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Abstract: The existence of multiple pairs of smooth positive solutions for a Carrier problem, driven
by a p(x)-Laplacian operator, is studied. The approach adopted combines sub-super solutions,
truncation, and variational techniques. In particular, after an explicit computation of a sub-solution,
obtained combining a monotonicity type hypothesis on the reaction term and the Giacomoni–Takáč’s
version of the celebrated Díaz–Saá’s inequality, we derive a multiplicity of solution by investigating an
associated one-dimensional fixed point problem. The nonlocal term involved may be a sign-changing
function and permit us to obtain the existence of multiple pairs of positive solutions, one for each
“positive bump” of the nonlocal term. A new result, also for a constant exponent, is established and
an illustrative example is proposed.
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1. Introduction

Since the work of G. R. Kirchhoff [1] and G. F. Carrier [2], owing also to the fine
and seminal investigations developed by J. L. Lions [3], nonlocal problems have been
widely studied due to their high applicability in biology, engineering, and physics; see,
for instance, [4–10]. For example, the nonlocal elliptic problem can be used to describe
population diffusion where the velocity of the dispersion depends on the whole population;
see [11–13]. Meanwhile, [2] is devoted to the study of deflection of beams. Additionally,
see also [14,15] and the references therein for a more general overview on the findings on
these topics.

We emphasize that the p(x)-Laplacian operator is a gainful generalization of the
classical p-Laplacian, since it allows us to consider more general and tricky physical aspects.
The most famous results have been obtained in [16] (Section 14.4) and [17,18], which are
devoted to studying models on electrorheological fluids, which are viscous fluids with the
characteristic of changing, when activated by an electric field, their mechanical properties,
changing from liquid to gel, reversibly, in a few milliseconds. See [18,19] for applications to
actuators, clutches, shock absorbers, and rehabilitation equipment. Another fascinating
application of this operator is the process of image restoration, as shown in [20–22] and the
references therein. Other useful applications can be found for biological aspects in [23] and
for chemical reactions and fluid dynamics in [24,25].
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Here, we consider the following Carrier p(x)-Laplacian type equation with Dirichlet
boundary value conditions:

−a
(∫

Ω
uqdx

)
∆p(x)u = β(x) f (u) in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(Pp(x),β, f )

where Ω is a bounded domain in RN , N ≥ 2, with C2-boundary, q ≥ 1 and

∆p(x)u := div(|∇u|p(x)−2∇u)

denotes the p(x)-Laplacian operator, with p being a function belonging to C1(Ω̄) such that

(p1) 1 < p− := min
x∈Ω

p(x) ≤ p(x) ≤ p+ := max
x∈Ω

p(x) < N;

(p2) there exists a vector l ∈ RN \ {0} such that for all x ∈ Ω the function p(x + tl) is monotone
for t ∈ Σ = {t : x + tl ∈ Ω}.

The first eigenvalue and eigenfunction of
(
−∆p(x), W1,p(x)

0 (Ω)
)

are indicated with λ1

and φ1, respectively, and let K be a positive integer; in addition, we assume that

(i0) a : [0,+∞) → R is a continuous function and there exist positive numbers 0 =: α0 ≤
α1 < α2 ≤ α3 < α4 ≤ . . . ≤ α2k−1 < α2k such that a > 0 in (α2k−1, α2k) and a(α2k−1) =
a(α2k) = 0 for all k ∈ {1, . . . , K}.

(i1) β ∈ L∞(Ω), with β := essinf β > 0, f : R → R is a function and there exists t∗ > 0 such
that f (t) > 0 in (0, t∗), f (t∗) = 0, f ∈ C([0, t∗]), r ∈ [1, p−], and the map

(0, t∗) ∋ t
ψr7→ f (t)

tr−1

is strictly decreasing.

(i2) α2K < tq
∗

∥φ1∥
q
∞

∫
Ω

φ
q
1dx.

(i3) max
α∈[α2k−1,α2k ]

a(α) <
βγ∥φ1∥r−1

∞

λ1 max
{

1, ∥φ1∥
p+−1
∞

} for all k ∈ {1, . . . , K}, being γ := lim
t→0+

f (t)
tr−1 .

Put

α∗ =

[
2√
π

(
1 − 1

p+

)(
1 +

1
N

)
Γ
(

1 +
N
2

) 1
N
]q

|Ω|1+
q
N ,

with Γ being the Euler gamma function.
(i4) One has that, for all k ∈ {1, . . . , K} such that α∗ < α2k−1, there exists αk ∈ (α2k−1, α2k)

satisfying one of the following conditions:

(i41) a(αk)p− > 2
N
√

π

(
|Ω|Γ(1 + N

2 )
) 1

N ∥β∥∞ max
t∈[0,t∗ ]

f (t);

(i42) a(αk)α
p−−1

q
k >

(
(N+1)(p+−1)

p+

)p−−1
(

2p− (Γ(1+ N
2 ))

p−
N

p−(N
√

π)p− ∥β∥∞ max
t∈[0,t∗ ]

f (t)

)
|Ω|

p−
N +

p−−1
q ,

if a(αk)p− ≤ 2
N
√

π

(
|Ω|Γ(1 + N

2 )
) 1

N ∥β∥∞ max
t∈[0,t∗ ]

f (t).

Remark 1. Regarding our hypotheses, the following is worth noting: the first eigenpair (λ1, φ1) of(
−∆p(x), W1,p(x)

0 (Ω)
)

satisfies φ1 ∈ int(C+) (p. 56 and p. 76, [15]), being

int(C+) :=
{

u ∈ C1
0(Ω̄) : u > 0, ∀x ∈ Ω, and ,

∂u
∂ν

< 0, ∀x ∈ ∂Ω
}

,

and hypotheses (p2) guarantees us that λ1 > 0 (Theorem 3.3, [26]); see also, [27].
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In (i4), you can find the constant

C0 =

(
Γ(1 + N

2 )
) 1

N

N
√

π
, (1)

which is the best constant in the continuous embedding W1,1
0 (Ω) ↪→ L

N
N−1 (Ω), which is related to

the classical isoperimetric inequality in RN ; see, for instance, [28] (p. 46) or [29] (p. 355).
The nonlocal term a admits a finite number of “positive bumps” and it can be a continuously

changing sign function as in (Theorem 2.1, [30]).

This paper follows some aspects introduced in [31–33] for the Laplacian case and, more
recently, in [30], where a p-Laplacian operator with 1 < p < +∞ is considered. However,
with respect to these previous works, here, to overcome the difficulties arising from the lack
of homogeneity of the p(x)-Laplacian operator, we arrange a similar approach combining
the sub-super solutions, truncation, and variational techniques, inspired by the classic
result of Brezis and Nirenberg [34]; see also the more recent papers [35–41].

For completeness, we should mention that variational and non-variational techniques
have been successfully used to study variable growth problems; see, for instance, [26,42–48]
and the related references. In particular for sub-super solutions approaches, we refer the
reader to [49].

Our paper is organized as follows: Section 2 is dedicated to introducing the mathe-
matical background; Section 3 contains the proof of the main results, where first we obtain
an explicit computation of a sub-solution for problem (Pp(x),β, f ) and then the multiplicity
of solutions as fixed points of a suitable continuous map.

2. Mathematical Background
2.1. Setting of Function Spaces

We introduce the functional space in which we set our problem; see [50,51] for further
details. The variable exponent Lebesgue space, Lp(x)(Ω), is defined as

Lp(x)(Ω) =
{

u : Ω → R : u is measurable and ρp(x)(u) < +∞
}

,

where
ρp(x)(u) :=

∫
Ω
|u(x)|p(x)dx

is called the modular of Lp(x)(Ω). We endow these spaces with the Luxemburg norm, i.e.,

∥u∥Lp(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)
dx ≤ 1

}
.

Moreover, we consider

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

,

with the norm
∥u∥W1,p(x)(Ω) = ∥u∥Lp(x)(Ω) + ∥|∇u|∥Lp(x)(Ω).

We should point out that on W1,p(x)
0 (Ω) = C∞

0 (Ω)
∥·∥

W1,p(x)(Ω) , due to the Poincaré’s
inequality on variable exponent spaces (Proposition 2.5(iii) [51]), we can use the equiva-
lent norm

∥u∥ = ∥|∇u|∥Lp(x)(Ω)

(see also [26,42,52]). Now, we state a useful lemma.
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Lemma 1. (Theorem 1.2, [45]) Let u ∈ W1,p(x)
0 (Ω) and

Φ(u) =
∫

Ω

1
p(x)

|∇u|p(x)dx.

Then, the following hold:

1. ∥u∥ < 1(= 1;> 1) ⇔ ρp(x)(∇u) < 1(= 1;> 1);
2. if ∥u∥ > 1, then 1

p+ ∥u∥p− ≤ Φ(u) ≤ 1
p− ∥u∥p+ ;

3. if ∥u∥ < 1, then 1
p+ ∥u∥p+ ≤ Φ(u) ≤ 1

p− ∥u∥p− .

In particular, Φ is a coercive functional.

For the reader’s convenience, we recall some valuable properties of the p(x)-Laplace
operator. To have a complete overview on these arguments, see [48,52,53].

Lemma 2. (Theorem 3.1, [48]) Let L : W1,p(x)
0 (Ω) →

(
W1,p(x)

0

)∗
such that

⟨Lu, v⟩ =
∫

Ω
|∇u|p(x)−2∇u∇vdx, ∀u, v ∈ W1,p(x)

0 (Ω). (2)

Then, L : W1,p(x)
0 (Ω) →

(
W1,p(x)

0

)∗
is a continuous bounded operator, strictly monotone and of

(S+)-type, i.e., if un ⇀ u in W1,p(x)
0 (Ω) and lim sup

n→+∞
⟨−∆p(x)un, un − u⟩ ≤ 0, then un → u in

W1,p(x)
0 (Ω).

2.2. Sub-Super Solutions with Variational Structure

In order to apply our techniques, we will use an auxiliary problem:{
−a(α)∆p(x)u = β(x) f (u) in Ω,

u = 0 on ∂Ω,
(Pk,α,β f )

with α ∈ (α2k−1, α2k), k ∈ {1, . . . , K}.
As in [49] (Definition 2.1) or [54] (Definition 11.5), we define a sub- and super-solution

for problem (Pk,α,β f ) as follows:

Definition 1. Let Lp(x)
+ (Ω) = {v ∈ Lp(x)(Ω) : v ≥ 0}. We say that u ∈ W1,p(x)(Ω) is a

sub-solution for (Pk,α,β f ) if u ≤ 0 on ∂Ω and

a(α)
∫

Ω
|∇u|p(x)−2∇u∇vdx ≤

∫
Ω

β(x) f (u)vdx ∀v ∈ W1,p(x)
0 (Ω) ∩ Lp(x)

+ (Ω).

Analogously, ū ∈ W1,p(x)(Ω) is called a super-solution for (Pk,α,β f ) if ū ≥ 0 on ∂Ω and

a(α)
∫

Ω
|∇ū|p(x)−2∇ū∇vdx ≥

∫
Ω

β(x) f (ū)vdx ∀v ∈ W1,p(x)
0 (Ω) ∩ Lp(x)

+ (Ω).

Similarly, u ∈ W1,p(x)
0 (Ω) is called a (weak) solution for (Pk,α,β f ) if u = 0 on ∂Ω and

a(α)
∫

Ω
|∇u|p(x)−2∇u∇vdx =

∫
Ω

β(x) f (u)vdx ∀v ∈ W1,p(x)
0 (Ω).
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In all three cases, the definition holds true, provided that the right-hand side is well
defined. To the truncation of f , we put

f∗(t) =


f (u) if t ≤ u,
f (t) if u ≤ t ≤ ū,
f (ū) if t ≥ ū,

(3)

and we indicate the related problem with (Pk,α,β f∗). Now, by (3), we prove that every weak
solution of (Pk,α,β f∗) is a weak solution of (Pk,α,β f ) (see, for instance, [34] for p(x) = 2, (Propo-
sition 11.8, [54]) for p(x) ≡ p, 1 < p < +∞ and (Theorem 3.3, [49]) for variable exponent).

Lemma 3. Let u be a sub-solution and let ū be a super-solution of (Pk,α,β f ), such that u ≤ ū. Then,
every solution u of (Pk,α,β f∗) is such that u ≤ u ≤ ū, that is u is a weak solution of (Pk,α,β f ).

Proof. Assume there exists a weak solution u of (Pk,α,β f∗), then it satisfies

a(α)
∫

Ω
|∇u|p(x)−2∇u∇vdx =

∫
Ω

β(x) f∗(u)vdx ∀v ∈ W1,p(x)
0 (Ω). (4)

We will indicate with u+ = max{0, u} and u− = max{0,−u}. It is clear that u = u+ − u−.
Now, choosing, as test functions, v1 = (u − u)− and v2 = (u − ū)+, which, lying in W1,p(x)

0 ,
from (4) (see Remark 1.35, [54]), we get, first

a(α)
∫

Ω
|∇u|p(x)−2∇u∇(u − u)−dx =

∫
Ω

β(x) f∗(u)(u − u)−dx,

i.e.,

a(α)
∫

{u<u}

|∇u|p(x)−2∇u∇(u − u)dx =
∫

{u<u}

β(x) f (u)(u − u)dx. (5)

On the other hand, u is a sub-solution for (Pk,α,β f ) and by (3), one has

a(α)
∫

Ω
|∇u|p(x)−2∇u∇(u − u)−dx ≤

∫
Ω

β(x) f∗(u)(u − u)−dx,

that is,

−a(α)
∫

{u<u}

|∇u|p(x)−2∇u∇(u − u)dx ≤ −
∫

{u<u}

β(x) f (u)(u − u)dx. (6)

Adding (5) and (6), we get

a(α)
∫

{u<u}

(
|∇u|p(x)−2∇u − |∇u|p(x)−2∇u

)
∇(u − u)dx ≤ 0. (7)

Next, for v = v2, we have

a(α)
∫

{u>ū}

|∇u|p(x)−2∇u∇(u − ū)dx =
∫

{u>ū}

β(x) f (ū)(u − ū)dx. (8)

Moreover, since ū is a super-solution for (Pk,α,β f ) and by (3), we have

a(α)
∫

Ω
|∇ū|p(x)−2∇ū∇(u − ū)+dx ≥

∫
Ω

β(x) f∗(u)(u − ū)+dx,
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i.e.,

a(α)
∫

{u>ū}

|∇ū|p(x)−2∇ū∇(u − ū)dx ≥
∫

{u>ū}

β(x) f (ū)(u − ū)dx.

Then, subtracting from the previous inequality (8), we get

a(α)
∫

{u>ū}

(
|∇u|p(x)−2∇u − |∇ū|p(x)−2∇ū

)
∇(u − ū)dx ≤ 0. (9)

Since a(α) > 0, the strictly monotonicity of −∆p(x) (Lemma 2) ensures that the measure of
the sub-levels {u < u} and {u > ū} are zero; then, u ≤ u ≤ ū. Finally, we highlight that,
by (3), every weak solution of (Pk,α,β f∗) is a weak solution of (Pk,α,β f ).

3. Main Results

Our main result is the following.

Theorem 1. Assume that (p1), (p2), (i0), (i1), (i2), (i3), and (i4) hold. Then, for all k ∈
{1, . . . , K}, such that α∗ < α2k−1, the problem (Pp(x),β, f ) admits at least K − k + 1 pair of
solutions uk,1, uk,2 ∈ int(C+) such that

α2k−1 <
∫

Ω
uq

k,1dx <
∫

Ω
uq

k,2dx < α2k ∀k ∈ {1, . . . , K}.

We split the proof of Theorem 1 in some steps. Clearly, by (i1), since f (t∗) = 0, ū = t∗
turns to be a super-solution for problem (Pk,α,β f ). In the following lemma, we show the
existence of a sub-solution for (Pk,α,β f ).

Lemma 4. Assume that (i0), (i1), and (i3) hold. For every k ∈ {1, . . . , K} and α ∈ (α2k−1, α2k),
let us consider the following function:

zα =

 ψ−1
r

(
kα
β

)
φ1

∥φ1∥∞
if ∥φ1∥∞ ≥ ψ−1

r

(
kα
β

)
;

c φ1
∥φ1∥∞

if ∥φ1∥∞ < ψ−1
r

(
kα
β

)
,

(10)

where kα =
a(α)λ1 max

{
1,∥φ1∥

p+−1
∞

}
∥φ1∥r−1

∞
and ∥φ1∥∞

m ≤ c ≤ ∥φ1∥∞, being m ≥ ∥φ1∥∞
t∗ , and ψ−1

r :

(0, γ) → (0, t∗) being the inverse function of ψr. Then, zα is a sub-solution for (Pk,α,β f ).

Proof. From (i1), we have that the map ψr : t 7→ f (t)
tr−1 is strictly decreasing, and by (i3), one

has kα
β < γ; then, there exists the inverse function ψ−1

r : (0, γ) → (0, t∗), so zα is well posed.
Furthermore, it is not restrictive to assume that γ < +∞, because, if γ = +∞ we can argue
in a similar way. By definitions of zα and ψ−1

r , we have 0 < zα < t∗, and we get

kα

β
=

f
(

ψ−1
r

(
kα
β

))
(

ψ−1
r

(
kα
β

))r−1 ≤ f (zα)

zr−1
α

, (11)

that is, we obtain

kαzr−1
α ≤ β f (zα) ≤ β(x) f (zα), for a.a. x ∈ Ω. (12)

Now, we analyze the two cases: Case 1: ∥φ1∥∞ < ψ−1
r

(
kα
β

)
. For every v ∈ W1,p(x)

0 (Ω),

with v ≥ 0, arguing by duality, we get
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a(α)
∫

Ω
|∇zα|p(x)−2∇zα∇vdx = a(α)

∫
Ω

∣∣∣∣∇( c
∥φ1∥∞

)
φ1

∣∣∣∣p(x)−2
∇
(

c
∥φ1∥∞

φ1

)
∇v dx

= a(α)
∫

Ω

∣∣∣∣( c
∥φ1∥∞

)∣∣∣∣p(x)−1
|∇φ1|p(x)−2∇φ1∇ vdx

≤ a(α)
(

c
∥φ1∥∞

)r−1 ∫
Ω
|∇φ1|p(x)−2∇φ1∇ vdx

= a(α)λ1

(
c

∥φ1∥∞

)r−1 ∫
Ω

φ
p(x)−1
1 vdx

= a(α)λ1

(
c

∥φ1∥∞

)r−1 ∫
Ω

∥φ1∥
p(x)−1
∞

∥φ1∥
p(x)−1
∞

φ
p(x)−1
1 vdx

≤ a(α)λ1 max{1, ∥φ1∥
p+−1
∞ }

∥φ1∥r−1
∞

∫
Ω

cr−1
(

φ1

∥φ1∥∞

)p(x)−1
vdx

≤ kα

∫
Ω

cr−1
(

φ1

∥φ1∥∞

)r−1
vdx

=
∫

Ω
kαzr−1

α vdx ≤
∫

Ω
β(x) f (zα)vdx.

Case 2: ∥φ1∥∞ ≥ ψ−1
r

(
kα
β

)
, i.e.,

ψ−1
r

(
kα
β

)
∥φ1∥∞

≤ 1. As above, we have

a(α)
∫

Ω
|∇zα|p(x)−2∇zα∇ vdx

= a(α)
∫

Ω

∣∣∣∣∣∣∣∇
ψ−1

r

(
kα
β

)
∥φ1∥∞

φ1


∣∣∣∣∣∣∣

p(x)−2

∇

ψ−1
r

(
kα
β

)
∥φ1∥∞

φ1

∇ vdx

= a(α)
∫

Ω

ψ−1
r

(
kα
β

)
∥φ1∥∞


p(x)−1

|∇φ1|p(x)−2∇φ1∇ vdx

≤ a(α)

ψ−1
r

(
kα
β

)
∥φ1∥∞


r−1 ∫

Ω
|∇φ1|p(x)−2∇φ1∇ vdx

= a(α)λ1

ψ−1
r

(
kα
β

)
∥φ1∥∞


r−1 ∫

Ω
φ

p(x)−1
1 vdx

= a(α)λ1

ψ−1
r

(
kα
β

)
∥φ1∥∞


r−1 ∫

Ω

∥φ1∥
p(x)−1
∞

∥φ1∥
p(x)−1
∞

φ
p(x)−1
1 vdx

≤ a(α)λ1

ψ−1
r

(
kα
β

)
∥φ1∥∞


r−1

max{1, ∥φ1∥
p+−1
∞ }

∫
Ω

φ
p(x)−1
1

∥φ1∥
p(x)−1
∞

vdx

≤ a(α)λ1 max{1, ∥φ1∥
p+−1
∞ }

∥φ1∥r−1
∞

∫
Ω

(
ψ−1

r

(
kα

β

)
φ1

∥φ1∥∞

)r−1

vdx

=
a(α)λ1 max{1, ∥φ1∥

p+−1
∞ }

∥φ1∥r−1
∞

∫
Ω

zr−1
α vdx

=
∫

Ω
kαzr−1

α vdx ≤
∫

Ω
β(x) f (zα)vdx.

Then, in both cases, we have that zα is a sub-solution for (Pk,α,β f ).
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Proposition 1. Assume that (i0), (i1), and (i3) hold. Then, there exists a unique solution, uα,
of (Pk,α,β f∗) such that 0 < zα ≤ uα ≤ t∗ and uα ∈ int(C+).

Proof. Fix k ∈ {1, . . . K} and α ∈ (α2k−1, α2k). Consider the functional Ik,α : W1,p(x)
0 (Ω) →

R with
Ik,α(u) = a(α)

∫
Ω

1
p(x)

|∇u|p(x)dx −
∫

Ω
β(x)F∗(u)dx, (13)

for all u ∈ W1,p(x)
0 (Ω), where F∗(u) =

∫ u

0
f∗(s)ds, being u = zα and ū = t∗ in (3). Since f∗

is bounded and continuous, owing to Lemma 1, one has that the energy functional, Ik,α is
coercive and weakly lower semi-continuous (see Lemma 3 [15] or [16] (Section 13.2). Then,
by the Direct Methods’ Theorem (Theorem 1.2, [55]), there exists uα, a global minimum of
Ik,α, so uα is a critical point for Ik,α and standard arguments show that uα is a weak solution
of (Pk,α,β f∗); therefore, by Lemma 3, uα is a weak solution of (Pk,α,β f ), such that zα ≤ uα ≤ t∗.
Now, we prove that uα is the unique solution of (Pk,α,β f ) such that zα ≤ uα ≤ t∗. For this
scope, we use the version of Díaz–Saá inequality (Lemma 2, [56]) obtained for the p(x)-
Laplacian in (Theorem 2.4, [57]) by J. Giacomoni and P. Takáč. Suppose there exists a
vα ̸= uα solution of (Pk,α,β f ), such that zα ≤ vα ≤ t∗. Then, by (i1)

(
decreasing of t 7→ f (t)

tr−1

)
,

we have

0 ≤
∫

Ω

(
−

∆p(x)uα

ur−1
α

+
∆p(x)vα

vr−1
α

)
(ur

α − vr
α)dx =

∫
Ω

β(x)
( f (uα)

ur−1
α

− f (vα)

vr−1
α

)
(ur

α − vr
α)dx < 0,

which is a contradiction. Moreover, since uα is bounded, (Theorem 1, [58]) implies that
uα belongs to the Hölder’s space C1,ν(Ω̄), for some 0 < ν < 1. Finally, by (i1), f ∈
C([0, t∗]) and 0 ≤ f (uα) ≤ max

t∈[0,t∗ ]
f (t) < +∞, then ∆p(x)uα ∈ L∞(Ω) and −∆p(x)uα ≥ 0,

hence the Maximum Principle for p(x)-Laplacian, (Proposition 3.1, [49]), guarantees that
uα ∈ int(C+).

Now, to prove the multiplicity of solutions for (Pp(x),β, f ), we associate to (Pp(x),β, f ) an
auxiliary one-dimension fixed-point problem. In particular, for each k ∈ {1, . . . , K} and for
the uα minimizer of Ik,α (unique solution of (Pk,α,β f∗) such that zα ≤ uα ≤ t∗, the previous
proposition allows us to define the following map: Pk : (α2k−1, α2k) → R, with

Pk(α) =
∫

Ω
uq

αdx

for all α ∈ (α2k−1, α2k). It plays a key role in our approach since it is true that

if α ∈ Fix(Pk), then uα is a solution of problem (Pp(x),β, f ), (14)

where Fix(Pk) = {α ∈ (α2k−1, α2k) : Pk(α) = α}. Indeed, fix α ∈ (α2k−1, α2k) such that
Pk(α) = α, then, we have

−a
(∫

Ω
uq

αdx
)

∆p(x)uα = −a(α)∆p(x)uα = β(x) f (uα) in Ω.

Proposition 2. Assume that (i0), (i1), and (i3) hold. Then, for every k ∈ {1, . . . , K}, the map
Pk : (α2k−1, α2k) → R is continuous.

Proof. Let {αn} ⊆ (α2k−1, α2k), such that αn → α ∈ (α2k−1, α2k) and, for every n ∈ N,
un = uαn ; by Proposition 1, one has zαn ≤ un ≤ t∗ and un is a global minimum of

Ik,an(un) = a(αn)
∫

Ω

1
p(x)

|∇un|p(x)dx −
∫

Ω
β(x)F∗(un)dx. (15)
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Our aim is to show that {un} is bounded in W1,p(x)
0 (Ω). Clearly, if ρp(x)(∇un) ≤ 1,

exploiting Lemma 1, we have done. On the other hand, if ρp(x)(∇un) > 1 then, since
Ik,an(un) ≤ 0 ( Ik,a(0) = 0), one has

a(αn)

p+
∥un∥p− −

∫
Ω

β(x)F∗(un)dx ≤ a(αn)
∫

Ω

1
p(x)

|∇un|p(x)dx −
∫

Ω
β(x)F∗(un)dx ≤ 0,

i.e.,
a(αn)

p+
∥un∥p− ≤ ∥β∥∞F∗(t∗)|Ω| < +∞,

Hence, also in this case, {un} is a bounded sequence. Therefore, up to a subsequence,
un ⇀ u∗ in W1,p(x)

0 (Ω) and, by (Theorem 4.9, [59]),

un → u∗ in L1(Ω) and un(x) → u∗(x) a.e. in Ω, (16)

for some u∗ ∈ W1,p(x)
0 (Ω). Moreover, for every n ∈ N, one has

a(αn)
∫

Ω
|∇un|p(x)−2∇un∇vdx =

∫
Ω

β(x) f∗(un)vdx ∀v ∈ W1,p(x)
0 (Ω). (17)

Since a and f∗ are continuous and bounded functions by Lebesgue’s Dominate Convergence
Theorem, we can test (17) with v = un − u∗, and passing to the lim sup, we get

a(α) lim sup
n→+∞

⟨−∆p(x)un, un − u∗⟩ ≤ 0.

By (S+)-property (Lemma 2) of −∆p(x), we get that un → u∗ in W1,p(x)
0 (Ω). Taking the

limit of (17), we obtain that u∗ is a weak solution of (Pk,ᾱ,β f∗). Now, we prove that u∗ ̸= 0.
Moreover, zαn ≤ un ≤ t∗ for all n ∈ N, and kαn → kα as n → +∞, i.e., by continuity of ψr,
ψ−1

r

(
kαn
β

)
→ ψ−1

r

(
kα
β

)
, we derive

lim
n→+∞

zαn = zα > 0.

From this, we get zᾱ ≤ uᾱ ≤ t∗, then uα ̸= 0 and, by Proposition 1, one has that u∗ = uα;
then, from (16) and by Lebesgue’s Dominate Convergence Theorem, we pass to the limit in
(17) and obtain that

Pk(αn) → Pk(α). (18)

Proposition 3. Assume that (i0), (i1), (i2), (i3), and (i4) hold. For every k ∈ {1, . . . , K}, the
map Pk possesses at least two fixed point, αk,1 and αk,2, such that α2k−1 < αk,1 < αk,2 < α2k.

Proof. Fix k ∈ {1, . . . , K}. First, we show that

lim
α→α+2k−1

Pk(α) > α2k−1 and lim
α→α−2k

Pk(α) > α2k. (19)

By Lemma 4, we have

Pk(α) =
∫

Ω
uq

αdx ≥
∫

Ω
zq

αdx ∀α ∈ (α2k−1, α2k). (20)
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We observe that, if zα =
ψ−1

r

(
kα
β

)
∥φ1∥∞

φ1, then

∫
Ω

zαdx ≥

ψ−1
r

(
kα
β

)
∥φ1∥∞


q ∫

Ω
φ

q
1dx.

On the other hand, if zα = c
∥φ1∥∞

φ1, then

∫
Ω

zαdx ≥
(

1
m

)q ∫
Ω

φ
q
1dx.

Now, by (i0), (i2), and Lemma 4, we get

lim
α→α+2k−1

Pk(α) ≥ tq
∗

∥φ1∥
q
∞

∫
Ω

φ
q
1dx > α2K > α2k−1,

lim
α→α−2k

Pk(α) ≥ tq
∗

∥φ1∥
q
∞

∫
Ω

φ
q
1dx > α2K ≥ α2k.

In the subsequent, we realize that there exists α0 ∈ (α2k−1, α2k), such that

Pk(α0) < α0. (21)

First, we observe that, since uα0 is a solution of (Pk,α,β f∗), and, by (i0), a(α0) > 0, one has

−∆p(x)uα0 =
β(x) f (uα0)

a(α0)
≤

∥β∥∞ max
t∈[0,t∗ ]

f (t)

a(α0)
,

i.e., setting

M(α0) = M :=
∥β∥∞ max

t∈[0,t∗ ]
f (t)

a(α0)
, (22)

we focus on the following problem:{
−∆p(x)w = M in Ω,
u = 0 on ∂Ω.

(23)

We introduce these suitable constants as in [49]:

C∗ =
(N + 1)(2C0)

(p−)′

(p+)′(p−)
(p−)′

p−

|Ω|
(p−)′

N , (24)

and

C∗ =
(N + 1)(2C0)

(p+)′

(p+)′(p−)
(p+)′

p+

|Ω|
(p+)′

N , (25)

with C0 as in (1). Due to the result in (Lemma 2.1, [49]), we have

∥w∥∞ ≤


C∗M

1
p−−1 if M ≥ p−

2|Ω|
1
N C0

;

C∗M
1

p+−1 if M < p−

2|Ω|
1
N C0

,
(26)

with C0, C∗, and C∗, respectively, as in (1), (24), and (25). Now, keeping in mind (Propo-
sition 2.3, [49]), since uα ≤ w on ∂Ω and −∆p(x)uα ≤ −∆p(x)w, one has uα ≤ w on Ω; we
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analize the two cases separately.
Case 1: Let us assume that M < p−

2|Ω|
1
N C0

, then

∥w∥∞ ≤ C∗M
1

p+−1

<
(N + 1)(2C0)

(p+)′

(p+)′(p−)
(p+)′

p+

|Ω|
(p+)′

N

(
p−

2|Ω| 1
N C0

) 1
p+−1

=
(N + 1)(p+ − 1)

p+

2
p+

p+−1 2
−1

p+−1 C
p+

p+−1
0 C

−1
p+−1

0 |Ω|
p+

N(p+−1) |Ω|
−1

N(p+−1)

(p−)
1

p+−1 (p−)
−1

p+−1

=
(N + 1)(p+ − 1)

p+
2C0|Ω|

1
N

=
(N + 1)(p+ − 1)

p+
2|Ω|

1
N

(
Γ(1 + N

2 )
) 1

N

N
√

π
.

This computation implies that

Pk(α) =
∫

Ω
uq

αdx ≤ ∥w∥q
∞|Ω|

<

(
(N + 1)(p+ − 1)

p+

)q
[

2
Γ(1 + N

2 )
1
N

N
√

π

]q

|Ω|
q+N

N .

Then, we need

α0 >

(
(N + 1)(p+ − 1)

p+

)q
[

2
Γ(1 + N

2 )
1
N

N
√

π

]q

|Ω|
q+N

N . (27)

Moreover, by (22), one has

M <
p−

2|Ω| 1
N C0

⇔
∥β∥∞ max

[0,t∗ ]
f (t)

a(α0)
<

p−
2|Ω| 1

N C0

,

by (i41); our claim follows with α0 = αk, i.e.,

a(αk)p− >
2

N
√

π

(
|Ω|Γ(1 + N

2
)

) 1
N
∥β∥∞ max

[0,t∗ ]
f (t). (28)

Case 2: Let us assume that M ≥ p−

2|Ω|
1
N C0

, then

∥w∥∞ ≤ C∗M
1

p−−1

=
(N + 1)(2C0)

(p−)′

(p+)′(p−)
(p−)′

p−

|Ω|
(p−)′

N

∥β∥∞ max
t∈[0,t∗ ]

f (t)

a(α0)


1

p−−1

.



Mathematics 2024, 12, 2441 12 of 16

Then, we have,

Pk(α) =
∫

Ω
uq

αdx ≤ ∥w∥q
∞|Ω|

≤

 (N + 1)(p+ − 1)
p+

2
p−

p−−1 C
p−

p−−1
0

(p−)
1

p−−1
|Ω|

p−
N(p−−1) |Ω|

1
q

∥β∥∞ max
t∈[0,t∗ ]

f (t)

a(α0)


1

p−−1


q

=

 (N + 1)(p+ − 1)
p+


2p−Cp−

0 |Ω|
qp−+N(p−−1)

qN ∥β∥∞ max
t∈[0,t∗ ]

f (t)

a(α0)p−


1

p−−1


q

=

(
(N + 1)(p+ − 1)

p+

)q

2p−(Γ(1 + N
2 ))

p−
N ∥β∥∞ max

t∈[0,t∗ ]
f (t)

p−(N
√

π)p− a(α0)


q

p−−1

|Ω|
qp−+N(p−−1)

N(p−−1) .

In order to ensure (21), we have

a(α0)α
p−−1

q
0 >

(
(N + 1)(p+ − 1)

p+

)p−−1
(

2p−(Γ(1 + N
2 ))

p−
N

p−(N
√

π)p−
∥β∥∞ max

t∈[0,t∗ ]
f (t)

)
|Ω|

qp−+N(p−−1)
qN ,

which is true by (i42) with α0 = αk. Furthermore, since

M ≥ p−
2|Ω| 1

N C0

⇔
∥β∥∞ max

[0,t∗ ]
f (t)

a(α0)
≥ p−

2|Ω| 1
N C0

,

i.e.,

a(α0)p− ≤ 2
N
√

π

(
|Ω|Γ

(
1 +

N
2

)) 1
N
∥β∥∞ max

[0,t∗ ]
f (t), (29)

one has

α0 >

(
(N + 1)(p+ − 1)

p+

)q

2p−(Γ(1 + N
2 ))

p−
N ∥β∥∞ max

t∈[0,t∗ ]
f (t)

p−(N
√

π)p− a(α0)


q

p−−1

|Ω|
qp−+N(p−−1)

N(p−−1)

≥
(
(N + 1)(p+ − 1)

p+

)q
[

2p−(Γ(1 + N
2 ))

p−
N

p−(N
√

π)p−

p−
2|Ω| 1

N C0

] q
p−−1

|Ω|
qp−+N(p−−1)

N(p−−1)

=

(
(N + 1)(p+ − 1)

p+

)q
[

2
Γ(1 + N

2 )
1
N

N
√

π

]q

|Ω|
q+N

N ,

which is guaranteed by (i4) with α0 = αk. Now, from the continuity of Pk (Proposition 2),
the two limits in (19) guarantee that there exist αk,1, αk,2, such that Pk(αk,1) > α2k−1 and
Pk(αk,2) > α2k. By (21) and the Intermediate Value’s Theorem, we conclude that there
exists at least one interval in which Pk possess at least two fixed points.

Now, we are ready to prove our main result.

Proof of Theorem 1. By Proposition 3, we obtain the existence of at least two fixed points
for the map Pk. Therefore, by (14), this means that we obtain at least two positive solutions
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for problem (Pk,α,β f ) for each k ∈ {1, . . . , K}, such that α2k−1 > α∗. Moreover, for such k,
we get

α2k−1 <
∫

Ω
uq

k,1dx <
∫

Ω
uq

k,2dx < α2k. (30)

Remark 2. Obviously, if one has that α∗ < α2k−1 for all k ∈ {1, . . . , K}, Theorem 1 furnishes the
existence of at least K pairs of positive solutions.

We obtain a new result also in the cases of p(x) ≡ p and r = p. Indeed, if we come
back to the constant exponent framework, i.e., when p− = p+, clearly, one has

C∗ = C∗ =
(N + 1)(2C0)

p′

p′p
p′
p

|Ω|
p′
N .

Moreover, in this setting, φ1 denotes the first eigenfunction of
(
−∆p, W1,p

0 (Ω)
)

, normalized
in L∞(Ω)-norm, i.e., ∥φ1∥∞ = 1. Combining the classical results on p-Laplacian spectrum
(Chapter 9, [54]) with our investigations, Theorem 1, with p = p− = p+ = r, yields
the following:

Theorem 2. Assume that (i0), (i1), and (i2) hold. In addition, we suppose that

(i′3) max
t∈[α2k−1,α2k ]

a(t) <
βγ

λ1
for all k ∈ {1, . . . , K}, being γ := lim

t→0+
f (t)
tp−1 and λ1 the first eigenvalue

of
(
−∆p, W1,p

0 (Ω)
)

.
Set

α∗ =

[
2√
π

(
1 − 1

p

)(
1 +

1
N

)
Γ
(

1 +
N
2

) 1
N
]q

|Ω|1+
q
N ,

(i′4) one has that, for all k ∈ {1, . . . , K} such that α∗ < α2k−1, there exists αk ∈ (α2k−1, α2k),
satisfying one of the following conditions:

(i′41
) a(αk)p > 2

N
√

π

(
|Ω|Γ(1 + N

2 )
) 1

N ∥β∥∞ max
t∈[0,t∗ ]

f (t);

(i′42
) a(αk)α

p−1
q

k >
(
(N+1)(p−1)

p

)p−1
(

2p(Γ(1+ N
2 ))

p
N

p(N
√

π)p ∥β∥∞ max
t∈[0,t∗ ]

f (t)

)
|Ω|

p
N +

p−1
q ,

if a(αk)p ≤ 2
N
√

π

(
|Ω|Γ(1 + N

2 )
) 1

N ∥β∥∞ max
t∈[0,t∗ ]

f (t).

Then, the problem (Pp,β, f ) admits at least, K − k + 1 pairs of solutions, uk,1, uk,2 ∈ int(C+),
such that

α2k−1 <
∫

Ω
uq

k,1dx <
∫

Ω
uq

k,2dx < α2k ∀k ∈ {1, . . . , K}.

Remark 3. We stress that Theorem 2 is a new result also in the constant case. Indeed, although (The-
orem 2.1, [30]) works under the same assumptions, (i0), (i1), (i2), (i′3), here we have the new and
deeper condition (i′4).

Finally, we would like to conclude this paper by presenting an example

Example 1. Let Ω ⊂ R3 be the sphere centered at the origin with unit radius, i.e.,

Ω =
{
(x, y, z) ∈ R3 : x2 + y2 + z2 < 1

}
,
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p : Ω̄ → R defined by p(x, y, z) = 1
4√12

(x + y + z) + 2 for all (x, y, z) ∈ Ω, β any function fulfils

(i1), K a positive integer and A, b, ϑ ∈ R+, such that

(B1) b min
{

4
√
∥φ1∥∞, 4

√
∥φ1∥7

∞

}
> 4K+1

2 π,

(B2)
A

∥β∥∞bϑ > 2
5

12
√

5488
1089 .

Consider the problem
−A cos

(∫
Ω

udx
)

∆p(x,y,z)u = β(x)(b − u)ϑ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(P)

then, for each k ∈ {1, . . . , K}, problem (P) admits at least K pairs, uk,1, uk,2 ∈ int(C+), of solutions.
Indeed, under the conditions (B1) and (B2), it is easy to verify that all the hypotheses of

Theorem 1 are satisfied by choosing a(α) = A cos(α), for all α ∈ [0,+∞), α0 ≤ α1 = 3
2 π <

α2 = 5
2 π ≤ . . . ≤ α2k−1 = (2k − 1

2 )π < α2k = (2k + 1
2 )π, αk = 2kπ, for k = 1, 2, . . . , K,

p− = r = 5
4 , p+ = 11

4 , f (t) = (b − t)ϑ for all t ∈ (0,+∞) and t∗ = b; taking into account

that |Ω| = 3
4 π, α∗ = 7

11 π 3
√

9
2 and γ = +∞, in particular, we point out that if A

∥β∥∞bϑ > 2
5

3
√

4
3

then (i41) holds, otherwise, for 2
5

12
√

5488
1089 < A

∥β∥∞bϑ ≤ 2
5

3
√

4
3 , (i42) is satisfied. Finally, we have the

following estimates for the L1-norms of the solutions obtained:

(2k − 1
2
)π <

∫
Ω

uk,1dx <
∫

Ω
uk,2dx < (2k +

1
2
)π ∀k ∈ {1, . . . , K}.

4. Conclusions

In this paper, we propose a useful generalization of the results contained in [30–32],
where the constant case p(x) ≡ p has been studied. As a consequence of our results, one
could consider performing more mathematical models. For example, in analogy to what
has been done in [11–13], one can consider biological diffusion processes, in which the
dispersion velocity

Ω ∋ x → v(x) = −a
(∫

Ω
uqdx

)
|∇u(x)|p(x)−2∇u(x)

depends on the gradient of concentration, point-wise also through the function p(x).
From a mathematical point of view, compared to the approach developed in the

constant case setting, the main novelty introduced here is the use of the sub-super solution
method, which allows us to overcome the technical difficulties deriving from the lack of
homogeneity of the p(x)-Laplacian operator. This different technicality leads to a new
result, even when the constant case occurs, namely p(x) ≡ p.

Finally, we wish to stress some potential directions for future research involving
the following:

• nonlocal operators, such as the fractional p-Laplacian;
• non-homogeneous operators, such as the a-Laplacian, in the framework of the Sobolev

spaces, or the Φ-Laplacian, where the presence of Young’s functions in the divergence
operator could raise new and interesting mathematical questions;

• nonlocal term also in the right-hand side, as in [33], with possible blow-up phenomenons;
• the variable exponent q(x) also in the nonlocal term.
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