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Abstract: Condition monitoring of wind turbines is progressively increasing to maintain the continu-
ity of clean energy supply to power grids. This issue is of great importance since it prevents wind
turbines from failing and overheating, as most wind turbines with doubly fed induction generators
(DFIG) are overheated due to faults in generator bearings. Bearing fault detection has become a main
topic targeting the optimum operation, unscheduled downtime, and maintenance cost of turbine
generators. Wind turbines are equipped with condition monitoring devices. However, effective
and reliable fault detection still faces significant difficulties. As the majority of health monitoring
techniques are primarily focused on a single operating condition, they are unable to effectively
determine the health condition of turbines, which results in unwanted downtimes. New and reliable
strategies for data analysis were incorporated into this research, given the large amount and variety
of data. The development of a new model of the temperature of the DFIG bearing versus wind
speed to identify false alarms is the key innovation of this work. This research aims to analyze the
parameters for condition monitoring of DFIG bearings using SCADA data for k-means clustering
training. The variables of k are obtained by the elbow method that revealed three classes of k (k = 0, 1,
and 2). Box plot visualization is used to quantify data points. The average rotation speed and average
temperature measurement of the DFIG bearings are found to be primary indicators to characterize
normal or irregular operating conditions. In order to evaluate the performance of the clustering
model, an analysis of the assessment indices is also executed. The ultimate goal of the study is to be
able to use SCADA-recorded data to provide advance warning of failures or performance issues.

Keywords: bearings; condition monitoring; DFIG; K means; SCADA data; wind turbine

1. Introduction

In recent years, renewable energy sources have attracted considerable interest on a
global scale, becoming a viable option due to technological development, cost reduction,
and increasing demand, especially in developing countries [1,2]. Wind energy conversion
is one of the most promising renewable energy technologies that has developed rapidly
in recent years and provides a substantial share of electricity in an increasing number
of countries.

The cumulative global installed capacity of wind energy is about 93.6 GW of the
additional wind generating capacity installed globally in 2021, as shown in Figure 1.
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Figure 1. Global wind energy installation.

China, the U.S., Brazil, Vietnam, and the United Kingdom were the top five global
markets for wind power installations in 2021 [3].

According to the report in [4], during 2021–2022, twelve wind power projects in
Pakistan, with a cumulative installed capacity of 610 MW, achieved and started the supply
of electricity to the national grid. As evidenced in Figure 2, currently, Pakistan has around
4% share of wind energy among other resources [5] and has a deployment of renewable
energy throughout the land, particularly in two provinces, Sindh and Baluchistan [6], and
aims to achieve 30% of its electricity generation from renewables by 2030 [7].
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The generator of a wind turbine is one of the most failure-prone assemblies due to the
variable loads [8]. Continuous operations in all environmental conditions contribute to
failures of wind turbine components, assemblies, and systems. Bearing failures account for
more than 40% of the overall wind turbine generator failures leading to unexpected energy
losses [9]. In Figure 3, a fire in a wind turbine is represented. According to [10], the turbine
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may have failed because of the generator’s high bearing temperature due to a shutdown
that led the generator to set on fire. The high temperature, combined with the leakage of
oil from the rotating manifold nearby, probably triggered the fire.
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Hence, a solution for effective condition monitoring of generator bearings and early
identification of failure symptoms is needed. From actual maintenance practices of wind
turbine generators, it was found that there is a high nonlinear relationship between the
turbine fault and relevant factors [11]. Therefore, without proper monitoring, replacement
of the damaged bearing will not solve the problem and will cause damage again. In order
to avert such failures, it is critical to address the main causes of these failures in order
to prevent them and create possible solutions to decrease the occurrence of damage in
components. The development of condition monitoring techniques for rotating machinery,
particularly the bearings, has received much attention during the past few decades. Since
bearing failures results in prolonged downtime and wind turbine systems operate in
adverse conditions with widely variable speeds, loads, and temperatures, they appear to
be a solid option for model-based condition monitoring system [12,13]. However, cutting
tools are the final executive component in the machining process and come into close
contact with the product. This causes them to wear out quickly, which in turn impacts
the workpiece’s surface quality. According to [14], tool wear and damage are the primary
factors causing the failure of the machining process. The resulting downtime accounts for
7–20% of the total downtime of the machining process, and the cost of tool and tool change
accounts for 3–12% of the total machining cost.

A lack of information precisely describing primary bearing breakdowns in terms of
frequency and damage types, as well as the most common bearing modeling and analysis
setups, divided into dynamic and quasi-static categories, are presented in [15]. The study
examines wind turbines’ dynamic reliability under various control strategies and external
conditions. The survival signature and fault tree analysis (FTA) were used to examine
the system reliability level of wind turbine drive trains under various wind conditions in
Ref. [16]. To maintain maximum power output, a doubly fed induction generator (DFIG)
was chosen since it includes more than 50% of all major onshore wind power plants world-
wide [17]. Doubly fed wind turbines are vulnerable to various types of generator losses;
these failures lead to excess vibrations that might damage other components, such as bear-
ing failures, which produce non-stationary vibrations [18,19]. Because the consequences of
a failure are catastrophic for both business and customers, it is crucial to prevent the error
more precisely [18]. Due to the longtime operation of the wind turbine in poor conditions,
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such as heavy loads, corrosion or failure in gearboxes can occur, such as misalignment,
looseness, and contamination of the bearings [20]. Contaminants include dust in the air,
dirt in the bearing, and any abrasive substance that gets into the bearing. Studies conducted
on the reliability of wind turbines show that the drivetrain system accounts for about 20%
of overall problems and accounts for nearly 30% of wind turbine outages when using
DFIG [21].

With the use of data from the supervisory control and data acquisition system and the
idea of energy saving, this study enhances a condition monitoring method for wind turbine
main bearings. The objective of the current research was to employ model parameters
as health indicators. The method was applied to find main bearing degradations over a
two-year period in a wind farm with more than 100 WTGs. The method was evaluated
because of the history of bearing failures that were known [22]. The two different types
of datasets were used to test the newly created trigonometric entropy measure based
on variational mode decomposition (VMD). One comes from the Centre for Intelligent
Maintenance Systems, and the other from the XJTU-SY Bearing Databases. The suggested
method has the ability to raise the alert about the beginnings of faults relatively at an early
stage [23].

One of the research studies suggests an artificial neural network (ANN)-based defect
detection approach for wind turbine main bearings based on current SCADA data. In this
study, SCADA data from the Nord-Trndelag Elektrisitetsverk-owned Hundhammerfjellet
wind farm were used. Turbine rear bearing temperature, a main shaft rear bearing char-
acteristic in the SCDA data, provides an indication of how hot the bearings are operating
and hence provides the opportunity to identify rear bearing overheating [24]. Another
study was developed in such a way that 10 min average operating (SCADA) data for a
group of 14 wind turbines are available, and a subset of 10 of those 14 turbines undergo
monthly grease checks. The suggested method is completely hybrid and intended to
combine data-driven and physics-informed layers in deep neural networks. The bearing
damage of a wind turbine using recurrent neural networks was studied. It was specifically
suggested that grease damage increments through a multi-layer perceptron and bearing
fatigue damage through equations frequently employed in bearing reliability design [25].
Therefore, this research focuses on analyzing these faulty bearings in DFIG. The condi-
tioning monitoring-based system was suggested to detect faulty bearings, and a machine
learning approach was used for the detection of intensity/type of fault in DFIG. In this
paper, system identification methods were applied to SCADA data to develop a condition
monitoring model, which can be used to predict the generator’s indices that affect the
bearings in terms of wind speed, generator temperature, generator rotation speed, etc.
The SCADA data were analyzed to assess wind turbine operating conditions using the
developed model that effectively identifies potential failures or breakdowns.

The need for condition monitoring of wind turbines is growing as the size and location
of modern wind turbines make their technical availability essential. Due to the limited
accessibility of some remote-controlled wind farms on mountain and offshore wind farms,
unexpected failures, especially of large and important components, might result in unneces-
sary delay and cost. Therefore, the goal of our research was to obtain real-time SCADA data
for acquisition while minimizing downtime through condition monitoring. Many methods
employing these data for early failure detection have recently been developed since CM
using SCADA data is a potentially low-cost solution requiring no additional sensors. From
all the parameters, it was found that the prediction of the temperature variation trend is
crucial in order to provide an overheating warning and detect an optimization problem.
In order to solve the optimization problem of the proposed model, the corresponding
objective function was derived in a more tractable form, and an alternative update algo-
rithm is presented, which is based on the identification of new concepts in unlabeled data.
The method is used to achieve improved predictive performance in terms of improved
predictive accuracy.
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The rest of the paper is structured as follows: Section 2 presents the research method-
ology describing the data-based approach and reporting the research flow of the study.
Section 3 provides the results and analysis of the study. Techniques and methods (K-means
clustering approach, elbow method, boxplot visualization) are discussed and applied to
the SCADA data where faults are known to have occurred, and conclusions and future
recommendations are drawn.

2. Methodology

Wind turbine condition monitoring can be used to improve safety or to lower the cost
of the existing level of safety, anticipating or detecting emerging major faults [26]. The
study proposes a methodology based on wind turbine condition monitoring that, through
a supervisory, control, and data acquisition SCADA system, records data from an inertial
measurement unit (IMU) sensor mounted on the DFIG’s bearings that detects system
signals. The SCADA system provides historical signals, fault information, environmental
condition parameters, and operational factors related to the DFIGs and their equipment in
wind turbines. The collected data are then used by proposing a new method of bearing
failure detection in the machines.

The method used in this study to compare the bearing status of the DFIG in the
SCADA system is characterized by its feasibility and cost-effectiveness, and its flowchart is
shown in Figure 4. Table 1 lists the key parameters of interest.
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Unlike supervised learning, where human-labeled data are necessary, unsupervised
learning uses unlabeled data and provides an insight into the probable classes present
in the dataset, which is then used to broadly classify the data. The main benefit of unsu-
pervised learning lies in the fact that it does not require any human-labeled data, which
saves much manual effort that is otherwise used to label every data point in a particular
dataset individually.
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Table 1. Assessment indices of DFIG bearings.

S.no. SCADA Parameters Unit

1 Average Active Power (kW)

2 Average Wind Speed (m/s)

3 Average Reactive Power (kVar)

4 Wind Turbine Energy yield (kWh)

5 Average Ambient Temp (◦C)

6 Average Gen Rotation Speed (rpm)

7 Average Maximum generator temp (◦C)

Advanced condition monitoring systems are used by wind turbines, which are com-
plex systems, to assess their state of health. Due to its high failure rate and downtime, the
generator is one of the most important components. In wind farms, SCADA are used for
real-time condition monitoring and control. New and reliable strategies for data analysis
are needed because of the large amount and variety of the data. The development of a new
model of the temperature of the DFIG bearing versus wind speed to identify false alarms
was the key innovation of this work. A box plot was utilized to depict the distribution of
the data, and a data partitioning strategy was used.

The model for determining failures in DFIG bearings is based on machine learning
(ML) techniques for classification and parameter analysis for early diagnosis and predictive
maintenance. The K-means clustering technique is used for the evaluation and condition
analysis of DFIG bearings, and the elbow method is used to determine the K value for
the classes in accordance with the clustering technique. Reducing the size and complexity
of the dataset is the primary goal of the clustering technique. Compared to the original
data, clustered groups of points occupy much less storage space and are easier to control,
which is why this method is proposed. Once the clusters were determined, scatterplot and
boxplot visualization was used for the statistical visualization of the predicted data. In
the last step, validation of the predictive performance of the results was analyzed with the
latest data obtained.

K-means Clustering
The unsupervised learning approach known as K-means clustering divides the unla-

beled dataset into many clusters. The K-means algorithm was employed for the condition
assessment of the DFIG bearings. The K-means clustering technique was applied to design
the prediction model for the assessment indices that are based on DFIG bearings, such as
temperature, rotation speed, and wind speed. The K-means model was used to identify the
clusters in the available dataset. Here, the value of K (1, 2, 3, 4, 5) was determined.

The model is trained through the machine learning algorithm using python program-
ming in Jupyter in Figure 5.

The steps in the K-means clustering algorithm are the following:
Let X = {x1, x2, x3, . . . , xn} be the set of data points and V = {v1, v2, . . . , vn} be the set

of centers:

(1) Select “c” cluster centers;
(2) Determine the Euclidean distance between the cluster centers and each data point;
(3) Assign the cluster with the shortest distance from all the other cluster centers;
(4) Recalculate the new cluster center using the following:

vi = (1/ci) sum (j = 1, ci) (xi)

where “ci” denotes the no. of data points in the ith cluster;
(5) Measure again the separation between each data point and the newly discovered

cluster centers;
(6) Stop if no data point was moved; otherwise, go back to step (3).
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For the progression, keep changing the value until the optimal clusters can be achieved.

J(V) =
c

∑
i=1

ci

∑
j=1

(
‖xi − vj‖
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The Euclidean distance between xi and vj is given as “‖xi − vj‖”.
Prediction errors in the SCADA data of the model follow a normal distribution. Thus,

it can be calculated based on the probability density function of normal distribution.
Elbow method for optimizing K value:
The elbow method is an effective method for cluster optimization and is used for

clustering analysis since it is simple to implement and yields useful results. The elbow
technique is a visual way to verify the consistency of the optimal number of clusters by
analyzing the difference in the sum of square errors (SSE) of each cluster. The most severe
difference creating the angle of the elbow indicates the optimum cluster number [27].

In this method, the optimal value of k using the elbow method is found by calculating
the sum of square error (SSE) to evaluate K-means clustering using the elbow criterion.
The idea of the elbow criteria approach is performed to select the k (number of clusters) at
which the SSE decreases significantly. The elbow rule’s fundamental concept is to employ
a square of the distance between each cluster’s centroid and sample points to generate a
range of K values. As a performance measure, the sum of squared errors (SSE) is employed.
SSE is calculated by iterating over the K-value. Smaller numbers represent more converging
clusters. SSE displays a sharp reduction when the number of clusters is adjusted to be close
to the number of actual clusters. When there are more clusters than there are actual clusters,
SSE still decreases, but it does so more slowly. It is used to choose the best clusters.

Data Visualization
Large amounts of numerical data can be displayed using graphs, which can be used

to demonstrate the relationships between the numerical values of various variables and to
derive quantitative relationships between them. One of the most powerful and popular
methods for visual data analysis is the scatter plot [28]. Different data points are positioned
between an x- and y-axis to display these data. Each of these data points appears to be
“scattered” across the graph. By using the generalized scatter plot technique, big datasets
can be completely represented in the figure without any overlap. The primary concept is
to provide the analyst with the flexibility to adjust the quantity of overlap and distortion
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to produce the optimal view. The model offers the option to smoothly zoom between
the conventional and generalized scatter plots to enable effective usage. An optimization
function considers overlap and visualization distortion.

Performance Analysis System
SCADA was utilized to create the system for analyzing model performance. Once

a csv file is loaded with the dataset comprising the measurements, the model builds its
predictions. Then, predictions are made using the seven parameters listed in Table 1. In
the same sequence as the data received from the input file, the predictions are made and
written to a csv file. By comparing the predicted label with the actual label, the generated
csv files can be examined to determine how well the model performed. The software is used
to analyze and visualize the performance of the model implemented in Jupyter Notebook
using Python programming.

3. Results and Analysis
3.1. Case Study

In this study, SCADA data were collected and analyzed from an onshore wind farm
with 66 wind turbines with DFIG generators with rated power of 1.5 MW each, located in
the Jhimpir wind corridor. The data were collected in the form of excel sheets at 10 min
intervals at a bearing speed of 1800 rpm. The database covers one month of operation, from
January 2021 to February 2021. Up to 300 datasets were recorded for analysis and used to
train the model.

3.2. Data Visualization

After data pre-processing, visualization of the data according to its correlation with
all filtered parameters can be observed in Figure 5. Once the visualization of the data is
acquired, the condition changes in the DFIG parameters summarized in Table 1 can be
easily determined.

In Figure 6, a good correlation is observed between the average generator rotation
speed and the average generator maximum temperature. Therefore, with the change in
speed, the temperature also increases.

In order to analyze the trend and cycles, studies of the parameters with regard to
time were devised, as shown in Figure 7. Based on the number of notices and downtime
hours, Figure 6 displays the monthly report of the evaluation indices for a certain DFIG.
One-month duration is displayed on the x-axis, and the left y-axis displays the ranges
and downtime hours. The two temperature parameters exhibit nonlinear and progressive
variation tendencies, and the wind speed varies significantly.

It is evident from the figure that as the wind speed increases, the generator’s rotational
speed and power generation also increase accordingly. The average temperature of the
turbine also increases due to an increase in turbine speed. It can also be observed that the
effect of ambient temperature on generator temperature is rather low compared to the effect
of rotation speed. The turbine starts generation at 5 m/s and tries to maintain its speed at
17 m/s for maximum power generation. As wind speed reduces to less than 5 m/s, the
turbine cannot maintain generation and reduces the generator speed to zero, as can be seen
from the figure.

3.3. K-Means Clustering with Elbow Method

The K-means algorithm partitions the collected data into k clusters, in which each
point belongs to the cluster with the smallest distance. K determines the default clusters
to be generated during the process, with K = 2 creating two clusters and K = 3 creating
three clusters. This allows for the analysis of a close connection between generator rotation
speed and generator temperature. The technique is applied by using the elbow method
algorithm, which provides a quick and intuitive response.
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In the elbow graph in Figure 8, it is seen that there is a sharp decrease in the SSE until
the third cluster. Therefore, the optimal value of k = 3 is obtained.
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Figure 8. Determination of the best cluster using the elbow method: sum of squared errors (SSE)
versus K values.

The centroid of a cluster and each individual observation allocated to that cluster are
separated by the total within-cluster variation. The following centroids are chosen using
the original max–min criterion, which involves picking the point that is farthest from its
nearest centroid. When the cluster sizes are seriously out of balance, the max–min approach
is extremely helpful in preventing the worst-case behavior of the random centroids [29].

The clusters are more clearly defined and confined the closer together these distances
are by adjusting the k-value to 3 and observing the clusters again with respect to all
parameters. The grouping of data points does not give a good correlation between all
parameters except the average generator temperature and the average generator rotation
speed, which are clearly grouped in Figure 9. However, a linear relationship (orange line)
can be observed between the temperature and the rotation speed of the DFIG bearings.

The red dots showing the mean of each cluster’s points, orange line shows the linearity
and clusters are referred to as classes K = 0, 1, and 2, (3 colors = 3 clusters or k = 3) in
Figure 10.

3.4. Box Plot Visualization

The relationship function between the assessment indices and their influencing factors
was established using a boxplot. The condition assessment index of DFIG bearings was
generated using a boxplot representation of k-means clustering algorithms. The boxplot
visualization of the k-means cluster analysis groups individuals as average maximum
generator temperature (◦C) and average gen rotation speed (rpm).

The partition of units in clusters is:
____ Cluster 1: 0, for low temperature, low speed;
____ Cluster 2: 1, for medium temperature, moderate speed;
____ Cluster 3: 2, for severe temperature, high speed;
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In Figure 11, the relationship between rotation speed and temperature is analyzed. As
the rotation increases, the temperature also increases. Therefore, three classes are extracted
after the clustering method.
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3.5. Validation of Results

Validation of the predictive performance of the results with the latest data was ob-
tained. After processing the model again for getting qualitative performance, SCADA
operational data were recorded continuously at 10 min intervals. This can take the form
of the average, minimum, maximum, or standard deviation of live values recorded by
the controller in the previous 10 min period. Signals such as the turbine power output,
wind speed, temperatures of various components, electrical signals, and environmental
conditions such as anemometer-measured wind speed and ambient temperature were
recorded. The flow chart of validation is shown in Figure 12.
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The comparison of average generator rotation speed and average generator tempera-
ture in Figure 13 shows their performance with their pros and cons in a particular scenario.
The suggested evaluation approach can effectively forecast the change in operating circum-
stances prior to fault occurrences and can provide early warning of developing faults in
DFIG bearings, according to the validation results.
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Validation of this research shows the change in speed and temperature. If the tem-
perature exceeds greater than the range of 25 ◦C to 75 ◦C, it may fault the DFIG. After
applying the machine learning technique, it was found that the rotation of the generator
changes its speed, the high temperature could also be exceeded, and it can affect DFIG
and could damage the bearings. Therefore, this research provides early fault detection of
DFIG bearings.

4. Conclusions, Social Impact, and Recommendations

The approach was applied in a field study using one month of SCADA data from
a wind farm consisting of 66 1.5 MW turbines in order to develop an effective condition
monitoring system for early diagnosis and prognoses the conditions of the wind turbine’s
drive train to investigate bearing failures in DFIG. The box plot shows the visual graph
of the affected parameters. In order to achieve forecasting with high accuracy, this paper
proposes a novel model for the bearings in DFIG and a machine learning method for
predictive maintenance. Therefore, forecasting the trend of temperature change is critical
for overheating warnings. In order to evaluate the performance of the clustering model,
experimental analysis was carried out. By combining the condition parameters in a scatter
matrix, the linear elbow technique revealed the relationships between temperature and
related variables. The results of comparative studies and early fault diagnosis show that
the proposed method has better performance for temperature forecasting and average
rotation speed of the main bearing of large-scale DFIG bearings. If these data can be
used to identify potential failures or breakdowns, then this may well prove to be a very
cost-effective means of condition monitoring; the SCADA data parameters prove to be
a cost-effective method of condition monitoring that can be used for potential faults or
malfunctions. The method will enable reducing downtime and monetary losses due to
maintenance and replacement of various wind turbine components. The study provides an
adaptable but reliable framework for the early identification of developing wind turbine
damage, reducing wind turbine outages, and raising wind turbine dependability and
revenue through operational improvement. Forecasting the trend of temperature change
is essential for issuing overheating alerts. The outcomes of comparative studies and early
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fault diagnosis demonstrate that the proposed method has improved performance for
temperature and rotation speed for forecasting the bearing of DFIG bearings. This research
suggests a novel model for the bearings in DFIG and a machine learning method for
preventive maintenance to achieve forecasts with high accuracy.

The sustainability of wind energy generation is ensured by using the approach sug-
gested in this paper. Additionally, wind turbines may lessen the amount of power produced
using fossil fuels, which lowers overall air pollution and carbon dioxide emissions. The
potential for wind turbines to negatively impact wild animals through collisions as well
as indirectly through noise pollution, habitat loss, and decreased survival or reproduction
is a major issue for the business. Moreover, this study could be carried out to analyze
the viability of this method for more than seven parameters of DFIG wind turbines in the
future. With some changes, our project can also be used for health/condition monitoring of
other equipment such as wind turbine gearboxes, medical sectors, helicopters, cars, etc.
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