γ is the trace operator, i.e., for regular functions,

γv = v(y = 0). (1.2)

When the viscosity ν is small, its effects mainly concentrate in a layer near the boundary, whose
thickness is proportional to ε =

√
ν. For these kinds of singularly perturbed problems, one looks for

solutions that, at the formal level, can be written as [67]:

u = uout
(0) + uinn

(0) + ε
(

uout
(1) + uinn

(1)

)

+ · · · + εN
(

uout
(N) + uin

(N)

)

+ O(εN+1), (1.3)

having carried out the expansion up to order N . In the above expansion uout
(i) (x, y, t) and uin

(i)(x, Y, t) for
i = 0, . . . , N describe the outer flow (away from the boundary) and the inner flow (close to the boundary)
respectively, being Y = y/ε the rescaled variable.

The rigorous proof that an expansion like (1.3) holds in the compatible case, was given in [35], where
the authors proved that the solution of the NS equations can be written as:

u = uE + ūP + ε
(

uE
1 + ūP

1

)

+ εe.

In the above expansion, the outer leading order term, uE , is the solution of the Euler equations:

∂tu
E + uE · ∇uE + ∇pE = 0,

∇ · uE = 0,

uE
∣
∣
t=0

= u0,

γnu
E = 0,

(1.4)

where γnv is the normal component of the trace of v.
The leading order inner solution, ūP , is linked to the solution of the Prandtl equations as follows: let

uP the solution of Prandtl’s equations

(∂t − ∂Y Y )uP + uP ∂xuP + vP ∂Y uP − (∂t + uE
∣
∣
y=0

∂x)uE
∣
∣
y=0

= 0,

uP
∣
∣
∣
Y =0

= 0, uP
∣
∣
∣
Y →+∞

= uE(x, y = 0, t),

uP
∣
∣
∣
t=0

= u0(x, y = 0),

(1.5)
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where

vP = −
Y∫

0

∂xuP dY ′. (1.6)

We define the inner solution as:

ūP = (ũP , εv̄P ), (1.7)

where

ũP = uP − uE
∣
∣
y=0

, (1.8)

v̄P =

+∞∫

Y

∂xũP dY ′. (1.9)

The ūP defined above decays away from the boundary so that it does not interfere with the outer
solution uE . Moreover ūP cancels the tangential flow generated by uE . However, ūP generates a normal
inflow at the boundary Y = 0, see (1.9). This inflow is canceled by the first order outer solution εuE

1 .
However, his outer solution generates tangential flow, which is canceled by the first-order inner solution
εūP

1 .
The overall remainder εe closes the procedure. Notice, however, that the remainder, which at the

formal level should be O(ε2), due to the nonlinear interactions between the boundary layer terms and
the outer Euler terms, can be proven to be O(ε) only.

1.2. Statement of the Main Result

We give an informal statement of the main result of the present paper.

Theorem 1.1. (Informal statement) Suppose that u0 has analytic regularity, with γnu0 = 0. Then, an
analytic solution to the Navier–Stokes equations exists for a time independent of the viscosity; this solution
can be written as

u = uout
(0) + uinn

(0) + ε
(

uout
(1) + uinn

(1) + e
)

, (1.10)

where the outer solutions, uout
(0) and uout

(1) , depend on (x, y, t), while the inner solutions, uinn
(0) and uinn

(1) ,
depend on (x, Y, t) and are exponentially decaying outside the boundary layer.

Moreover uinn
(0) , u

out
(1) and uinn

(1) have singular time derivatives at the initial time.

The rest of this subsection is devoted to illustrating the physical meaning of the terms appearing in
the asymptotic expansion of the NS solution, Eq. (1.10).

1.2.1. The Leading-Order Outer Solution. The term uout
(0) (x, y, t) is the solution uE of the Euler equations

Eq. (1.4). The existence of an analytic solution for the Euler equation is a well-known result in the
literature, see among others [25,68,69]. Therefore, we shall refer to these results when constructing this
part of the NS solution.

1.2.2. The Leading-Order Inner Solution. The term uinn
(0) = ūP (x, Y, t) correlates to the solution of the

Prandtl equations (1.5) through subtraction of a constant (in Y ) function that makes it decay outside
the BL. The incompatibility, in equations (1.5), between the initial data and the boundary data leads to
the occurrence of a singular part uS so that we must decompose ūP in a regular and a singular part:

ūP = ūR + uS . (1.11)
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The singular part uS = (uS , εvS) is in the form of an initial layer; uS solves the following system:

(∂t − ∂Y Y )uS = 0,

uS
∣
∣
Y =0

= −u00(x),

uS |t=0 = 0,

(1.12)

where u00 is the trace at the boundary of the tangential part of the initial NS datum, i.e.,

u00 = γu0; (1.13)

clearly, if the initial and boundary data are compatible, u00 = 0 and, consequently, uS = 0. One can
write the explicit expression of uS ,

uS = −γu0

+∞∫

Y

e− σ2
4t√
πt

dσ = −u00

+∞∫

Y

e− σ2
4t√
πt

dσ, (1.14)

while vS derives from the incompressibility condition,

vS =

+∞∫

Y

∂xuSdY ′. (1.15)

Notice how the tangential part uS has Y - and t- derivatives that, at the initial time, are singular at the
boundary. For the rest of the paper, we shall say that a function has a ”Gaussian” singularity if it is
bounded away from the origin (Y, t) = (0, 0) and behaves near the origin like

t−βp(Y/
√

t)e−Y 2/ct (1.16)

for some β > 0, c > 0 and some polynomial p. This kind of singularity is concentrated at the boundary at
the initial time and can be tamed by multiplying the function by suitable powers of Y and t. The regular
part ūR can be proven to be more regular. In [21], one can find the proof that the Prandtl equation with
incompatible data admits the solution given in (1.11).

In the sequel, it will be helpful to introduce the following notation for the value at the boundary of
the influx generated by the Prandtl solution:

g ≡ γv̄P = −
+∞∫

0

∂xũP dY ′ = gR + gS ,

gR = −
+∞∫

0

∂xũRdY ′ gS = −
+∞∫

0

∂xuSdY ′ = −
√

4
π

√
t∂xu0(x, y = 0).

(1.17)

1.2.3. The First-Order Correction to the Outer Solution. The first order outer flow uout
(1) = uE

(1)(x, y, t)
is the solution of a linearized Euler’s system:

∂tu
E
(1) + uE

(1) · ∇uE + uE · ∇uE
(1) + ∇pE

(1) = 0,

∇ · uE
(1) = 0,

γnu
E
(1) = −γv̄P ,

uE
(1)

∣
∣
t=0

= 0.

(1.18)

The role of the correction to the Euler flow is to cancel the normal inflow generated at the boundary by
the boundary layer corrector ūP . We shall decompose uE

(1) in a regular and a singular part:

uE
(1) = wR + wS . (1.19)
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We shall see that one can write the singular part as
√

twS
b (x, y), where wS

b does not depend on t. This
time behavior means that the singularity, formed at t = 0 in the inner flow uinn

(0) , does not remain confined
in the boundary layer but instantaneously propagates in the whole space with an O(ε) intensity. This is
consistent with the elliptic-parabolic nature of the Navier–Stokes equations, leading to an infinite speed
of propagating disturbances.

While the time derivative of uE
(1) is everywhere singular at the initial time, its singularity, as t goes to

zero, is less pronounced than the one of ∂tu
S : the reason is that the singularity transfers to O(ε) terms

through the incompressibility condition that gives gS in (1.17), and the integration in Y has a regularizing
effect on the gaussian singularities. For the same reason, we shall see that the overall error e is regular,
with a bounded time derivative.

1.2.4. The First-Order Correction to the Inner Solution. The first order inner flow uinn
(1) = ūP

(1)(x, Y, t) =
(

ūP
(1), εv̄

P
(1)

)

is the solution of a linearized Prandtl’s system,

(∂t − ∂Y Y )ūP
(1) = 0,

γūP
(1) = −γuE

(1),

ūP
(1)(t = 0) = 0,

(1.20)

with the normal component given by the incompressibility condition,

v̄P
(1) =

+∞∫

Y

∂xūP
(1)dY ′. (1.21)

The role of ūP
(1) is to correct the tangential component at the boundary generated by uE

(1). The term ūP
(1)

admits a decomposition in a regular part and a singular part with a gaussian singularity less severe then
the one in uinn

(0) .

1.2.5. The Error e(x, Y, t). The term e(x, Y, t) is an overall error that closes the asymptotic expansion.
It satisfies a NS type equation with a source term and with a boundary condition that cancels the inflow
generated by ūP

(1) without generating tangential flow:

∂te +
(

uNS
(0) + εuNS

(1)

)

· ∇e + e · ∇
(

uNS
(0) + εuNS

(1)

)

+ εe · ∇e + ∇pe = Ξ,

∇ · e = 0,

γe =
(

0,−γv̄P
(1)

)

,

e(t = 0) = 0,

(1.22)

where we have defined the zero-th and first order approximation of the NS solution:

uNS
(0) = uE + ūP , uNS

(1) = uE
(1) + ūP

(1).

The source term Ξ is generated by the discrepancies between the NS equation and the equations satisfied
by the approximating terms in the asymptotic expansion. The explicit expression can be found in the
Appendix A.

A key point in the proof of the regularity of e is that, in its equations, the singular terms multiply
terms which go to zero with t or Y in a sufficiently fast way.

All the singular terms appearing in (1.10) have explicit expressions and finite L2 norms in appropriate
spaces of holomorphic functions. The expansion (1.10) implies in particular the validity of the inviscid
limit in the energy norm with an O(

√
ε) rate, since ||ūP ||L2

xy
=

√
ε||ūP ||L2

xY
.
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1.2.6. Plan of the Paper. The organization of the paper is the following: in Sect. 2 we introduce the
function spaces needed to prove the validity of the inviscid limit, and we analyze some of their properties.
In Sect. 3 we introduce the abstract Cauchy–Kowalewski theorem; this theorem is essentially a fixed point
result used to prove the existence of solutions to differential equations in a scale of Banach spaces. In
Sect. 4 we present the main result of the paper. The other sections deal with the terms of order one and
the remainder deriving from the asymptotic expansion of uNS .

2. Function Spaces

Define the strip D(ρ), the angular sector Σ(θ) and the conoid Σ(θ, a) as:

D(ρ) = {x ∈ C : |Im(x)| < ρ}, (2.1)
Σ(θ) = {y ∈ C : Re(y) > 0, |Im(y)| < Re(y) tan(θ)}, (2.2)

Σ(θ, a) = {y ∈ C : 0 < Re(y) ≤ a, |Im(y)| < Re(y) tan(θ)}
∪{y ∈ C : Re(y) > a, |Im(y)| < a tan(θ)}. (2.3)

In what follows, we shall deal with spaces of functions analytic in some of the above domains; in those
spaces, the chosen paths of integration in the x variable are lines parallel to the real axis, while we shall
adopt piecewise linear paths for the y and Y variables.

Γ(b) = {x ∈ C : Im(x) = b}, (2.4)
Γ(θ′, a) = {y ∈ C : 0 < Re(y) ≤ a, Im(y) = Re(y) tan(θ′)} ∪

{y ∈ C : Re(y) > a, Im(y) = a tan(θ′)}. (2.5)

Definition 2.1. The space H l,ρ is the set of all complex functions f(x) such that
1. f is analytic in D(ρ);
2. |f |l,ρ =

∑

|α|≤l

sup
|λ|<ρ

|∂α
x f(· + iλ)|L2(R) < ∞.

When dealing with the 3D Navier Stokes system, x is a 2D vector, and α is a multi-index, while in
the two-dimensional case, x is a scalar. The use of an L2 norm instead of a generic Lp norm allows an
important characterization for Hardy spaces, see [70] for a proof:

Theorem 2.1 (Paley–Wiener Theorem for the strip). Let f ∈ L2(R), ρ > 0, denote with f̂ the Fourier
transform of f . The following are equivalent:
1. f is the restriction to the real line of a function holomorphic on the strip D(ρ), with sup

|λ|<ρ

|f(· +

iλ)|L2(R) < ∞;
2. eρ|ξ|f̂ ∈ L2(R).

We shall use extensively this result, and we shall often work in the Fourier variable ξ′ corresponding
to the physical variable x: to simplify the notation, we shall denote with the same symbol a function f
and its Fourier transform with respect to the x variable, and similarly we shall use the same notation for
a pseudodifferential operator and its symbol.

2.1. Function Spaces for the Outer Flow: Zero-th and First-Order Euler Equations

This section presents the appropriate function spaces for studying Euler equations and the first-order
correction to the Euler equations. First, we introduce the space of functions, depending on x and y. The
primary tool in constructing the solution of the Euler equations is the half-plane Leray projector, which
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allows as many derivatives in x as in y. Therefore, we define the function space with (x, y) dependence
as follows.

Definition 2.2. H l,ρ,θ is the set of all functions f(x, y) such that:

1. f is analytic in D(ρ) × Σ(θ, a);
2. |f |l,ρ,θ =

∑

|α1|+α2≤l

sup
|θ′|<θ

||∂α2
y ∂α1

x f |0,ρ|L2(Γ(θ′,a)) < ∞.

The initial value for the Euler equations is given in H l,ρ,θ, with l ≥ 6 > 1 + d/2 and θ < π/4.
We now pass to introducing the function spaces with time dependence. In all the spaces defined below,

the width of the analyticity domain diminishes linearly with the time t.
For a given Banach scale {Xρ}0<ρ≤ρ0 , with Xρ′′ ⊂ Xρ′ and | · |ρ′ ≤ | · |ρ′′ when ρ′ ≤ ρ′′ ≤ ρ0, denote

with Bj
β([0, T ],Xρ0) the set of all functions f such that, for k = 0, . . . , j, ∂k

t f is continuous from [0, τ ] to
Xρ0−βτ ∀0 < τ ≤ T ≤ ρ0/β, with norm

|f |k,ρ,β =
k∑

j=0

sup
t∈[0,T ]

|∂j
t f(t)|ρ0−βt. (2.6)

The following spaces are those where one can prove the existence of the outer solution.

Definition 2.3. H l,ρ,θ
β,T , with T ≤ min{ρ/β, θ/β}, is the space of all functions f(x, y, t) such that f ∈

l⋂

i=0

Bi
β([0, T ],H l−i,ρ,θ), with norm

|f |l,ρ,θ,β,T =
l∑

i=0

sup
t∈[0,T ]

|∂i
tf(·, ·, t)|l−i,ρ−βt,θ−βt. (2.7)

The above space is the natural space for analytic solutions of the Euler equations; see Theorem 4.1 in
[25].

Definition 2.4. H̃ l,ρ,θ
β,T,1 is the set of all functions f(t, x, y) such that

1. f ∈ B0
β([0, T ],H l,ρ,θ) ∩ B1

β([0, T ],H l−1,ρ,θ);
2. |f |l,ρ,θ,β,T,1 = sup

t∈[0,T ]

|f |l,ρ−βt,θ−βt + sup
t∈[0,T ]

|∂tf |l−1,ρ−βt,θ−βt < ∞.

The above space is the natural space where to prove the existence of the correction of Euler flow, uE
(1):

the singularity deriving from Prandtl equations implies that only one time-derivative is allowed; on the
other hand, the regularity in y depends only on operators (like the Leray projector) with some symmetry
between the behavior in x and y, so that we can use as many derivatives with respect to y as for x.

2.2. Function Spaces for the Inner Flow: Zero-th and First Order Boundary Layer Equations

We now introduce the space of functions analytic in x and Y , in the strip D(ρ) and in the cone Σ(θ),
respectively. Moreover, we impose exponential decay in the Y -variable so that for large Y (away from the
boundary, in the outer flow), the boundary layer-type solutions do not influence the Euler solutions.

Definition 2.5. The space Kl,ρ,θ,μ with μ > 0 is the set of all functions f(x, Y ) such that

1. f is analytic in D(ρ) × Σ(θ);
2. ∂α1

Y ∂α2
x f ∈ C0(Σ(θ),H0,ρ) for any α1 ≤ 2 and |α2| ≤ l − α1;

3. |f |l,ρ,θ,μ =
∑

α1≤2

∑

|α2|≤l−α1

sup
Y ∈Σ(θ)

eμRe(Y )|∂α1
Y ∂α2

x f(·, Y )|0,ρ < ∞.
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The asymmetry on the regularity requirements in x and Y is due to the diffusion in Y that allows
regularity only up to second-order Y -derivatives (unless one imposes stronger compatibility conditions).

We now introduce the functions depending on x and t. The presence of the diffusion allows regularity
in t only up to first-order derivative.

Definition 2.6. Kl,ρ
β,T is the set of all functions f(x, t) ∈ B0

β([0, T ],H l,ρ)∩ B1
β([0, T ],H l−1,ρ), with norm

|f |l,ρ,β,T =
1∑

i=0

∑

|α|≤l

sup
0≤t≤T

|∂i
t∂

α
x f(·, t)|0,ρ−βt. (2.8)

The next space is where we shall prove the existence of the regular part of the solutions of the zeroth
and first-order BL equations. The diffusion in Y allows regularity only up to second-order Y -derivatives
and first-order t-derivatives.

Definition 2.7. The space Kl,ρ,θ,μ
β,T is the set of all functions f(x, Y, t) such that:

1. f ∈ C0([0, t],Kl,ρ−βt,θ−βt,μ−βt) and ∂t∂
α
x f ∈ C0([0, t],K0,ρ−βt,θ−βt,μ−βt), with t ≤ T ≤ min{ρ/β,

θ/β, μ/β} and |α| ≤ l − 2;
2. |f |l,ρ,θ,μ,β,T =

∑

α1≤2

∑

α1+|α2|≤l

sup
0≤t≤T

|∂α1
Y ∂α2

x f(·, ·, t)|0,ρ−βt,θ−βt,μ−βt +
∑

|α|≤l−2

sup
t∈[0,T ]

|∂t∂
α
x

f(·, ·, t)|0,ρ−βt,θ−βt,μ−βt < ∞.

2.3. Function Spaces for the Overall Error Equation

Definition 2.8. Sl,ρ,m,θ is the set of all functions f(x, Y ) such that:
1. f is analytic inside D(ρ) × Σ(θ, a

ε ) and in L2
(

Γ(ρ′) × Γ(θ′, a
ε

) ∀|ρ′| < ρ, ∀|θ′| < θ;
2. |f |l,ρ,m,θ =

∑

k≤m

|∂k
Y f |l−k,ρ,θ < ∞.

Definition 2.9. Sl,ρ,m,θ
β,T the set of all functions f(t, x, Y ) such that:

1. f ∈ B0
β

(

[0, T ], Sl,ρ,m,θ
)

;
2. |f |l,ρ,m,θ,β,T = sup

t∈[0,T ]

|f |l,ρ−βt,m,θ−βt < ∞.

In the Eq. (7.1) of Sect. 7, we further decompose the error e: the space Sl,ρ,1,θ
β,T is the functional setting

in which the ACK theorem can be applied for the term e∗, and the image of e∗ under the operator N ∗

defined in Sect. 7.3 is in the space Ll,ρ,θ
β,T , defined below.

Definition 2.10. Ll,ρ,θ
β,T is the set of functions f(x, Y, t) such that

f ∈ C0([0, t], Sl,ρ−βt,0,θ−βt), ∂Y f , ∂Y Y f , ∂tf ∈ C0([0, t], Sl−2,ρ−βt,0,θ−βt) ∀t ≤ T ≤ min{ρ/β, 0, θ},
with norm

|f |l,ρ,θ,β,T =
1∑

j=0

∑

α≤l−2j

sup
t∈[0,T ]

|∂j
t ∂α

x f(·, ·, t)|0,ρ−βt,θ−βt

+
∑

1≤α1≤2

∑

|α2|≤l−2

sup
0≤t≤T

|∂α1
Y ∂α2

x f(·, ·, t)|0,ρ−βt,θ−βt.

(2.9)

2.4. Algebra Properties and Cauchy Estimates

Let d′ be the dimension of x, i.e. d′ = 1 or d′ = 2 when solving NS equations in the half-plane or in the
half-space respectively; moreover, call d = d′ + 1
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Lemma 2.1. Let u(x), v(x) be in H l,ρ, with l > d′/2. Then uv ∈ H l,ρ, with

|uv|l,ρ ≤ C|u|l,ρ|v|l,ρ. (2.10)

Lemma 2.2. Let u(x, y), v(x, y) be in H l,ρ,θ, with l > d/2. Then uv ∈ H l,ρ,θ, with

|uv|l,ρ,θ ≤ C|u|l,ρ,θ|v|l,ρ,θ. (2.11)

One can easily verify both lemmas using the Paley–Wiener theorem and the usual argument used to
prove the algebra properties of Sobolev spaces.

The use of complex variables allows to have simple estimates for the norms of the derivatives: using
Cauchy formula for derivatives, we immediately have that

|∂k
xu|0,ρ′ ≤ k!

(ρ − ρ′)k
|u|0,ρ. (2.12)

For functions holomorphic in a cone or in a conoid, we cannot bound the norm of the derivatives with the
norm of the function in a larger cone with the same vertex, because we cannot use the Cauchy formula
for derivatives with a fixed radius in all the path of integration. If we use a radius linearly growing with
|y| for Re(y) < a, constant for Re(y) ≥ a, we easily obtain for a function holomorphic in Σ (θ, a) that,
∀p ∈ [1,+∞]

sup
|θ′|<θ

|min{a, |y|}∂yf(y)|Lp(Γ(θ′,a)) ≤ C

θ̄ − θ
sup

|θ′|<θ̄

|f |Lp(Γ(θ′,a)). (2.13)

From Eq. (2.13), we obtain the following lemma [25], which is crucial for the estimate of the nonlinear
term in the Euler equations.

Lemma 2.3. Assume that u,v ∈ H l,ρ,θ, with u(y = 0) = 0 and l > d/2 + 1. Then for any θ′ < θ we have

|u∂yv|l,ρ,θ′ ≤ C|u|l,ρ,θ′
|v|l,ρ,θ

θ − θ′ . (2.14)

The Prandtl equations with initial data exponentially decaying in Y need the following estimates,
which can be found in [25].

Lemma 2.4. Let f ∈ Kl,ρ′,θ′′,μ′′
. Then

|min{1, |Y |}∂Y f |l,ρ′,θ′,μ′ ≤ |f |l,ρ′,θ′′,μ′

θ′′ − θ′ + μ′|f |l,ρ′,θ′,μ′ (2.15)

|Y ∂Y f |l,ρ′,θ′,μ′ ≤ |f |l,ρ′,θ′′,μ′

θ′′ − θ′ + μ′ |f |l,ρ′,θ′,μ′′

μ′′ − μ′ + |f |l,ρ′,θ′,μ′ (2.16)

Notice that a different exponential decay is needed in order to estimate the product of ∂Y f with a
linearly increasing function. The Prandtl equations are still well posed when the initial data decay with
Y with a polynomial rate, see [23], and also [21]; in this case, using a radius linearly growing with |Y | in
the Cauchy formula for derivatives, it is easy to obtain

sup
Y ∈Σ(θ)

(1 + |Y |)α|Y ∂Y f(Y )| ≤ C

θ̄ − θ
sup

Y ∈Σ(θ̄)

(1 + |Y |)α|f(Y )|, (2.17)

which means that, unlike the exponential case, there is no need to change the polynomial rate of decay.

2.5. Paths of Integration

In the present paper, we shall solve equations involving heat operators in several instances: for example,
boundary layer equations, where diffusion in the normal Y -variable appears, or the error equation, where
diffusion is both in the x- and Y -variable is present. The method we shall use is based on representing
the solutions utilizing the convolution with the appropriate Gaussian. If the integrand is holomorphic,
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one can deform the integration path, choosing the most convenient one. However, when estimating the
solution and passing the modulus inside the integral, the integrand is no longer holomorphic, and the
integral depends on the particular path of integration; therefore, a careful a priori choice of the integration
path is helpful in many estimates. Taking the convolution with respect to x, the best choice for the path
is the one that makes the argument of the Gaussian real, i.e., the path x′ ∈ Γ(Im(x)). On the other hand,
for the convolution in the Y variable between a Gaussian and a function analytic in a conoid, given that
the domain of analyticity shrinks near the origin, one cannot take Im(Y ′) = Im(Y ); therefore, we choose
the path consisting of the segment connecting the origin and Y and the half-line from Y to +∞+ iIm(Y )
parallel to the real axis. Said differently, one has:

Y ′ =
{ Y

|Y |r r ∈ [0, |Y |]
r + iYim r ∈ [Yr,+∞[

. (2.18)

In the first part of the above path of integration one has
∣
∣
∣
∣
e− (Y −Y ′)2

4(t−s)

∣
∣
∣
∣
= e

− (|Y |−r)2

4(t−s)
Y 2

r −Y 2
im

|Y |2 ≤ e− (|Y |−r)2

4(t−s) cos(2θ); (2.19)

to get the last inequality we have used

Y 2
r − Y 2

im

Y 2
r + Y 2

im

=
Y 2

r (1 − tan2(θY ))
Y 2

r (1 + tan2(θY ))
= cos(2θY ) ≥ cos(2θ), (2.20)

where θY is the argument of the complex number Y . Analogously, one can show that
∣
∣
∣
∣
e− (Y +Y ′)2

4(t−s)

∣
∣
∣
∣
≤ e− (|Y |+r)2

4(t−s) cos(2θ), (2.21)
∣
∣
∣
∣
e− (Y ′)2

4s

∣
∣
∣
∣
≤ e− r2

4s cos(2θ), (2.22)

where the latter inequality will be used for estimating the singular term uS .
In the second part of the path (2.18), we have that

∣
∣
∣
∣
e− (Y −Y ′)2

4(t−s)

∣
∣
∣
∣
= e− (Yr−r)2

4(t−s) , (2.23)

while
∣
∣
∣
∣
e− (Y +Y ′)2

4(t−s)

∣
∣
∣
∣
= e

−(Yr+r)2+4Y 2
im

4(t−s) ≤ e−(1−tan2(θ)) (Yr+r)2

4(t−s) , (2.24)

where we have used

(2Yim)2 ≤ tan2(θY )(2Yr)2 ≤ tan2(θ)(Yr + r)2.

Finally, since (Yim)2 ≤ tan2(θ)r2, we have
∣
∣
∣
∣
e− (Y ′)2

4s

∣
∣
∣
∣
≤ e−(1−tan2(θ)) r2

4s . (2.25)

Therefore, we conclude that after a change of variable, one can deduce the estimates involving the
complex gaussian on the paths (2.18) by estimates involving the real gaussian; these estimates are up
constants that blow up when θ → π/4.

For a function analytic in a cone, we take, as the integration path, the half line which starts at the
origin and passes through Y : therefore, the estimates (2.19), (2.21) and (2.22) are valid along all the path.
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3. The Abstract Cauchy Kowalewski Theorem

Consider the equation

u + F (t, u) = 0 t ∈ [0, T ]. (3.1)

Let {Xρ}ρ∈]0,ρ0] a scale of Banach spaces, with Xρ′ ⊆ Xρ′′ and | · |ρ′ ≤ | · |ρ′′ when ρ′′ ≤ ρ′ ≤ ρ

Theorem 3.1. (ACK theorem) Suppose that ∃R > 0, ρ0 > 0, β0 > 0 such that if 0 < τ ≤ T ≤ ρ0/β0 the
following properties hold:
1. ∀0 < ρ′ < ρ ≤ ρ0 −β0τ and ∀u such that {u ∈ Xρ : sup

t∈[0,τ ]

|u(t)|ρ ≤ R} the map F (u, t) : [0, τ ] �→ Xρ′

is continuous;
2. ∀0 < ρ ≤ ρ0 − β0τ the function F (t, 0) : [0, τ ] �→ {u ∈ Xρ : sup

t∈[0,τ ]

|u(t)|ρ ≤ R} is continuous and

|F (t, 0)|ρ ≤ R0 < R; (3.2)

3. for any β ≤ β0, 0 < ρ′ < ρ(s) ≤ ρ0 − β0s and u1 and u2 ∈ {u : u(t) ∈ Xρ0−βt ≤ R}
|F (t, u1) − F (t, u2)|ρ′ ≤

C

⎡

⎣

t∫

0

|u1 − u2|ρ(s)

ρ(s) − ρ′ +
|u1 − u2|ρ′

(t − s)α1
+

1
tα2

t∫

0

|u1 − u2|ρ′ds

⎤

⎦ ,
(3.3)

with α1 < 1, α2 < 1 and C independent of t, τ, u1, u2, β, ρ′, ρ(s).
Then ∃β > β0 such that Eq. (3.1) has a unique solution u such that ∀ρ ∈]0, ρ0[ u(t) ∈ Xρ ∀t ∈ [0, (ρ0 −
ρ)/β]; moreover sup

ρ+βt<ρ0

|u(t)|ρ ≤ R.

The spaces introduced in Sect. 2 are Banach scales with respect to the parameters defining the complex
domains and the exponential decay. The use of an analytic setting is mainly due to Prandtl’s equations
since the well-posedness results available for these equations use either an analytic setting [23] and [24] or
some monotonicity assumption [16]. A key point of the ACK theorem is to prove that F is a contraction
in an auxiliary Banach space: one can prove this with slight modifications of the proof in [24].

4. The Main Result

We now state the main result of the paper. The informal statement is in Theorem 1.10, in Sect. 1.2,
where the reader can find a detailed explanation of the meaning of the different terms appearing in the
asymptotic expansion (4.1) below.

Theorem 4.1. Assume that u0 ∈ H l,ρ,θ, with γnu0 = 0, l ≥ 6. Then, for any μ > 0, there exist ρ̄ < ρ,
θ̄ < θ, β̄ > 0, all independent of ν, such that the solution of the Navier–Stokes Eq. (1.1) can be written
as

u = uE + ūP + ε[uE
(1) + ūP

(1) + e], (4.1)

where:
1. The term uE ∈ H l,ρ̄,θ̄

β̄,T
is the solution of the Euler equations (1.4).

2. The term ūP is the modified Prandtl solution given by Eq. (1.8) and (1.9). The following decompo-
sition in regular and singular part holds:

ūP = ūR + ūS ,

where the regular term ūR ∈ Kl,ρ̄,θ̄,μ

β̄,T
, and the singular term uS is given by (1.14) and (1.15).
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3. The term uE
(1) is the first order correction to the inviscid flow solving the system (1.18). The following

decomposition in regular and singular part holds:

uE
(1) = uER

(1) +
√

twS
b (x, y),

where uER
(1) ∈ H̃ l,ρ̄,θ̄

β̄,T,1
and wS

b ∈ H l,ρ̄,θ̄ is given by (5.3).

4. ūP
(1) =

(

ūP
(1), εv̄

P
(1)

)

is the first order correction to the boundary layer flow; ūP
(1) solves the linear heat

Eq. (1.20), while v̄P
(1) is given by the incompressibility condition (1.21). The following decomposition

in regular and singular part holds:

ūP
(1) = ūR

(1) + ūS
(1) (4.2)

where the regular part ūR
(1) ∈ Kl,ρ̄,θ̄,μ

β̄,T
and the singular part ūS

(1) is given by (6.1).

5. The term e is an overall error that closes the asymptotic procedure with e ∈ Ll,ρ̄,θ̄

β̄,T
.

The result concerning the Euler flow can be found in [25] as Theorem 4.1. The result for ūP can be
easily obtained with a slight modification of the argument used in [21].

Remark 4.1. One can give a more detailed description of the structure of ūP as follows. The solution uP

of Prandtl equations with non compatible data can be written as the sum of

1. a singular term uS given by (1.14);
2. the solution uD of Prandtl’s equations with compatible data (γuD = u00) and an initial datum given

by the initial value of the Euler flow at the boundary, which means that uD approaches the Euler
flow for Y → +∞ at any time with any exponential rate;

3. an interaction term, which is exponentially decaying: indeed, the interaction part can be written
in terms of the heat operator E2 for the half space with zero boundary and initial condition and a
forcing term, so in Y we have a convolution between a gaussian and some terms deriving from ũD

and uS . Now we have

eμRe(Y ) = eμRe(Y −Y ′)eμRe(Y ′), (4.3)

with eμRe(Y ′)ũD bounded, while

eμRe(Y −Y ′)

∣
∣
∣
∣
∣
∣

e− (Y −Y ′)2
4(t−s)

√

4π(t − s)

∣
∣
∣
∣
∣
∣

≤ eμRe(Y −Y ′)e−c Re(Y −Y ′)2
8T

e− cRe(Y −Y ′)2
8(t−s)

√

4π(t − s)
≤

≤ C
e− cRe(Y −Y ′)2

8(t−s)

√

4π(t − s)
,

(4.4)

with c depending on θ. A similar argument applies to eμRe(Y )uS .

The result for ūP can be obtained with minor modifications of the argument in [21], taking into
account that the decay in Y is exponential (rather than polynomial) and that we have analyticity also in
the normal variable.

Remark 4.2. To prove theorem 4.1, we use the fact that when we reduce the strip of x-analyticity, we can
get as much x-regularity as needed. However, while we can obtain arbitrary regularity in the tangential
variable, this does not hold for the normal variable since the reduction of the cone of analyticity does not
provide any additional regularity: the regularity in the normal variable does not exceed the regularity of
the initial datum.

The construction of uE and ūP already appears in the literature, see [25] and [21] respectively; there-
fore, in the rest of the paper, we shall construct the remaining terms in the asymptotic expansion (4.1).



32 Page 14 of 40 A. Argenziano et al. JMFM

5. Correction to the Euler Flow

The Prandtl solution generates an O(ε) inflow at the boundary; one introduces the first-order correction
to the Euler flow to cancel this inflow; given that the Prandtl solution has a regular and a singular part,
in (1.17), we have split, in (1.17), the inflow g in singular and regular parts, gS and gR, respectively. The
first-order Euler equations (1.18) are linear; therefore, by the superposition principle, we can decompose
the first order Euler correction ūE

(1) as in (1.19), i.e., as singular and regular parts. The singular part wS

solves

∂tw
S + wS · ∇uE + uE · ∇wS + ∇pwS

= 0,

∇ · wS = 0,

γnwS = gS = −
√

4
π

√
t∂xu00(x),

wS
∣
∣
t=0

= 0,

(5.1)

while the regular part wR solves the system obtained by (5.1) replacing gS with gR. The regularity of
gR is the same that the boundary value of the normal part of the Prandtl’s correction would have in the
compatible case; therefore, we have wR ∈ H̃ l−1,ρ̄,θ̄

β̄,T,1
.

Remark 5.1. The regularity in the y-variable is greater than the one stated in [35]; however, for this term,
the regularity in the normal variable depends only on ”symmetric” operators, which allow a number of
derivatives in y equal to the ones that have not been used in x; this enhanced regularity will allow us to
prove that some terms that are zero at time t = 0 are O(t), which will be helpful for the estimates of
some nonlinear terms in the equation of e.

We now pass to the analysis of the singular part wS . If one denotes by ξ′ the Fourier variable corre-
sponding to x, it is useful to write the solution as

wS(t, ξ′, y) =
√

twS
b + I√

tw
S∗

, (5.2)

where

wS
b (ξ′, y) = C1(−i

ξ′

|ξ′| , 1)e−|ξ′|yiξ′u00(ξ′) (5.3)

is divergence-free and takes into account the normal inflow. The operator I√
t is a weighted integration

in time:

I√
tw

S∗
=

t∫

0

√
τwS∗

(τ, ξ′, y)dτ. (5.4)

The rest of this section is devoted to constructing wS∗
. Call P the Leray projector (projection on the

space of divergence-free L2 functions with zero normal components at the boundary); substituting the
ansatz (5.2) into (5.1), and then applying the Leray projector, one derives the following equation for
wS∗

,

wS∗
+ P

[

I√
tw

S∗

√
t

· ∇uE + uE · ∇I√
tw

S∗

√
t

+ wS
b · ∇uE + uE · ∇wS

b

]

= 0. (5.5)

The form of the above equation is suitable for applying the abstract Cauchy–Kowalewski theorem. Since
P is a bounded operator in H l,ρ,θ (see [25]) and commutes with time derivatives, we can estimate v instead
of Pv for any v. We shall show that, assuming that u00 ∈ H l+1,ρ and uE ∈ H l,ρ,θ

β,T , then wS∗ ∈ H̃ l−1,ρ,θ

β̄,T,1

for some β̄ > β: such a regularity for u00 can always be obtained from the trace of a function u0 ∈ H l,ρ,θ

by reducing the strip of analyticity.
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5.1. The Forcing Term

For any ρ′ < ρ − βt, θ′ ≤ θ − βt, we use the algebra property (2.11) to obtain

|wS
b · ∇uE |l−1,ρ′,θ′ ≤ C|wS

b |l−1,ρ′,θ′ |uE |l,ρ′,θ′ ≤ C|u00|l,ρ|uE |l,ρ,θ,β,T (5.6)

and similarly

|uE · ∇wS
b |l−1,ρ′,θ′ ≤ C|u00|l+1,ρ|uE |l−1,ρ,θ,β,T . (5.7)

5.2. Quasi Contractiveness

For the term uE · ∇ I√
tw

S ∗
√

t
, we have

∣
∣
∣
∣
∣
uE∂x

I√
tw

S∗
√

t

∣
∣
∣
∣
∣
l−1,ρ′,θ′

≤ C|uE |l−1,ρ′,θ′

t∫

0

√
τ√
t
|∂xwS∗ |l−1,ρ′,θ′dτ ≤

≤ C|uE |l−1,ρ,θ,β,T

t∫

0

|wS∗|l−1,ρ(s),θ′

ρ(s) − ρ′ ds,

(5.8)

while, with an argument similar to the one used in the proof of lemma 2.3, since ∂y
I√

tw
S ∗

√
t

multiplies vE ,
which goes to zero linearly as y approaches zero, we have

∣
∣
∣
∣
∣
vE∂y

I√
tw

S∗

√
t

∣
∣
∣
∣
∣
l−1,ρ′,θ′

≤ C|vE |l−1,ρ,θ,β,T

t∫

0

|wS∗ |l−1,ρ′,θ(s)

θ(s) − θ′ ds. (5.9)

The term I√
tw

S∗
√

t
· ∇uE is easier to estimate, since no Cauchy estimate is needed

|I
√

tw
S∗

√
t

· ∇uE | ≤ C|uE |l,ρ,θ,β,T

t∫

0

|wS∗|l−1,ρ′,θ′ds. (5.10)

By the ACK theorem, we obtain the existence of a unique solution of Eq. (5.5) in H̃ l−1,ρ,θ

β̄,T,0
; taking the

time derivative of that equation, it is easy to see that wS∗ ∈ H̃ l−1,ρ,θ

β̄,T,1
.

6. Boundary Layer Corrector

The first order correction ūP
(1) = (uP

(1), εv̄
P
(1)) is the sum (see (4.2)) of the solution ūS

(1) of the system

(∂t − ∂Y Y )uS
(1) = uS ,

γuS
(1) = −γwS ,

uS
(1)(t = 0) = 0,

v̄S
(1) = ε

+∞∫

Y

∂xuSdY ′,

(6.1)

and the solution ūR
(1) of the system obtained by (6.1) replacing wS with wR We have ūR

(1) ∈ Kl,ρ̄,θ̄,μ

β̄,T
, see

[35] for a proof. In Fourier terms, uS
(1) is given by

uS
(1) = −C1|ξ′|u00(ξ′)F1/2(t, Y ), (6.2)
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where

F1/2 =

t∫

0

Y

2(t − s)
e− Y 2

4(t−s)

√

4π(t − s)

√
sds =

1√
π

+∞∫

Y
2

√
t

e−σ2

√

t − Y 2

4σ2
dσ. (6.3)

We estimate uS
(1) in terms of F : we have

|F1/2| ≤ Ce− Y 2
8t

√
t. (6.4)

The derivative with respect to Y is

∂Y F1/2 = − 1√
π

+∞∫

Y
2

√
t

e−σ2 Y

4σ2

dσ
√

t − Y 2

4σ2

= − 2√
π

t∫

0

e− Y 2
4(t−s)

ds√
s
√

(t − s)
, (6.5)

so

|∂Y F1/2| ≤ Ce− Y 2
4t . (6.6)

The term ∂Y Y F1/2 is singular near the boundary (although Y ∂Y Y F1/2 is not).
The normal component v̄S

(1) has a better regularity with respect to t and Y ; we have

|∂j
Y v̄S

(1)|k,ρ ≤ C|u00|k+2,ρe
−c |Y |2

t t1− j
2 (6.7)

7. The Remainder e

The remainder e satisfies the system (1.22), which is Navier–Stokes type system with a source term and
non-homogeneous boundary conditions. It is important to notice that the source term contains ∂xxuS ,
the most singular term. Therefore, we decompose the error e as

e = N ∗e∗ + σ + h. (7.1)

In the above decomposition, the tangential part of h = (h′, εhn) takes care of the most singular term
∂xxuS ; in fact, h′ solves the heat equation in the half-space with forcing term ε∂xxuS , and homogeneous
boundary and initial conditions, see the system (7.2); imposing the incompressibility condition and the
decay at infinity in Y , one obtains the normal component hn, see (7.6). Therefore, hn has a nonzero trace
at the boundary. The construction of h will be accomplished in Sect. 7.1, while the fact that h ∈ Ll,ρ̄,θ

β,T is
stated in Proposition 7.2.

The term σ solves the Stokes equations with boundary conditions; see the system (7.8) below. We have
introduced the term σ to take into account the boundary conditions of e, deriving from the boundary
layer corrector, and the boundary conditions generated by h. The construction of σ will be accomplished
in Sect. 7.2, while the fact that σ ∈ Ll,ρ̄,θ

β,T is stated in Proposition 7.3.
Finally, N ∗e∗ solves the Stokes equations with homogeneous boundary conditions and with forcing

term e∗, see the system (7.15). The Navier–Stokes operator N ∗ can be defined explicitly in terms of the
Leray projector and heat operator; see the formula (7.16). The construction of the operator N ∗, and the
necessary estimates, will be presented in Sect. 7.3

To construct e∗ we shall use the ACK theorem in the Sl,ρ,1,θ setting: given that uS /∈ Sl,ρ,1,θ, this has
led us to isolate the effect of ε∂xxuS introducing the term h. We shall construct e∗

Finally, N ∗e∗ solves the Stokes equations with homogeneous boundary conditions and with forcing
term e∗, see the system (7.15). The Navier–Stokes operator N ∗ can be defined explicitly in terms of the
Leray projector and heat operator; see the formula (7.16). The construction of the operator N ∗, and the
necessary estimates, will be presented in Sect. 7.3

To construct e∗ we shall use the ACK theorem in the Sl,ρ,1,θ setting: given that uS /∈ Sl,ρ,1,θ, this has
led us to isolate the effect of ε∂xxuS introducing the term h. We shall construct e∗ in Sect. 7.4.
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For the compatible case, in [35], the authors showed that e ∈ Ll,ρ,θ
β,T by proving that both σ and e∗ were

in that space. In our case, σ is still in Ll,ρ,θ
β,T ; however, we shall see that e∗ ∈ Sl,ρ,1,θ only; nevertheless,

we shall prove that the image under N ∗ is still in Ll,ρ,θ
β,T .

For the compatible case, in [35], the authors showed that e ∈ Ll,ρ,θ
β,T by proving that both σ and e∗ were

in that space. In our case, σ is still in Ll,ρ,θ
β,T ; however, we can say that e∗ ∈ Sl,ρ,1,θ, only; nevertheless,

we shall prove that the image under N ∗ is still in Ll,ρ,θ
β,T .

7.1. Heat Term

The tangential part h′ of h satisfies

(∂t − ∂Y Y )h′ = ε∂xxuS ,

γh′ = 0,

h′(t = 0) = 0.

(7.2)

Given that uS is given by (1.14), one can write the explicit expression of h′:

h′ = ε∂xxu00F (t, Y ), (7.3)

where

F =
2√
π

t∫

0

ds

+∞∫

0

(E−
0 − E+

0 )

+∞∫

Y ′
2

√
s

e−σ2
dσdY ′, (7.4)

and E−
0 and E+

0 are:

E−
0 =

e− (Y −Y ′)2
4(t−s)

√

4π(t − s)
; E+

0 =
e− (Y +Y ′)2

4(t−s)

√

4π(t − s)
. (7.5)

The normal part of h is obtained through the incompressibility condition expressed in the Y variable;
thus, it is an O(ε) with respect to h′. We shall denote the normal part of h as εhn to stress this fact.
Imposing the decay in Y of hn, one writes

hn =

+∞∫

Y

∂xh′dY ′. (7.6)

One can give the following estimate:

Proposition 7.1. For j = 0, 1, 2, ∀μ > 0, we have

sup
Y ∈Σ(θ)

eμRe(Y )|∂j
Y h′|l−2−j,ρ ≤ Cεt

2−j
2 |u00|l−j,ρ,

sup
Y ∈Σ(θ)

eμRe(Y )|∂j
Y hn|l−3−j,ρ ≤ Cεt

3−j
2 |u00|l−j,ρ.

(7.7)

The proof of the proposition is given in Appendix Appendix B. The exponential decay in the Y
variable, stated in proposition 7.1, implies the boundedness in L2

Y ; moreover every u0 ∈ H l,ρ,θ has trace
u00 ∈ H l−1,ρ ⊂ Hk,ρ̄ ∀k ≥ l, ∀ρ̄ < ρ. Therefore, we obtain the following result:

Proposition 7.2. Assume u0 ∈ H l,ρ,θ: then ∀ρ̄ < ρ, ∀T , ∀β, we have h ∈ Ll,ρ̄,θ
β,T .

The estimates given in Proposition 7.1 imply an L∞
Y boundedness, which will be useful in the treatment

of the nonlinear terms in the equation of e∗.
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7.2. Boundary Value of the Error

The term σ = (σ1, σ2) is needed to cancel the boundary value of hn and v̄P
(1); therefore, it satisfies

(∂t − ∂Y Y )σ + ∇φ = 0,

∇ · σ = 0,

γσ = (0, εG),

σ(t = 0) = 0,

(7.8)

where

G = −γv̄R
(1) − γv̄P

(1) − γhn = ∂x

∫ +∞

0

(

uR
(1) + uP

(1) + h′
)

dY = ∂xG̃. (7.9)

The above system is a Stokes problem with boundary datum and homogeneous initial datum. In [35] one
can find the procedure to solve such a problem; the solution writes as

σ1 = εN ′E1G − N ′ε

Y∫

0

ε|ξ′|e−ε|ξ′|(Y −Y ′)E1GdY ′ − N ′e−ε|ξ′|Y G,

σ2 = εe−|ξ′|εY G + ε

Y∫

0

ε|ξ′|e−ε|ξ′|(Y −Y ′)E1G,

(7.10)

where

N ′ =
iξ′

|ξ′| , (7.11)

while E1f(t) gives the solution of the heat equation with boundary datum f(t) and homogeneous initial
datum; the explicit expression is

E1f =

t∫

0

Y

2(t − s)
e− Y 2

4(t−s)

√

4π(t − s)
f(s)ds. (7.12)

Proposition 7.3. Let σ = (σ1, σ2) with σi given in Eq. (7.10). Then σ ∈ Ll,ρ̄,θ̄

β̄,T̄
and, ∀|θ′| < θ, ∀θ ∈

]0, π/4[, ∀a the following estimates, hold:

||σ|k,ρ|L2(Γ(θ′,a)) ≤ C|G̃|k+1,ρ,

||∂Y σ|k,ρ|L2(Γ(θ′,a)) ≤ Cε
[

t3/4|∂tG|k,ρ + |G|ρ,k+1

]

,

||∂Y Y σ|k,ρ|L2(Γ(θ′,a)) ≤ Cε
[

|G|k+2,ρ + t1/4|∂tG|k+1,ρ

]

,

||∂tσ|k,ρ|L2(Γ(θ′,a)) ≤ C
∣
∣
∣∂tG̃

∣
∣
∣
k+1,ρ

,

(7.13)

sup
Y

|σ|k,ρ ≤ C|G|k,ρ,

sup
Y

|∂Y σ|k,ρ ≤ Cε
[

|G|k+1,ρ + t1/2|∂tG|k,ρ

]

,

sup
Y

|∂Y Y σ|k,ρ ≤ Cε [|G|k+2,ρ|∂tG|k+1,ρ] .

(7.14)

The proof of the proposition is straightforward, and can be obtained by applying Young’s convolution
inequality to the expressions (7.10).

Remark 7.1. In the expression of σ, the term N ′e−ε|ξ′|Y G is the only one which is not O(ε); however,
∂Y σ is O(ε), which implies that ∂yσ is O(1).
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Remark 7.2. The estimates for σ and ∂Y σ show that, near t = 0, they are small in t; in fact, G(t = 0) = 0
and continuosly differentiable in t, so that G goes linearly to zero with t. The regularity of G with respect
to time is due to the regularizing effect that the integration in Y , appearing in (7.9), has on ”gaussian”-
type singularities.

These remarks and the estimates in the L∞
Y norm in (7.14) will be useful in the estimates for the

nonlinear terms in the equation of e∗.

7.3. The Navier–Stokes Operator

In the present subsection we shall introduce the operator N ∗ and give the estimate in Proposition 7.5,
which is the main result of the subsection. The Navier–Stokes operator N ∗ solves the time-dependent
Stokes equation with a forcing term: w = N ∗w∗ is the solution of

(∂t − ε2∂xx − ∂Y Y )w + ∇pw = w∗

∇ · w = 0,

γw = 0,

w(t = 0) = 0.

(7.15)

One can write the explicit expression of N ∗ in terms of the projection operator P̄∞, of the heat operator
Ẽ2, and of the operator S which solves the Stokes equations with boundary data:

N ∗ = P̄∞Ẽ2 − SγP̄∞Ẽ2. (7.16)

In the rest of the section, we shall give the explicit expression of P̄∞, Ẽ2, and S, and state the necessary
estimates for N ∗.

If v is a vector field defined on the upper plane, P̄∞v is obtained in the following way: extend v oddly
for Y < 0, then apply the Leray projector for functions defined on the whole space, and finally restrict
the result to Y ≥ 0. The explicit expression of the normal component is given by

P̄∞
n v =

1
2
ε|ξ′|

[ Y∫

0

dY ′
(

e−ε|ξ′|(Y −Y ′) − e−ε|ξ′|(Y +Y ′)
)

(−N ′v1 + v2)+

+

+∞∫

Y

dY ′
(

eε|ξ′|(Y −Y ′)(N ′v1 + v2) − e−ε|ξ′|(Y +Y ′)(−N ′v1 + v2)
)
]

,

(7.17)

where the Riesz-type operator N ′ is defined in (7.11). The tangential component is

P̄∞′
v = v1 − ε|ξ′|

2

[ Y∫

0

dY ′
(

e−ε|ξ′|(Y −Y ′) − e−ε|ξ′|(Y +Y ′)
)

(v1 + N ′v2)+

+

+∞∫

Y

dY ′
(

eε|ξ′|(Y −Y ′)(v1 − N ′v2) − e−ε|ξ′|(Y +Y ′)(v1 + N ′v2)
)
]

.

(7.18)

Notice that, if we had extended the tangential part evenly and the normal part oddly, we would have
obtained the Leray projector for the half space.

The operator Ẽ2 is such that Ẽ2f solves the heat equation in the half space with source f and
homogeneous data:

(∂t − ε2∂xx − ∂Y Y )u = f

γu = 0

u(t = 0) = 0.

(7.19)
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The explicit expression can be given in terms of convolutions with gaussians:

Ẽ2f(x, Y, t) =

t∫

0

ds

+∞∫

−∞

e
− (x−x′)2

4(t−s)ε2

√

4πε2(t − s)
dx′

+∞∫

0

⎛

⎝
e− (Y −Y ′)2

4(t−s)

√

4π(t − s)
− e− (Y +Y ′)2

4(t−s)

√

4π(t − s)

⎞

⎠ f(x′, Y ′, s)dY ′.

(7.20)

The Stokes operator S is the operator such that Sg solves the Stokes equations with boundary datum
g:

(∂y − ε2Δ)uS + ∇pS = 0,

∇ · uS = 0,

γuS = g,

uS(t = 0) = 0.

(7.21)

The following proposition holds.

Proposition 7.4. Suppose that g = (g′, gn) ∈ Kl,ρ
β,T with g(t = 0) = 0 and gn of the form

gn = |ξ′|
+∞∫

0

dy′f(ξ′, y′, t)k(ξ′, y′)

with |ξ′|
+∞∫

0

dy′|k(ε′, y′)| ≤ 1 and f ∈ Ll,ρ,θ
β,T . Then Sg ∈ Ll,ρ,θ

β,T and

|Sg|l,ρ,θ,β,T ≤ c(|g′|l,ρ,θ,β,T + |f |l,ρ,θ,β,T ). (7.22)

The proof can be found in [35] where the above results appears as Proposition 3.4.
In Appendix C, we shall show that, when v ∈ Sl,ρ,1,θ

β,T then P̄∞Ẽ2v ∈ Ll,ρ,θ
β,T and that, furthermore,

γP̄∞Ẽ2 satisfies the hypothesis of Proposition 7.4; all this leads to the following result.

Proposition 7.5. Suppose that u ∈ Sl,ρ,1,θ
β,T , then N ∗u ∈ Ll,ρ,θ

β,T and

|N ∗u|l,ρ,θ,β,T ≤ C|u|l,ρ,1,θ,β,T . (7.23)

We now give some bounds in a time integrated form that will be useful for the application of the ACK
theorem.

Proposition 7.6. Assume that u ∈ Sl,ρ,1,θ
β,T . Then we have that, for ρ′ < ρ − βt, θ′ < θ − βt,

|N ∗u|l,ρ′,0,θ′ ≤ C

t∫

0

ds|u(·, ·, s)|l,ρ′,0,θ′ , (7.24)

|∂Y N ∗u|l−1,ρ′,0,θ′ ≤ C

t∫

0

ds
|u(·, ·, s)|l,ρ′,1,θ′

(t − s)1/4
. (7.25)

Contrary to the compatible case, the mild singularity in time cannot be completely eliminated, even
when γu = 0: this is because the functional setting Sl,ρ,1,θ

β,T is more singular than the one used in the
compatible case. In particular, this setting does not allow a time derivative. The presence of this singularity
implies that, in order to estimate a derivative of order l+1, like ∂Y ∂l

x, we cannot use the Cauchy estimate,
that would lead to the presence, at the denominator, of (t − s)1/4(ρ(s) − ρ′), which is not allowed by the
ACK theorem. Therefore, we need a better estimate of the derivatives of order l + 1. A similar problem
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would appear if, in order to deal with the bilinear terms appearing in the error equation, one tries to use
the algebra properties of Sl,ρ,1,θ

β,T ; therefore, we need some estimates in an L∞
Y L2

x-like setting, so that the
algebra properties are used only in the tangential variable.

Next proposition shows how to treat derivatives of order l + 1

Proposition 7.7. For any u ∈ Sl,ρ,1,θ
β,T , we have for ρ′ < ρ − βt, θ′ < θ − βt

|N ∗u|l+1,ρ′,0,θ′ ≤ C

t∫

0

|u|l,ρ(s),0,θ′

ρ(s) − ρ′ ds, (7.26)

|N ∗u|l+1,ρ′,0,θ′ ≤ C

ε

t∫

0

|u|l,ρ′,0,θ′

(t − s)1/2
ds, (7.27)

|∂Y N ∗u|l,ρ′,0,θ′ ≤ C

t∫

0

[ |u|l,ρ′,1,θ′

(t − s)1/2
+

|u|l,ρ(s),1,θ′

ρ(s) − ρ′

]

ds, (7.28)

|∂Y Y N ∗u|l−1,ρ′,0,θ′ ≤ C

t∫

0

[ |u|l,ρ′,1,θ′

(t − s)1/2
+ ε1/2 |u|l−1/2,ρ′,0,θ′

(t − s)3/4

]

ds. (7.29)

Furthermore, if γu = 0, then

|∂Y N ∗u|l,ρ′,0,θ′ ≤ C

t∫

0

|u|l,ρ′,1,θ′

(t − s)1/2
ds. (7.30)

The case γu = 0 is used to prove the quasi-contractiveness hypothesis of the ACK theorem: in this
case, if we do not use Cauchy estimates, the only derivative of order l + 1 which can be an O (1/ε) is the
purely tangential one, ∂l+1

x N ∗u.
The next proposition provides some estimates in the L∞

Y norm.

Proposition 7.8. For any u ∈ Sl,ρ,1,θ
β,T we have that, ∀ρ′ < ρ − βt, ∀t ∈ [0, T ]

sup
Y

|N ∗u|l,ρ′ ≤ C

t∫

0

|u|l,ρ′,0,θ′

(t − s)1/4
, (7.31)

sup
Y

|∂Y N ∗u|l−1,ρ′ ≤ C

t∫

0

|u|l,ρ′,0,θ′

(t − s)3/4
. (7.32)

The proof of Propositions 7.6, 7.7, and 7.8 can be found in Appendix E.

7.4. The Error Equation

Given the expression (7.1) for e, the system (1.22) is now an equation for e∗ that can be cast in the
following form:

e∗ = F(e∗, t), (7.33)

where

F(e∗, t) = k − {[uNS0 + ε(uE
(1) + ūP

(1) + σ)] · ∇N ∗e∗ + N ∗e∗ · ∇[uNS0+

+ε(uE
(1) + ūP

(1) + σ)] + εN ∗e∗ · ∇N ∗e∗}.
(7.34)
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The forcing term k is given by
k = Ξr + Ψ. (7.35)

In the above expression, Ξr is the regular part of the source term appearing in the equation of the
remainder e, see the system (1.22). The expression for Ξr is in (A.5). The term Ψ derives from the
introduction of h and σ in the decomposition (7.1); the explicit expression of Ψ is given in (A.7). The
following proposition states that the forcing term is bounded.

Proposition 7.9. There exists a constant R0, independent of ε, such that

|k|l,ρ̄,1,θ̄,β̄,T̄ ≤ R0 (7.36)

The key of the proof is to rearrange k in a way such that terms that are O(ε−1) multiply terms that
are O(ε) and terms that have singular derivative with respect to Y multiply terms that go to zero with
Y or t. The details are in the Appendix A.2.

7.4.1. Quasi Contractiveness Hypothesis. In this subsection, we shall prove that the right-hand side of
Eq. (7.33), explicitly defined in (7.34), satisfies the quasi-contractiveness hypothesis of the ACK Theorem.
It is useful to distinguish between the nonlinear and the linear terms present in (7.34).

Concerning the nonlinear term, one needs to pay special attention to the term (N ∗(e∗1 − e∗2))n

∂Y (N ∗e∗2)′: indeed, since γe∗2 �= 0, the | |l,ρ′,0,θ′ norm of ∂Y (N ∗e∗2)′ cannot be bounded by a constant,
due to a term which behaves like ∂Y Ẽ1γP̄∞Ẽ2e

2∗. However, for the properties of Ẽ1, Y ∂Y Ẽ1γP̄∞Ẽ2e
2∗

behaves like Ẽ1γP̄∞Ẽ2e
2∗, while (N ∗(e∗1 − e∗2))n/Y can be estimated in terms of ∂Y (N ∗(e∗1 − e∗2))n.

Therefore, by multiplying and dividing by Y , we move the normal derivative on the term with a more
favorable estimate.

The other nonlinear terms are easily estimated using Propositions 7.6, 7.7, and 7.8, so we obtain the
following result.

Proposition 7.10. Suppose e∗i ∈ Sl.ρ′,1,θ′
for i = 1, 2. Then the following estimate holds:

∣
∣εN ∗e∗1 · ∇N ∗e∗1 − εN ∗e∗2 · ∇N ∗e∗2

∣
∣
l,ρ′,1,θ′ ≤ C

t∫

0

|e∗1 − e∗2|l,ρ′,1,θ′

(t − s)3/4
ds. (7.37)

Concerning the linear terms, since γe∗1 = γe∗2, we can apply the results of proposition 7.7 regarding
the case with zero trace. The linear terms are problematic essentially for the presence of uS and its Y -
derivatives, as well for the presence of the O(ε−1) term ∂yũP . In Appendix F, we show how it is possible
to estimate these terms.

Proposition 7.9, the estimate of the nonlinear term (7.37), and the estimates on the linear terms given
in Appendix F allow us to use the ACK theorem in the functional setting Sl,ρ̄,1,θ̄

β̄,T
. This leads to the

following result:

Proposition 7.11. Assume that u0 ∈ H l,ρ,θ, with γnu0 = 0; then e∗ ∈ Sl,ρ̄,1,θ̄

β̄,T
for some T > 0, ρ̄ < ρ,

θ̄ < θ, β̄ > β, with all those parameters independent of the viscosity.

By proposition 7.5, we therefore have N ∗e∗ ∈ Ll,ρ̄,θ̄

β̄,T
; combining with propositions 7.2 and 7.3, we have

that the overall error e is in Ll,ρ̄,θ̄

β̄,T
, and this concludes the proof of theorem 4.1.

7.5. More General Initial Conditions

The estimates performed for the forcing term in the equation of e∗ heavily relied on the assumption that
the initial condition are purely eulerian, which means that e(t = 0) = uE

(1)(t = 0) = ūP
(1)(t = 0) = ūP (t =

0) = 0. However, the zero viscosity limit holds also for more general initial conditions like

u0 = uE
0 + ūP

0 + ε
(

uE
(1),0 + ūP

(1),0 + e0

)

(7.38)
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with

γvE
(1),0 = −γv̄P

0 , γuP
(1),0 = −γuE

(1),0, γe0 = (0,−γv̄P
(1),0); (7.39)

this kind of initial data allows a zero order incompatibility with no-slip boundary condition, since we are
not assuming that γũP

0 = −γuE
0 . The most challenging variation needed is to prove that the forcing term

is still in Sl,ρ̄,1,θ̄

β̄,T̄
and O(1): we need to regroup some terms carefully in order to show the derivative ∂Y k

has the desired regularity. This is done in appendix A.3

8. Conclusions

In this paper, we have proved the short-time existence of analytic solutions of the Navier–Stokes equations
in the half-space when the initial data are incompatible with the boundary data: the existence time of
the solution we constructed is independent of the viscosity. When the viscosity goes to zero, the Navier–
Stokes solution approaches the Euler solution away from the boundary, and the Prandtl solution in a
boundary layer whose thickness is proportional to the square root of the viscosity ν.

Our method of constructing the Navier–Stokes solution is based on a matched asymptotic expan-
sion: the solution is the superposition of an outer (Euler) solution and an inner (Prandtl) solution, plus
correction terms that are O(ε), ε =

√
ν, see (1.10) or (4.1). The inner Prandtl solution decays to zero

exponentially outside the boundary layer; this gives the convergence of the Navier–Stokes solutions to
the Euler solution in the L2 norm.

The incompatibility between the initial data and the no-slip condition causes the presence of singular
terms. These singular terms are O(1) near the boundary, are given in terms of an error function expressing
the existence of the initial discontinuity, and are proportional to the initial slip, see (1.14). Interestingly,
the incompatibility also causes the appearance of an initial singularity on the whole domain. This sin-
gularity shows up in the first-order correction to the Euler flow, and it is milder than the singularity
appearing in the boundary layer because it is of the

√
t-type, see (1.19), (5.2) and (5.3). The reason for

this non-localized singularity is that the boundary layer initial singularity causes a mildly singular normal
inflow, which needs to be compensated by the first-order correction Euler flow. The ellipticity encoded
in the incompressibility condition instantly propagates the singularity on the whole domain.

The construction of the overall error e that closes the asymptotic procedure, accomplished in Sect. 7,
is the most challenging part of the present paper. The main reasons are the following. First, the system
satisfied by e contains the interactions between a) terms from the boundary layer, rapidly varying in y
and therefore most naturally handled using the rescaled variable Y ; b) terms from the outer flow that one
must handle in an L2

y setting. Second, terms coming from the initial singularity force us to use a function
setting, the Sl,ρ,1,θ

β,T space, that is more singular in time. However, this led to the necessity of very careful
and technical estimates of the Navier–Stokes operator N ∗, which are in Propositions 7.5, 7.6, 7.7, and
7.8. For example, one has to take advantage of the regularizing properties of the Navier–Stokes operator
N ∗, due to the presence of diffusion in the Y -direction. These properties allow trading a Y -derivative
with the appearance of a mild singularity in time, which the ACK Theorem can nevertheless handle.

The central hypothesis we had to impose is analyticity of the initial datum, which, as discussed in
the Introduction, appears to be a natural one, given the instabilities of the Prandtl equations, see, e.g.,
[27,29], and of the outer-inner-flow expansion, see [26,30,31,71,72]. It would be interesting to see whether
imposing analyticity close to the boundary, as in [39–41,43], is enough to control incompatible data. The
vorticity formulation (that one usually employs to prove that analyticity close to the boundary is sufficient
to avoid ill-posedness or instability) should deal with a more singular initial datum, i.e., a vortex sheet
attached at the boundary; see [53] for the study of the interaction of vorticity measures with boundaries.

Another problem we have not addressed here is whether analyticity in the normal direction could be
relaxed, as in [24] where the diffusive regularization stabilizes the Prandtl solution without analyticity
in the normal direction. To show a similar result for the full Navier–Stokes equations would be more
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challenging because the interactions between the boundary layer and the outer Euler terms are much
more difficult to handle.

Finally, we recall that Prandtl equations are known to develop singularity, a phenomenon that is
different from the ill-posedness we discussed in the Introduction, and that some believe to be related to
the break-up of the boundary layer, although this seems to be disproved by the analysis of the complex
singularities developed by the Navier–Stokes equations reported in [14]. Nevertheless, it would be inter-
esting to know whether the rigorous singularity construction, see [73,74], can be repeated with Euler-type
initial data considered in the present paper.
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Appendix A. The Source Terms

Appendix A.1. The Source Term for the Error Equation Eq. (1.22)

The source term Ξ has the following expression:

Ξ = f +
(

g∂yũP , 0
)

−
[

uNS
(0) · ∇ūP

(1) + ūP
(1) · ∇uNS

(0) +

+
(

ūP + εuNS
(1)

)

· ∇uE
(1) + uE

(1) · ∇
(

ūP + εūP
(1)

)

+ εūP
(1) · ∇ūP

(1)

]

+ ε2
[

ΔuE
(1) +

(

∂xxūP
(1), 0

)]

−
(

0,
(

∂t − ε2Δ
)

v̄P
(1)

)

(A.1)

where f is given by:

f = fr + (ε∂2
xuS , 0), (A.2)

f1
r = −ε−1{ũP (∂xuE − ∂xuE

∣
∣
y=0

) + ∂xũP (uE − uE
∣
∣
y=0

) +

+ ∂yũP (vE + y∂xuE
∣
∣
y=0

)} − v̄P ∂yuE + εΔuE + ε∂2
xũR,

f2
r = −[∂tv̄

R + uNS0∂xv̄P + vNS0∂y v̄P + v̄P ∂yvE ] − ε−1ũP ∂xvE +

+ εΔvE + ε2ΔvR + ε2∂2
xṽS .

(A.3)

http://creativecommons.org/licenses/by/4.0/
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Writing down the expression of f2, we used the fact that ∂tv̄
S − ∂2

Y v̄S = 0 to get rid of those singular
terms. We can write g = gR + gS , with

gS = −∂xu0(x, y = 0)

+∞∫

0

dY

+∞∫

Y

e
−Y ′2

4t√
tπ

dY ′ = C1

√
t∂xu0(x, y = 0). (A.4)

In Eq. (A.2), we isolated the most singular term of f; in a similar way, we write

Ξr = Ξ − ε(∂2
xuS , 0), (A.5)

where Ξ is given in (A.1). Notice that f+
(

g∂yũP , 0
)

is the forcing term in the equation of the remainder
R in the decomposition

uNS = uE + ūP + εR (A.6)

The term f is O(1) with respect to ε, while g∂yũP is O(ε−1): therefore, an additional decomposition of
the remainder R is needed to prove the validity of the inviscid limit.

Appendix A.2. Estimates for the Forcing Term of e∗

The source term k in (7.35) is decomposed as k = Ξr + Ψ where

Ψ = −
((

uNS0 + ε(uE
(1) + ūP

(1))
) · ∇(h + σ) +

+ (h + σ) · ∇(uNS0 + ε(uE
(1) + ūP

(1))) + (h + σ) · ∇(h + σ)
)

+

+ ε2∂xx(h + σ) − ε(0, (∂t − ∂Y Y )hn)

= −
{[(

uNS0 + ε(uE
(1) + ūP

(1) + h + σ)
) · ∇(ūP

(1) + h) +

+ (uE
(1) · ∇ūP − (g∂yũP , 0)) + (ūP

(1) + h + σ) · ∇ūP
]

+

+
[

(uE
(1) + ūP

(1) + h) · ∇uE +

+ (ūP + ε(uE
(1) + ūP

(1) + h + σ)) · ∇uE
(1) +

+ (uNS0 + ε(uE
(1) + ūP

(1) + h + σ)) · ∇σ
]}

+

+ fr − (0, (∂t − ε2Δ)ε(v̄P
(1) + hn)) +

+ ε2
[

ΔuE
(1) + ∂xx(uP

(1) + h′, 0) + ∂xxσ
]

.

(A.7)

We want to prove that the forcing term k is in Sl,ρ̄,1,θ̄

β̄,T̄
and that it is O(1) with respect to ε. In our analysis

we shall focus on the most challenging terms. We begin with:

[uNS0 + ε(uE
(1) + ūP

(1) + h + σ))] · ∇(ūP
(1) + h). (A.8)

This term is O(1) because ∂y(ūP
(1)+h), which has an O(1/ε) L2

Y norm, multiplies a term with an O(ε) L∞
Y

norm. When we take a partial derivative with respect to Y , some singular terms appear, ∂Y ũS∂x(ūP
(1) +h)

and [uNS0/ε + (uE
(1) + ūP

(1) + h + σ)]2∂Y Y uS
1 : for the first term, since vE = εY (∂yvE)(λ(y)y) for some

λ(y) ∈ [0, 1], we have that ūS
(1) goes to zero as

√
t in the L∞

Y norm, ūR
(1) and h go to zero linearly with t, and

this is enough to balance the singularity of ∂Y ũS ; for the second term, vE/ε+ v̄S +(uE
(1) + ūP

(1) +h+σ))2
goes to zero linearly with Y , and this allows to balance the singularity of ∂Y Y uS

(1). So, all the singular
terms in [uNS0 + ε(w + w + σ)] · ∇(ūP

(1) + h) are balanced, and its norm is controlled through the usual
arguments involving algebra properties.

We can now pass to estimate the terms:

uE
(1) · ∇ūP − (g∂yũP , 0) (A.9)
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The most problematic term is (vE
(1) − g)∂yũP , which is O(1) since vE

(1) − g goes to zero linearly in y = εY ;
since ∂yuS

(1) is multiplied by εY times a bounded function, the product has finite | · |l,ρ′,0,θ′ norm. When
we take the partial derivative with respect to Y , ∂Y vE

(1) = ε∂yvE
(1), so ∂Y vE

(1)∂yũP is still O(1), and since
∂Y vE

(1) has a regular part which goes to zero linearly with t and a singular part which goes to zero with
t like

√
t, this product has finite | · |l,ρ′,0,θ′ norm. Finally, (vE

(1) − g)∂yY ũP = (∂Y vE
(1))(λy)Y ∂Y Y ũP , with

the regular part of ∂Y vE
(1) going to zero linearly with t, while the singular part goes to zero like

√
t.

We now estimate the terms:

(ūP
(1) + h + σ) · ∇ūP . (A.10)

Both (uP
(1) + h′ + σ1)∂Y ∂xũP and

(

ε∂Y v̄P
(1) + ε∂Y hn + ∂Y σ2

)

∂yū
P = −(∂xuP

(1) + ∂xh′ + ∂xσ1)∂Y ūP are
products of terms whose L∞ norm is O(1) and goes to zero with t at least as

√
t and a function whose

L2
Y behaves like t−1/4; in (v̄P + hn + σ2/ε)∂Y Y ūP , the first factor has an O(1) L∞

Y norm which goes to
zero linearly with t, and this balances the singularity of the second factor.

The term

ε−1ũP (∂xuE − ∂xγuE) (A.11)

is O(1) because ∂xuE−∂xγuE goes to zero linearly with y = εY , and for the same reason ε−1∂Y ũP (∂xuE−
∂xγuE) is O(1) and with finite | · |l,ρ′,0,θ′ norm, while ε−1ũP ∂Y ∂xuE = ũP ∂y∂xuE is of course O(1) and
bounded. The term ε−1∂xũP (uE − γuE) can be treated in a similar way.

Finally, the term
1
ε
∂yũP (vE + y∂xγuE) =

1
ε2

∂Y ũP (vE + y∂xγuE) (A.12)

is O(1) because (vE + y∂xγuE) goes to zero quadratically in y2 = ε2Y 2 due to the incompressibility
condition, and for the same reason 1

ε2 ∂Y Y ũP (vE + y∂xγuE) is O(1) and with finite | · |l,ρ′,0,θ′ norm, while
1
ε∂Y ũP (∂yvE + ∂xγuE) has ∂yvE + ∂xγuE which goes to zero linearly with εY

All the other terms in k are easier to estimate.

Appendix A.3. Forcing Term k with General Initial Conditions

When the initial conditions are not purely Eulerian, we arrange the terms so that their sum is zero at
the boundary. This is done in a different way for the tangential and the normal components.

The sum of ∂Y uS∂xwR
1 , deriving from the derivative of uS∂xwR

1 , and ∂Y uS∂xuR
(1), deriving from the

derivative of uS∂xuR
(1), has finite | · |l−1,ρ′,0,θ′ norm because ∂xwR

1 + ∂xuR
(1) goes to zero linearly in Y (as

well in t, since γwRR
1,0 = −γwRR

1,0 ).
The sum of ∂Y uSε∂xv̄R

(1), deriving from the derivative of uS∂xv̄R
(1), and ∂Y ũS∂xσ2, deriving from the

derivative of ũS∂xσ2, has finite | · |l−1,ρ′,0,θ′ norm because ε∂xv̄R
(1) + ∂xσ2 goes to zero linearly in Y (as

well in t).
The sum of wR

1 ∂x∂Y uS , deriving from the derivative of wR
1 ∂xuS , and uR

(1)∂x∂Y uS , deriving from the
derivative of wRR

1 ∂xuS , has finite | · |l−1,ρ′,0,θ′ norm because wR
1 + uR

(1) goes to zero linearly in Y (and
also in t).

The sum of ∂ywR
2 ∂Y uS = −∂xwR

1 ∂Y uS , deriving from the derivative of (wR
2 − gR)∂yuS , and (∂Y v̄R

(1) +
ε−1∂Y σ2)∂Y uS = −(∂xuR

(1) + ∂xσ1)∂Y uS , deriving from the derivative of (v̄R
(1) + ε−1σ2)∂Y uS , has finite

| · |l−1,ρ′,0,θ′ norm because ∂xwR
1 + ∂xuR

(1) goes to zero linearly in Y (and in t) and ∂xσ1 goes to zero
linearly with t.

The sum of −wR
2 ∂Y Y v̄S , deriving from the derivative of −wRR

2 ∂Y v̄S , and ε−1vNS0 ∂Y Y v̄S , deriving
from the derivative of εvNS0∂Y v̄S , has finite | · |l−1,ρ′,0,θ′ norm: indeed, vNS0 = vE + εv̄R + εv̄S , where
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vE goes to zero linearly with y = εY , v̄S goes to zero like
√

t and −wR
2 + v̄R goes to zero linearly in Y

(and in t).

For all the other terms there is no need to change the argument used in the case u0 = uE
0 .

Appendix B. Proof of Proposition 7.1

The estimate on h′ is a direct consequence of the expression (7.3), and of the following estimates on F
and on its Y -derivatives. We begin with F .

sup
Y ∈Σ(θ)

eμY |F | =

= sup
Y

∣
∣
∣
∣
∣
∣
∣
∣

2√
π

t∫

0

ds

+∞∫

0

eμRe(Y −Y ′)(E−
0 − E+

0 )eμRe(Y ′)

+∞∫

Y ′
2

√
t

e−σ2
dσdY ′

∣
∣
∣
∣
∣
∣
∣
∣

≤ sup
Y

∣
∣
∣
∣
∣
∣

2√
π

t∫

0

ds

+∞∫

0

eμRe(Y −Y ′)(E−
0 − E+

0 )

∣
∣
∣
∣
∣
∣

≤ ct ≤ C

To pass from the first to the second line we have taken into account the argument of Sect. 2.5 about the
complex gaussian and the fact that

+∞∫

Y ′
2

√
s

e−σ2
dσ ≤ e− Y ′2

8s

+∞∫

0

e− σ2
2 dσ,

while, to get the last inequality, we have used that for z ∈ R

eμze−c z2
t ≤ eμze−c z2

2T e−c z2
2t ≤ C(μ, T )e−c z2

2t .

A similar argument shows that

sup
Y ∈Σ(θ)

eμY |∂Y F | ≤ c
√

t.

To estimate ∂Y Y F , we first compute ∂Y . Integrating by parts, we have

∂Y F = −
t∫

0

e− Y 2
4(t−s)

√

π(t − s)
ds +

t∫

0

ds

+∞∫

0

(E−
0 + E+

0 )
e− Y ′2

4s√
πs

dY ′. (B.1)
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We can now estimate ∂Y Y F as follows:

eμRe(Y )|∂Y Y F | =

= eμRe(Y )

∣
∣
∣
∣
∣
∣

t∫

0

Y e− Y 2
4(t−s)

2
√

π(t − s)3/2
ds +

t∫

0

ds

+∞∫

0

∂Y (E−
0 + E+

0 )
e− Y ′2

4s√
πs

dY ′

∣
∣
∣
∣
∣
∣

≤ eμRe(Y )

+∞∫

Y
2

√
t

e−σ2

√
π

dσ + eμRe(Y −Y ′) +

+

t∫

0

ds

+∞∫

0

eμRe(Y −Y ′)∂Y (E−
0 + E+

0 )eμRe(Y ′) e− Y ′2
4s√
πs

dY ′

≤ C + C

t∫

0

ds
√

s(t − s)
≤ C

In the first of the inequalities above, we have used a standard change of variable in the first integral.
To pass from the third line to the fourth, in the first integral, we have used the exponential decay of
the integral, while in the second integral, the fact that the Gaussian in Y ′ dominates the exponential
eμRe(Y ′), that the Gaussian in Y − Y ′ dominates the exponential eμRe(Y −Y ′), and a standard change of
variable.

The above estimate concludes the bound on h′. The estimate on the normal component hn is a direct
consequence of the expression (7.6), and of the above estimates on F . Actually, one could say more:

sup
Y ∈Σ(θ)

|∂j
Y hn|l−3−j,ρ ≤ Cεt

3−j
2 |u00|l−j,ρ. (B.2)

Appendix C. Properties of P̄ ∞Ẽ2

It is easy to see that

|P̄∞v|l,ρ,j,θ ≤ C|v|l,ρ,j,θ. (C.1)

Indeed, the convolution part of P̄∞u can be treated with Young’s inequality for convolutions, with the
L1 norm of ε|ξ′|e−|ξ′|εY χY ≥0 equal to 1; furthermore, taking derivatives with respect to Y, when the
derivatives hit the extreme of integration the exponentials multiplying u1 and u2 are bounded and the
ε|ξ′| outside the integral is balanced by the fact that we are taking fewer derivatives with respect to x;
on the other side, when the derivatives hit the exponentials inside the integral, this simply causes the
appearance of an ε|ξ′|. and

The same argument shows that

| sup
Y

|∂j
Y ∂i

xP̄∞v||0,ρ ≤ C
∑

h+k≤i+j,h≤i

| sup
Y

|∂h
Y ∂k

xv||0,ρ. (C.2)

Moreover, since only the non convolution part of P̄∞′
actually sees all the partial derivatives with respect

to Y , we can write

sup
Y

|∂j
Y ∂i

xP̄∞v|0,ρ ≤ sup
Y

|∂j
Y ∂i

xv1|0,ρ + C
∑

h+k≤i+j,h<j

| sup
Y

|∂h
Y ∂k

xv||0,ρ. (C.3)

The above two estimates imply that, instead of |P̄∞Ẽ2u|l,ρ,2,θ, we can estimate |Ẽ2u|l,ρ,2,θ, and that,
instead of sup

Y
|∂i

Y ∂j
xP̄∞Ẽ2u|0,ρ, we can estimate the right hand side of (C.3).
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It is also useful to notice that

sup
Y ∈Γ(θ′)

|f |0,ρ ≤
∣
∣
∣
∣
∣

sup
Y ∈Γ(θ′)

|f |
∣
∣
∣
∣
∣
0,ρ

(C.4)

that can be proven using Minkowski’s integral inequality.
We now pass to the estimates involving the Ẽ2 operator. Using Minkowski integral inequality to pass

under integral sign, then Young inequality for convolutions in both x and Y , we have that

|∂i
xẼ2f |0,ρ′,θ′(t) ≤ C

t∫

0

ds|∂i
xf |0,ρ′,θ′(s) ≤ C|f |l,ρ,0,θ,β,T (C.5)

∀i = 0, . . . , l, ∀t, ∀ρ′ ≤ ρ − βt, ∀θ′ ≤ θ − βt. If we want to take an extra partial derivative, we can
either use Cauchy estimates or we can let the derivative hit the kernel, the cost being the appearance of
an unbalanced 1

ε
√

t−s

|Ẽ2f |l+1,ρ′,0,θ′ ≤ C

t∫

0

|f |l,ρ(s),0,θ′

ρ(s) − ρ′ ds, (C.6)

|Ẽ2f |l+1,ρ′,0,θ′ ≤ C

ε

t∫

0

|f |l,ρ′,0,θ′√
t − s

ds. (C.7)

When we use an L∞ norm for Y ∈ Γ(θ′), we still use Young’s inequality for convolution, but this time
we use the L2 norm (with respect to Y ) on the kernel, so an additional 1

(t−s)1/4 appears: we have that

| sup
Y ∈Γ(θ′)

|∂i
xẼ2f ||0,ρ ≤ C

t∫

0

||∂i
xf |L2(γ(θ′))|0,ρ

(t − s)1/4
ds = C

t∫

0

||∂i
xf |0,ρ|L2(γ(θ′))

(t − s)1/4
ds

≤ C|f |l,ρ,0,θ,β,T .

(C.8)

The key point here is that the L2 norm in the Y variable and the Hardy norm in the x variable are
interchangeable, essentially because the Hardy norm is an L2 norm on the boundary lines. We also
obtain that

| sup
Y ∈Γ(θ′)

|∂l+1
x Ẽ2f ||l+1,ρ ≤ C

ε

t∫

0

||f |l,ρ|L2(γ(θ′))

(t − s)3/4
ds. (C.9)

The same argument works for the first partial derivative with respect to Y : while we make the derivatives
with respect to x act on f , we can leave the derivative with respect to Y on the kernel, so we obtain

|∂i
x∂Y Ẽ2f |0,ρ′,θ′ ≤ C

t∫

0

ds
|∂i

xf |0,ρ′,θ′(s)√
t − s

≤ C|f |l,ρ,0,θ,β,T (C.10)

∀i = 0, . . . , l − 1, ∀t, ∀ρ′ ≤ ρ − βt, ∀θ′ ≤ θ − βt. If γf = 0, then we can use integration by parts to
move ∂Y = −∂Y ′ on f , so we obtain

|∂i
x∂Y Ẽ2f |0,ρ′,θ′ ≤ C

t∫

0

|∂i
x∂Y f |0,ρ′,θ′(s)ds. (C.11)

If we want to take l derivatives with respect to x, we still have

|∂Y Ẽ2f |l,ρ′,0,θ′ ≤ C

t∫

0

ds
|f |l,ρ′,0,θ′(s)√

t − s
. (C.12)
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Using an L∞ norm on Y , we have that

| sup
Y ∈Γ(θ′)

|∂i
x∂Y Ẽ2||0,ρ′ ≤ C

t∫

0

|f |l,ρ′,0,θ′

(t − s)3/4
ds. (C.13)

i = 0, . . . , l. Before we take a second partial derivative with respect to Y , we first perform an integration
by parts; if γf = 0, then

|∂Y Y Ẽ2f |i,ρ′,0,θ′ ≤ C

∫ t

0

ds
|∂Y f |i,ρ′,0,θ′

(t − s)1/2
(C.14)

i = 0, . . . , l − 1, while if γf �= 0 we have an additional term given by

C

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

0

ds
Y e− Y 2

4(t−s)

2(t − s)3/2
γ∂i

xf̃ds

∣
∣
∣
∣
∣
∣
L2(Γ(θ′))

∣
∣
∣
∣
∣
∣
∣
0,ρ′

≤ C

∣
∣
∣
∣
∣
∣

t∫

0

|∂i
xf̃ |W 1,2(Γ(θ′))

(t − s)3/4
ds

∣
∣
∣
∣
∣
∣
0,ρ′

≤ C

t∫

0

|f |l,ρ′,0,θ′(s)
(t − s)3/4

ds,

(C.15)

where

f̃ =

+∞∫

−∞

e
− (x−x′)2

4ε2(t−s)

√

4π(t − s)
f(s, x)dx′. (C.16)

In the L∞ norm, if γf = 0 then

||∂i
x∂Y Y Ẽ2f |L∞(Γ(θ′))|0,ρ′ ≤ C

t∫

0

|∂Y f |i,ρ′,0,θ′

(t − s)3/4
ds, (C.17)

i = 0, . . . , l − 1; otherwise, since we have an additional term given by

C

t∫

0

Y e− Y 2
4(t−s)

2(t − s)3/2
γ∂i

xf̃ds (C.18)

this term has finite || · |l,ρ|L∞(Σ(θ′)) norm, because

C

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

0

Y e− Y 2
4(t−s)

2(t − s)3/2
γ∂i

xf̃ds

∣
∣
∣
∣
∣
∣
0,ρ′

∣
∣
∣
∣
∣
∣
∣
L∞

Y

≤ C

∣
∣
∣
∣
∣
∣

t∫

0

Y e− Y 2
4(t−s)

2(t − s)3/2
γ|∂i

xf |0,ρ′ds

∣
∣
∣
∣
∣
∣
L∞

Y

≤ C

∣
∣
∣
∣
∣
∣

t∫

0

Y e− Y 2
4(t−s)

2(t − s)3/2
|f |l,ρ′,1,θ′ds

∣
∣
∣
∣
∣
∣
L∞

Y

≤ C|f |l,ρ,1,θ,β,T sup
Y

|
+∞∫

Y
2

√
t

e−σ2
dσ|

≤ C|f |l,ρ,1,θ,β,T .

(C.19)

Notice that, in this case, we are not able to use the || · |L∞(Σ(θ′))|l,ρ norm, because either we have to take
the supremum with respect to s before we take the | · |0,ρ′ norm (in order to take f outside the time

integral), or we have to bring the L∞
Y norm inside the time integral, with sup

Y
|Y e

− Y 2
4(t−s)

2(t−s)3/2 | = C
t−s , which is

not integrable in time.
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Appendix D. Proof of Proposition 7.5

The results of the previous section, and the obvious equality ∂tẼ2u = u+ε2∂xxẼ2u+∂Y Y Ẽ2u, show that
P̄∞Ẽ2u ∈ Ll,ρ,θ

β,T , with

|P̄∞Ẽ2u|l,ρ,θ,β,T ≤ C|u|l,ρ,1,θ,β,T . (D.1)

Now we want to prove that the trace of P̄∞Ẽ2u is regular enough for the application of proposition 3.3
in [35]. We have

γP̄∞
n (Ẽ2u) = ε|ξ′|

+∞∫

0

e−ε|ξ′|Y ′ iξ′

|ξ′| Ẽ2u1dY ′, (D.2)

γP̄∞′
(Ẽ2u) = ε|ξ′|

+∞∫

0

e−ε|ξ′|Y ′ iξ′

|ξ′| Ẽ2u2dY ′. (D.3)

We shall prove that, if u ∈ Sl,ρ,1,θ
β,T , the above two terms are both in K ′l,ρ

β,T . Since the terms in (D.2) and
(D.3) are formally identical, it is enough to prove the statement for the normal component. Using (C.4),
we have that

|∂i
xγP̄∞

n (Ẽ2u)|0,ρ′ ≤ | sup
Y ∈Γ(θ′)

|∂i
xẼ2u1||0,ρ′ , (D.4)

where the last term is bounded by (C.8). We also have that

|∂i
x∂tγP̄∞

n (Ẽ2u)|0,ρ′ = |∂i
xγP̄∞

n ∂t(Ẽ2u)|0,ρ′ ≤
≤ |∂i

xγP̄∞
n u|0,ρ′ + ε2|γP̄∞

n ∂i+2
x Ẽ2u|0,ρ′ + |γP̄∞

n ∂i
x∂Y Y Ẽ2u|0,ρ′ ,

(D.5)

with i = 0, . . . , l − 2. For the first term, we have

|∂i
xγP̄∞

n u|0,ρ′ ≤ C| sup
Y

|∂i
xu1||0,ρ′ ≤ C||∂i

xu1|W 1,2(Γ(θ′))|0,ρ′ =

C||∂i
xu1|0,ρ′ |W 1,2(Γ(θ′)) ≤ C|u1|l,ρ′,θ′ .

(D.6)

For the second term, we use Holder’s inequality and (C.8). For the third term, ∂Y Y Ẽ2u can be decom-
posed in two parts: a non-boundary part, which can be treated with Holder’s inequality (with expo-
nents 1 on the exponential, ∞ on Ẽ2) and with (C.17); and the boundary part, which can be treated
with Holder inequality (this time with exponents 2 and 2) and with (C.15). In this last term, we have
|ε|ξ′|e−ε|ξ′|Y |L2

Y (R+) = C
√

ε|ξ′|, but the additional |ξ′|1/2 can be balanced by the fact that we have

|ξ′|1/2|γ∂i
xu1|0,ρ′ ≤ (1 + |ξ′|)|u1|l−1,ρ′,1,θ ≤ |u1|l,ρ′,1,θ′ . (D.7)

So the terms in (D.2) and (D.3) are in Kl,ρ
β,T , their value is zero for t = 0 and can be expressed as

|ξ′|
+∞∫

0

dy′f(ξ′, y′, t)k(ξ′, y′), with |ξ′|
+∞∫

0

dy′|k(ξ′, y′)| ≤ 1: thus, all the hypothesis of proposition 3.4 in

[35] are satisfied.

Appendix E. Properties of SγP̄ ∞Ẽ2

In this appendix, we shall obtain some estimates on the operator SγP̄∞Ẽ2; combining these estimates
with those obtained in appendix C for P̄∞Ẽ2, we shall obtain the proof of propositions 7.6, 7.7, and 7.8.

More specifically: the bounds in an L2
xY -like setting for derivatives of order up to l provide the proof

of proposition 7.6; the estimates of the derivatives of order l + 1 (i.e. with an extra derivative), in an
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L2
xY -like setting, are used to prove proposition 7.7; finally, the estimates in L∞

Y L2
x are used for proposition

7.8.

For notational simplicity we shall introduce the notation

g = γP̄∞Ẽ2u. (E.1)

The Stokes operator, see [35], can be written explicitly as

Sg =
(−N ′e−εY |ξ′|gn + N ′(1 − Ū)Ẽ1V1g

e−ε|ξ′|Y gn + Ū Ẽ1V1g

)

(E.2)

where N ′ and V1 are defined as

N ′ =
iξ′

|ξ′| , V1g = gn − N ′g′,

Ū is the Ukai operator

Ūf = ε|ξ′|
Y∫

0

e−ε|ξ′|(Y −Y ′)f(ξ′, Y ′)dY ′,

and E1f solves the heat equation on the semi-space with boundary condition f and homogeneous initial
datum; the explicit expression of E1 is

Ẽ1f =

t∫

0

ds
Y

t − s

e− Y 2
4(t−s)

√

4π(t − s)

+∞∫

−∞
f(x′, s)

e
− (x−x′)2

4ε2(t−s)

√

4π(t − s)ε2
dx′.

It is useful introduce the decomposition Sg = SEg + S̄g + S∗g, where

SEg =
(−N ′e−εY |ξ′|gn

e−ε|ξ′|Y gn

)

, S̄g =
(−N ′Ū Ẽ1V1g

Ū Ẽ1V1g

)

,

S∗g =
(

N ′Ẽ1V1g
0

)

.

In what follows we shall estimate SEg, S̄g and S∗g separately. The general ideas to bound these terms
are the following. The estimates of SEg are easy to achieve since every normal derivative is essentially
transformed into ε times a tangential derivative. Concerning S̄g, since all terms appear inside the Ukai
operator Ū , ∂Y operates essentially as ε times a tangential derivative; therefore, the estimates of ∂Y ∂j

xS̄g
are achieved if one is able to estimate ε∂j+1

x S∗g. Concerning the second normal derivative ∂Y Y , one has
that ∂Y Y ∂j

xS̄g has a part that behaves like ε∂Y ∂j+1
x S∗g, and a part that behaves like ε2∂j+2

x S∗g. This
means that the estimates of S̄g follow from the estimates of S∗g.
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Appendix E.1. Proof of Proposition 7.6

We begin with the estimates of SEg
∣
∣
∣∂i

x∂j
Y SEg

∣
∣
∣

2

0,ρ′,θ′

≤ ε2j

∫

Γ(θ′)

dY

∫

dξ′e2ρ|ξ′|

⎡

⎣

+∞∫

0

dY ′ε|ξ′|e−ε|ξ′|(Y +Y ′)|ξ′|i+j |Ẽ2u1|
⎤

⎦

2

≤ ε2j

∫

Γ(θ′)

dY

∫

dξ′e2ρ|ξ′|
+∞∫

0

dY ′ε|ξ′|e−ε|ξ′|(2Y +Y ′)|ξ′|2(i+j)|Ẽ2u1|2

≤ Cε2j

∫

dξ′e2ρ|ξ′|
+∞∫

0

dy′e−ε|ξ′|Y ′ |ξ′|2(i+j)|Ẽ2u1|2dy′

≤ Cε2j |Ẽ2u1|2i+j,ρ′,0,θ′ .

(E.3)

In the second inequality we have used Cauchy-Schwarz inequality; in the third inequality we have inte-
grated in Y , and in the last inequality we have used |e−ε|ξ′|Y ′ | ≤ 1.

Now we pass to the estimates of S∗g. First, we consider the case when one takes the tangential
derivatives ∂i

x, with i ≤ l:

|∂i
xN ′Ẽ1V1g|0,ρ′,θ′ ≤

C

t∫

0

ds
|γP̄∞Ẽ2u|i,ρ′

(t − s)3/4
≤ C

t∫

0

ds

(t − s)3/4

s∫

0

|u(·, ·, s′)|i,ρ′,0,θ′

(s − s′)1/4
ds′ =

C

t∫

0

|u(·, ·, s′)|i,ρ′,0,θ′ds′
t∫

s′

ds

(t − s)3/4(s − s′)1/4
≤ C

t∫

0

|u(·, ·, s′)|i,ρ′,0,θ′ds′,

(E.4)

where we used the fact that
t∫

s′

ds

(t − s)3/4(s − s′)1/4
=

t−s′
∫

0

ds′′

(t − s′ − s′′)3/4(s′′)1/4
=

1∫

0

dτ

(1 − τ)3/4τ1/4
< C.

Second, one has to estimate the normal derivatives of S∗g; define

f = N ′V1γP̄∞Ẽ2u. (E.5)

Some lengthy but straightforward calculations lead to write

∂Y Ẽ1f =

t∫

0

ds
e− y2

4ν(t−s)

√

πν(t − s)

∫

Rd−1

dx′′ e− |x−x′|2
4ν(t−s)

(4πν(t − s))(d−1)/2
(ν∂xxf − ∂tf) =

= D̃1(ε2∂xxf − ∂tf).

(E.6)

In the functional setting of Proposition 7.6, we are not allowed to take a time derivative: however, we
can use the properties of the operator Ẽ2 to express the time derivative as a function of the normal and
tangential derivatives. In fact

∂tf = N ′V1γP̄∞∂tẼ2u, (E.7)

with

γP̄∞∂tẼ2u = γP̄∞u + γP̄∞ε2∂xxẼ2u + γP̄∞∂Y Y Ẽ2u = h1 + h2 + h3 (E.8)
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and

ε2∂xxf = N ′V1ε
2∂xxγP̄∞Ẽ2u, (E.9)

with

ε2γ∂xxP̄∞Ẽ2u = h2. (E.10)

Although the contribution of h2 is canceled, it is still useful to perform an estimate for this term, since
it is used in the estimate of h3.
As regards h1, we have that, for i ≤ l − 1

|| sup Y |∂i
xu|||ρ′ ≤ C||u||l,ρ′,1,θ′ , (E.11)

with the trace which satisfies a similar bound. Therefore

|D̃1N
′γu1|i,ρ′,0,θ′ ≤ C

t∫

0

|u|l,ρ′,0,θ′

(t − s)1/4
ds. (E.12)

In order to bound h2 = γP̄∞ε2∂xxẼ2u, we let one of the tangential derivatives of ∂xxẼ2u hit the
kernel Ẽ2 and one hit u, so that, for i ≤ l − 1

|D̃1V1h2|i,ρ′,0,θ′ ≤ Cε

t∫

0

ds

(t − s)1/4

s∫

0

|u|i+1,ρ′,0,θ′(s′)
(s − s′)3/4

ds′ =

Cε

t∫

0

|u|l,ρ′,0,θ′(s′)ds′.

(E.13)

We first estimate h3 assuming that γu = 0: under this assumption, in ∂Y Y Ẽ2u, we can move one of
the normal derivatives on u, without boundary terms. Therefore, for i ≤ l − 1 we have, in the L2

Y setting
of the proposition 7.6

|D̃1V1h3|i,ρ′,0,θ′ ≤ C

t∫

0

ds

(t − s)1/4

s∫

0

∂Y u|(s′)i,ρ′,0,θ′

(s − s′)3/4
|ds ≤ C

t∫

0

|u|l,ρ′,1,θ′(s)ds, (E.14)

If γu �= 0, an additional term appears in the expression of P̄∞∂Y Y Ẽ2u, which roughly behaves like Ẽ1γu1;
the loss of half derivative due to the trace operator is not a problem for the tangential derivatives of order
up to l − 1, so inequality (E.14) still holds. This concludes the estimates of the normal derivative of S̄.

As we already said at the beginning of this section, the estimates of S̄g can be derived from the ones
of S∗g; therefore, the proof of the proposition is complete.

Appendix E.2. Proof of Proposition 7.7

The estimate (E.3) obtained for SEg still holds for derivatives of order l + 1; the extra derivative can be
treated either using the Cauchy estimate or giving a tangential derivative to the kernel of Ẽ2.

The same applies for ∂l+1
x S∗g: the only difference is that we change the order of integration in time.

When we use the Cauchy estimate, this is necessary to eliminate the mild singularity in time deriving
from the L2

Y norm of the operator Ẽ1. In contrast, when we let one tangential derivative hit the kernel
of Ẽ2, changing the order of integration allows us to reduce the singularity in time. We have

|N ′Ẽ1V1g|l+1,ρ′,0,θ′ ≤ C

ε

t∫

0

|u|l,ρ′,0,θ′ds′
t∫

s′

ds

(t − s)3/4(s − s′)3/4
, (E.15)
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with
t∫

s′

ds

(t − s)3/4(s − s′)3/4
=

t−s′
∫

0

ds′′

(t − s − s′′)3/4(s − s′)3/4

=
1

(t − s′)1/2

1∫

0

dτ

(1 − τ)3/4τ3/4
,

(E.16)

so that

|N ′Ẽ1V1g|l+1,ρ′,0,θ′ ≤ C

ε

t∫

0

|u|l,ρ′,0,θ′(s′)
(t − s′)1/2

ds′. (E.17)

We pass to estimate ∂Y S ′g. First, we consider the term h1, introduced in (E.8), under the assumption
that γu = 0: in this case,

|h1| ≤ C
√

ε|ξ′||u|L2
Y
. (E.18)

Using

(ε|ξ′|)1/2e−ε2(t−s)|ξ′|2 ≤ C

(t − s)1/4
(E.19)

we have that

|D̃1V1h1|l,ρ′,0,θ′ ≤ C

t∫

0

|u|l,ρ′,0,θ′

(t − s)1/2
ds. (E.20)

If γu �= 0, then V1h1 contains N ′γu1 as additional term, with

|γu1| ≤ |u1|1/2

L2
Y

|∂Y u1|1/2

L2
Y

. (E.21)

We use the interpolation inequality (E.21), together with the Cauchy estimates, to obtain

|D̃1N
′γu1|l,ρ′,0,θ′ ≤ C

t∫

0

|u|1/2
l,ρ′,0,θ′ |u|1/2

l,ρ(s),1,θ′

(t − s)1/4(ρ(s) − ρ′)1/2
ds

≤ C

t∫

0

|u|l,ρ′,0,θ′ |
(t − s)1/2

+
|u|l,ρ(s),1,θ′

(ρ(s) − ρ′)
ds.

(E.22)

This concludes the estimates of h1.
The bounds of h2 = γP̄∞ε2∂xxẼ2u are obtained moving one tangential derivative on the kernel of D1

and one tangential derivative on the kernel of Ẽ2, so

|D̃1V1h2|l,ρ′,0,θ′ ≤ C

t∫

0

ds

(t − s)3/4

s∫

0

|u|l,ρ′,0,θ′(s′)
(s − s′)3/4

ds′ = C

t∫

0

|u|l,ρ′,0,θ′(s′)
(t − s′)1/2

ds′. (E.23)

We begin the estimates of h3, starting from the case γu = 0: in this case, γ∂Y Y Ẽ2u = 0, so only the
integral part of γP̄∞ is nonzero, when we apply this operator to ∂Y Y Ẽ2u. We can integrate by parts
two times, moving the normal derivatives on the kernel of P̄∞: the result is a term which behaves like
ε2∂xxP̄∞Ẽ2u (and therefore can be bounded exactly like h2) plus an additional term, given by

Ciξ′ε

s∫

0

ds′e−ε2(s−s′)ξ′2
+∞∫

0

Y ′

(s − s′)3/2
e

− Y ′2
4(s−s′) (u2, u1)(ξ′, Y, s)dY ′. (E.24)
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This term is inside D1: we can move iξ′ on the kernel of D1, so that the singularities in time are better
distributed. Therefore, we obtain

|D̃1V1h3|l,ρ′,0,θ′ ≤ C

t∫

0

|u|l,ρ′,0,θ′(s′)
(t − s′)1/2

ds′. (E.25)

If γu �= 0, an additional term appears in the expression of P̄∞∂Y Y Ẽ2u, which roughly behaves like
Ẽ1γu1; as for h1, in this case we use the interpolation inequality (E.21), the Cauchy estimate and Young’s
inequality, obtaining

|D̃1V1h3|l,ρ′,0,θ′ ≤ C

t∫

0

|u|l,ρ′,0,θ′

(t − s′)1/2
+

|u|l,ρ(s′),1,θ′(s′)
ρ(s′) − ρ′ ds′. (E.26)

Finally, when we take one more derivative with respect to Y , we obtain, for a generic f with f(t =
0) = 0, that

∂Y Y Ẽ1f =
t∫

0

Y e− Y 2
4(t−s)

4
√

π(t − s)3/2
ds

+∞∫

−∞

(

(∂tf)(x′, s) − ε2(∂xxf)(x′, s)
) e

− (x−x′)2
4ε2(t−s)

√

4πε2(t − s)
dx′

= Ẽ1(∂tf − ε2∂xxf).

(E.27)

Therefore, we have to evaluate Ẽ1γV1h1 and Ẽ1γV1h3: this time, since two normal derivatives have been
taken, only up to l − 1 tangential derivatives can be taken. Therefore, the loss of half derivative due to
the trace operator is not a problem, and the case γu �= 0 does not need to be treated separately. For h1,
we have

|Ẽ1V1h1|i,ρ′,0,θ′ ≤ C

t∫

0

|u|i+i,ρ′,0,θ′

(t − s)3/4
ds. (E.28)

For Ẽ1γV1h3, a similar estimate holds: therefore, the estimates of S∗ are complete.
The estimates of S̄g can be derived from the ones of S∗g.

Appendix E.3. Proof of Proposition 7.8

In the L∞
Y L2

x-like setting of proposition 7.8, the estimates differ from the ones of 7.7 by an additional
(t− s)−1/4, which implies a stronger (but still integrable) singularity in time. Indeed, for the estimates of
S∗g (and therefore of S̄g), we pass the L∞

Y norm to the kernel of E1, which gives an extra term (t−s)−1/4

as compared to its L2
Y norm. For the estimates of SEg, instead, we pass to e−ε|ξ′|Y the L∞

Y norm, which
is 1, while its L2

Y norm is C(ε|ξ′|)−1/2: moving the additional (ε|ξ′|)1/2 on the kernel of Ẽ2, we can use
the bound given by Eq. (E.19), and an additional (t − s)−1/4 appears.
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Appendix F. Estimate of the Linear Terms in (7.34)

In [uNS0 + ε(w + w + σ)] · ∇N ∗e∗ the most problematic term is uS∂xN ∗e∗: using propositions 7.6 and
7.7, we have that

|uS∂x N ∗e∗|l,ρ′,0,θ′ ≤ C

t∫

0

|e∗|l,ρ(s),0,θ

ρ(s) − ρ′ ds, (F.1)

|∂Y uS∂xN ∗e∗|l−1,ρ′,0,θ′ ≤ C√
t

t∫

0

|e∗|l,ρ′,0,θds, (F.2)

|uS∂Y ∂xN ∗e∗|l−1,ρ′,0,θ′ ≤ C

t∫

0

|e∗|l,ρ′,1,θ

(t − s)1/2
ds. (F.3)

In N ∗e∗ · ∇[uNS0 + ε(σ + w + σ)], the most problematic term is 1
ε (N ∗e∗)2∂Y ũP (the problem with ũR

is to prove that the term is O(1)). Since N ∗e∗ is divergence free and zero at the boundary, we have

(N ∗e∗)2 = −ε

Y∫

0

∂x (N ∗e∗)1 dY ′, (F.4)

so
∣
∣
∣
∣

1
ε
(N ∗e∗)2∂Y ũP

∣
∣
∣
∣
l,ρ′,0,θ′

≤ C

∣
∣
∣
∣
∣
∣

1
Y

Y∫

0

∂x (N ∗e∗)1 dY ′

∣
∣
∣
∣
∣
∣
l,ρ′,0,θ′

sup
Y

∣
∣Y ∂Y ũP

∣
∣
l,ρ′ ≤

C |∂x (N ∗e∗)1|l,ρ′,0,θ′ ≤ C

t∫

0

|e∗|l,ρ(s),0,θ′

ρ(s) − ρ′ ds.

(F.5)

In the first inequality we used the algebra property 2.1, in the second inequality we used the boundedness
of sup

Y

∣
∣Y ∂Y ũP

∣
∣
l,ρ′ (both for the regular and for the singular part) and the fact that the average operator

is bounded from L2 to L2 (is bounded by the maximal function, so its trivial), and in the last inequality
we used proposition 7.8. With a similar argument we have that

∣
∣
∣
∣

1
ε
(N ∗e∗)2∂Y Y ũP

∣
∣
∣
∣
l−1,ρ′,0,θ′

≤ C

(

1 +
1

t1/2

) t∫

0

|e∗|l,ρ′,0,θ′ds (F.6)

and
∣
∣
∣
∣

1
ε
∂Y (N ∗e∗)2∂Y ũP

∣
∣
∣
∣
l−1,ρ′,0,θ′

=
∣
∣∂x(N ∗e∗)1∂Y ũP

∣
∣
l−1,ρ′,0,θ′ ≤

C

(

1 +
1

t1/2

) t∫

0

|e∗|l,ρ′,0,θ′ds

. (F.7)
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